一元一次方程练习题(提高)

合集下载

一元一次方程提高题

一元一次方程提高题

一元一次方程提高题一元一次方程提高题B组自主提高13.在足球联赛的前11场比赛中,某队仅负一场,共积22分.按比赛规则,胜一场得3分,平一场得1分,负一场得0分,则该队共胜了()A.7场B.6场C.5场D.4场13.B14.下列的数据是由50个偶数排成的.(1)若框中第1个数为x,分别表示出其他3个数?(2)如果框中的四个数的和是172,能否求出这四个数?(3)如果框中的四个数的和是232,能否求出这四个数?第14题图14.(1)四个数分别为x,x+2,x+12,x+14.(2)当这四个数的和为172时,则x+x+2+x+12+x+14=172,解得x=36,所以这四个数分别为36,38,48,50.(3)当这四个数的和为232时,则x+x+2+x+12+x+14=232,解得x=51,51是奇数,所以不存在这样的四个数.C组综合运用15.(江西中考)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,依此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.第15题图15.(1)第5节套管的长度为50-4×(5-1)=34(cm).(2)第10节套管的长度为50-4×(10-1)=14(cm),根据题意得:(50+46+42+…+14)-9x=311,即:320-9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.B组自主提高12.利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置,测量的数据如图所示,则桌子的高度是()第12题图A.73cm B.74cm C.75cm D.76cm12.C13.一个长方形养鸡场的长边靠墙,墙长14m,其他三边用竹篱笆围成.现有长为35m的竹篱笆,小王打算把它围成一个长比宽多5m的鸡场;小赵打算把它围成一个长比宽多2m的鸡场,你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?13.①按小王的设计,设宽为x(m),则长为(x+5)m,根据题意,得2x+(x+5)=35,解得x =10.而x+5=15>14.∴x=10不合题意,舍去.∴小王的设计不符合实际.②按小赵的设计,设宽为y(m),则长为(y+2)m,根据题意,得2y +(y+2)=35.解得y=11.而y+2=13<14.∴小赵的设计符合实际.此时,鸡场的面积为11×13=143(m2).答:小赵的设计符合实际,此时鸡场的面积为143m2.14.如图,一个盛有水的圆柱形玻璃容器的底面半径为10cm,容器内水面的高度为12cm,把一根足够长的半径为2cm的玻璃棒垂直插入水中后,容器内的水面将升高多少(圆柱的体积=底面积×高)?第14题图14.设水面升高了x cm,由题意,得π×102×(12+x)=π×102×12+π×22×(12+x),解得x=0.5. 答:水面将升高0.5cm.C组综合运用15.用正方形硬纸板做三棱柱盒子,如图,每个盒子由3个长方形侧面和2个三边均相等的三角形底面组成,硬纸板以A、B两种方法裁剪(裁剪后边角料不再利用),现有19张硬纸板,裁剪时x张用了A方法,其余用B方法.(1)用含x的式子分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?第15题图15.(1)∵裁剪时x张用了A方法,∴裁剪时(19-x)张用了B方法.∴侧面的个数为6x+4(19-x)=(2x+76)个,底面的个数为5(19-x)=(95-5x)个;(2)由题意,得3(95-5x)=2(2x+76),解得:x=7,则盒子的个数为(2x+76)÷3=30个.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.B组自主提高12.甲、乙两人共同完成一项工作,甲先单独做了3天,然后乙加入合作,和甲一起完成剩下的工作.设工作总量为1,工作进度如下表所示,则完成这项工作共需()A.9天 B .10天C .11天D .12天12.A 【解析】甲、乙合作的效率为⎝⎛⎭⎪⎪⎫12-14÷2=18.设乙加入合作后需x 天完成剩下的工作,根据题意,得18x =1-14,解得x =6.∴共需3+6=9(天).13.(深圳中考)下表为深圳市居民每月用水收费标准,(单位:元/m 3). 用水量单价 x ≤22 a剩余部分 a +1.1(1)某用户用水10立方米,共交水费23元,求a 的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?13.(1)由题意,得10a =23,解得a =2.3,∴a 的值为2.3.(2)设该用户用水x 立方米,若x ≤22,则2.3x=71,解得x =302023>22,舍去. 若x >22,则2.3×22+(2.3+1.1)(x -22)=71,解得x =28,适合.答:该用户用水28立方米.C 组 综合运用14.某管道由甲、乙两工程队单独施工分别需30天,20天完成.(1)如果两队从两端同时相向施工,那么需要多少天铺好?(2)已知甲队单独施工每天需付2000元的施工费,乙队单独施工每天需付2800元的施工费,请你设计一个最省钱的方案,并说明理由.14.(1)设需要x 天铺好,根据题意,得x 30+x 20=1,解得x =12. (2)方案一:甲队单独施工,需30×2000=60000(元);方案二:乙队单独施工,需20×2800=56000(元);方案三:两队同时施工,需12×(2000+2800)=57600(元).∴选方案二(即由乙队单独施工)最省钱.B组自主提高11.篮球赛的组织者出售球票,需要付给售票处12%酬金,如果组织者在扣除酬金后每张球票净得不少于12元,按精确到0.01元的要求,球票票价至少应为()A.13.44元B.13.54元C.13.64元D.13.74元11.C12.周大爷准备去银行储蓄一笔现金.经过咨询,银行的一年定期储蓄年利率为3.5%,两年定期的年利率为4.4%.如果将这笔现金存入两年定期储蓄,期满后将比先存一年定期储蓄到期后连本带息再转存一年定期的方式多得利息335.5元.周大爷准备储蓄的这笔现金是多少元?12.20000元C组综合运用13.(南京中考)某园林门票价格规定如下表:购票人数1~50人51~100人100人以上每人门票价13元11元9元某校一年级甲、乙两班共104人去该园游玩,其中甲班人数较多,有50多人,经估算,若两班都以班为单位分别购票,则一共应付1240元.问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可以省多少钱?13.(1)设甲班有x(x>50)人,则乙班人数为(104-x)人.①当104-x≤50时,有11x+13(104-x)=1240,解得x=56(符合题意).104-x=48(人).②当104-x>50时,有11x+11(104-x)=1240,此方程无解.(2)104×9=936(元),1240-936=304(元).答:(1)甲班有56名学生,乙班有48名学生;(2)两班合起来购票可以节省304元.14.某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:”公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:”我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元?(2)公司经理问:”你们准备怎样租车?”甲同学说:”我的方案是只租用45座的客车,可是会有一辆客车空出30个座位.”乙同学说:”我的方案是只租用60座客车,正好坐满且比甲同学的方案少用两辆客车.”王老师在一旁听了他们的谈话说:”从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由.14.(1)设45座的客车每辆每天的租金为x 元,则60座的客车每辆每天的租金为(x+100)元.则2(x+100)+5x=1600,解得:x=200,∴x+100=300(元).答:45座的客车每辆每天的租金为200元,60座的客车每辆每天的租金为300元.(2)设这个学校七年级共有y名学生,则y+30 45=y60+2,解得y=240.答:甲和乙的方案的费用都为1200元,比甲和乙更经济的方案是:租用45座的客车4辆,60座的客车1辆.这个方案的费用为1100元,且能让所有同学都有座位.。

一元一次方程-提高题

一元一次方程-提高题

一元一次方程应用题1. 方程|2x -3|=4的解为 .2. 规定运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,例如⎪⎪⎪⎪⎪⎪2345=2×5-3×4=-2,若⎪⎪⎪⎪⎪⎪x -1-2x 3=6x -5,则x 的值是 . 3. 下列说法中:① 若a +b +c =0,则(a +c )2=b 2.② 若a +b +c =0,则x =1一定是关于x 的方程ax+b +c =0的解.③ 若a +b +c =0,且abc ≠0,则abc >0. ④ 若a +b +c =0,则|a |=|b +c |.其中正确的是 .4. 已知a ,b 为定值,关于x 的方程kx +a 3=1-2x +bk6,无论k 为何值,它的解总是1,则a +b = . 5. 某商场经销一种商品,由于进货时的价格比原来的进价低了8%,但售价不变,这样使得利润率由原利润率a %增长为(a +10)%,则原利润率为 . 6. 一客轮逆水行驶,船上一乘客掉了一件物品,浮在水面上,乘客发现后,轮船立即掉头去追(轮船掉头时间不计),已知轮船从掉头到追上共用9分钟,则乘客丢失了物品后 分钟后发现的? 7. 如图,已知正方形ABCD 的边长为24厘米.甲、乙两动点同时从顶点A 出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是_________厘米.8. 在一个轨道长为180cm 的“磁悬浮”轨道架上做钢球碰撞实验,如图所示,轨道架上安置二楼三个大小、质量完全相同的钢球A 、B 、C ,左右各有一个钢制挡板D 和E ,其中C 到左挡板的距离为40cm ,B 到右挡板的距离为50cm ,A 、B 两球相距30cm .碰撞实验中(钢球大小、相撞时间不记),钢球的运动都是匀速的,当一钢球以一速度撞向另一静止钢球时,这个钢球停留在被撞钢球的位置,被撞钢球则以同样的速度向前运动,钢球撞到左右挡板则以相同的速度反向运动,现A 球以每秒10cm 的速度向右匀速运动.① ________秒后B 球第二次撞向右挡板E ;② ________秒后B 球第n (n 为正整数)次撞向右挡板E .9. 图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,求这个长方体的高.10. 一个长方体水箱,从里面量长40厘米,宽30厘米,高30厘米,箱中水面高10厘米,放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面,这时水面高多少厘米?11. 某校七年级2班的男生人数是女生人数的1.8倍,在一次数学测试中,全班成绩的平均分是75分,其中女生的平均分比男生的平均分高20%,则女生的平均分是多少?12. 《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的23,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”13. 聪明的小亮在晚上6点多一点开始解一道数学题,当时钟面时针与分针正好成直角,当他解完这道题时,发现此时7点不到,而时针与分针又恰好成直角,则小亮解这道题共用了多少分钟?14. 小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每9分钟就有一辆从后面超过他,每7分钟又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间隔以同一速度不停地运行,那么汽车站每隔多少分钟发一辆车?15. 我们把数轴上表示数-1的点称为离心点,记作点Φ,对于两个不同的点M和N,若点M、N到离心点Φ的距离相等,则称点M、N互为离心变换点.例如:图1中,因为表示数-3的点M和表示数1的点N,它们与离心点Φ的距离都是2个单位长度,所以点M、N互为离心变换点.(1)已知点A表示数a,点B表示数b,且点A、B互为离心变换点,①若a=-4,则b=;若b=π,则a=.②用含a的式子表示b,则b=.③若把点A表示的数乘以3,再把所得数表示的点沿着数轴向左移动3个单位长度恰好到点B,则点A表示的数是(2)若数轴上的点P表示数m,Q表示数m+6.对P点做如下操作:点P沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的离心变换点,点P2沿数轴向右移动k个单位长度得到P3,P4为P3的离心变换点…,依此顺序不断地重复,得到P5,P6,…,P n①已知P2019表示的数是-5,求m的值;②对Q点做如下操作:Q1为Q的离心变换点,将数轴沿原点对折后Q1的落点为Q2,Q3为Q2的离心变换点,将数轴沿原点对折后Q3的落点为Q4,…,依此顺序不断地重复,得到Q s,Q6,…,Q n,若无论k为何值,P n与Q n两点间的距离都是26,则n=16.若一数轴上存在两动点,当第一次相遇后,速度都变为原来的两倍,第二次相遇后又都能恢复到原来的速度,则称这条数轴为魔幻数轴.如图,已知一魔幻数轴上有A,O,B三点,其中A,O对应的数分别为-10,0,AB为47个单位长度,甲,乙分别从A,O两点同时出发,沿数轴正方向同向而行,甲的速度为3个单位/秒,乙的速度为1个单位/秒,甲到达点B后以当时速度立即返回,当甲回到点A时,甲、乙同时停止运动.(1)点B对应的数为,甲出发秒后追上乙(即第一次相遇)(2)当甲到达点B立即返回后第二次与乙相遇,求出相遇点在数轴上表示的数是多少?(3)甲、乙同时出发多少秒后,二者相距2个单位长度?(请直接写出答案)17.甲、乙两个班学生到集市上购买苹果,苹果的价一次购买苹果48kg,丙班两次共购买苹果90kg.(1)若甲班第一次购买16kg,第二次购买32kg,则乙班比甲班少付多少元?(2)若甲班两次共付费126元,则甲班第一次、第二次分别购买苹果多少千克?(3)若两班两次共付费196元,则丙班第一次、第二次分别购买苹果多少千克?18.某水果店计划批发购进两种水果.下表是A、B、(1)50kg,请你研究一下可能的进货方案;(2)若水果店将A种水果的售价定为14元/kg,要使购进的这批水果获得50%的利润,对于(1)中可能的购进方案,另一种水果的售价应该定为多少?19.小明在学习过程中遇到这样一个问题:“一个木箱漂浮在河水中,随河水向下游漂去,在木箱上游和木箱下游各有一条小船,分别为甲船和乙船,两船距木箱距离相等,同时划向木箱,若两船在静水中划行的速度是30m/min,那么哪条小船先遇到木箱?”小明是这样分析解决的:小明想通过比较甲乙两船遇见木箱的时间,知道哪条小船先遇见木箱.设甲船遇见木箱的时间为xmin,乙船遇见木箱的时间为ymin,开始时两船与木箱距离相等,都设为am,如图1.如图2,利用甲船划行的路程-木箱漂流的路程=开始时甲船与木箱的距离:列方程:x(30+5)-5x=a解得,x=a30所以甲船遇见木箱的时间为a30min.(1)参照小明的解题思路继续完成上述问题;(2)借鉴小明解决问题的方法和(1)中发现的结论解决下面问题:问题:“在一河流中甲乙两条小船,同时从A地出发,甲船逆流而上,乙船顺流而下;划行10分钟后,乙船发现船上木箱不知何时掉入水中,乙船立即通知甲船,两船同时掉头寻找木箱,若两船在静水中划行的速度是v(单位:m/min,v大于5),水流速度是5m/min,两船同时遇见木箱,那么木箱是出发几分钟后掉入水中的?”。

一元一次方程 的解法(提高)__一元一次方程的解法(提高)巩固练习

一元一次方程 的解法(提高)__一元一次方程的解法(提高)巩固练习

【巩固练习】一、选择题1.(2015秋•榆阳区校级期末)关于x 的方程3x+5=0与3x+3k=1的解相同,则k=( )A.-2B.C.2D. 4343-2.下列说法正确的是 ( ) .A .由7x =4x -3移项得7x -4x =-3B .由去分母得2(2x -1)=1+3(x -3)213132x x --=+C .由2(2x -1)-3(x -3)=1去括号得4x -2-3x -9=4D .由2(x -1)=x+7移项合并同类项得x =53.将方程去分母得到方程6x -3-2x -2=6,其错误的原因是( ) .211123x x ---=A .分母的最小公倍数找错B .去分母时,漏乘了分母为1的项C .去分母时,分子部分的多项式未添括号,造成符号错误D .去分母时,分子未乘相应的数4.解方程,较简便的是( ).4530754x ⎛⎫-= ⎪⎝⎭A .先去分母B .先去括号C .先两边都除以D .先两边都乘以45455.小明在做解方程作业时,不小心将方程中一个常数污染了看不清楚,被污染的方程是:■,怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是,11222y y -=+53y =于是小明很快补上了这个常数,并迅速完成了作业.同学们,你们能补出这个常数吗?它应是( ).A .1B .2C .3D .46. 某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ).A .54盏B .55盏C .56盏D .57盏7. “△”表示一种运算符号,其意义是,若,则等于 ( 2a b a b ∆=-(13)2x ∆∆=x ).A .1 B . C . D .2 12328.关于的方程无解,则是 ( ).x (38)70m n x ++=mn A .正数 B .非正数 C .负数 D .非负数 二、填空题9.(福建泉州)已知方程||x 2=,那么方程的解是 . 10. 当x= _____ 时,x -的值等于2..31x +11.已知关于x 的方程的解是4,则________.3322x a x -=+2()2a a --=12.若关于x 的方程ax+3=4x+1的解为正整数,则整数a 的值是 .13.(2014秋•高新区校级期末)如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是 .14.a 、b 、c 、d 为有理数,现规定一种新的运算:,那么当a b ad bc c d=-时,则x =______.241815x =-三、解答题15.解下列方程:(1) ;521042345102y y y --+-=-+(2) ;111233234324x x x x ⎧⎫⎡⎤⎛⎫----=+⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭(3).0.150.1330200.30.110.07300.2x x x +++-=+16. 解关于的方程:x ;(2) (3)()148x b ax +=-(1)(1)(2)m x m m -=--(1)(2)1m m x m --=-17. (2015•裕华区模拟)定义一种新运算“⊕”:a ⊕b=a ﹣2b ,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x ﹣3)⊕(x+1)=1,求x 的值.【答案与解析】一、选择题1.【答案】C .【解析】解第一个方程得:x=﹣,解第二个方程得:x=∴=﹣解得:k=2.2. 【答案】A【解析】由7x =4x -3移项得7x -4x =-3;B .去分母得2(2x -1)=213132x x --=+6+3(x -3);C .把2(2x -1)-3(x -3)=1去括号得4x -2-3x+9=1;D .2(x -1)=x+7,2x -2=x+7,2x -x =7+2,x =93.【答案】C 【解析】把方程去分母,得3(2x -1)-2(x -1)=6,6x -3-2x+2=6与6x -211123x x ---=3-2x -2=6相比较,很显然是符号上的错误.4.【答案】B【解析】因为与互为倒数,所以去括号它们的积为1.45545.【答案】B【解析】设被污染的方程的常数为k ,则方程为,把代入方程得11222y y k -=+53y =,移项得,合并同类项得-k =-2,系数化为1得k =2,故1015326k -=+5110623k -=+-选B .6.【答案】B【解析】设有盏,则有个灯距,由题意可得:,解x (1)x -36(1061)70(1)x -=-得:55x =7.【答案】B【解析】由题意可得:“△”表示2倍的第一个数减去第二个数,由此可得:,132131∆=⨯-=-而,解得:(13)(1)212x x x ∆∆=∆-=+=12x =8.【答案】B【解析】原方程可化为:,将“”看作整体,只有(38)7m n x +=-38m n +时原方程才无解,由此可得均为零或一正一负,所以的值应为非正380m n +=,m n mn 数.二、填空9.【答案】1222x x ==-,10.【答案】213=x 11.【答案】24【解析】把x =4代入方程,得,解得a =6,从而(-a )2-2a =24.344322a -=+12.【答案】2或3【解析】由题意,求出方程的解为:314-=-x ax , ,因为解为正整数,所以,即或2)4(-=-x a 42--=a x 214a --=-或2a =3.13.【答案】-6.【解析】由题意得:5x+3+(﹣2x+9)=0,解得:x=﹣4,∴x ﹣2=﹣6.14.【答案】3【解析】由题意,得2×5-4(1-x )=18,解得x =3.三、解答题15. 【解析】解:(1)原方程可化为:212y +-=解得:4y =-(2)原方程可化为: 11233234322x x x x ⎡⎤⎛⎫----=+ ⎪⎢⎥⎝⎭⎣⎦移项,合并得: 123943x x x ⎛⎫--=-- ⎪⎝⎭解得:229x =-(3)原方程可化为:151332311732x x x +++-=+去分母,化简得:1513x -=解得: 1315x =-16. 【解析】解:(1)原方程可化为:(4)8a xb -=+ 当时,方程有唯一解:;4a ≠84b x a +=-当,时,方程无解;4a =8b ≠-当,时,原方程的解为任意有理数,即有无穷多解.4a =8b =-(2)(1)(1)(2)m x m m -=-- 当,即时,方程有唯一的解:.10m -≠1m ≠2x m =-当,即时,原方程变为.原方程的解为任意有理数,即有无10m -=1m =00x ⋅=穷多解.(3) (1)(2)1m m x m --=-当时,原方程有唯一解:;1,2m m ≠≠12x m =-当时,原方程的解为任意有理数,即有无穷多解;1m =当时,原方程无解.2m =17.【解析】解:(1)根据题中的新定义得:原式=﹣3﹣4=﹣7;(2)已知等式变形得:x﹣3﹣2(x+1)=1,去括号得:x﹣3﹣2x﹣2=1,移项合并得:﹣x=6,解得:x=﹣6.。

人教版七年级数学上《实际问题与一元一次方程》提高训练

人教版七年级数学上《实际问题与一元一次方程》提高训练

《实际问题与一元一次方程》提高训练一、选择题1.方程|2x+1|=7的解是()A.x=3B.x=3或x=﹣3C.x=3或x=﹣4D.x=﹣42.关于x的方程|a|=x的解与方程2x﹣2=0的解相同,则a的值是()A.1B.﹣1C.±1D.03.若关于x的方程|2x﹣3|+m=0无解,|3x﹣4|+n=0只有一个解,|4x﹣5|+k=0有两个解,则m,n,k的大小关系是()A.m>n>k B.n>k>m C.k>m>n D.m>k>n4.若三个连续偶数的和为18,则它们的积为()A.216B.49C.192D.4805.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1B.C.D.2二、填空题6.已知方程的解也是方程|2﹣7x|=a的解,则a等于.7.从2019年1月5日起,全国铁路将开始实施新的列车运行图,被誉为“最美高铁线路”的杭黄高铁即将开通运营,届时从无锡到黄山会有直达高铁,它的运行速度比原来的普通火车的运行速度快200km/h,约用3.5h到达,运行时间缩短了7小时.如果在相同的路线上,无锡东站到黄山北站的距离不变,设“杭黄高铁”的运行速度为xkm/h,依题意,可列方程为.8.按下面的程序计算:若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值为.9.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是人.10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得.三、解答题11.阅读以下例题:解方程:|x﹣3|=2.解:(1)当x﹣3≥0时,方程化为x﹣3=2,所以x=5;(2)当x﹣3<0时,方程化为x﹣3=﹣2,所以x=1.根据上述阅读材料,解方程:|2x+1|=7.12.A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品装满6箱后还剩8个.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?13.中国移动开设两种通讯业务,全球通用户,先缴50元月租费,每通话一分钟再付0.4元,神州行用户,不缴月租费,每通话一分钟,付话费0.6元.(1)假设一个月内通话时间为120分钟,两种通话方式的费用分别是多少?(直接写出答案)(2)一个月通话时间为多少分钟,两种通讯方式费用相同?(列方程计算)(3)某人预计一个月内使用话费120元,则他应该选择哪种通讯方式更合算?说明理由.14.冬季的哈尔滨,银装素裹,吸引来大批冰雪运动爱好者.某商场看准商机,需订购一批冰鞋,现有甲、乙两个供应商,均标价每双80元.为了促销,甲说:“凡来我处进货一律九折.”乙说:“如果超出60双,则超出的部分打八折”(1)购进多少双时,去两个供应商处的进货价钱一样多?(2)第一次购进了100双,第二次购进的数量比第一次购进的2倍多10双,如果你是商场经理该花多少钱进货?(3)在(2)的条件下,第一次购进的冰鞋商场加价12.5%,全部售出.如果第二次购进的冰鞋也能全部售出,则每双冰鞋售价是多少时,商场两批冰鞋的总利润率为25%?15.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是,若AB=2,那么x为;(3)当x是时,代数式|x+2|+|x﹣1|=5;(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,PQ=1?(请写出必要的求解过程)《实际问题与一元一次方程》提高训练参考答案与试题解析一、选择题1.方程|2x+1|=7的解是()A.x=3B.x=3或x=﹣3C.x=3或x=﹣4D.x=﹣4【分析】根据绝对值的性质,可化简方程,根据解一元一次方程,可得答案.【解答】解:当x≥﹣时,方程化简为2x+1=7,解得x=3;当x<﹣时方程化简为﹣2x﹣1=7,解得x=﹣4;故选:C.【点评】本题考查了含绝对值符号的一元一次方程,利用绝对值的性质化简方程是解题关键.2.关于x的方程|a|=x的解与方程2x﹣2=0的解相同,则a的值是()A.1B.﹣1C.±1D.0【分析】先求出第二个方程的解,把x1代入第一个方程,求出方程的解即可.【解答】解:解方程2x﹣2=0得:x=1,∵关于x的方程|a|=x的解与方程2x﹣2=0的解相同,∴代入得:|a|=1,解得:a=±1,故选:C.【点评】本题考查了含绝对值符号的一元一次方程,能得出关于a的方程是解此题的关键.3.若关于x的方程|2x﹣3|+m=0无解,|3x﹣4|+n=0只有一个解,|4x﹣5|+k=0有两个解,则m,n,k的大小关系是()A.m>n>k B.n>k>m C.k>m>n D.m>k>n【分析】比较m、n、k的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.【解答】解:(1)∵|2x﹣3|+m=0无解,∴m>0.(2)∵|3x﹣4|+n=0有一个解,∴n=0.(3)∵|4x﹣5|+k=0有两个解,∴k<0.∴m>n>k.故选:A.【点评】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.4.若三个连续偶数的和为18,则它们的积为()A.216B.49C.192D.480【分析】根据三个连续偶数的和为18,设中间的数为x,列方程求出三个数,再计算它们的积.【解答】解:设中间一个偶数为x,列方程得(x﹣2)+x+(x+2)=18,解得x=6.则这三个偶数为4、6、8.其积为4×6×8=192.故选:C.【点评】本题是一元二次方程的应用,关键是知道相邻两个偶数的差是2,在解题时要能根据题意得出等量关系,列出方程即可解题.5.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1B.C.D.2【分析】利用总共量为1,进而表示出甲、乙的工作量得出等式求出答案.【解答】解:设两小组合做2h后,再由乙小组单独做,还需x小时才能完成这台机器的检修任务,根据题意可得:2(+)+x•=1,解得:x=.答:还需小时后才能完成这台机器的检修任务.故选:C.【点评】此题主要考查了一元一次方程的应用,根据总共量为1得出等式是解题关键.二、填空题6.已知方程的解也是方程|2﹣7x|=a的解,则a等于7.【分析】根据同解方程,可得关于a的方程,根据解方程,可得答案.【解答】解:由解得x=,由方程的解也是方程|2﹣7x|=a的解,将x=代入|2﹣7x|=a,得|2﹣7×|=a,解得a=7故答案为:7.【点评】本题考查了同解方程,利用同解方程得出关于a的方程是解题关键.7.从2019年1月5日起,全国铁路将开始实施新的列车运行图,被誉为“最美高铁线路”的杭黄高铁即将开通运营,届时从无锡到黄山会有直达高铁,它的运行速度比原来的普通火车的运行速度快200km/h,约用3.5h到达,运行时间缩短了7小时.如果在相同的路线上,无锡东站到黄山北站的距离不变,设“杭黄高铁”的运行速度为xkm/h,依题意,可列方程为 3.5x=(7+3.5)(x+200).【分析】根据“高铁速度×运行时间=普通火车速度×运行时间”可得方程.【解答】解:设“杭黄高铁”的运行速度为xkm/h,依题意,可列方程为:3.5x=(7+3.5)(x+200),故答案为:3.5x=(7+3.5)(x+200).【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,找到题目蕴含的相等关系.8.按下面的程序计算:若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值为22或111.【分析】由5x+1=556,解得x=111,即开始输入的x为111,最后输出的结果为556;当开始输入的x值满足5x+1=111,最后输出的结果也为556,可解得x=22;当开始输入的x值满足5x+1=22,最后输出的结果也为556,但此时解得的x的值为小数,不合题意.【解答】解:当输入一个正整数,一次输出556时,5x+1=556,解得:x=111;当输入一个正整数,两次后输出556时,5x+1=111,解得:x=22;当输入一个正整数,三次后输出556时,5x+1=22,解得:x=4.2(不合题意)故答案为:22或111.【点评】本题考查了一元一次方程的应用,解题的关键是根据程序框图列出方程,求出符合条件的x的值.9.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是800人.【分析】设选择“公交车”的学生人数是3x,则自行车的有7x,其他的有2x,根据该校学生有3200人,列出方程,求出x的值,即可得出答案.【解答】解:设选择“公交车”的学生人数是3x,根据题意得:7x+3x+2x=3200,解得:x=,则选择“公交车”的学生人数是×3=800人;故答案为:800.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得1000(26﹣x)=2×800x.【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故答案为:1000(26﹣x)=2×800x【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.三、解答题11.阅读以下例题:解方程:|x﹣3|=2.解:(1)当x﹣3≥0时,方程化为x﹣3=2,所以x=5;(2)当x﹣3<0时,方程化为x﹣3=﹣2,所以x=1.根据上述阅读材料,解方程:|2x+1|=7.【分析】根据绝对值的性质,可化简绝对值方程,根据解方程,可得答案.【解答】解:当2x+1≥0时,方程化为2x+1=7,解得x=3;当2x+1<0时,方程化为2x+1=﹣7,解得x=﹣4.所以原方程的解为x=3或x=﹣4.【点评】本题考查了含绝对值符号的一元一次方程,利用绝对值的性质化简方程是解题关键.12.A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品装满6箱后还剩8个.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?【分析】设每箱装x个产品,根据每台A型机器比每台B型机器一天少生产2个产品,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设每箱装x个产品,根据题意得:+2=,解得:x=12.答:每箱装12个产品.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.13.中国移动开设两种通讯业务,全球通用户,先缴50元月租费,每通话一分钟再付0.4元,神州行用户,不缴月租费,每通话一分钟,付话费0.6元.(1)假设一个月内通话时间为120分钟,两种通话方式的费用分别是多少?(直接写出答案)(2)一个月通话时间为多少分钟,两种通讯方式费用相同?(列方程计算)(3)某人预计一个月内使用话费120元,则他应该选择哪种通讯方式更合算?说明理由.【分析】(1)根据两种缴费方式,代入120分钟计算得结果;(2)设出未知数,根据两种通话费用相同列出方程,求解即可;(3)比较两种通讯方式的通话时间,得结论.【解答】解:(1)全球通用户通话120分钟需缴纳话费:50+0.4×120=98(元);神州行用户通话120分钟需缴纳话费:0.6×120=72(元).答:全球通用户的费用为98元,神州行用户的费用为72元.(2)设一个月通话x分钟,两种通讯方式费用相同.由题意,得50+0.4x=0.6x,解得x=250即一个月通话250分钟,两种通讯方式费用相同;(3)他选择神州行更合算.理由:若他选择的是全球通,可通话时间为t1,则50+0.4t1=120,t1=175(分钟);若他选择的是神州行,可通话时间为t2,则0.6t2=120,t2=200(分钟).∵200>175∴选择神州行更合算.【点评】本题考查了一元一次方程的应用,理解题意是解决本题的关键.14.冬季的哈尔滨,银装素裹,吸引来大批冰雪运动爱好者.某商场看准商机,需订购一批冰鞋,现有甲、乙两个供应商,均标价每双80元.为了促销,甲说:“凡来我处进货一律九折.”乙说:“如果超出60双,则超出的部分打八折”(1)购进多少双时,去两个供应商处的进货价钱一样多?(2)第一次购进了100双,第二次购进的数量比第一次购进的2倍多10双,如果你是商场经理该花多少钱进货?(3)在(2)的条件下,第一次购进的冰鞋商场加价12.5%,全部售出.如果第二次购进的冰鞋也能全部售出,则每双冰鞋售价是多少时,商场两批冰鞋的总利润率为25%?【分析】(1)设购进x双时,去两个供应商处的进货价钱一样多,根据总价=单价×数量结合两供应商的优惠政策,即可得出关于x的一元一次方程,解之即可得出结论;(2)由(1)可得出第一次选择甲供应商实惠、第二次选择乙供应商实惠,分别求出两次进货所需资金,相加后即可得出结论;(3)设第二次购进的冰鞋售价为y元/双,根据利润=销售收入﹣成本,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设购进x双时,去两个供应商处的进货价钱一样多,根据题意得:80×0.9x=80×60+80×0.8(x﹣60),解得:x=120.答:购进120双时,去两个供应商处的进货价钱一样多.(2)第一次选择甲供应商实惠,需要80×0.9×100=7200(元),第二次选择乙供应商实惠,需要80×60+80×0.8×(100×2+10﹣60)=14400(元),∴7200+14400=21600(元).答:商场经理该花21600元钱进货.(3)设第二次购进的冰鞋售价为y元/双,根据题意得:7200×(1+12.5%)+(100×2+10)y﹣21600=21600×25%,解得:y=90.答:第二次购进的冰鞋售价是90元/双时,商场两批冰鞋的总利润率为25%.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)由(1)找出两次进货选择哪家供应商省钱;(3)找准等量关系,正确列出一元一次方程.15.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是|x+2|,若AB=2,那么x为0或﹣4;(3)当x是﹣3或2时,代数式|x+2|+|x﹣1|=5;(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,PQ=1?(请写出必要的求解过程)【分析】(1)根据两点间的距离,可得答案;(2)根据两点间的距离,可得答案;(3)根据绝对值的性质,可化简方程,根据解方程,可得答案;(4)根据PQ的距离为1,可得方程,根据解方程,可得答案.【解答】解:(1)数轴上表示2和5的两点之间的距离是5﹣2=3,数轴上表示1和﹣3的两点之间的距离是1﹣(﹣3)=4;(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是|x+2|,若AB=2,得x+2=2或x+2=﹣2,解得x=0或x=﹣4;(3)当x<﹣2时,﹣x﹣2﹣x+1=5,解得x=﹣3,当﹣2≤x<1时,x+2+1﹣x|=5,方程无解,当x≥1时,x+2+x﹣1=5,解得x=2,故答案为:3,4;|x+2|,0或﹣4;﹣3或2;(4)设运动x秒后,点Q与点P相距1个单位,由题意,得①P超过Q,3x﹣x=10+1,解得x=,②P在Q的后边,3x﹣x=10﹣1,解得x=,答:运动或秒后,点Q与点P相距1个单位.【点评】本题考查了一元一次方程的应用,实数与数轴,利用两点间的距离是解题关键,解(4)的关键是利用PQ的距离为1得出方程,要分类讨论,以防遗漏.。

第8章 一元一次不等式(提高篇)-七年级数学下册阶段性复习精选精练(华东师大版)

第8章 一元一次不等式(提高篇)-七年级数学下册阶段性复习精选精练(华东师大版)

第8章 一元一次不等式(提高篇)一、单选题(本大题共10小题,每小题3分,共30分)1.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+2.若x 的一半不小于5,则不等关系表示正确的式子是( )A .152x ≤B .152x ≥C .152x >D .152x <3.如图,用不等式表示数轴上所示不等式组的解集,正确的是( )A .1x <-或3x ≥-B .1x ≤-或3x >C .13x -≤<D .13x -<≤4.若不等式5(2)86(1)7x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为( )A . 3.5a =B .3a =C . 2.5a =D .2a =5.两个数2m -和1-在数轴上从左到右排列,那么关于x 的不等式()22m x m -+>的解集是( )A .1x >-B .1x <-C .1x >D .1x <6.方程组2420x ky x y +=⎧⎨-=⎩的解为正数,则k 的取值范围是( )A .k >4B .k ≥4C .k >0D .k >﹣47.若11x x -+=,则x 一定满足( ) A .1x <B .1x >C .1x ≤D .1x ≥8.下面是两位同学在讨论一个一元一次不等式.不等式在求解的过程中需要改变不等号的方向.不等式的解集为5x ≤.根据上面对话提供的信息,他们讨论的不等式可以是( ) A .210x -≥-B .210x ≤C .210x -≥D .210x -≤-9.若关于x 的不等式组51222x x x x a+⎧<-⎪⎨⎪+<+⎩只有4个整数解,则a 的取值范围是( )A .13a ≥B .1314a <<C .1314a ≤<D .1314a <≤10.某品牌洗地机的进价为2000元,商店以2400元的价格出售.元旦期间,商店为让利于顾客,计划以利润率不低于10%的价格降价出售,则该洗地机最多可降价多少元?若设洗地机可降价x 元,则可列不等式为( )A .2400200010%2000x--≥B .2400200010%2000x--≤C .2400200010%2400x--≥D .2400200010%2400x--≤二、填空题(本大题共8小题,每小题4分,共32分)11.若1(2)60k k x -++>是关于x 的一元一次不等式,则k 的值为____________. 12.比较大小:“>”,“=”“<”).13.当m ______时,关于x 的方程()21653x m x m -=+-的解是非负数.14.已知不等式2x ,x 的最小值是a ;6y -,y 的最大值是b ,则a b +=___________. 15.已知关于x 的不等式7xa <的解也是不等式27152x a a ->-的解,则常数a 的取值范围是_____.16.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.17.已知关于x 的不等式组0521x a x -≥⎧⎨->⎩有解,则实数a 的取值范围是___________.18.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数; (2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数; (3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____. 三、解答题(本大题共6小题,共58分)19.(8分)解下列不等式(组),并把解集表示在数轴上. (1) 211146x x-+-≥(2) ()52315x x x x +⎧>⎪⎨⎪--≤⎩.20.(8分)如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围;(2)数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边21.(10分)阅读求绝对值不等式子3x <解集的过程:因为3x <,从如图所示的数轴上看:大于3-而小于3的数的绝对值是小于3的,所以3x <的解集是33x -<<,解答下面的问题:(1) 不等式()0x a a <>的解集为______;(2) 求53x -<的解集实质上是求不等式组______的解集,求53x -<的解集.22.(10分)已知关于x 、y 的方程组21258x y x y a -=-⎧⎨+=-⎩的解都为非负数.(1) 求a 的取值范围;(2) 已知21a b -=,求a b +的取值范围;(3) 已知a b m -=(m 是大于1的常数),且1b ≤.求2a b +的最大值.(用含m 的代数式表示)23.(10分)为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨?(2)现在计划安排,A B两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车.按此要求安排,A B两型卡车的数量,请问有哪几种运输方案?24.(12分)一个进行数值转换的运行程序如图所示,从“输入有理数x”到“结果是否大于0”称为“一次操作”(1)下面命题是真命题有______________.x后,程序操作仅进行一次就停止.①当输入=3x-后,程序操作仅进行一次就停止.①当输入=1①当输入x为负数时,无论x取何负数,输出的结果总比输入数大.x<,程序操作仅进行一次就停止.①当输入3(2)探究:是否存在正整数x,使程序只能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x的值;若不存在,请说明理由.参考答案1.D【分析】依据点在数轴上的位置,不等式的性质,绝对值的意义,有理数大小的比较法则对每个选项进行逐一判断即可得出结论.解:由题意得:a <0<b ,且a <b , ①0a b +>,①A 选项的结论不成立;0b a ->,①B 选项的结论不成立;22a b <,①C 选项的结论不成立; 22a b +<+,①D 选项的结论成立.故选:D .【点拨】本题主要考查了不等式的性质,有理数大小的比较法则,利用点在数轴上的位置确定出a ,b 的取值范围是解题的关键.2.B【分析】根据题意,列出不等式即可.解:由题意,得:152x ≥;故选B .【点拨】本题考查列不等式.熟练掌握表示不等关系的词的含义,是解题的关键. 3.D【分析】由图可知不等式的解集表示1-与3之间的部分,其中不包含1-,而包含3. 解:由图示可看出,从1-出发向右画出的折线且表示1-的点是空心圆,表示1x >-; 从3出发向左画出的折线且表示3的点是实心圆,表示3x ≤所以这个不等式组为13x -<≤故选:D .【点拨】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来>≥(,向右画;<≤,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.A【分析】先求出不等式5(2)86(1)7x x -+<-+的最小整数解,代入方程23x ax -=,求出a 的值即可.解:①解不等式5(2)86(1)7x x -+<-+得,3x >-, ①其最小整数解为2-, ①423a -+=, 解得 3.5a =. 故选:A .【点拨】本题考查的是一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,再根据得到的条件进而求得不等式组的整数解.也考查了一元一次方程的解法.5.B【分析】先根据题意判断出21m -<-,即20m -<,再根据不等式的基本性质求解即可.解:由题意知21m -<-,()22m x m -+>,移项,得:()22m x m ->-, 化系数为1得:1x <-.则关于x 的不等式()22m x m -+>的解集为1x <-, 故选:B .【点拨】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.D【分析】把k 当作已知表示出x 、y 的值,再根据x 、y 为正数求出k 的取值范围即可.解:2420x ky x y +=⎧⎨-=⎩①② ,①﹣①×2得,(k +4)y =4,解得y =44k + , 代入①得,x =84k +,①此方程组的解为正数,即404804k k ⎧⎪⎪+⎨⎪⎪+⎩>> ,①k +4>0,解得k >﹣4. 故选D .【点拨】本题考查的是解二元一次方程组的方法,在解此方程组时要把k 当作已知表示出另外两个未知数,再根据题目中所给的条件列出不等式组,求出k 的取值范围即可.7.C【分析】利用绝对值的定义计算即可. 解:11x x -+=,11x x ∴-=-, 10x ∴-≤, 1x ∴≤,故选:C .【点拨】本题考查了绝对值,解一元一次不等式,解题的关键是掌握绝对值的意义. 8.A【分析】找到未知数系数为负数,并且不等式的解为5x ≤的即为所求. 解:A 选项210x -≥-,解得5x ≤,符合题意;B 选项210x ≤,未知数的系数为正数,求解时不需要改变不等号的方向,不符合题意;C 选项210x -≥,解得5x ≤-,不符合题意;D 选项210x -≤-,解得5x ≥,不符合题意. 故选A .【点拨】本题考查了解一元一次不等式,根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;①去括号;①移项;①合并同类项;①化系数为1.以上步骤中,只有①去分母和①化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.9.D【分析】先求出不等式组的解集,再根据题意求a 的取值范围即可.解:51222x x x x a +⎧<-⎪⎨⎪+<+⎩①②,解①得7x >, 解①得2x a <-,所以不等式组的解集为72x a <<-, 因为不等式组只有4个整数解, 所以11212a <-≤, 所以1314a <≤. 故选:D .【点拨】本题考查了求不等式组的解集和根据解集求取值范围,正确求出2a -的取值范围是解题的关键.10.A【分析】根据“以利润率不低于10%的价格降价出售”列一元一次不等式,求解即可. 解:根据题意,得2400200010%2000x--≥.故选:A .【点拨】本题考查了一元一次不等式的应用,理解题意并根据题意建立一元一次不等式是解题的关键.11.2【分析】根据一元一次不等式的定义,||11k -=且20k +≠,分别进行求解即可. 解:不等式1(2)60k k x-++>是一元一次不等式,∴1120k k ⎧-=⎨+≠⎩,解得:2k =, 故答案为:2.【点拨】本题主要考查一元一次不等式定义的“未知数的最高次数为1次”这一条件;还要注意,未知数的系数不能是0.12.<【分析】根据不等式的性质即可解答. 解:3<5∴故答案为:<【点拨】本题考查了不等式的性质,熟练掌握和运用不等式的性质是解决本题的关键. 13.1≤-【分析】先解一元一次方程求出解,根据方程的解是非负数,得到33013m +-≥,求解即可.解:()21653x m x m -=+-216553x m x m -=+- 256513x x m m -=-+ 1313x m -=+ 3313m x +=-, ①方程()21653x m x m -=+-的解是非负数,①33013m +-≥, 解得1m ≤-, 故答案为:1≤-.【点拨】此题考查了解一元一次方程,和解一元一次不等式,正确理解题意及掌握各解法是解题的关键.14.4-【分析】解答此题要理解“≥”“ ≤”的意义,判断出a 和b 的最值即可解答. 解:因为2x ≥的最小值是a ,2a =;6x ≤-的最大值是b ,则6b =-;则264a b +=-=-, 所以4a b +=-. 故答案为:4-.【点拨】本题考查了不等式的定义,解答此题要明确,2x ≥时,x 可以等于2;6x ≤-时,x 可以等于6-.15.1009a -≤< 【分析】先把a 看作常数求出两个不等式的解集,再根据同小取小列出不等式求解即可. 解:关于x 的不等式27152x a a ->-, 解得:19542x a >-, 关于x 的不等式7x a <的解也是不等式27152x a a ->-的解, ∴0a <, ∴不等式7x a<的解集是7x a >, ∴195742a a ≥-,解得:109a ≥-, 0a <,1009a ∴-≤<, 故答案为:1009a -≤<. 【点拨】本题考查了一元一次不等式的解法,解题的关键是分别求出两个不等式的解集,再根据同小取小列出关于a 的不等式,注意在不等式两边都除以一个负数时,应只改变不等号的方向.16.10.解:设售价至少应定为x 元/千克,依题可得方程x (1-5%)×80≥760,解得x≥10故答案为10.【点拨】本题考查一元一次不等式的应用.17.2a <##2a >【分析】先求出不等式组的解集,再根据不等式组有解的情况得到关于a 的不等式,即为a 的取值范围.解:0521x a x -≥⎧⎨->⎩, 解不等式组可得:2a x ≤<,不等式组有解,2a ∴<,故答案为:2a <.【点拨】本题考查了求不等式组的解集,正确得出不等式组的解集,逆推参数是解题关键.18.6【分析】根据题中给出阅读过《三国演义》的人数,则先代入条件(3)可得出阅读过《西游记》的人数的取值范围,然后再根据条件(1)和(2)再列出两个不等式,得出阅读过《水浒传》的人数的取值范围,即可得出答案.解:设阅读过《西游记》的人数是a ,阅读过《水浒传》的人数是b ,(,a b 均为整数)依题意可得:48a b b a >⎧⎪>⎨⎪<⎩且,a b 均为整数可得:47b <<,b ∴最大可以取6;故答案为6.【点拨】本题考查不等式的实际应用,注意题中的两个量都必须取整数是本题做题关键,求b 的最大值,则可通过题中不等关系得出b 是小于哪个数的,然后取小于这个数的最大整数即可.19.(1)174x ≥见分析 (2)15x -≤<,见分析 【分析】(1)按照不等式的性质求解,并在数轴上表示出来即可;(2)先分别解不等式①和①,由不等式组解集的取法得不等式组的解集,并在数轴上表示出来即可.解:(1)去分母得:()()3212112x x --+≥,去括号得:632212x x ---≥,移项得:621232x x -≥++,合并同类项得:417x ≥,把x 的系数化为1得:174x ≥;(2)()52315x x x x +⎧>⎪⎨⎪--≤⎩①②,由①得:5x <,由①得:1x ≥-,不等式组的解集为:15x -≤<.【点拨】本题考查了解不等式和解不等式组,以及在数轴上表示其解集,牢固掌握不等式的性质,明确不等式组解集的取法,是解题的关键.20.(1)1x <;(2)B .【分析】(1)根据点B 在点A 的右侧,列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.解:(1)根据题意,得231x -+>,解得1x <,(2)①x<1,①-x>-1,①-x+2>1,故选B .【点拨】本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.21.(1) a x a -<<; (2) 5353x x ->-⎧⎨-<⎩,28x <<. 【分析】(1)根据题中所给出的例子进行解答即可;(2)根据题中所给的实例列出关于x 的不等式组,求出其解集即可.(1)解:3x <的解集是33x -<<,∴不等式||(0)x a a <>的解集为:a x a -<<.故答案为:a x a -<<;(2)解:3x <的解集是33x -<<,∴求|5|3x -<的解集是353x -<-<,353x -<-<可化为5353x x ->-⎧⎨-<⎩, ∴求|5|3x -<的解集实质上是求不等式组5353x x ->-⎧⎨-<⎩, 解得28x <<.故答案为:5353x x ->-⎧⎨-<⎩. 【点拨】本题考查的是解一元一次不等式,根据题意利用数形结合求一元一次不等式的解集是解答此题的关键.22.(1) 2a ≥ (2) 5a b +≥ (3) 32m +【分析】(1)用a 表示出该方程的解,再根据关于x 、y 的该方程组的解都为非负数,即得出关于a 的方程组,解出a 的解集即可;(2)由21a b -=,得出12b a +=,再根据a 的取值范围,即可得出b 的取值范围,再求出a b +的取值范围即可;(3)由a b m -=,即得出a m b =+,由a 的取值范围,即可用m 表示出b 的取值范围.由b 的取值范围,即可用m 表示出a 的取值范围,即可求出2a b +的取值范围,即得出其最大值. 解:(1)解方程21258x y x y a -=-⎧⎨+=-⎩, 得:223x a y a =-⎧⎨=-⎩. ①关于x 、y 的该方程组的解都为非负数,即00x y ≥⎧⎨≥⎩, ①20230a a -≥⎧⎨-≥⎩, 解得:2a ≥;(2)①21a b -=,即12b a +=, ①122b +≥, 解得:3b ≥,①235a b +≥+=;(3)①a b m -=,即a m b =+,①2m b +≥,①2b m ≥-①1b ≤,1m >,①21m b -≤≤.①1b ≤,①21a m ≤≤+,①6232m a b m -≤+≤+,①2a b +的最大值为3+2m .【点拨】本题考查解二元一次方程,解一元一次不等式和解一元一次不等式组.掌握求解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解题关键.23.(1)甲物资采购了300吨,乙物质采购了240吨;(2)共有3种运输方案,方案1:安排25辆A 型卡车,25辆B 型卡车;方案2:安排26辆A 型卡车,24辆B 型卡车;方案3:安排27辆A 型卡车,23辆B 型卡车.【分析】(1)设甲物资采购了x 吨,乙物质采购了y 吨,根据“某省红十字会采购甲、乙两种抗疫物资共540吨,且采购两种物资共花费1380万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设安排A 型卡车m 辆,则安排B 型卡车(50-m )辆,根据安排的这50辆车一次可运输300吨甲物质及240吨乙物质,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各运输方案.解:(1)设甲物资采购了x 吨,乙物质采购了y 吨,依题意,得:540321380x y x y +⎧⎨+⎩==, 解得:300240x y ⎧⎨⎩==.答:甲物资采购了300吨,乙物质采购了240吨.(2)设安排A 型卡车m 辆,则安排B 型卡车(50-m )辆,依题意,得:()()75503003750240m m m m ⎧+-≥⎪⎨+-≥⎪⎩, 解得:25≤m ≤2712.①m 为正整数,①m 可以为25,26,27,①共有3种运输方案,方案1:安排25辆A 型卡车,25辆B 型卡车;方案2:安排26辆A 型卡车,24辆B 型卡车;方案3:安排27辆A 型卡车,23辆B 型卡车.【点拨】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(1) ①①; (2) 存在,x =2.【分析】(1)逐一计算,判断即可. (2)根据题意,建立不等式组3+603(3+6)+6123(3+6)+60x x x -≤----⎧⎪⎨⎪⎩<>,确定不等式组的整数解,有则存在;无则不存在.(1)解:根据题意,得代数式为36x -+,当=3x 时,,所以程序操作仅进行一次就停止不可能,故①不符合题意;当=1x -时,363(1)690x -+=-⨯-+=>,所以程序操作仅进行一次就停止,故①符合题意;当0x <时,所以30x ->,所以360x -+>6>,所以程序操作仅进行一次就停止,故①符合题意;当3x <时,360x -+<也可能360x -+>,所以程序操作仅进行一次就停止不可能,故①不符合题意;故答案为:①①.(2)存在,且2x =,理由如下:①程序只能进行两次操作,第一次计算的代数式是()36x -+,第二次输出的代数式是()()3366x -⨯-++,根据题意,得3+603(3+6)+6123(3+6)+60x x x -≤----⎧⎪⎨⎪⎩<>, 解得823x ≤<, ①x 为整数,所以2x =.【点拨】本题考查了程序计算,不等式组的应用,正确理解程序,建立正确的不等式组是解题的关键.。

上海 华东师范大学第一附属初级中学七年级数学上册第三单元《一元一次方程》阶段练习(提高培优)

上海 华东师范大学第一附属初级中学七年级数学上册第三单元《一元一次方程》阶段练习(提高培优)

一、选择题1.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( ) A .()182812x x -= B .()1828212x x -=⨯ C .()181412x x -=D .()2182812x x ⨯-=2.下列解方程的过程中,移项正确的是( )A .由5x −7y −2=0,得−2=7y +5xB .由6x −3=x +4,得6x −3=4+xC .由8−x =x −5,得−x −x =−5+8D .由x +9=3x −1,得x −3x =−1−9 3.把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++= C .101058016069x x -+-= D .15816069x x -++= 4.下列变形不正确的是( ) A .由2x-3=5得:2x=8 B .由-23x=2得:x=-3 C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x5.已知a=2b ,则下列选项错误的是( ) A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b = D .2ab = 6.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2B .34C .2D .43-7.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D8.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=- C .()322x -+=D .()()3221x x ++=-9.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( )A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 210.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为( ) A .3750元B .4000元C .4250元D .3500元11.佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( ) A .2060元 B .3500元C .4000元D .4100元12.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律13.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( ) A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 14.甲、乙、丙三辆卡车所运货物的质量之比为6:7:4.5,已知甲车比乙车少运货物12吨,则三辆卡车共运货物( ) A .120吨B .130吨C .210吨D .150吨15.四位同学解方程x−13−x+26=4−x2,去分母分别得到下面四个方程:①2x −2−x +2=12−3x ;②2x −2−x −2=12−3x ;③2(x −1)−(x +2)=3(4−x);④2(x −1)−2(x +2)=3(4−x).其中错误的是( ) A .②B .③C .②③D .①④二、填空题16.解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ②由342x -=,得324x =-;③由0.221 1.530.1x x -+=+,得366045x x +=-+; ④由253x x-=,得352x x -=. 以上变形过程正确的有_____.(只填序号)17.若关于x 的方程2x+a=9﹣a (x ﹣1)的解是x=3,则a 的值为_____. 18.方程2243x -=的解是__________ 19.若方程2(2)3m m x x ---=是一元一次方程,则m =________.20.某区民用电的计费方式为:白天时段的单价为m 元/度,晚间时段的单价为n 元/度.某户8月份白天时段用电量比晚间时段多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的总用电量虽比8月份的总用电量多20%,但9月份的总电费却比8月份的总电费少10%,则mn=______. 21.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.22.若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________. 23.(1)如果33x y -=,那么x =_________; (2)如果2m n =,那么3m=___________. 24.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号. 25.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________; (2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 26.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).三、解答题27.已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 28.已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x--=的解. 29.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 30.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案: 方案一:每买一张课桌就赠送一把椅子; 方案二:课桌和椅子都按定价的80%付款. 某校计划添置100张课桌和x 把椅子. (1)若x=100,请计算哪种方案划算;(2)若x >100,请用含x 的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.。

一元一次方程练习题(提高)

一元一次方程练习题(提高)

一元一次方程练习题(提高)一、 解下列方程(1)12(31)6x --= (2)43(20)67(11)y y y y --=-- (3)215436x x -+=(4)()1122(1)1223x x x x ⎡⎤---=-⎢⎥⎣⎦ (5)()22462133x x ⎡⎤--=+⎢⎥⎣⎦(6)432.4 2.55x x --= (7)12225y y y -+-=- (8)2123134x x ---=(9)21101211364x x x --+-=- (10)0.10.2130.020.5x x -+-=二、 思考•运用 (11)代数式1322yy +-的值与1互为相反数,试求y 的值。

(12)当3x =时,代数式()54x a +的值比()4x a -的值的2倍多1,求a 的值。

(13)若6x =是关于x 的方程2()136ax x a -=-的解,求代数式221a a ++的值。

三、 列一元一次方程解决应用问题(14)某校七年级共有65名同学在植树节活动中担任运土工作,现有45根扁担,请你安排一下有多少人抬土,多少人运土,可使扁担和人数恰好相配?(15)某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女生人数就占全组人数的23,求这个课外活动小组的人数。

(16)食堂有煤若干,原来每天烧煤3t,用去15t后,改进设备,耗煤量为原来的一半,结果多烧了10天,求原来存煤量。

(17)徐程的舅舅来看他,徐程问舅舅多少岁,舅舅说:“我像你这么大时,你才3岁;等你到了我这么大时,我就36岁了。

”问徐程和舅舅现在各几岁?(18)一个邮递员骑自行车在规定时间内把特快专递送到单位,他每小时行15千米,可以早到24分钟,如果每小时行12千米,就要迟到15分钟。

求原来的时间是多少?(19)用火车运送一批货物,如果每节车厢装34吨,还有18吨装不下;如果每节多装4吨,那么还可以多装26吨,问共有几节火车车厢?(20)体育馆入场券3元一张,若降价后观众增加一半,收入增加14,那么每张入场券降价多少元?(21)甲、乙两人生产同一种零件,上月两人计划生产量的比是4:5,月底甲的实际生产量超过计划的15%,乙的实际生产量超过计划的12%,两人实际生产零件一共1632个。

《一元一次方程》提高测试

《一元一次方程》提高测试

《一元一次方程》提高测试一 填空题(本题共20分,每小题4分): 1.x = 时,代数式532-x 与代数式332-x 的差为0;答案:9;提示:得方程532-x -(332-x )=0,解得x =9.2.x =3是方程4x -3(a -x )=6x -7(a -x )的解,那么a = ; 答案:29;提示:据方程的解的意义得关于a 的方程12-3(a -3)=18-7(a -3),解得 a =29.3.x =9 是方程b x =-231的解,那么=b ,当=b 1时,方程的解 ; 答案:1,x =9或x =3. 提示:当=b 1时,方程b x =-231转化为两个一元一次方程1231=-x 或1231-=-x ,解得9=x 或3=x .4.若是2ab 2c 3x -1与-5ab 2c 6x +3是同类项,则x = ; 答案:34-.提示:据同类项的意义得方程 3x -1= 6x +3,解得x =34-.5.x =43是方程|k |(x +2)=3x 的解,那么k = . 答案:119±. 提示:根据方程的解的意义得关于 k 的方程|k |(43+2)=3×43,解得|k |=119所以 119±=k.二 解下列方程(本题50分,每小题10分): 1.2{3[4(5x -1)-8]-20}-7=1;解:2{3[4(5x -1)-8]-20}-7=1, 2{3[20x -12]-20}-7=1, 2{60x -56}-7=1, 60x -56=4, 60x =60, x =1;2.⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-46151413121x =1;解:先去分母,得⎢⎢⎣⎡⎝⎛+⎥⎦⎤-⎪⎪⎭⎫-461514131x =2, ⎝⎛-=-⎪⎪⎭⎫-6615141x ,0151=-x , 5=x ; 3.x -2[x -3(x +4)-5]=3{2x -[x -8(x -4)]}-2; 解:先去小括号,再去中括号、大括号,及时合并同类项,得 x -2[x -3x -12-5]=3{2x -[x -8x +32]}-2, x +4x +34=3{2x +7x -32}-2, 5x +34=27x -98, -22x =-132, x =6; 4.03.04.05233.12.188.1=-----x xx ;解:先把系数化为整数,得03450203013128018=-----x xx ,再去分母,两边都乘以60,得0)450(20)313(3)8018(5=-----x x x ,去括号,合并同类项,得01311310=+-x , 101=x ;6.45234x x x x =---.解:去分母,得x x x x 5)234(4=---, x x x x 5)34(24=---,去括号,整理,得x x 3382=-,去分母3,解得 78-=x .三 解下列应用问题(本题30分,每小题10分): 1.用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40 m 3, 第一架工作16小时,第二架工作24小时,共掘土8640 m 3,问每架掘土机每小时可以掘土多少 m 3? 解:设第一架掘土机每小时掘土x m 3 ,那么,第二架掘土机每小时掘土(x -40)m 3, 依题意 ,有16x +24(x -40)= 8640, 解得 x = 240所以,第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200 m 32.甲、乙、丙三个工厂共同筹办一所厂办学校,所出经费不同,其中甲厂出总数的72,乙厂出甲丙两厂和的21,已知丙厂出了16000元.问这所厂办学校总经费是多少,甲乙两厂各出了多少元?解:设这所厂办学校总经费是x 万元,依题意,有72x +21(72x +1.6)= x -1.6 ,解得 x = 4.2所以,总经费42000元,甲厂出12000元,乙厂出14000元.3.一条山路,从山下到山顶,走了1小时还差1km ,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km .解:设上山速度为每小时x km ,那么下山速度为每小时1.5x km ,依题意,有x +1=65×1.5x ,解得 x = 4所以,上山速度为每小时4 km ,下山速度为每小时6 km ,单程山路为5 km .。

用一元一次方程解决问题(提升训练)(原卷版) (3)

用一元一次方程解决问题(提升训练)(原卷版) (3)

4.3 用一元一次方程解决问题【基础训练】一、单选题1.列方程表示“我校七年级学生人数为n ,其中女生占55%,男生有90人”正确的是( ) A .55%90n = B .()145%90n -= C .45%90n n += D .55%90n n += 2.小康中学七年级(1)班学生进行拔河比赛分组,若每组 7 人,则有 2 人分不到组里;若每组 8 人,则最后一组差 4 人,若设计划分 x 组,则可列方程为( )A .7 x + 2 = 8x - 4B .7 x - 2 = 8x + 4C .7 x + 2 = 8x + 4D .7 x - 2 = 8x - 43.丽宏幼儿园王阿姨给小朋友分苹果,如果每人分3个.则剩余1个;如果每人分4个,则还缺2个.问有多少个苹果?设幼儿园有x 个小朋友,则可列方程为( )A .3x ﹣1=4x +2B .3x +1=4x ﹣2C .1234x x +-=D .1234x x -+= 4.小宝今年5岁,妈妈35岁,( )年后,妈妈的年龄是小宝的2倍.A .30B .20C .10D .以上都不对5.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何.大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中人家户数是多少.根据题意,设城中人家户数为x 户,可列方程为( )A .11003x +=B .1003x x +=C .11003x +=D .11003x += 6.因燃油涨价,从甲城市到乙城市的货运价格上调 20%,三个月后又因燃油价格的回落而下调 20%,则下调后的货运价格与上涨前相比是( )A .贵了B .便宜了C .没有变化D .由于开始价格不知道,因此无法确定7.为了季末清仓,丹尼斯超市某品牌服装按原价第一次降价20%,第二次降价100元,此时该服装的利润率是10%.已知这种服装的进价为600元,那么这种服装的原价是多少?设这种服装的原价为x 元,可列方程为( ) A .80%(100)10%600x -= B .80%(100)60010%600x --= C .20%10060010%600x --= D .80%10060010%600x --=8.星期天小亮与妈妈一起上街买衣服,在一服装店以8折的优惠价为小亮买了一套服装,比标价省了15元,则小亮买这套衣服用了( )A .35元B .60元C .75元D .85元9.校门口一文具店把一个足球按进价提高80%为标价,然后再按7折出售,这样每卖出一个足球可盈利6.5元,求一个足球的进价是多少元?设一个足球进价为x 元,根据题意所列方程正确的是( )A .(180%)70% 6.5x x +-=B .(180%)70% 6.5x x +•-=C .80%70% 6.5x x •-=D .(180%)(170%) 6.5x x +--=10.某商场销售一批电风扇,每台售价560元,可获利25%,求每台电风扇的成本价.设每台电风扇的成本价为x 元,则得到方程( )A .560﹣x =25%xB .560﹣x =25%C .x =560×20%D .25%x =56011.如图是某超市电子表的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮助算一算,该电子表的原价是( )A .21元B .22元C .23元D .24元12.有一列数,按一定规律排成23452,2,2,2,2---……其中相邻的三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .aB .aC .2aD .2a13.若三个连续偶数的和为18,则它们的积为( )A .216B .49C .192D .48014.设有x 个人共种a 棵树苗,如果每人种6棵,则剩下4棵树苗未种;如果每人种8棵,则缺2棵树苗.根据题意,列方程正确的是( )A .6x ﹣4=8x +2B .6x +4=8x ﹣2C .46a +=48a -D .46a -=28a + 15.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为( )A .1800米B .2000米C .2800米D .3200米16.如图,长方形ABCD 中有6个形状、大小相同的小长方形,且6,24EF CD ==,则图中阴影部分的面积为( )A .216B .144C .192D .9617.某商品的进价是1528元,按商品标价的八折出售时,利润是12%,如果设商品的标价为x 元,那么可列出正确的方程是( )A .81528(112%)x =⨯+B .0.8152812%x =⨯C .()0.81528112%x =⨯+D .0.815280.8(112%)x =⨯+18.某商品在进价的基础上提价20%后以96元的价格出售,则该商品的进价为( )A .60元B .70元C .80元D .86元19.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .10031003x x -+= B .10031003x x --= C .3(100)1003x x +-= D .3(100)1003x x --= 20.如图是一个运算程序:若4x =-,输出结果m 的值与输入y 的值相同,则y 的值为( )A .2-或1B .2-C .1D .2或1-21.某微信平台将一件商品按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利78元,这件商品的进价是多少元?若设这种商品每件的进价是x 元,那么所列方程为( )A .80%(140%)78x x +-=B .40%(180%)78x +=C .80%(140%)78x x -+=D .80%(140%)78x x --=22.小明同学在日历上圈出了三个相邻的数a ,b ,c ,并求出了它们的和为81,则这三个数在日历中的排列位置可能的是( )A .B .C .D .23.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”(图1所示),把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方(图2所示)观察图1、图2,请你探究出洛书三阶幻方中的奇数和偶数的位置、数和数之间的数量关系所呈现的规律,并用这个规律,求出图3幻方中b a 的值为( )A .0B .1-C .2-D .3-24.根据图中给出的信息,下面所列方程正确的是( )A .()2286522x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B .()2286522x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭C .()22865x x ππ⨯=⨯⨯-D .22865x ππ⨯=⨯⨯25.如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧称盘中也有一袋玻璃球,还有2个各20克的砝码,现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为( )A .10gB .20gC .15gD .25g26.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=-B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+27.整理一批数据,由一个人做要40小时完成.现在计划由x 人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,则得( )A .()82414040x x ++= B .()82414040x x -+= C .()42814040x x -+= D .()()428214040x x -++= 28.李女士在城西银泰购买某件正价商品,使用“喵街365卡”打完九折后再通过“满就减”活动优惠了a 元,最终支付了b 元,那么该商品原价为( )A .0.9a b +B .0.9()a b +C .0.9b a -D .0.9()b a -29.某班有学生40人,参加篮球社的人数是参加足球社人数的2倍,既参加篮球社又参加足球社的有5人,既不参加篮球社也不参加足球社的有9人,则只参加足球社的人数是( )A .12B .24C .19D .730.完成某项工程,甲单独做10天完成,乙单独做7天完成,现在由甲先做了3天,乙再参加合作,求完成这项工程总共用去的时间,若设完成此项工程总共用x天,则下列方程中正确的是()A.31107x xB.331107x xC.1107x xD.31107x x二、填空题31.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”,大约成书于公元前200年~公元前50年,其中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,则多出3400钱;每人出300钱,则多出100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为_________.32.一列火车匀速行驶,经过一条长300米的隧道,从车头开始进入隧道到车尾离开隧道一共需要20秒的时间;隧道中央的顶部有一盏灯,垂直向下发光照在火车上的时间是8秒,设该火车的长度为x米,根据题意可列一元一次方程____________.33.为坚决打赢疫情防控阻击战,某小区决定组织工作人员对本小区进行排查,现对工作人员进行分组,若每组安排8人;则余下3人;若每组安排9人,则还缺5人,则该小区工作人员共有______人.34.如图是一个由两个相同的大正方形(甲),一个小正方形(乙)和两个相同的直角三角形(丙)无缝拼接而成的六边形,已知这个六边形的面积为272cm,则图中阴影部分面积为________2cm.35.中国古代数学著作《算法统宗》中有这样一题:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关,”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,请你求出此人第三天的路程为__________.三、解答题36.完成一项工作,一个工人需要16天才能完成.开始先安排几个工人做1天后,又增加1人和他们一起做2天,结果完成了这项工作的一半,假设每个工人的工作效率相同.(1)开始安排了多少个工人?(2)如果要求再用2天做完剩余的全部工作,还需要再增加多少个工人一起做?37.小明和小亮练习一百米赛跑,小明的速度是6米/秒,小亮的速度是7.5米/秒.(1)列方程求解:若小明先跑3秒,小亮经过多长时间追上小明?(2)若小明先跑4秒,小亮能否追上小明?(直接写出结果,不必说明理由)38.甲工程队原有55人,乙工程队有35人,现因工作需要,需从甲工程队调出一些人到乙工程队,使乙工程队的人数是甲工程队人数的2倍.(1)列方程解应用题:求应从甲工程队调出多少人到乙工程队?(2)此时,甲工程队还剩 人.39.数轴上,两点之间的距离可以用这两点中右边的点所表示的数减去左边的点所表示的数来计算,例如:数轴上M 、N 两点表示的数分别是-1和2,那么M 、N 两点之间的距离就是()213MN =--=.如图,在数轴上点A 表示的数是-5,点B 表示最大的负整数,点C 和点B 表示的数互为相反数,已知P 为数轴上一动点,其表示的数是x .(1)AB = ,BC = .(2)当点P 在线段AC 上时,①用含x 的代数式表示:PA= ,PC= .①若7.4PA PB PC ++=,求x 的值.(3)若点P ,Q 分别从B ,C 同时向A 点运动,点P 的速度为2个单位秒,点Q 的速度为3个单位秒,点P 运动至A 点后停止运动,同时Q 点也停止运动,运动的时间为t 秒.①试说明2AP PQ =①当t 为多少时,Q 点刚好追上P 点,并求此时两者相遇的点在数轴上对应的数.40.下表中记录了一次试验中时间和温度的数据.(1)如果温度的变化是均匀的,21min 时的温度是多少?(用一元一次方程求解)(2)什么时间的温度是34C ︒.41.一艘船从A 码头顺流航行到B 码头,用了3小时;从B 码头逆流航行返回A 码头,用了3.5小时.已知水流的速度是2/,km h 求AB 、两码头之间的航程.42.列方程解应用题:在洱海保护治理工作中,洱海生态廊道建设是洱海保护体系的最后一道污染物拦截防线,也是洱海最重要的一道生态安全屏障.大理市政府于2019年启动了129公里洱海生态廊道建设.截止2020年10月止,已经完成主体建设68公里,其余61公里正在全线推进.记者了解到:其中有一段长2400米的河道需要工程队进行整治.甲工程队每天可完成35米,乙工程队每天可完成45米.(1)若该任务由甲、乙两个工程队合作完成,请问整治这段河道任务用了多少天?(2)若在前期,由于乙工程队需要机械维修,则先由甲工程队单独整治一段时间,剩下的工程由甲、乙两队来合作完成.整治完了全部河道共用时48天,求甲、乙工程队分别整治了多少米的河道?43.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了5个参赛者的得分情况.(1)参赛者答对一道题得多少分,答错一道题扣多少分?(2)参赛者F得76分,他答对了几道题?44.列方程解应用题:为提高学生的运算能力,我县某学校七年级在元旦之前组织了一次数学速算比赛.速算规则如下:速算试题形式为计算题,共20道题,答对一题得5分,不答或错一题倒扣1分.梓萌同学代表班级参加了这次比赛,请解决下列问题:(1)如果梓萌同学最后得分为76分,那么她计算对了多少道题?(2)梓萌同学的最后得分可能为85分吗?请说明理由.45.某班在一次数学兴趣活动中要分为四个组,已知第二组人数比第一组人数32少5人,第三组人数比第一组与第二组人数的和少15人,第四组人数与第一组人数的2倍的和是34,若设第一组有x人.(1)用含x的式子表示第二、三、四组的人数,把答案填在下表相应的位置.(2)该班的总人数是否可以为47人?若可以,请写出每组的具体人数;若不可以,请说明理由.46.足球比赛的计分规则是胜一场得3分,平一场得1分,负一场得0分”,一支足球队在某个赛季中共比赛16场,现已比赛了10场,负3场,共得17分,问:(1)前10场比赛中这支足球队共胜多少场?(2)这支足球队打满16场比赛,最高能得多少分47.某商场以每部500元的价格购进某品牌手机共100部,加价50%后标价销售.在国庆期间,商场计划降价销售.如果商场按降价后的价格售完这批手机,仍可盈利20%,求应按几折销售.48.红旗中学美术课外小组女同学占全组人数的14,加入6个女同学后,女同学就占全组人数的12,求美术课外小组原来的人数.49.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价40元,乒乓球每盒定价8元,经洽谈后,甲店全部按定价的9折优惠,乙店买一副球拍赠一盒乒乓球.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?50.现有树苗若干棵,计划栽在一段公路的一侧,要求路的两端各栽1棵,并且每2棵树的间隔相等.方案一:如果每隔5m栽1棵,则树苗缺100棵;方案二:如果每隔6m栽1棵,则树苗正好用完.根据以上方案,请算出原有树苗的棵数和这段路的长度.51.M校七年级社会实践小组去商场调查商品销售情况,了解该商场以每件100元的价格购进了某品牌运动服400件,并以每件140元的价格销售了300件.元旦之即,该商场准备采取促销措施,将剩下的运动服降价销售.请你帮商场计算一下,每件运动服降价多少元时,销售完这批运动服正好达到盈利35%的预期目标?52.某工人原计划每天生产45个零件,到预定期限还有220个零件不能完成.若提高工效20%,则到期将超额完成140个.此工人原计划生产零件多少个?预定期限是多少天?53.甲、乙两家商场同时出售同样的水瓶和水杯,且定价相同,请根据图中提供的信息,回答:一个水瓶与一个水杯分别是多少元?(请列方程解应用题)54.列方程解应用题:某电视台组织知识竞赛,共设20道选择题,每题必答,下表记录了3个参赛者的得分情况.(1)参赛者小婷得76分,她答对了几道题?(2)参赛者小明说他得了80分,他说的对吗?请说明理由.55.某公司要把240吨白砂糖运往某市的A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车530元/辆,小车420元/辆,运往B地的运费为:大车700元/辆,小车500元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前A往地,其中调往A地的大车有a辆,那么调往A地的小车有辆,其余的货车前往B地,则其中调往B地的大车有辆,小车有辆.若设总运费为w元,则w与a的关系式(用含a有的代数式表示w)是.56.小丽每天要在7:50之前赶到距家1500m的学校上学.一天,小丽以1.2m/s的速度出发,5min后,小丽m s的速度去追小丽,并且在途中追上了她.的爸爸发现她忘了带数学书.于是,爸爸立即以1.8/(1)爸爸追上小丽用了多长时间?(2)追上小丽时,距离学校还有多远?57.有一旅客携带了25千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李托运票,现该旅客购买的飞机票和行李托运票共645元.(1)该旅客需要购买千克的行李托运票;(2)该旅客购买的飞机票是多少元?58.课本中数学活动问题:一种笔记本售价为23元/本,如果买100本以上(不含100本),售价为22元/本.请回答下面的问题:(1)列式表示买n本笔记本所需钱数.(2)按照这种售价规定,会不会出现多买比少买反而付钱少的情况?通过列式计算加以说明.(3)如果需要100本笔记本,怎样购买能最省钱?59.某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且第二季度两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为250元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?60.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)小敏乘坐滴滴快车,行车里程5公里,行车时间20分钟,则小敏下车时应付多少车费?(2)小红乘坐滴滴快车,行车里程10公里,下车时所付车费29.4元,则这辆滴滴快车的行车时间为多少分钟?。

一元一次方程综合提高题

一元一次方程综合提高题

《解一元一次方程》综合提高训练姓名1.已知x= 一1是关于x 的方程7x 3一3x 2+kx+5=0的解,则k 3+2k 2-11k-85= .2.方程0)104(21)25(32)5020(61=+-+++x x x 的解为 ; 解方程0333)321(212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡--x ,得x= . 3.已知关于x 的方程2a(x 一1)=(5一a)x+3b 有无数多个解,那么a = ,b = .4.和方程x 一3=3x+4不同解的方程是( ).A .—4=—11B .0231=++x C .(a 2+1)(x 一3)=(3x+4)(a 2+1) D .(7x 一4)(x —1)=(5x 一11)(x 一1)5.已知a 是任意有理数,在下面各题中(1)方程ax=0的解是x=1 (2)方程ax =a 的解是x =1(3)方程ax=1的解是x =a1 (4)方程a x a =的解是x =±1 结论正确的个数是( ).A .0B .1C . 2D .3 解:a=0时,(3)无解6.方程231)153(123661-=⎥⎦⎤⎢⎣⎡+--x x x 的解是( ) A .1415 B .1415- C .1445 D .1445- 7.已知关于x 的一次方程(3a+8b )x+7=0无解,则ab=( ) .A .正数B .非正数C .负数D .非负数8.解关于x 的方程:(1)ax-1=bx(2). 4x+b=ax-8(3). k(kx-1)=3(kx-1)9. A 为何值时,方程)12(6123--=+x x a x 有无数个解无解10.已知方程2(x+1)=3(x-1)的解 为a+2,那么方程2[2(x+3)-3(x-a)]=3a 的解为 .11.已知关于x 的方程9x-3=kx+14有整数解,那么满足条件的所有整数k = .12.已知431)119991(441=++x ,那么代数式)19991999(481872xx +⋅+的值为 . 13.若(3a+2b)x 2+ax+b=0是关于x 的一元一次方程,且有唯一解,则x = .14.有4个关于x 方程(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1) (3)x=0 (4)111112-+-=-+-x x x其中同解的两个方程是( )A .(1)与(2)B .(1)与(3)C .(1)与(4)D .(2)与(4)15.方程1995199619953221=⨯++⨯+⨯x x x 的解是( ) A .1995 B .1996 C .1997 D . 199816.已知2001222==-=+c b a ,且k c b a 2001=++,那么k 的值为( ). A .41 B .4 C .41- D .-4 解:a+b+c=8004 17.若k 为整数,则使得方程(k-1999)x=105-2000x 的解也是整数的k 值有( )A .4个B .8个C .12个D .1618.下列判断错误的是( )A.若a=b,则ac-5=bc-5B.若a=b,则1122+=+c b c a C.若x=2,则x x 22= D.若ax=bx,则a=b19.若干本书分给小朋友,每人m 本,则余14本,每人9本,则最后一人只得6本,问小朋友共几个有多少本书20.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x 的值.21.如果a 、b 为定值,关于x 的方程6232bk x a kx -+=+,无论k 为何值,它的解总是1,求a 、b 的值.22.将连续的自然数1~1001按如图的方式排列成一个长方形阵列,用一个正方形框出16个数,要使这个正方形框出的16个数之和分别等于:(1)1988;(2)1991;(3)2000;(4)2080.这是否可能若不可能,试说明理由;若可能,请写出该方框16个数中的最小数与最大数.23.已知关于I 的方程x a x x 4)3(23=⎥⎦⎤⎢⎣⎡--和1851123=--+x a x 有相同的解,那么这个解是 .24.如果20042003)1(11216121=+++++n n ,那么n = . 25.当b=1时,关于x 的方程a(3x-2)+b(2x-3)=8x-7有无数多个解,则a 等于( ).A .2B .一2C .32- D .不存在 26 是否存在整数k ,使关于k 的方程(k 一5)x+6=1—5x ;在整数范围内有解并求出各个解.27 解下列关于x 的方程.(1)4x+b=ax-8; (a ≠4)(2)mx-1=nx ;28.已知q p 、都是质数,并且以x 为未知数的一元一次方程px+5q=97的解是1,求代数式40p 十101q+4的值.29.你能用方程的知识把25 化成分数形式吗30.一个五位数,左边三位数是右边两位数的5倍,如果把右边两位数移到前面,则新五位数比原来五位数的2倍多75,求原五位数31.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,汽车按喇叭时离山谷多远(声音的速度以340m/s计算)32.依法纳税是每个公民的义务,若按照下表中规定的税率交纳个人所得税:1999年规定,上表中“全月应纳税所得额”是从收入中减除800元后的余额,例如某人月收入是1020元,减除800元,应纳税所得额为220元,应交个人所得税11元.张老师每月收入是相同的,且1999年第四季度交纳个人所得税99元,问张老师每月收入是多少元33..1998年某人的年龄恰等于他出生公元年数的数字之和,那么他的年龄应当是几岁34.果品公司购进苹果万千克,每千克的进价是元,付运费的开支1840元,预计损耗为1%,如果希望全部销售后能获利17%,问每千克的零售价为多少元35.摄制组从A市到B市有一天的路程,计划上午比下午多走100千米到C市吃午饭.由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里路程的二分之一就到达目的地了.问A、B两市相距多少千米36.狗跑5步的时间,马能跑6步;马跑4步的距离等于狗跑7步的距离。

第三章一元一次方程应用题数轴类提高篇(2) 人教版数学七年级上册

第三章一元一次方程应用题数轴类提高篇(2) 人教版数学七年级上册

人教版数学七年级上册第三章一元一次方程应用题数轴类提高篇21.如图:在数轴上A点表示数−10,B点示数6,①A、B两点之间的距离等于______;②在数轴上有一个动点P,它表示的数是x,则|x+10|+|x−6|的最小值是______;③若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上的A、B之间找一点C,使AC=3BC,则C点表示的数是______;④若在原点O的左边2个单位处放一挡板,一小球甲从点A处以3个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度向左运动,在碰到挡板后(忽略球的大小,可看作一点)B球以原来的速度向相反的方向运动,设运动时间为t秒,请用t来表示甲、乙两小球之间的距离d.2.如图,在数轴上点A表示的数为a,点B表示的数为b,且a,b满足|a+2|+(3a+b)2=0,O为原点.(1)则a=________,b= ________;(2)若动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,①当PO=2PB时,求点P的运动时间t;的值为_____.②当点P运动到线段OB上时,分别取AP和OB的中点E、F,则AB−OPEF3.如图,数轴上有A、B两点,点O是原点,BO=12,OA=30.动点P、Q分别从A、B同时出发,点P以每秒6个单位长度的速度沿数轴由A→O→A→…,作往返匀速运动;点Q以每秒3个单位长度的速度沿数轴由B向A作匀速运动,且Q到达ABQ.设运点后同时停止运动,M为线段AP的中点,点N在线段BQ上,且BN=13动时间为t(t≥0)秒.(1)当t=7秒时,求数轴上点P、Q分别表示的数;(2)当P、Q首次重合时,求MN的长度.(3)在点P、Q的运动过程中,请你确定线段MQ长度变化的取值范围.4.如图,在数轴上点A表示的有理数为-6,点B表示的有理数为4,点P从点A出发以每秒2个单位长度的速度在数轴上由点A到点B方向运动,当点P到达点B后立即返回,仍然以2个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒).(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);在点P由点B到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);(4)当点P表示的有理数与原点的距离是2个单位长度时,直接写出所有满足条件的t值.5.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a−b|,线段AB的中点表示的数为a+b.2【问题情境】如图,数轴上点A表示的数为−2,点B表示的数为8,点P从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=______,线段AB的中点表示的数为______;②用含t的代数式表示:t秒后,点P表示的数为______;点Q表示的数为______.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;AB;(3)求当t为何值时,PQ=12(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.6.b是最小的正整数,且a、b满足(c−5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=______ ,b=______ ,c=______(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|−|x−1|−2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC−AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.7.如图,数轴上A、B两点所表示的数分别是a和b,且(a+8)2+|b﹣16|=0,P、Q两点同时同向从A点出发在A、B两点间往返运动,P点的速度为每秒4个单位长度,Q点的速度为每秒3个单位长度,运动的时间为t秒.(1)A、B两点之间的距离为;(2)当t=2018时,求P、Q两点之间的距离;(3)在P点第一次回到点A处之前,是否存在P、Q两点之间的距离为6的情况?若存在,请求出t的值;若不存在,请说明理由.8.如图,A、B两点在数轴上所表示的数分别为a、a+4(1)线段AB的长为________;(2)A、B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴正方向运动,设运动时间为t秒,解答下列问题(答案可用含与t的代数式表示).①运动t秒后,A点运动的距离为______,B点运动的距离为______;②当t为何值时,A、B两点重合;③在上述运动的过程中,若P为线段AB的中点,O为数轴的原点,当a=-6时,是否存在这样的t值,使得线段PO=3,若存在,求出符合条件的t值;若不存在,请说明理由.9.已知有理数a,b,c在数轴上对应的点分别为A,B,C,其中b是最小的正整数,a,c满足|a+2|+(c-5)2=0.(1)填空;a= ______ ,b= ______ ,c= ______ .(2)现将点A,点B和点C分别以每秒4个单位长度,1个单位长度和1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒.①求经过多长时间,AB的长度是BC长度的两倍.②定义,已知M,N为数轴上任意两点.将数轴沿线段MN的中点Q进行折叠,点M与点N刚好重合,所以我们又称线段MN的中点Q为点M和点N的折点.试问:当t为何值时,这三个点中恰好有一点为另外两点的折点?10.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a−1)2+|ab+3|=0,c=−2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.(i)是否存在一个常数k,使得3BC−k⋅AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.(ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C是AB的三等分点?请说明理由.11.数轴上两点间的距离可以表示为这两点所对应的数的差的绝对值,如数轴上表示3的点A到数轴上表示-2的点B的距离可以表示为:|3-(-2)|=5,若点P,Q是数轴上的两个动点,点P从点A出发向左每秒运动2个单位长度,点Q从点B出发向右每秒运动1个单位长度.(1)3秒后点P到A点的距离PA为______ ,t秒后点P到B点的距离PB为______ .(2)求出当Q运动到A点时,P到B点的距离PB.(3)当Q运动到A点右侧后,令PB-k•QA=m,是否存在k,使得无论时间t如何变化m都不会发生改变.若存在,请直接写出此时的k值及m,若不存在,请说明理由.12.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D 到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:(1)如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数_______所表示的点是【M,N】的好点;②在数轴上,数_____和数______所表示的点都是【N,M】的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A 停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?13.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点.又如,表示0的点D到点A的距离是1,到点B的距离是2.那么点D就不是【A,B】的好点,但点D是【B,A】的好点:知识运用:(1)如图1,点B是【D,C】的好点吗?(填是或不是);(2)如图2,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止,当t为何值时,P、A和B中恰有一个点为其余两点的好点?14.如图,已知点A在数轴对应的数为a,点B在数轴上对应的数为b,且点O为数轴原点,|a+5|+(a+b+1)2=0.(1)求a、b的值.(2)若数轴上有一点C,且AC+BC=13,求点C在数轴上对应的数.(3)若P点从点A出发沿数轴的正方向以每秒2个单位长度的速度匀速运动,同时Q点从B点出发沿数轴的负方向以每秒4个单位长度的速度匀速运动,运动时间为t秒,当OP=2OQ时,求t的值.15.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B都以每秒2个单位长度的速度沿数轴向右运动,而点O不动,t秒后有一个点是一条线段的中点,求t的值.16.如图,在数轴上,点A,B,C表示的数分别为-8,2,20.(1)如果点A和点C都向点B运动,且都用了4秒钟,那么这两点的运动速度分别是点A每秒____个单位长度、点C每秒____个单位长度;(2)如果点A以每秒1个单位长度沿数轴的正方向运动,点C以每秒3个单位长度沿数轴的负方向运动,设运动时间为t秒,请问当BC=3AB时,t为何值?(3)如果点A以每秒1个单位长度沿数轴的正方向运动,点B以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C点时就停止不动,P在线段AB上,AB,设运动时间为t秒,t为何值时PC=20.且AP=13第11页,共1页。

七年级数学上册第三单元《一元一次方程》-选择题专项经典习题(培优提高)(2)

七年级数学上册第三单元《一元一次方程》-选择题专项经典习题(培优提高)(2)

一、选择题1.下列变形不正确的是()A.由2x-3=5得:2x=8 B.由-23x=2得:x=-3C.由2x=5得:x=25D.由x+5 =3x-2得:7=2x C解析:C【分析】根据等式的性质逐一进行判断即可得答案.【详解】A.由2x-3=5的两边同时加上3得:2x=8,故该选项正确,B.由-23x=2的两边同时乘以32得:x=-3,故该选项正确,C.由2x=5的两边同时除以2得:x=52,故该选项错误,D.由x+5=3x-2的两边同时加上(2-x)得:7=2x,故该选项正确,故选:C.【点睛】本题考查了等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.2.下列判断错误的是()A.若a=b,则a−3=b−3B.若a=b,则7a−1=7b−1C.若a=b,则ac2+1=bc2+1D.若ac2=bc2,则a=b D解析:D【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b,则a−3=b−3,正确;B. 若a=b,则7a−1=7b−1,正确;C. 若a=b,则ac2+1=bc2+1,正确;D. 当c=0时,若ac2=bc2,a就不一定等于b,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.3.若代数式2x+3的值为6,则x的值为()A.32B.3C.92D.4A解析:A【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:2x+3=6,移项合并得:2x=3,解得:x=32,故选:A.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.4.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是()A.32+x=2(28−x)B.32−x=2(28−x)C.32+x=2(28+x)D.2(32+x)=28−x A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x).故答案为:32+x=2×(28-x),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.5.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x本书,则可列方程为()A.2x-8=12(x+8)+3 B.2x=12(x+8)+3C.2x-8=12x+3 D.2x=12x+3A解析:A【分析】根据题意可以列出相应的方程,从而可以解答本题.【详解】解:由题意可得,2x-8=12(x+8)+3, 故选:A .【点睛】 本题考查了由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.6.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( )A .80元B .200元C .120元D .160元B 解析:B【分析】利用公式:标价=(1+利润率)×进价,列出方程,求解即可.【详解】设进价为x 元.标价=(1+利润率)×进价根据题意,列方程:(180%)360x +=解得200x =故选B.【点睛】本题考查了一元一次方程的应用,属于典型题,熟练掌握价格公式是解题关键. 7.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道.A .17B .18C .19D .20C 解析:C【分析】此题等量关系为:做对题所得分-做错题所扣分数=70分,设小明做对了x 道,则做错了(25-x)道,根据题意列方程求解即可.【详解】解:设小明做对了x 道,则做错了(25-x)道,根据题意得:4x-(25-x)×1=70,解得:x=19,故选:C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.8.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律B 解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】将原方程两边都乘2,得2x =,这是依据等式的性质2.故选B .【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立. 9.佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( )A .2060元B .3500元C .4000元D .4100元C 解析:C【分析】设佳佳的压岁钱是x 元,根据利息本金之和为4120元,列方程求解即可.【详解】设佳佳的压岁钱是x 元.根据题意,得(1 1.5%)4060x +=,解得4000x =.故选C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( ) A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 2D解析:D【分析】 用长方形的面积减去四周四个小正方形的面积列式即可.【详解】∵长方形的面积为ab ,4个小正方形的面积为4x 2,∴剩余部分的面积为:ab-4x 2,故选D.【点睛】本题考查了列代数式,根据题意用字母表示长长方形和正方形的面积是解题关键. 11.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( )A .1146x x ++=B .1146x x ++=C .1146x x -+=D .111446x x +++= C 解析:C【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x 天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14 ,乙的工作效率为16. 那么根据题意可得出方程1146x x -+=, 故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.12.已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或1C 解析:C【分析】直接利用一元一次方程的定义进而分析得出答案.【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程, ∴1m =,10m -≠,解得:1m =-.故选:C .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 13.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折C 解析:C【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 800 20%800⨯-≥,解不等式可得:8x ≥. 【详解】设打折x 折,由题意可得:12000.1x 80020%800⨯-≥, 解得:8x ≥.故选C.【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.14.下列方程中,以x =-1为解的方程是( )A . 3x +12=x 2−2B .7(x -1)=0C .4x -7=5x +7D .13x =-3A 解析:A【解析】【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-1分别代入四个选项进行检验即可.【详解】解:A 、把x=-1代入方程的左边= -52=右边,左边=右边,所以是方程的解; B 、把x=-1代入方程的左边=-14≠右边,所以不是方程的解;C 、把x=-1代入方程的左边=-11≠右边,不是方程的解;D 、把x=-1代入方程的左边=-13≠右边,不是方程的解; 故选:A .【点睛】本题关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值. 15.一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( )A .54B .72C .45D .62B解析:B【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可.【详解】设个位上的数为x ,则十位数字为()31x +,由题意得:x +(3x +1)=9,解得:x =2,十位数字为:6+1=7,这个两位数是:72.故选:B.考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.16.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( ) A .43 B .98 C .65 D .2B解析:B【分析】 设2461111333x ++++⋅⋅⋅=,仿照例题进行求解. 【详解】 设2461111333x ++++⋅⋅⋅=, 则246224611111111113333333⎛⎫++++⋅⋅⋅=+++++⋅⋅⋅ ⎪⎝⎭, 2113x x ∴=+, 解得,98x =, 故选B .【点睛】 本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键. 17.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元B .125元C .135元D .140元B解析:B【分析】设每件的成本价为x 元,列方程求解即可.【详解】设每件的成本价为x 元, 0.8(140%)15x x ⨯+=+,解得x=125,故选:B.此题考查一元一次方程的实际应用—销售问题,正确理解题意是列方程解决问题的关键. 18.甲乙两人骑摩托车从相距170千米的A,B两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行()A.30千米B.40千米C.50千米D.45千米B解析:B【解析】【分析】相向而行,2小时相遇,那么相应的等量关系为:甲2小时走的路程+乙2小时走的路程=170,把相关数值代入即可求解.【详解】解:乙每小时行x千米,甲每小时走(x+5)千米,则2x+2(x+5)=170,解得x=40,选B.【点睛】本题主要考查用一元一次方程解决行程问题中的相遇问题;得到甲乙行程和的等量关系是解决本题的关键.19.下列解方程中去分母正确的是()A.由x3−1=1−x2,得2x−1=3−3xB.由x−22−3x−24=−1,得2(x−2)−3x−2=−4C.由y+12=y3−3y−16−y,得3y+3=2y−3y+1−6yD.由4y5−1=y+43,得12y−1=5y+20C解析:C【解析】【分析】根据等式的性质,各个选项中的方程两边同时乘分母的最小公倍数,然后再解答.【详解】A. x3−1=1−x2(x 3−1)×6=1−x2×62x−6=3−3x;故错误;B. x−22−3x−24=−1(x−22−3x−24)×4=−1×42(x−2)−(3x−2)=−42(x−2)−3x+2=−4;故错误;C. y+12=y3−3y−16−y3(y+1)=2y−(3y−1)−6y3y+3=2y−3y+1−6y;故正确;D. 4y5−1=y+43(4x 5−1)×15=y+43×1512x−15=5y+20;故错误;由以上可得只有C选项正确.故选:C.【点睛】此题考查方程的解和解方程,解题关键在于掌握运算法则.20.如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则x的值为()A.39B.13C.14D.9D解析:D【解析】【分析】根据每一行、每一列以及两条对角线中所填的数字之和均相等,可求出方格中间、右下以及右上的数,再由每一行、每一列所填的数字之和相等,即可得出关于x的一元一次方程,解之即可得出结论.【详解】16+11+12−11−15=13,16+11+12−16−13=10,16+11+12−10−15=14.根据题意得:16+11+12=16+x+14,解得:x=9.故选:D.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找出等量关系.21.在三峡大坝截流时,用载重卡车将一堆石料运到围堰龙口,第一次运了这堆石料的13少2万方,第二次运了剩下的12多3万方,此时还剩下12万方未运,若这堆石料共有x万方,于是可列方程为()A.x−(13x−2)−[12(x−13x+2)+3]=12B .x −(13x −2)−[12(x −13x +2)−3]=12 C .x −(13x −2)−[12(x −13x)−3]=12 D .x −(13x −2)−(12x +3)=12A 解析:A【解析】【分析】找到等量关系为:总共石料数-第一次运的-第二次运的=剩下的.根据题中的条件,代入关系式即可得出所求的方程.【详解】由题意这堆石料共有x 万方,且第一次运了这堆石料的13少2万方, 即可得出第一次运了(13x−2)万方;∵第二次员了剩下的12多3万, 22.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元C 解析:C【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.23.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =0A 解析:A【分析】利用等式的性质解方程即可解答.【详解】解: 移项得:2+2x 4+4x =合并同类项得:48x =系数化为1得:2x故选:A【点睛】本题考查解一元一次方程,难度较低,熟练掌握利用等式的性质解一元一次方程是解题关键.24.如图所示,两人沿着边长为90 m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65 m/min的速度、乙从B点以75 m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DCC.AD D.AB C解析:C【分析】设乙x分钟后追上甲,根据乙追上甲时,比甲多走了270米,可得出方程,求出时间后,计算乙所走的路程,继而可判断在哪一条边上相遇.【详解】设乙x分钟后追上甲,由题意得,75x−65x=270,解得:x=27,而75×27=5×360+212×90,即乙第一次追上甲是在AD边上.故选C.【点睛】本题考查了一元一次方程的应用,完成本题要注意通过所行路程及正方形的周长正确判断追上时在正方形的那条边上.25.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm,那么一块渗水防滑地板的面积是().A.2450cm B.2600cm C.2900cm D.21350cm A解析:A【分析】设小长方形的长为x ,根据大的长方形对边相等得到小长方形的宽为2x ,再根据长方形的周长列等量关系得到2(2x+2x+x )=150,再解方程求出x ,然后计算小长方形的面积.【详解】解:设小长方形的长为x ,则宽为2x ,根据题意得2(2x+2x+x )=150,解得x=15,2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm 2.故选A .【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.26.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+= C .360020160240x x +-= D .360020160240x x --= A 解析:A【分析】根据A 工程队修建此项工程xm ÷修建速度+B 工程队修建此项工程(3600-x )m÷修建速度= 20天.列出方程即可.【详解】设A 工程队修建此项工程xm ,则B 工程队修建此项工程(3600-x )m ,由题意,得360020240160x x -+= 故选:A .【点睛】此题考查一元一次方程的应用,找出合适的等量关系是解题的关键.27.下列各等式的变形中,等式的性质运用正确的是( )A .由02x =,得2x = B .由14x -=,得5x = C .由23a =,得23a = D .由ab =,得a bc c = B 解析:B【解析】【分析】利用等式的基本性质判断即可.【详解】解:A 、由02x =,得x=0,不符合题意; B 、由x-1=4,得x=5,符合题意; C 、由2a=3,得a=32,不符合题意; D 、由a=b ,c≠0,得a b c c=,不符合题意; 故选:B .【点睛】 本题考查了等式的性质,熟练掌握等式的基本性质是解题的关键.28.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=18B解析:B【分析】等量关系为:6本练习本总价+4支水性笔总价钱=18.【详解】解:水性笔的单价为x 元,那么练习本的单价为(x ﹣2)元,则6(x ﹣2)+4x =18,故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,列方程解应用题的关键是找出题目中的相等关系.29.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( )A .()182812x x -=B .()1828212x x -=⨯C .()181412x x -=D .()2182812x x ⨯-= B 解析:B【分析】若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,由题意可得,18(28-x)=2×12x,故选:B.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.30.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是().A.95元B.90元C.85元D.80元B解析:B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.。

难点突破“一元一次方程应用题(提高)”压轴题50道(含详细解析)

难点突破“一元一次方程应用题(提高)”压轴题50道(含详细解析)

“一元一次方程应用题”压轴题50道(含详细解析)一.解答题(共50小题)1.如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是.2.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.3.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a(元)200≤a<400400≤a<500500≤a<700700≤a<900…获奖券金额(元)3060100130…根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到13的优惠率?4.联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.(1)如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?(2)如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?5.据了解,火车票价按“全程参考价×实际乘车里程数总里程数”的方法来确定.已知A站至H站总里程数为1 500千米,全程参考价为180元.下表是沿途各站至H 站的里程数:车站名A B C D E F G H各站至H站的里程数(单位:千米)15001130910622402219720例如,要确定从B站至E站火车票价,其票价为180×(1130−402)1500=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元);(2)旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的(要求写出解答过程).6.2012年,某地开始实施农村义务教育学校营养计划﹣﹣“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?7.从2009年4月1日起,中国铁路实施了新的列车运行图,根据新的运行图,此次做出调整最大的是客运列车,而其中部分列车的运行速度也将大大缩短.预计某高速列车在甲、乙两城市间单程直达运行时间为半小时.某次试车时,试验列车由甲城市到乙城市的行驶时间比预计时间多用了6分钟,由乙城市返回甲城市的行驶时间与预计时间相同.如果这次试车时,由乙城市返回甲城市比去乙城市时平均每小时多行驶40千米,那么这次试车时由甲城市到乙城市的平均速度是每小时多少千米?8.某牛奶公司计划在三栋楼之间建一个取奶站,三栋楼在一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米、已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,公司提出两种建站方案:方案一:让每天所有取奶的人到奶站的距离最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和,(1)若按第一种方案建站,取奶站应建在什么位置?(2)若按方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加,增加的人数不超过22人,那么取奶站将离B楼越来越远,还是越来越近?请说明理由.9.“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了二种方案:方案一:将毛竹全部粗加工后销售,则可获利元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.10.在“三峡明珠”宜昌市蕴含着丰富的水电、旅游资源,建有三峡工程等多座大型水电站,随着2003年三峡工程首批机组发电,估计当年将有200万人次来参观三峡大坝(参观门票按每张50元计)由此获得的旅游总收入可达到7.02亿元,相当于当年三峡工程发电总收入的26%,(每度电收入按0.1元计),据测算,每度电可创产值5元,而每10万元产值就可以提供一个就业岗位,待三峡工程全部建成后,其年发电量比2003年宜昌市所有水电站的年发电总量还多了75%,并且是2003年宜昌市除三峡工程以外的其它水电站的年发电量总和的4倍,(1)旅游部门测算旅游总收入是以门票为基础,再按一定比值确定其它收入(吃、住、行、购物、娱乐的收入),两者之和即为旅游总收入,请你确定其它收入与门票收入的比值;(2)请你评估三峡工程全部完工后,由三峡工程年发电量而提供的就业岗位每年有多少个?11.用A4纸在甲誊印社复印文件,复印页数不超过50时,每页收费0.12元;复印页数超过50时,超过部分每页收费降为0.08元.在乙誊印社复印同样的文件,不论复印多少页,每页收费0.09元.设复印页数为x(x>50)(1)用含x的式子分别表示在甲誊印社复印文件时的费用为:元,在乙誊印社复印文件时的费用为:元;(2)复印页数为多少时,两处的收费相同?12.甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?13.我国元朝朱世杰所著的《算学启蒙》(1299年)一书中有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:快马每天走240里,慢马每天走150里.慢马先走12天,快马几天可以追上慢马?(1)设快马x天可以追上慢马,请你将如下的线段图补充完整:(2)根据(1)中线段图所反映的数量关系,列方程解决问题.14.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是.(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(4)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?15.如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A 的速度为3米/秒,B 的速度为2米/秒(1)已知MN=100米,若B 先从点M 出发,当MB=5米时A 从点M 出发,A出发后经过 秒与B 第一次重合;(2)已知MN=100米,若A 、B 同时从点M 出发,经过 秒A 与B 第一次重合;(3)如图2,若A 、B 同时从点M 出发,A 与B 第一次重合于点E ,第二次重合于点F ,且EF=20米,设MN=s 米,列方程求s .16.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表购买服装的套数1套至45套 46套至90套 91套以上 每套服装的价格60元 50元 40元(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.17.一个自行车队进行训练,训练时所有队员都以相同的速度前进,突然,1号队员以每小时比其他队员快10千米的速度独自行进,行进了10千米后掉转车头,速度不变往回骑,直到与其他的队员会合.从1号队员离队开始到与其他队员重新会合,经过了15分钟.(1)其他队员的行进速度是多少?(2)1号队员从离队开始到与队员重新会合这个过程中,经过多长时间与其他队员相距1千米?18.近期,重庆商品住宅市场房屋销售出现销售量和销售价齐涨态势,数据显示,2016年12月,甲、乙房地产公司的销售面积一共17000平方米,乙房地产公司的单价是甲房地产公司单价的98.甲房地产公司单价为每平方米0.8万元,两家销售的总金额为14430万元.(1)求2016年12月,甲、乙房地产公司各销售了多少平方米.(2)根据市场需求,甲、乙房地产公司决定调整2017年1月份的房价,甲房地产公司每平方米的售价上涨a%,销售量预计比12月减少200平方米:乙房地产公司决定以降价促销的方式应对当前的形势,每平方米的售价下调13 a%,销售面积预计将比12月增加700平方米,预计1月份两家的总销售额恰好为15310万元,求a的值.19.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲厂比乙厂要多用20天.在加工过程中,学校需付甲厂每天费用80元、付乙厂每天费用120元.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,而乙工厂每天的生产速度也提高25%,乙工厂单独完成剩余部分.且乙工厂的全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲厂单独完成;方案二:由乙厂单独完成;方案三:按(2)问方式完成;并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种即省时又省钱的加工方案.20.列方程解应用题今年某网上购物商城在“双11购物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?21.已知A,B,C三个圆柱形容器的底面积之比为1:2:3,且容器的高都为10cm,若A,B,C三个容器中分别装有液面高度为6cm、8cm、6cm的液体,现把C容器中的液体分别倒入A,B两个容器中,直至装满这两个容器(无溢出),此时C容器中还剩120cm3的液体.(1)若设A容器的底面积为x(cm2),请用含x的代数式表示三个容器中液体的总体积;(2)求C容器的体积;(3)若A,B,C三个容器中的液体可互相倒入(无溢出),最后是否能使三个容器中的液体体积都相等?若能,求出每个容器中的液体体积;若不能,说明理由.22.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?23.某军舰在静水中的速度为70千米/时,有一天它顺水航行去钓鱼岛执行巡航任务,途中有一救生圈落入水中,发现时救生圈已距军舰35千米,若水流速度为10千米/时.(1)求从救生圈落水到被发现用了多长时间?(2)发现后,舰长马上派摩托艇取回救生圈,摩托艇在静水中的速度为140千米/时,军舰仍以原速前进,摩托艇拿到救生圈后马上返回军舰,求从救生圈落水到摩托艇返回军舰共用多少小时?24.某超市在“元旦”促销期间规定:超市内所有商品按标价的80%出售,同时当顾客在消费满一定金额后,按如下方案获得相应金额的奖券:消费金额a(元)的范围100≤a<400400≤a<600600≤a<800获得奖券金额(元)40100130根据上述促销方法知道,顾客在超市内购物可以获得双重优惠,即顾客在超市内购物获得的优惠额=商品的折扣+相应的奖券金额,例如:购买标价为440元的商品,则消费金额为:440×80%=352元,获得的优惠额为:440×(l﹣80%)+40=128元.(1)若购买一件标价为800元的商品,则消费金额为元,获得的优惠额是元;(2)若购买一件商品的消费金额a在450≤a<800之间,请用含a的代数式表示优惠额;(3)某顾客购买一件商品的消费金额在100元与800元之间(含100元,不含800元),她能否获得150元的优惠额?若能,求出该商品的消费金额.25.重庆派森白•橙汁有限公司现有鲜甜橙48吨,若直接销售,每吨可获利500元:若制成普通橙汁销售,每吨可获利2200元;若引进世界一流的榨汁生产线后,则制成派森百NFC橙汁,每天可获利2500元,本工厂的生产能力是:若制成普通橙汁,每天可加工鲜甜橙4吨;若制成派森百NFC橙汁,每天可加工鲜甜橙3吨(两种加工方式不能同时进行).受气温条件限制,这批鲜甜橙必须在15天内全部销售并加工完成,为此该公司设计了以下两种可行方案:方案一:15天时间全部用来生产派森百NFC橙汁,其余直接销售鲜甜橙;方案二:将一部分制成派森百NFC橙汁,其余制成普通橙汁,并恰好15天完成.(1)若重庆派森百橙汁有限公司采川方案一,可获利多少元?(2)若重庆派森百橙汁有限公司采用方案二,可获利多少元?26.正值度尾文旦柚收成之际,在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达2000元;经精加工包装后销售,每吨利润为3000元.当地一家公司收购了600吨,该公司加工厂的生产能力是:如果对文旦柚进行粗加工,每天可加工50吨;如果进行精加工,每天可加工20吨,但每天两种方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批文旦柚全部销售或加工完毕,为此公司研制了三种加工方案.方案一:将文旦柚全部进行粗加工;方案二:尽可能多的对文旦柚进行精加工,没有来得及加工的文旦柚在市场上直接销售;方案三:将部分文旦柚进行精加工,其余文旦柚进行粗加工,并恰好在15天完成,如果你是公司经理,你会选择哪种方案,说明理由.27.如图,将连续奇数1,3,5,7,…排成如下数表,观察十字框内5个数,探索这五个数之间的规律,解答下面的问题:(1)设十字框中间的数为a,请用含a的式子表示十字框内5个数的和为.(2)十字框内5个数的和能等于2010吗?若能,请求出框内5个数;若不能,请说明理由;(3)十字框内5个数的和能等于2015吗?若能,请求出框内5个数;若不能,请说明理由.28.新石商店新进一批衬衣和成对的暖瓶,暖瓶的对数正好是衬衣件数的一半.每件衬衣进价是40元,每对暖瓶的进价也是40元,商店将这批物品以高出进价10%的价钱卖了出去,因商店职员需要,留下了7件物品.这时,商店发现所卖这批物品的钱数恰好等于买进这批物品所花的钱数.这批物品的利润可用留下的7件物品的零售价之和所代表.这7件物品都是什么?它们值多少钱?29.如图,时钟是我们常见的生活必需品,其中蕴含着许多数学知识.(1)我们知道,分针和时针转动一周都是度,分针转动一周是分钟,时针转动一周有12小时,等于720分钟;所以,分针每分钟转动度,时针每分钟转动度.(2)从5:00到5:30,分针与时针各转动了多少度?(3)请你用方程知识解释:从1:00开始,在1:00到2:00之间,是否存在某个时刻,时针与分针在同一条直线上?若不存在,说明理由;若存在,求出从1:00开始经过多长时间,时针与分针在同一条直线上.30.动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距16个单位长度.已知动点A、B的速度比是1:3(速度单位:单位长度/秒).(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动4秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动,若点C一直以25个单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度?31.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?32.已知某提炼厂10月份共计从矿区以每吨4000元价格购买了72吨某矿石原料,该提炼厂提炼矿石材料的相关信息如下表所示:提炼方式每天可提炼原材料的吨数提炼率提炼后所得产品的售价(元/吨)每提炼1吨原材料消耗的成本(元)粗提炼790%300001000精提炼360%900003000注:①提炼率指提炼后所得的产品质量与原材料的比值;②提炼后的废品不产生效益;③提炼厂每天只能做粗提炼或精提炼中的一种.受市场影响,提炼厂能够用于提炼矿石原材料的时间最多只有12天,若将矿石原材料直接在市场上销售,每吨的售价为5000元,现有3种提炼方案:方案①:全部粗提炼;方案②:尽可能多的精提炼,剩余原料在市场上直接销售(直接销售的时间忽略不计);方案③:一部分粗提炼,一部分精提炼,且刚好12天将所有原材料提炼完.问题:(1)若按照方案③进行提炼,需要粗提炼多少天?(2)哪个提炼方案获得的利润最大?最大利润是多少?(3)已知提炼厂会根据每月的利润按照一定的提成比例来计算每个月需要给工厂员工发放的总提成,具体计算方法如下表:提炼厂利润不超过150万元的部分超过150万元但不超过200万元的部分超过200万元的部分提成比例8%a%15%现知按照(2)问中的最大利润给员工发放的10月份的总提成为15.09万元,11月份和12月份提炼厂获得的总利润为480万元,11月份和12月份给员工的总提成为50.6万元,且12月份的利润比11月份的利润大,求提炼厂12月份的利润.33.若A、B两点在数轴上所表示的数分别为a、b,则A、B两点间的距离可记为|a﹣b|:(1)如图:若A、B两点在数轴上所表示的数分别为﹣2、4,求A、B两点的距离为;(2)若A、B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴正方向运动,设运动时间为t秒,解答下列问题:①运动t秒后,A点所表示的数为,B点所表示的数为;(答案均用含t的代数式表示)②当t为何值时,A、B两点的距离为4?34.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A 出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有处相遇,相遇时t=秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)35.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.(1)A、B间的距离是.(2)若电子蚂蚁P从B点出发,以8个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从A点出,以4个单位长度/秒向左运动.请问:多少秒后两只电子蚂蚁之间的距离是610个单位长度?(3)若点C是数轴上原点左侧的点,C到B的距离是C到原点O的距离的3倍,求点C对应的数是多少?。

一元一次方程培优提高习题精选

一元一次方程培优提高习题精选

一元一次方程培优提高习题精选例题1.关于x的方程ax﹣6=2x,通过代值检验发现当a=0时,方程的解为x=﹣3;当a=1时,方程的解为x=﹣6;当a=2时,方程无解.试讨论a与方程的解有什么关系?解:化简方程ax﹣6=2x,得(a﹣2)x=6,当a≠2时,有唯一解x=,当a=2时,方程无解.例题2.已知:(a+2b)y2﹣+5=0是关于y的一元一次方程:(1)求a,b的值.(2)若x=a是﹣+3=的解,求丨5a﹣2b丨﹣丨4b﹣2m|的值.解:(1)∵(a+2b)y2﹣+5=0是关于y的一元一次方程,a+2b=0,a+2=1,a=﹣3,b=;(2)把x=a=﹣3,代入,m=26,丨5a﹣2b丨﹣丨4b﹣2m|=|5×(﹣3)﹣2×|﹣|4×﹣2×26|=18﹣46=﹣28.例题3.已知m,n是有理数,单项式﹣x n y的次数为3,而且方程(m+1)x2+mx﹣tx+n+2=0是关于x的一元一次方程.(1)分别求m,n的值.(2)若该方程的解是x=3,求t的值.(3)若题目中关于x的一元一次方程的解是整数,请直接写出整数t的值.解:(1)由题意得:n=2,m=﹣1;(2)(m+1)x2+mx﹣tx+n+2=0,当x=3时,3m﹣3t+n+2=0,∵n=2,m=﹣1,∴﹣3﹣3t+2+2=0,t=;(3)(m+1)x2+mx﹣tx+n+2=0,∵n=2,m=﹣1,∴﹣x﹣xt+4=0,x=t==﹣1,∴t≠﹣1,x≠0∵t是整数,x是整数,∴当x=1时,t=3,当x=4时,t=0,当x=﹣1时,t=﹣5,当x=﹣4时,t=﹣2,当x=2时,t=1,当x=﹣2时,t=﹣3.例题4.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.解:(1)∵方程3x=m是和解方程,∴=m+3,解得:m=﹣.(2)∵关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.习题精练:1.一元一次方程都可以变形为形如ax=b(a,b为常数,且a≠0)的方程,称为一元一次方程的最简形式.关于x的方程ax=b(a,b为常数,且a≠0)解的讨论:当a≠0时,是一元一次方程,有唯一解x=;当a=0,且b=0时,它有无数多个解,任意数都是它的解;当a=0,且b≠0时,它无解,因为任何数都不可能使等式成立.讨论关于当x的方程(a﹣4)x=2的解.2.阅读下列文字后,解答问题:我们知道,对于关于x的方程ax=b,当a不等于0时,方程的解为x=;当a等于0,b也等于0时,所有实数x都能使方程等式成立,也就是说方程的解为全体实数;当a 等于0,而b不等于0时,没有任何x能满足方程使等式成立,此时,我们说方程无解.根据上述知识,判断a,b为何值时,关于x的方程a(4x﹣2)﹣3b=8x﹣7的解为全体实数?a,b为何值时,无解.3.【阅读理解】如果一个无限小数的各数位上的数字,从小数部分的某一位起,按一定顺序不断重复出现,那么这样的小数叫做无限循环小数,简称循环小数.例如,0.333…,写作,像这样的循环小数称为纯循环小数.又如,0.1666…、0.0456456456…,它们可分别写作、,像这样的循环小数称为混循环小数.【问题探究】小明课后利用方程的知识探索发现,所有纯循环小数都可以化为分数,例如,化为分数,解决方法是:设x=,即x=0.333…,将方程两边都×10,得10x=3.333…,即10x=3+0.333…,又因为x=0.333…,所以10x=3+x,所以9x=3,即x=,所以=.尝试解决下列各题:(1)把化成分数为.(2)请利用小明的方法,把纯循环小数化成分数.【问题归纳】循环小数中重复出现的一个或几个数字叫做它的一个循环节,例如0.333…、0.0456456456…的循环节分别为“3”、“456”.其实,把纯循环小数化为分数时,分数的分子是它的一个循环节的数字所组成的数,分母则由若干个9组成,9的个数为一个循环节的数字的个数.例如:;;.请直接写出以下纯循环小数化为分数的结果:=,=.【问题拓展】小丽在对混循环小数研究时发现,所有混循环小数都可以先化为纯循环小数,然后再化为分数.例如:.请把混循环小数化为分数.4.已知关于x的方程的两个解是;又已知关于x的方程的两个解是;又已知关于x的方程的两个解是;…,小王认真分析和研究上述方程的特征,提出了如下的猜想.关于x的方程的两个解是;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题.(1)关于x的方程的两个解是x1=和x2=;(2)已知关于x的方程,则x的两个解是多少?5.阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=﹣c3﹣pc2﹣qc,即有:m=c×(﹣c2﹣pc﹣q),由于﹣c2﹣pc﹣q与c及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m =0的整数解只可能是m的因数.例如:方程x3+4x2+3x﹣2=0中﹣2的因数为±1和±2,将它们分别代入方程x3+4x2+3x﹣2=0进行验证得:x=﹣2是该方程的整数解,﹣1,1,2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?(2)方程x3﹣2x2﹣4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.6.数轴上点A对应的数为a,点B对应的数为b,点A在负半轴,且|a|=3,b是最小的正整数.(Ⅰ)求线段AB的长;(Ⅱ)若点C在数轴上对应的数为x,且x是方程2x+1=3x﹣4的根,在数轴上是否存在点P使P A+PB=BC+AB,若存在,求出点P对应的数,若不存在,说明理由.(Ⅲ)如图,若Q是B点右侧一点,QA的中点为M,N为QB的四等分点且靠近于Q 点,当Q在B的右侧运动时,有两个结论:①QM+BN的值不变,②QM﹣BN的值不变,其中只有一个结论正确,请你判断正确的结论,并求出其值.7.问题提出:我们知道,等式具有性质:(1)等式两边同时加或减同一个代数式,所得结果仍是等式;(2)等式两边同时乘同一个数或除以同一个不为0的数,所得结果仍是等式.那么任意一个三阶幻方是否也有类似的性质?问题探究:为了探究上述问题,我们不妨从简单的三阶幻方①入手;探究一如图②,九个数2,3,4,5,6,7,8,9,10已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方②,所以构成三阶幻方①的九个数同时加1,所得到的九个数仍可构成一个三阶幻方.如图③,九个数﹣2,﹣1,0,1,2,3,4,5,6已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方③,所以构成三阶幻方①的九个数同时减3,所得到的九个数仍可构成一个三阶幻方.请把九个数0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5填到图④的方格中,使得每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方④,所以构成三阶幻方①的九个数同时减0.5,所得到的九个数仍可构成一个三阶幻方.(1)根据探究一可得任意三阶幻方的性质(1):.探究二:如图⑤,九个数3,6,9,12,15,18,21,24,27已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑤.所以构成三阶幻方①的九个数同时乘3,所得到的九个数仍可构成一个三阶幻方.如图⑥,九个数0.5,1,1.5,2,2.5,3,3.5,4,4.5已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑥.所以构成三阶幻方①的九个数同时除以2,所得到的九个数仍可构成一个三阶幻方.请把九个数﹣4,﹣8,﹣12,﹣16,﹣20,﹣24,﹣28,﹣32,﹣36填到图⑦的方格中,使得每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑦.所以构成三阶幻方①的九个数同时乘﹣4,所得到的九个数仍可构成一个三阶幻方.(2)根据探究二可得任意三阶幻方的性质(2):.性质应用:6,8,10,12,14,16,18,20,22这九个数能否构成三阶幻方?请在图8中用三阶幻方的性质进行说明.8.重温例题:小丽在水果店花18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元.小丽买了苹果和橘子各多少千克?解决问题:(1)设所购买的苹果质量为xkg.请你将下列同学的探究过程补充完整.①小明同学列出了下表,并根据相等关系“买苹果的金额+买橘子的金额=18元”,可得方程:.单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.66﹣x 2.6(6﹣x)合计618②小红、小王、小颖三位同学分别给出了不同于小明同学的表格和方程,请补充完整.(友情提醒:表格中的空格表达式不同于小明所填的,所列方程不要化简.)i小红根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程.单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.618﹣3.2x合计618ii小王根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程.单价(元/kg)质量(kg)金额(元)苹果 3.2x橘子 2.66﹣x 2.6(6﹣x)合计618iii小颖根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程.单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.66﹣x合计618(2)设苹果购买金额为y元,下列方程正确的是.(填写正确的序号)①;②y+2.6(6﹣)=18;③3.2(6﹣)=y;④3.2(6﹣)=18﹣y.9.综合与实践情境再现:举世瞩目的港珠澳大桥东接香港,西接珠海、澳门,全长55千米,是世界上最长的跨海大桥,被誉为“新世界七大奇迹”之一.如图,香港口岸点B至珠海口岸点A约42千米,海底隧道CD全长约7千米,隧道一端的东人工岛点C到香港口岸的路程为12千米,某一时刻,一辆穿梭巴士从香港口岸发车,沿港珠澳大桥开往珠海口岸.10分钟后,一辆私家车也从香港口岸出发沿港珠澳大桥开往珠海口岸,在私家车出发的同时,一辆大客车从珠海口岸出发开往香港口岸.已知穿梭巴士的平均速度为72千米/时,大客车的平均速度为78千米/时,私家车的平均速度为84千米/时.问题解决:(1)穿梭巴士出发多长时间与大客车相遇?(2)私家车能否在到达珠海口岸前追上穿梭巴士?说明理由;(3)穿梭巴士到达珠海口岸后停车5分钟供乘客上下车,之后立即沿原路按原速度返回香港口岸.设该巴士从香港口岸出发后经过的时间为t小时.请从下列A,B两题中任选一题作答我选择题A:①该巴士返程途中到珠海口岸的路程为千米(用含t的代数式表示);②该巴士返程途中到东人工岛的路程为6千米时,t的值为.B:①该巴士返程途中到香港口岸的路程为千米(用含t的代数式表示);②私家车到达珠海口岸时,用5分钟办完事立即返回香港口岸.若其返程途中的速度为96千米/时,私家车返程途中与巴士之间相距的路程为4千米时,t的值为.10.阅读下面的材料:如图①,若线段AB在数轴上,A,B两点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向右移动7cm到达B点,用1个单位长度表示lcm.(1)请你在数轴上表示出A,B两点的位置;(2)若将点A向左移动xcm,则移动后点A表示的数为(用含x的代数式表示);(3)若点M从原点O出发以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t(秒),同时,另一动点N从点B出发,以每秒2个单位长度的速度向左匀速运动,到达原点O后立即原速度返回向右匀速运动,当MN=1cm时,求t的值.11.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:例如,若数轴上A点、B点表示的数分别为a、b,则A、B两点之间的距离AB=|a﹣b|,线段AB的中点M表示的数为.【问题情境】在数轴上,点A表示的数为﹣20,点B表示的数为10,动点P从点A出发沿数轴正方向运动,同时,动点Q也从点B出发沿数轴负方向运动,已知运动到4秒钟时,P、Q两点相遇,且动点P、Q运动的速度之比是3:2(速度单位:单位长度/秒).【综合运用】(1)点P的运动速度为单位长度/秒,点Q的运动速度为单位长度/秒;(2)当PQ=AB时,求运动时间;(3)若点P、Q在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点P、Q的运动,线段PQ的中点M也随着运动.问点M能否与原点重合?若能,求出从P、Q相遇起经过的运动时间,并直接写出点M的运动方向和运动速度;若不能,请说明理由.参考答案与试题解析1.【分析】分a=4和a≠4两种情况分别求解可得.【解答】解:当a≠4 时,有唯一解x=,当a=4 时,无解.【点评】本题主要考查一元一次方程的解,解题的关键是熟练掌握等式的基本性质.2.【分析】根据题意把原方程移项、合并同类项,再根据一次项系数为0和不为0两种情况讨论方程解的情况.【解答】解:原方程可以化为:4(a﹣2)x=2a+3b﹣7,当a﹣2=0且2a+3b﹣7=0,即当a=2,b=1时,方程的解为全体实数;当a﹣2=0而2a+3b﹣7≠0,即a=2,b≠1时,方程无解.【点评】本题考查了一元一次方程解的情况,在解答时要注意一次项系数为0和不为0两种情况,不要漏解.3.【分析】尝试解决下列各题:(1)根据阅读材料设=x,方程两边都乘10,转化为1+x=10x,求出其解即可;(2)根据阅读材料设=x,方程两边都乘100,转化为16+x=100x,求出其解即可;【问题归纳】:设=x,方程两边都乘100,转化为35+x=100x,求出其解即可;:设=x,方程两边都乘1000,转化为18+x=1000x,求出其解即可;【问题拓展】根据阅读材料化混循环小数为:×20.,再由材料转化为整数与另一无限循环小数的和,依次化简可得结论.【解答】【问题探究】解:(1)设=x,即x=0.111…,将方程两边都×10,得10x=1.111…,即10x=1+0.111…,又因为x=0.111…,所以10x=1+x,所以9x=1,即x=,所以=.故答案为:;(2)设=x,100x=100x=16+x…(2分)【问题归纳】解:设:=x,100x=35.,100x=35+x,x=,设:=x,1000x=18.1,1000x=18+x,x=,故答案为:,…(1分+1分)【问题拓展】解:=…(2分)【点评】本题考查了无限循环小数转化为分数的运用,还考查了等式性质的运用,解答时根据等式的性质变形建立方程是解答的关键.4.【分析】(1)根据上述的结论方程的两个解是,即可猜想得到答案;(2)可以把x﹣1看作一个整体,即方程两边同时减去1,得x﹣1+=11+,然后根据猜想得到x﹣1=11,x﹣1=,进一步求得方程的解.【解答】解:(1)根据猜想的结论,则x1=11,x2=;(2)原方程可以变形为x﹣1+=11+,则x﹣1=11,x﹣1=.则x1=12,x2=.【点评】此题要能够根据探索得到的结论进行分析求解,能够运用换元法进行求解,有一定难度.5.【分析】(1)认真学习题目给出的材料,掌握“整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数”,再作答.(2)根据分析(1)得出3的因数后再代入检验可得出答案.【解答】解:(1)由阅读理解可知:该方程如果有整数解,它只可能是7的因数,而7的因数只有:1,﹣1,7,﹣7这四个数.(2)该方程有整数解.方程的整数解只可能是3的因数,即1,﹣1,3,﹣3,将它们分别代入方程x3﹣2x2﹣4x+3=0进行验证得:x=3是该方程的整数解.【点评】本题考查同学们的阅读能力以及自主学习、自我探究的能力,该类型的题是近几年的热点考题.认真学习题目给出的材料,掌握“整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数”是解答问题的基础.6.【分析】(I)先根据条件求出a、b的值,再求AB的长;(II)先解方程求出x的值,则点C在数轴上对应的数为5,从而得出BC+AB=6,即P A+PB=6,分三种情况进行讨论:①点P在A的左侧,②点P在A、B之间,③点P在B的右侧,列式分别计算得出结果;(III)设点Q在数轴上对应的数为a,分别计算①和②两式的值,不含a的值不变.【解答】解:(I)∵点A在负半轴,且|a|=3,∴a=﹣3,∵b是最小的正整数,∴b=1,∴AB=1﹣(﹣3)=4,则线段AB的长为4;(II)存在这样的点P,设P在数轴上对应的数为y,2x+1=3x﹣4,x=5,则点C在数轴上对应的数为5,∴BC+AB=×(5﹣1)+4=6,分三种情况进行讨论:①当y<﹣3时,即点P在A的左侧,此时P A+PB=﹣3﹣y+1﹣y=6,y=﹣4,②当﹣3<y<1时,即点P在A、B之间,∵AB=4,∴P A+PB=AB≠6,所以此种情况不符合条件;③y>1时,即点P在B的右侧此时P A+PB=y+3+y﹣1=2y+2=6,y=2,综上所述:点P对应的数是﹣4或2;(III)QM﹣BN的值不变,理由是:设点Q在数轴上对应的数为a,∵QA的中点为M,∴QM=AQ,∵N为QB的四等分点且靠近于Q点,∴BN=BQ,①QM+BN=×AQ+×BQ=(a+3)+(a﹣1)=a+,②QM﹣BN=AQ﹣×BQ=(a+3)﹣(a﹣1)=2,所以QM﹣BN的值不变,总是2.【点评】本题考查了数轴和一元一次方程,比较复杂,需要认真理解题意,明确数轴上两点的距离等于两点坐标之差的绝对值是关键.7.【分析】(1)根据图②、③的作法将九个数同时减0.5填到图④中相应位置,类比等式性质得出规律即可;(2)根据图⑤、⑥的作法将九个数同时乘﹣4填到图⑦相应位置,可类比等式的性质得出规律;将1,2,3,4,5,6,7,8,9这9个数先乘以2、再加上4即可得出结论.【解答】解:(1)如图④,由题意知,三阶幻方的性质(1)构成三阶幻方的九个数,每个数同时加或减同一个数,所得到的九个数仍能构成三阶幻方.故答案为:构成三阶幻方的九个数,每个数同时加或减同一个数,所得到的九个数仍能构成三阶幻方;(2)如图⑦,由题意得:三阶幻方的性质(2)构成三阶幻方的九个数,每个数同时乘同一个数或除以同一个不为0的数,所得到的九个数仍能构成三阶幻方.故答案为:构成三阶幻方的九个数,每个数同时乘同一个数或除以同一个不为0的数,所得到的九个数仍能构成三阶幻方.先将三阶幻方的九个数1,2,3,4,5,6,7,8,9,每个数都乘2,得2,4,6,8,10,12,14,16,18,根据三阶幻方性质②,2,4,6,8,10,12,14,16,18能构成三阶幻方.再将2,4,6,8,10,12,14,16,18,每个数都加4得6,8,10,12,14,16,18,20,22,根据三阶幻方性质①,6,8,10,12,14,16,18,20,22能构成三阶幻方.所以,6,8,10,12,14,16,18,20,22这九个数能构成三阶幻方,如图⑧,【点评】本题主要考查数字的变化类,理解题意类比等式的性质是解题的关键.6,8,10,12,14,16,18,20,228.【分析】(1)根据“苹果质量+橘子质量=6kg,苹果单价×苹果质量=苹果购买金额和橘子的单价×其质量=橘子购买金额”填表、列出方程即可;(2)分别根据“苹果质量+橘子质量=6kg和苹果单价×苹果质量=苹果购买金额”可得答案.【解答】解:(1)①设小丽买了x千克的苹果,则她买橘子(6﹣x)千克.由题意得:3.2x+2.6(6﹣x)=18;故答案为:3.2x+2.6(6﹣x)=18;②i补全表格如下:单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.618﹣3.2x合计618根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程:x+=6,故答案为:x+=6;ii补全表格如下:单价(元/kg)质量(kg)金额(元)苹果 3.2x18﹣2.6(6﹣x)橘子 2.66﹣x 2.6(6﹣x)合计618根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程:3.2x=18﹣2.6(6﹣x),故答案为:3.2x=18﹣2.6(6﹣x).iii补全表格如下:单价(元/kg)质量(kg)金额(元)苹果 3.2x 3.2x橘子 2.66﹣x18﹣3.2x合计618根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程:2.6(6﹣x)=18﹣3.2x,故答案为:2.6(6﹣x)=18﹣3.2x.(2)设苹果购买金额为y元,所列方程正确的是①③,故答案为:①③.【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x 的式子表示相关的量,找出之间的相等关系列方程.9.【分析】(1)根据“穿梭巴士的路程+大客车的路程=香港口岸点B至珠海口岸点A约42千米”列出一元一次方程进行解答便可;(2)通过列方程解应用题求出私家车追上穿梭巴士的时间,再与穿梭巴士到达珠海口岸的时间比较便可;(3)根据题意列出正确的代数式,分情况讨论列出方程进行解答便可.【解答】解:(1)设穿梭巴士出发经x小时与大客车相遇,根据题意列方程:72x+78(x﹣)=42解得x=答:穿梭巴士出发经小时与大客车相遇;(2)私家车不能在到达珠海口岸前追上穿梭巴士,理由如下:设私家车追上穿梭巴士所用的时间为y小时依题意列方程:72(y+10÷60)=84y,解得:y=1,穿梭巴士从出发10分,到达珠海口岸还需要的时间为(42﹣12)÷72=∵<1,∴私家车不能在到达珠海口岸前追上穿梭巴士;(3)若选A:①72(t﹣)﹣42=72t﹣48;②当穿梭巴士在东人工岛的西方时,有42﹣12﹣(72t﹣48)=6,解得,t=1,当穿梭巴士在东人工岛的东方时,有(72t﹣48)﹣(42﹣12)=6,解得,t=,故答案为:①72t﹣48;②1h或h;若选择B:①42×2﹣72(t﹣)=90﹣72t;②当私家车在穿梭巴士后面4千米时,有72(t﹣)﹣[42+96(t﹣﹣)]=4,解得,t=;当私家车在穿梭巴士前面面4千米时,有[42+96(t﹣﹣)]﹣72(t﹣)=4,t=.故答案为:①90﹣72t;②h或h.【点评】本题是行程问题的相遇问题与追及问题的综合应用.主要考查了一元一次方程的应用,列代数式,关键是正确的列代数式与方程,使用分情况讨论的思想解决难点.10.【分析】(1):根据点的运动中时间•速度=路程求出路程,在结合数轴的特点,所以可以求出点A,B的位置.(2):因为点A:﹣2,所以当继续向左运动x时,点A:﹣2﹣x(3):分为两种情况,根据运动轨迹列出方程,题目中很详细了,就可以求出t的值.【解答】解(1):∵一个点从数轴上的原点开始,先向左移动2cm到达A点∴A:﹣2∵一个点从数轴上的原点开始,先向左移动2cm到达A点,再向右移动7cm到达B点∴7﹣2=5∴B:5(2):∵A:﹣2∴A:﹣2﹣x(3):①:当M,N相向而行时∴1•t+2•t=1解得:t=②:当M,N相遇后,背向而行时∴1•t++2•t﹣5=1解得:t=2答:t的值为或者2【点评】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.11.【分析】(1)设动点P、Q运动的速度分别为3x、2x单位长度/秒,根据“运动到4秒钟时,P、Q两点相遇”列方程,求解即可;(2)设运动时间为t秒,点P表示的数为﹣20+4.5t,点Q表示的数为10﹣3t,根据“PQ =AB”,列方程,求解即可;(3)先求出点P、Q在相遇点表示的数,设从点P、Q相遇起经过的时间为t秒时,线段PQ的中点M与原点重合,求出点P、Q表示的数,然后分四种情况列方程,求解即可.【解答】解:(1)设动点P、Q运动的速度分别为3x、2x单位长度/秒.则4×3x+4×2x=30,(或﹣20+4×3x=10﹣4×2x),解得x=1.5,3x=4.5(单位长度/秒),2x=3(单位长度/秒)故答案为4.5,3;(2)设运动时间为t秒.由题意知:点P表示的数为﹣20+4.5t,点Q表示的数为10﹣3t,则|(﹣20+4.5t)﹣(10﹣3t)|=×|(﹣20)﹣10|整理得|7.5t﹣30|=10,解得:t=或,答:运动时间为或秒;(3)点P、Q在相遇点表示的数为﹣20+4×4.5=﹣2,设从点P、Q相遇起经过的时间为t秒时,线段PQ的中点M与原点重合.①点P、Q均沿数轴正方向运动,则:,解得:t=,此时点M与原点重合,它沿数轴正方向运动,运动速度为(单位长度/秒);②点P沿数轴正方向运动,点Q沿数轴负方向运动,则:,解得:t=,此时点M与原点重合,它沿数轴正方向运动,运动速度为(单位长度/秒);③点P沿数轴负方向运动,点Q沿数轴正方向运动,则:,初中数学培优提高解得:t =﹣(舍去),此时点M不与原点重合;④点P沿数轴负方向运动,点Q 沿数轴负方向运动,则:,解得:t =﹣,此时点M不与原点重合;综上所述:点M与原点重合,它沿数轴正方向运动,运动速度为(单位长度/秒)或沿数轴正方向运动,运动速度为(单位长度/秒).【点评】本题考查了数轴、绝对值与一元一次方程的应用,是一个综合问题,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,进而求解.第21页(共21页)。

第三章 一元一次方程(提高卷)-2021-2022学年七年级上学期数学单元测试(人教版)

第三章   一元一次方程(提高卷)-2021-2022学年七年级上学期数学单元测试(人教版)

一元一次方程提高一、单选题(共10小题)1.七年级学生人数为x,其中男生占52%,女生有150人,下列正确的是()A.1﹣52%x=150 B.x=150﹣52%xC.(1+52%)x=150 D.(1﹣52%)x=1502.商场销售某品牌冰箱,若按标价的八折销售,每件可获利200元,其利润率为10%,若按标价的九折销售,每件可获利()A.475元B.875元C.562.5元D.750元3.某区中学生足球赛共赛8轮(即每队均参赛8场),胜一场得3分,平一场得1分,输一场得0分,在这次足球赛中,育才中学远大足球队只输了一场球,共得17分,则该足球队胜了()场.A.6 B.5 C.4 D.34.若*是规定的运算符号,设a*b=ab+a+b,则在3*x=﹣17中,x的值是()A.﹣5 B.5 C.﹣6 D.65.已知(m2﹣1)x2+(m﹣1)x+7=0是关于x的一元一次方程,则m的值为()A.±1 B.﹣1C.1 D.以上答案都不对6.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1 B.1 C.0 D.27.一个长方形的周长为26cm,若这个长方形的长减少3cm,就可成为一个正方形,设这个长方形的长为xcm,可列方程()A.x﹣3=13﹣x B.x+3=13﹣x C.x+3=26﹣x D.x﹣3=26﹣x8.如图,在大长方形中放入6个形状、大小相同的小长方形,所标尺寸如图所示,则图中大长方形的面积是()A.96 B.112 C.126 D.1409.以下是解方程﹣=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=6.①去括号,得3x+1﹣2x+3=6.②移项,得3x﹣2x=6﹣1﹣3.③合并同类项,得x=2.④你认为解答过程()A.完全正确B.变形从①开始错误C.变形从②开始错误D.变形从③开始错误10.学校组织全国文明城市知识问答,共设有20道选择题,各题分值相同,每题必答.下表记录了A,B,D三名参赛学生的得分情况,则参赛学生E的得分可能是()参赛者答对题数答错题数得分A200100B19194D14664A.93 B.87 C.66 D.40二、填空题(共6小题)11.已知x a﹣3+6=0是关于x的一元一次方程,则a=.12.A、B两地之间的公路长108千米,小光骑自行车从A地到B地,小明骑自行车从B地到A地,两人都沿这条公路匀速前进,其中两人的速度都小于27千米/时.若同时出发3小时相遇,则经过小时两人相距36千米.13.a,b,c,d为有理数,现规定一种运算:=ad﹣bc,那么当=22时x的值是.14.定义一种新运算A※B=A2+AB.例如(﹣2)※5=(﹣2)2+(﹣2)×5=﹣6.按照这种运算规定,(x+2)※(2﹣x)=20,则x=.15.甲,乙二人分别从一条笔直的公路上的AB两地同时出发相向而行,甲每分钟走60米,乙每分钟走48米,5分钟后两人相距20米,则A.B两地之间的距离为米.16.春节来临之际,元祖蛋糕店对凤梨味,核桃味、绿茶味年糕(分别记为A、B、C)进行混装,推出了甲、乙两种礼盒.礼盒的成本是盒中年糕的成本与包装盒成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中年糕的成本之和是1个A成本的15倍,甲礼盒每盒的包装盒成本与乙礼盒每盒的包装盒成本的之比为3:4,每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%,当该店销售这两种礼盒的总利润率为25%时,甲、乙两种礼盒的销售量之比为.三、解答题(共7小题)17.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3);(2)﹣=1+.18.生产某种合金,需要甲、乙、丙三种原料,甲与乙之比是4:3,丙与乙之比为3:2,若需要这种合金92千克,问:甲、乙、丙三种原料是多少千克?19.A、B两地相距480千米,一列慢车从A地出发,每小时走60千米,一列快车从B地出发,每小时走65千米.(1)两车同时出发相向而行,几小时后相遇?(2)慢车出发1小时后快车从B地出发,同向而行,请问快车出发几小时后追上慢车?20.一项工程,甲工程队单独做20天完成,每天需费用160元;乙工程队单独做30天完成,每天需费用100元.(1)若由甲、乙两个工程队共同做6天后,剩余工程由乙工程队单独完成,求还需做几天;(2)由于场地限制,两队不能同时施工.若先安排甲工程队单独施工完成一部分工程,再由乙工程队单独施工完成剩余工程,预计共付工程总费用3120元,问甲、乙两个工程队各做了几天?21.阅读下列材料:现规定一种运算:=ad﹣bc.例如:=1×4﹣2×3=4﹣6=﹣2;=4x﹣(﹣2)×3=4x+6.按照这种规定的运算,请解答下列问题:(1)=(只填结果);(2)已知:=1.求x的值.(写出解题过程)22.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.请阅读下列材料:材料(一):代数式|x﹣2|的几何意义是数轴上表示有理数x所对应的点与表示有理数2所对应的点之间的距离;因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上表示有理数x所对应的点与表示有理数﹣1所对应的点之间的距离.材料(二):如图,点A、B、P分别表示有理数数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.解决问题:(1)在数轴上,若点M表示的数为﹣2,点Q表示的数为1,点N表示的数为6,请画出一条数轴,标出点M、Q、N的位置,直接写出线段NQ=;(2)在(1)的条件下,若数轴上点C表示的有理数为x,当|x+2|+|x﹣6|取最小值时,最小值为;直接写出此时x的取值范围;(3)在(1)的条件下,现有一只红色电子蚂蚁从数轴上的M点以每秒5个单位的速度出发,同时,另一只黑色电子蚂蚁从数轴上的N点以每秒4个单位的速度出发,设运动时间为t秒,试探究:经过多少秒后,两只电子蚂蚁的距离为10个单位?23.在数轴上,|a|表示数a的点到原点的距离.如果数轴上两个点A、B分别对应数a、b,那么A、B两点间的距离为:AB=|a﹣b|,这是绝对值的几何意义.已知如图,点A在数轴上对应的数为﹣3,点B对应的数为2.(1)求线段AB的长;(2)若点C在数轴上对应的数为x,且是方程x+1=x﹣2的解,在数轴上是否存在点M,使MA+MB=AB+BC?若存在,求出点M对应的数;若不存在,说明理由.(3)若点N是数轴上在点A左侧的一点,线段BN的中点为点Q,点P为线段AN的三等分点且靠近于点N,当点N在点A左侧的数轴上运动时,请直接判断AP﹣NQ的值是否变化,如果不变请直接写出其值,如果变化请说明理由.一元一次方程提高参考答案一、单选题(共10小题)1.【答案】D【分析】根据首先表示出女生所占百分比,然后再利用女生所占百分比乘以总人数=150人列出方程即可.【解答】解:由题意得:(1﹣52%)x=150,故选:D.【知识点】由实际问题抽象出一元一次方程2.【答案】A【分析】利用进价=利润÷利润率可求出该品牌冰箱的进价,设该品牌冰箱的标价为x元,根据“若按标价的八折销售,每件可获利200元”,即可得出关于x的一元一次方程,解之即可求出x的值,再将其代入(90%x﹣2000)中即可求出结论.【解答】解:该品牌冰箱的进价为200÷10%=2000(元).设该品牌冰箱的标价为x元,依题意得:80%x﹣2000=200,解得:x=2750,∴90%x﹣2000=90%×2750﹣2000=475(元).故选:A.【知识点】一元一次方程的应用3.【答案】B【分析】设该足球队胜了x场,则平了(8﹣1﹣x)场,根据总分=3×获胜的场数+1×踢平的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该足球队胜了x场,则平了(8﹣1﹣x)场,依题意得:3x+(8﹣1﹣x)=17,解得:x=5.故选:B.【知识点】一元一次方程的应用4.【答案】A【分析】根据a*b=ab+a+b,3*x=﹣17,可得:3x+3+x=17,据此求出x的值是多少即可.【解答】解:∵a*b=ab+a+b,3*x=﹣17,∴3x+3+x=﹣17,∴4x+3=﹣17,∴4x=﹣20,解得:x=﹣5.故选:A.【知识点】解一元一次方程、有理数的混合运算5.【答案】B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由题意,得m2﹣1=0且m﹣1≠0,解得m=﹣1,故选:B.【知识点】一元一次方程的定义6.【答案】C【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.【知识点】实数的运算、解一元一次方程7.【答案】A【分析】设这个长方形的长为xcm,宽为(13﹣x)cm,根据“若这个长方形的长减少3cm,就可成为一个正方形”,即可得出关于x的一元一次方程,此题得解.【解答】解:设这个长方形的长为xcm,宽为=(13﹣x)cm,依题意得:x﹣3=13﹣x.故选:A.【知识点】由实际问题抽象出一元一次方程8.【答案】D【分析】设小长方形的长、宽分别为xcm,ycm,根据图示可以列出方程组,然后解这个方程组即可求出小长方形长和宽,然后求得大长方形的长和宽,从而求得面积.【解答】解:设小长方形的长、宽分别为xcm,ycm,依题意得,解之得,∴小长方形的长、宽分别为8cm,2cm,∴S大长方形=AB•BC=14×10=140cm2,故选:D.【知识点】一元一次方程的应用、二元一次方程组的应用9.【答案】C【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:去分母,得3(x+1)﹣2(x﹣3)=6.①,正确,去括号,得3x+3﹣2x+6=6.②,错误,移项,得3x﹣2x=6﹣6﹣3.合并同类项,得x=﹣3,故选:C.【知识点】解一元一次方程、等式的性质10.【答案】D【分析】根据表格中3名参赛学生的得分情况,可知答错一题扣6分,设参赛学生E答错x道题(0≤x≤20,且x为整数),则其得分值为:100﹣6x,然后逐个选项进行计算,结果符合x的取值范围的为正确答案.【解答】解:根据表格数据,A学生答对20道得分100,由B、D同学得分情况可知答错一题扣6分,故设参赛学生E答错x道题(0≤x≤20,且x为整数),则其得分值为:100﹣6x选项A:令100﹣6x=93,解得x=,故A错误;选项B:令100﹣6x=87,解得x=,故B错误;选项C:令100﹣6x=66,解得x=,故C错误;选项D:令100﹣6x=40,解得x=10,故D正确.故选:D.【知识点】一元一次方程的应用二、填空题(共6小题)11.【答案】4【分析】利用一元一次方程的定义判断即可.【解答】解:∵x a﹣3+6=0是关于x的一元一次方程,∴a﹣3=1,解得:a=4.故答案为:4.【知识点】一元一次方程的定义12.【答案】2或4【分析】设经过x小时两人相距36千米,分两种情况讨论,列出方程可求解.【解答】解:设经过x小时两人相距36千米,当两人没有相遇前,,解得:x=2,当两人相遇后,,解得x=4,综上所述:经过2或4小时两人相距36千米,故答案为:2或4.【知识点】一元一次方程的应用13.【答案】4【分析】根据新定义的运算即可求出答案.【解答】解:根据题意可得:2×5﹣4(1﹣x)=22,10﹣4+4x=22,4x=22﹣10+4,4x=16,x=4,故答案为:4.【知识点】有理数的混合运算、解一元一次方程14.【答案】3【分析】先根据新定义规定的运算法则得出(x+2)2+(x+2)(2﹣x)=20,再将左边利用完全平方公式和平方差公式去括号,继而合并同类项、移项、系数化为1可得答案.【解答】解:根据题意得(x+2)2+(x+2)(2﹣x)=20,∴x2+4x+4+4﹣x2=20,∴4x+8=20,4x=12,解得x=3,故答案为:3.【知识点】解一元一次方程、整式的混合运算15.【答案】520或560【分析】设A,B两点的距离为xm,可分两种情况列方程:甲,乙两人相遇后相距20米或相遇前相距20米分别列方程,解方程即可求解.【解答】解:设A,B两点的距离为xm,由题意得x+20=(60+48)×5或x﹣(60+48)×5=20,解得x=520或560,答:A.B两地之间的距离为520或560米,故答案为520或560.【知识点】一元一次方程的应用16.【答案】4:5【分析】根据题意列出甲、乙的总成本和总销售额的代数式,由题该店销售这两种礼盒的总利润率为25%即可求解甲、乙两种礼盒的销售量之比.【解答】解:设凤梨味,核桃味、绿茶味年糕的成本分别为a、b、c,甲的包装成本为3p,乙的包装成本为4p,甲礼盒的销售量是x,乙礼盒的销售量是y,由题意可得每盒甲的成本为:6a+2b+2c+3p=15a+3p=3(5a+p),每盒乙的成本为:2a+4b+4c+4p=20a+4p=4(5a+p),∵每盒乙的利润率为20%,∴每盒乙的售价为:(1+20%)×4(5a+p)=4.8(5a+p),∵每盒乙的售价比每盒甲的售价高20%,∴每盒甲的售价为:4(5a+p)∵该店销售这两种礼盒的总利润率为25%,∴=25%,∴=∴=,∴甲、乙两种礼盒的销售量之比为4:5.故答案为:4:5.【知识点】一元一次方程的应用三、解答题(共7小题)17.【分析】(1)方程去括号,移项,合并同类项,系数化为1即可;(2)方程去分母,去括号,移项,合并同类项,系数化为1即可.【解答】解:(1)3x﹣7(x﹣1)=3﹣2(x+3),去括号,得3x﹣7x+7=3﹣2x﹣6,移项,得3x﹣7x+2x=3﹣6﹣7,合并同类项,得﹣2x=﹣10,系数化为1,得x=5;(2)﹣=1+,去分母,得(x﹣2)﹣2(x+2)=6+3(x﹣1),去括号,得x﹣2﹣2x﹣4=6+3x﹣3,移项,合并同类项,得﹣4x=9,系数化为1,得x=.【知识点】解一元一次方程18.【分析】由甲与乙、丙与乙的比可得出甲:乙:丙=8:6:9,设甲种原料需要8x千克,则乙种原料需要6x千克,丙种原料需要9x千克,根据需要这种合金92千克,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:∵甲:乙=4:3=8:6,丙:乙=3:2=9:6,∴甲:乙:丙=8:6:9.设甲种原料需要8x千克,则乙种原料需要6x千克,丙种原料需要9x千克,依题意得:8x+6x+9x=92,解得:x=4,∴8x=32(千克),6x=24(千克),9x=36(千克).答:甲种原料需要32千克,乙种原料需要24千克,丙种原料需要36千克.【知识点】一元一次方程的应用19.【分析】(1)设两车同时出发相向而行,x小时后相遇,根据两点间的距离=两车的速度之和×时间,即可得出关于x的一元一次方程,解之即可得出结论;(2)设快车出发y小时后追上慢车,则此时慢车出发(y+1)小时,根据快车追上慢车时两车的行驶路程相等,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设两车同时出发相向而行,x小时后相遇,依题意得:(60+65)x=480,解得:x=.答:两车同时出发相向而行,小时后相遇.(2)设快车出发y小时后追上慢车,则此时慢车出发(y+1)小时,依题意得:65y=60(y+1),解得:y=12.答:快车出发12小时后追上慢车.【知识点】一元一次方程的应用20.【分析】(1)设还需做x天,根据总工作量=甲工程队完成的工作量+乙工程队完成的工作量,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲工程队单独做了y天,则乙工程队单独做了(30﹣y)天,根据预计共付工程总费用3120元,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设还需做x天,依题意得:+=1,解得:x=15.答:还需做15天.(2)设甲工程队单独做了y天,则乙工程队单独做了=(30﹣y)天,依题意得:160y+100(30﹣y)=3120,解得:y=12,∴30﹣y=12.答:甲工程队做了12天,乙工程队做了12天.【知识点】一元一次方程的应用21.【答案】4【分析】(1)原式利用已知的新定义化简,计算即可求出值;(2)已知等式利用已知的新定义化简,求出解即可得到x的值.【解答】解:(1)根据题中的新定义得:原式=2+6×=2+2=4;故答案为:4;(2)由题意得:﹣=1,去分母,得:3x﹣5(x﹣3)=15,去括号,得:3x﹣5x+15=15,移项及合并,得:﹣2x=0,系数化为1,得:x=0.【知识点】有理数的混合运算、解一元一次方程22.【答案】【第1空】5【第2空】8【第3空】-2≤x≤6【分析】(1)根据题意作出图形即可;由两点间的距离公式求得NQ的值;(2)|x+2|+|x﹣6|的几何意义是线段CM与CN的长度之和;(3)分四种情况进行讨论:①两只电子蚂蚁同时向左出发,②两只电子蚂蚁同时向右出发,③红色电子蚂蚁向左,同时黑色电子蚂蚁向右出发,④红色电子蚂蚁向右,同时黑色电子蚂蚁向左出发,根据“两只电子蚂蚁的距离为10个单位”分别列出方程并解答.【解答】解:(1)如图:NQ=6﹣1=5.故答案是:5.(2)如图,点M、N、C分别表示有理数数﹣2、6、x,MN=8.∵|x+2|+|x﹣6|的几何意义是线段CM与CN的长度之和,∴当点C在线段MN上时,CM+CN=8,当点C在点M的左侧或点N的右侧时,CM+CN>8.∴|x+2|+|x﹣6|的最小值是8此时.故答案是:8;﹣2≤x≤6;(3)①两只电子蚂蚁同时向左出发,依题意得|﹣5t﹣2﹣(6﹣4t)|=10.解得t=2(t=﹣18舍去);②两只电子蚂蚁同时向右出发,依题意得|5t﹣2﹣(6+4t)|=10.解得t=18(t=﹣2舍去).③红色电子蚂蚁向左,同时黑色电子蚂蚁向右出发,依题意得|﹣5t﹣2﹣(6+4t)|=10.解得.④红色电子蚂蚁向右,同时黑色电子蚂蚁向左出发,依题意得|5t﹣2﹣(6﹣4t)|=10.解得.综上可知,经过2秒或18秒或秒后,两只电子蚂蚁的距离为10个单位.【知识点】非负数的性质:绝对值、数轴、一元一次方程的应用、数学常识23.【分析】(1)根据数轴上两点的距离公式计算便可.(2)根据已知线段的关系式,列出绝对值方程进行解答即可.(3)用点N表示的数n,列出AP﹣NQ关于n的代数式进行讨论解答即可.【解答】解:(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=|﹣3﹣2|=5.(2)存在.设M点对应的数为m,解方程x+1=x﹣2,得x=﹣6,∴点C对应的数为﹣6,∵MA+MB=AB+BC,∴|m+3|+|m﹣2|=|﹣3﹣2|+|﹣6﹣2|,即,|m+3|+|m﹣2|=13①当m≤﹣3时,有﹣m﹣3+2﹣m=13,解得m=﹣7;②当﹣3<m≤2时,有m+3+2﹣m=13,此方程无解;③当2<m时,有m+3+m﹣2=13,解得m=6;综上,M点的对应数为﹣7或6.(3)设点N对应的数为n,则NA=﹣n﹣3,NB=2﹣n,∵若点N是数轴上在点A左侧的一点,线段BN的中点为点Q,点P为线段AN的三等分点且靠近于点N,∴NQ=﹣1﹣n,则点Q对应的数为n﹣1;NP=﹣n﹣1,则P点对应的数为n﹣1;∴AP=﹣n﹣2,则AP﹣NQ=﹣.∴随着点N的移动,AP﹣NQ的值不变.【知识点】绝对值、数轴、一元一次方程的应用。

天津市七年级数学上册第三单元《一元一次方程》-解答题专项提高练习(含答案解析)

天津市七年级数学上册第三单元《一元一次方程》-解答题专项提高练习(含答案解析)

一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得5060(67)3650x x+-=6730x-=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.解方程:2x13+=x24+-1.解析:x=-2.【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:4(2x+1)=3(x+2)-12,去括号得:8x+4=3x+6-12,移项得:8x-3x=6-12-4,合并同类项得:5x=-10,系数化为1得:x=-2.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.3.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 4.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.5.利用等式的性质解下列方程:(1)x -2=5;(2)-23x =6; (3)3x =x +6. 解析:(1)x =7;(2)x =-9;(3)x =3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解;(3)两边同时减x,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x-2+2=5+2,即x=7.(2)等式两边乘-32,得x=6×(-32),即x=-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x +1)人,根据题意,得9(x -1)=6(x +1).去括号,得9x -9=6x +6.移项,得9x -6x =6+9.合并同类项,得3x =15.系数化为1,得x =5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题的关键.8.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 解析:(1)10m =;(2)5x =【分析】(1)直接去括号、移项、合并同类项、化系数为1即可求解;(2)直接去分母、去括号、移项、合并同类项、化系数为1即可求解.【详解】解:(1)5(8)6(27)22m m m +--=-+5m 4012m 42m 22+-+=-+6m 60-=-m 10=(2)2(3)7636x x x --+=- ()6x 4x 336(x 7+-=--)6x 4x 1236x 7+-=-+11x 55=x 5=【点睛】此题主要考查解一元一次方程,解题的关键是熟练掌握解题步骤.9.某同学在解方程21233x x a -+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x =1.求a 的值,并正确地解方程.解析:a=2,x=-3【分析】 由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x=﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a)-2的解是解题的关键.10.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.11.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a =2020,a =404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.12.某市居民生活用水实行“阶梯水价”收费,具体收费标准见下表:例:甲用户1月份用水25吨,应缴水费1.620 2.4(2520)44⨯+⨯-= (元).(1)若乙用户1月份用水10吨,则应缴水费________元;(2)若丙用户1月份应缴水费62.6元,则用水________吨;.(3)若丁用户1、2月份共用水60吨(1月份用水量超过了2月份),设2月份用水a 吨,求丁用户1、2月份各应缴水费多少元.(用含a 的代数式表示)解析:(1)16;(2)32; (3) 1月份应缴水费(155 3.3)a -元.当2月份用水量不超过20吨时,应缴水费1.6a 元;当2月份用水量超过20吨但不超过30吨时,应缴水费(2.416)a -元.【分析】(1)根据每户每月用水量不超过20时,水费价格为1.6元/吨,可知乙用户1月份用水10吨,则应缴水费:1.6×10,计算即可;(2)由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,列出方程,求解即可;(3)由丁用户1、2两个月共用水60吨,设2月份用水a 吨,则1月份用水(60-a )吨,根据1月份用水量超过了2月份,得出1月份用水量超过了2月份,得出1月份用水量大于30吨,2月份用水量小于30吨,根据三级收费求出1月份应缴水费,分两种情况求出2月份应缴水费, ①当2月份用水量不超过20吨时;②当2月份用水量超过20吨但不超过30吨时;【详解】解:(1)依题意得:1.6×10=16;故答案为:16(2) 依题意得:由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,设用水为x 吨,依题意得:56(30) 3.362.6x +-⨯=解得:x=32故答案为:32;(3)因为1月份用水量超过了2月份,所以1月份用水量超过了30吨,2月份用水量少于30吨.1月份应缴水费20 1.610 2.4 3.3(6030)(155 3.3)a a ⨯+⨯+--=-元.①当2月份用水量不超过20吨时,应缴水费1.6a 元;②当2月份用水量超过20吨但不超过30吨时,应缴水费1.6202.4(20)(2.416)a a ⨯+-=-元.【点睛】本题主要考查了列代数式,代数式求值,掌握列代数式,代数式求值是解题的关键. 13.青岛、大连两个城市各有机床12台和6台,现将这些机床运往海南10台和厦门8台,每台费用如表一:问题1:如表二,假设从青岛运往海南x 台机床,并且从青岛、大连运往海南机床共花费36万元,求青岛运往海南机床台数.问题2:在问题1的基础上,问从青岛、大连运往海南、厦门的总费用为多少万元?解析:问题1:青岛运往海南机床台数是4台;问题2:从青岛、大连运往海南、厦门的总费用为94万元.【分析】(1)假设从青岛运往海南x 台机床,则从大连运往海南的就是10-x 台,根据等量关系:“运往海南机床共花费36万元”,即可列出方程解决问题;(2)根据问题1中求出的分别从青岛和大连运出的台数,则它们剩下的台数都要运到厦门,由此利用乘法和加法的意义即可解答问题.【详解】(1)设从青岛运往海南x 台机床,则从大连运往海南的就是10-x 台,根据题意可得方程:4x+3(10-x )=36,4x+30-3x=36,x=6,则从大连运往海南的有:10-6=4(台).答:从青岛运往海南6台,从大连运往海南4台.(2)根据上面计算结果可知:青岛剩下12-6=6(台);大连剩下6-4=2(台), 剩下的这些都要运往厦门,所以需要的费用是:6×8+2×5,=48+10,=58(万元),36+58=94(万元).答:从青岛、大连运往海南、厦门的总费用为94万元.【点睛】观察表格,找出已知条件,和要求的问题,根据题干中的等量关系即可,此题条件稍微复杂,需要学生认真审题进行解答.14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱.【分析】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可.【详解】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,则30×5+5(x−5)=(30×5+5x)×90%5x+125=135+4.5x5x+125−4.5x=135+4.5x−4.5x0.5x+125=1350.5x+125−125=135−1250.5x=100.5x×2=10×2x=20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要:30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要:(30×5+5×15)×90%=225×90%=202.5(元)因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.②在甲商店购买球拍5副、30盒乒乓球需要:30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要:(30×5+5×30)×90%=300×90%=270(元)因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 考点:1.一元一次方程的应用;2.方案型.15.为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.下表是小明家1至4月份水量和缴纳水费情况,根据表格提供的数据,回答:)规定用量内的收费标准是 元吨,超过部分的收费标准是 元/吨;(2)问该市每户每月用水规定量是多少吨?(3)若小明家六月份应缴水费50元,则六月份他们家的用水量是多少吨?解析:(1)2;3(2)规定用水量为10吨(3)六月份的用水量为20吨【分析】(1)由小明家1,2月份的用水情况,可求出规定用量内的收费标准;由小明家3,4月份的用水情况,可求出超过部分的收费标准;(2)设该市规定用水量为a 吨,由小明家3月份用水12吨缴纳26元,即可得出关于a 的一元一次方程,解之即可得出结论;(3)设小明家6月份的用水量是x 吨,根据应缴水费=2×10+3×超出10吨部分,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】(1)由表可知,规定用量内的收费标准是2元/吨,超过部分的收费标准为3元/吨 (2)设规定用水量为a 吨;则23(12)26a a +-=,解得:10a =,即规定用水量为10吨;(3)∵2102050⨯=<,∴六月份的用水量超过10吨,设用水量为x 吨,则2103(10)50x ⨯+-=,解得:20x ,∴六月份的用水量为20吨【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:通过分析小明家1-4月用水量和交费情况,找出结论;找准等量关系,正确列出一元一次方程.16.青岛市某实验学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1天,再两人合作,问:还需几天可以完成这项工作?解析:(1)2.4天(2)2天【分析】(1)完成工作的工作量为1,根据工作时间=工作总量÷工作效率和,列式即可求解.(2)设徒弟先做1天,再两人合作还需x天完成,根据等量关系:完成工作的工作总量为1,列出方程即可求解.【详解】解:(1)11511=2.44612⎛⎫÷+=÷⎪⎝⎭(天).答:两个人合作需要2.4天完成.(2)设还需x天可以完成这项工作,根据题意,得11 64x x++=.解得=2x.答:还需2天可以完成这项工作.【点睛】本题考查一元一次方程的应用,根据题意列出方程并解答是解题关键17.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C 所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.解析:(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.18.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?解析:(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再列出方程.19.小明问小白:“你知道为什么任何无限循环小数都可以写成分数形式吗?”,看着小白一脸的茫然,小明热心地为小白讲解:(小明提出问题)利用一元一次方程将0.7⋅化成分数.(小明的解答)解:设0.7⋅=x.方程两边都乘以10,可得100.7⋅⨯=10x.由0.7⋅=0.777…,可知100.7⋅⨯=7.777…=7+0.7⋅,即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x79=,即0.779⋅=.(小明的问题)将0.4⋅写成分数形式.(小白的答案)49.(正确的!)请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.73⋅⋅;②0.432⋅.解析:①0.737399⋅⋅=,过程见解析;②0.433892900⋅=,过程见解析.【分析】①设0. 73⋅⋅=m ,程两边都乘以100,转化为73+m=100m ,求出其解即可.②设0.432⋅=n ,程两边都乘以100,转化为43+0.2⋅=100n ,求出其解即可.【详解】解:①设0.73⋅⋅=m ,方程两边都乘以100,可得100×0.73⋅⋅=100m .由0.73⋅⋅=0.7373…,可知100×0.73⋅⋅=73.7373…=73+0.73⋅⋅;即73+m =100m ,可解得m 7399=,即0.737399⋅⋅=. ②设0.432⋅=n ,方程两边都乘以100,可得100×0.432⋅=100n .∴43.2⋅=100n .∵0.229⋅=,∴4329+=100n n 389900= ∴0.433892900⋅=. 【点睛】 本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.20.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖.(1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本练习本?解析:(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=. 解得29034177y ==. ∵y 为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y =.解得40y =.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.21.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由;(2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗?解析:(1)王聪的说法不正确,见解析;(2)4x =【分析】(1)根据等式的性质进行判断即可.(2)利用代入法求解即可.【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 22.一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元.(1)这位商人想在这座城市住半年,则租哪家的房子划算?(2)如果这位商人想住一年,租哪家的房子划算?(3)这位商人住多长时间时,租两家的房子租金一样?解析:(1)住半年时,租B 家的房子划算;(2)住一年时,租A 家的房子划算;(3)这位商人住10个月时,租两家的房子租金一样.【分析】(1)分别根据A 、B 两家租金的缴费方式计算A 、B 两家半年的租金,然后比较即得答案;(2)分别根据A 、B 两家租金的缴费方式计算A 、B 两家一年的租金,然后比较即得答案;(3)根据A 家租金(2000+1200×租的月数)=B 家租金(1400×租的月数)设未知数列方程解答即可.【详解】解:(1)如果住半年,交给A 家的租金是1200620009200⨯+=(元),交给B 家的租金是140068400⨯=(元),因为9200>8400,所以住半年时,租B 家的房子划算.(2)如果住一年,交给A 家的租金是120012200016400⨯+=(元),交给B 家的租金是14001216800⨯=(元),因为16400<16800,所以住一年时,租A 家的房子划算.(3)设这位商人住x 个月时,租两家的房子租金一样,根据题意,得120020001400x x +=.解方程,得10x =.答:这位商人住10个月时,租两家的房子租金一样.【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、明确A 、B 两家租金的缴费方式是解题的关键.23.在我国明代数学家吴敬所著的《九章算法比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”(“倍加增”指从塔的顶层到底层,每层灯的数量是上一层的2倍)那么,塔的顶层有几盏灯?解析:3盏【分析】根据题意列出方程求解即可.【详解】解:设塔的顶层有x 盏灯.根据题意,得248163264381x x x x x x x ++++++=.解得3x =.答:塔的顶层有3盏灯.【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键. 24.解方程:32122234x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦. 解析:8x =-【分析】先去括号,再按照移项、合并同类项、系数化为1的步骤解答即可.【详解】 解:去括号,得1324x x ---=, 移项、合并同类项,得364x -=, 系数化为1,得8x =-.【点睛】 本题考查了一元一次方程的解法,属于常考题型,熟练掌握解一元一次方程的方法是解题的关键.25.解方程:(1)36156x x -=--;(2)45173x x +=-; (3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 解析:(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可.(2)先移项,再合并同类项,最后系数化为1即可.(3)先移项,再合并同类项,最后系数化为1即可.(4)先移项,再合并同类项,最后系数化为1即可.【详解】(1)移项,得36156x x +=-+.合并同类项,得99x =-.系数化为1,得1x =-. (2)移项,得41753x x -=--. 合并同类项,得1223x =-. 系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=. 合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-.。

初一数学-一元一次方程综合能力提高

初一数学-一元一次方程综合能力提高

一元一次方程综合能力提高1、x =1是方程4kx -1=0的解,则k =________;2、x =-9是方程b x =|31|的解,那么b =________.3、若关于x 的方程3x 4n -7+5=17是一元一次方程,求n .4、根据题意,设未知数列出方程:(1)郝帅同学为班级买三副羽毛球拍,付出100元,找回6.40元,问每副羽毛球拍的单价是多少元?(2)某村2003年粮食人均占有量6650千克,比1949年人均占有量的50倍还多40千克,问1949年人均占有量是多少千克?5、已知:y 1=4x -3,y 2=12-x ,当x 为何值时,(1)y 1=y 2;(2)y 1与y 2互为相反数;(3)y 1比y 2小4.6、已知关于x 的方程2x -1=x +a 的解是x =4,求a 的值.7、下列各个方程的变形能否分别使所得新方程的解与原方程的解相同?相同的画“√”,不相同的画“×”,对于画“×”的,想一想错在何处?(1)2x +6=0变为2x =-6; ( ) (2)5243=x 变为;3452⨯=x( )(3)321=+-x 变为-x +1=6;( ) (4)431323++=--x x x 变为6(x -3)-4x =1+3(x +3); ( ) (5)(x +1)(x +2)=(x +1)变为x +2=1;( ) (6)x 2=25变为x =5. ( ) 8、已知(m 2-1)x 2-(m -1)x +8=0是关于x 的一元一次方程,它的解为n .(1)求代数式200(m +n )(n -2m )-3m +5的值;(2)求关于y 的方程m |y |=n 的解.9、你能在日历上圈出一个竖列上相邻的3个数,使得它们的和是15吗?说明理由.10、已知21=x 是方程x x a +=+21125的解,求关于x 的方程ax +2=a (1-2x )的解.11、某蔬菜基地三天的总产量是8390千克,第二天比第一天多产560千克,第三天比第一天的65多1200千克.问三天各产多少千克蔬菜?12、甲、乙两人投资合办一个企业,并协议按照投资额的比例多少分配所得利润.已知甲与乙投资额的比例为3∶4,首年所得的利润为38500元,则甲、乙二人分别获得利润多少元?13、已知关于x 的方程(a +1)x +(4a -1)=0的解为-2,则a 的值等于( ). (A)-2(B)0(C)32 (D)23 14、已知y =1是方程y y m 2)(312=--的解,那么关于x 的方程m (x -3)-2=m (2x -5)的解是( )(A)x =10(B)x =0(C)34=x (D)43=x 15、解下列方程(1)3(x -1)-2(2x +1)=12 (2)5(x +8)-5=6(2x -7)(3))1(21)1(2)1(31)1(3+--+-=+k k k k (4)3(y -7)-2[9-4(2-y )]=2216、已知关于x 的方程27x -32=11m 多x +2=2m 的解相同,求221m m +的值.17、解关于y 的方程-3(a +y )=a -2(y -a ).18、若关于x 的方程)1(422-=+x ax 的解为x =3,则a 的值为( ). (A)2 (B)22 (C)10 (D)-219、将103.001.05.02.0=+-xx 的分母化为整数,得( ).(A)1301.05.02=+-xx (B)1003505=+-x x (C)100301.05.020=+-x x (D)13505=+-x x 20、解方程.(1)757875xx -=- (2)22331+-=--y y y(3)454436+=-y y (4)62372345---=+-x x x x(5)3.15.032.04-=--+x x (6)2]2)14(32[23=---x x21、关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则k =________.22、已知方程mx +2=2(m -x )的解满足,0|21|=-x 则m 为________. 23、若2|x -1|=4,则x 的值为_________.24、(1)若ax +b =a -x (a ,b 是已知数,且a ≠-1),则x =______.(2)方程|x |=3的解是______,|x -3|=0的解是______,3|x |=-3的解是______,若|x +3|=3,则x =______. (3)在公式k b a S ⋅+=2)(中,已知S ,k ,a ,用S ,k ,a 的代数式表示b ,则b =______,当S =10,a =3,k =4时,则b =______.(4)等量关系“x 的5倍减去7,等于它的3倍加上8”可用方程表示为方程的解是______________. (5)若|x +3|=x +3,则x 的范围为______________. 25、解方程 (1)1)1(5332+-=-x x (2)15%x +10-x =10×32%(3)y y y --=+524121 (4)|5x +4|+2=8(5)1)23(32)31(21=+--xx (6)141710352212+-=+--x x x(7)21105.0)25(35.63.0303.0--=--x x(8)168421xx x x x ++++=26、若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.27、某班同学参加平整土地劳动.运土人数比挖土人数的一半多3人.若从挖土人员中抽出6人运土,则挖土和运土的人数相等.求原来运土和挖土各多少人?28、某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?29、甲、乙两车分别从相距360千米的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?30、A 、B 两地相距31千米,甲从A 地骑自行车去B 地,1小时后乙骑摩托车也从A 地去B 地.已知甲每小时行12千米,乙每小时行28千米.(1)问乙出发后多少小时追上甲;(2)若乙到达B 地后立即返回,则在返回路上与甲相遇时距乙出发多长时间?31、某行军纵队以8千米/时的速度行进,队尾的通讯员以12千米/时的速度赶到队伍前送一个文件.送到后立即返回队尾,共用14.4分钟.求队伍长.32、某人有急事,预定搭乘一辆小货车从A地赶往B地,实际上他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时到达.已知小货车的速度是36千米/时,求两地间路程.33、一项工程甲、乙两队合作10天可以完成,甲队独做15天完成,现两队合作7天后,其余工程由乙队独做.乙队还需几天完成?34、检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合做,但乙中途离开了一段时间,后2天由乙、丙合作完成.问乙中途离开了几天?35、某中学组织初一同学春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.已知45座客车日租金为每辆220元,60座客车日租金为每辆300元.试问:(1)初一年级人数是多少?原计划租用45座客车多少辆?(2)要使每个同学都有座位,怎样租车更合算?36、小刚和小明在课外学习中,用20张白卡纸做包装盒,每张白卡纸可以做2个盒身或者做3个盒底盖.且1个盒身和2个底盖恰好做成一个包装盒,为了充分利用材料使做成的盒身和底盖刚好配套,他们设计了两种方案:方案一:把这些白卡纸分成两部分,一部分做盒身,一部分做底盖;方案二:先把一张白卡纸适当剪裁出一个盒身和一个盒盖,余下的白卡纸分成两部分,一部分做盒身一部分做底盖.想一想,他们的方案是否可行?37、张新和李明相约到图书城去买书,请你根据他们的对话内容,求出李明上次所买书籍的原价.38、下表是甲商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,请你算出这台电脑的进价是多少元.元39、八年级三班在召开期末总结表彰会前,班主任安排班长李强去商店买奖品,下面是李强与售货员的对话:李强说:阿姨好!售货员:同学,你好,想买点什么?李强说:我只有100元,请您帮忙安排买10支钢笔和15本笔记本。

初一化学一元一次方程应用题(提高)

初一化学一元一次方程应用题(提高)

初一化学一元一次方程应用题(提高)题目:某化学实验室中有两种容量不同的烧杯,一大烧杯和一小烧杯。

大烧杯装满1.5升溶液需要6分钟,而小烧杯装满1升溶液只需要4分钟。

现在需要通过这两个烧杯装满溶液,但限定时间为10分钟。

求解通过合理使用这两个烧杯,应该怎样装满溶液?解题思路:我们可以使用一元一次方程来解决这个问题。

设大烧杯的装液速度为x升/分钟,小烧杯的装液速度为y升/分钟。

根据题意,大烧杯装满1.5升溶液需要6分钟,可以得到如下方程:x * 6 = 1.5同样的道理,小烧杯装满1升溶液需要4分钟,可以得到如下方程:y * 4 = 1因为我们需要在10分钟内装满液体,所以大烧杯和小烧杯的液体总量应该满足以下关系:x * t + y * t = 1.5 + 1将t代入方程中,得到:x + y = 2.5 / t根据以上方程,我们可以求解x和y的值,进而得到装液的速度。

解答:根据方程 x + y = 2.5 / t ,我们可以推导出以下结果:- 当 t = 2 分钟时,x + y = 2.5 / 2 = 1.25- 当 t = 5 分钟时,x + y = 2.5 / 5 = 0.5- 当 t = 10 分钟时,x + y = 2.5 / 10 = 0.25根据以上结果,我们可以得出以下结论:- 当 t = 2 分钟时,大烧杯每分钟装液 1.25/2 = 0.625 升,小烧杯每分钟装液 1.25/2 = 0.625 升。

- 当 t = 5 分钟时,大烧杯每分钟装液 0.5/5 = 0.1 升,小烧杯每分钟装液 0.5/5 = 0.1 升。

- 当 t = 10 分钟时,大烧杯每分钟装液 0.25/10 = 0.025 升,小烧杯每分钟装液 0.25/10 = 0.025 升。

因此,在10分钟内装满液体的最佳策略是:- 使用大烧杯和小烧杯,每分钟分别装液 0.025 升。

总结:通过合理设置装液速度,我们可以在规定时间内装满液体。

一元一次方程应用题提高小测试

一元一次方程应用题提高小测试

《应用题提高小测试》用方程解应用题----金西丰子恺学校
1.杨过从汤溪到金华买火腿,先是上坡路,然后就是下坡路,上下的坡度都均匀。

杨过上坡速度都为每小时20千米,下坡速度都为每小时30千米。

从汤溪到金华用4小时,从金华返回汤溪用2小时。

求去时上坡路和下坡路分别为多少千米?
2.小龙女骑自行车从甲地到乙地,先骑一段上坡路,再骑一段平坦路。

她从甲地到乙地用了4小时,回程用了3小时。

小龙女在平坦路上速度是10千米,上坡速度是10千米,下坡路速度是20千米.甲乙两地的距离是多少千米?
3.一艘轮船航行在俩码头之间,顺水要用4小时,逆水要5小时,已知该船在静水里的速度是每小时30千米,求水流速度。

4.出租车在开始10千米以内收费10元,以后每走1千米,收费2元,现在收费26元,请问出租车开了多少千米?
5.金华市按以下规定收取每月的水费:用水量如果不超过8吨,按每吨2元收费;如果超过8吨,未超过的部分仍按每吨2元收取,而超过部分则按每吨3元收费.如果某用户5月份水费平均为每吨2.5元,那么该用户5月份应交水费多少元?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程练习题(提高)
一、 解下列方程
(1)12(31)6x --= (2)43(20)67(11)y y y y --=-- (3)215436x x -+=
(4)()112
2(1)1223
x x x x ⎡⎤---=-⎢⎥⎣⎦ (5)()22462133x x ⎡⎤
--=+⎢⎥⎣⎦
(6)432.4 2.55x x --= (7)12225y y y -+-=- (8)2123
134
x x ---=
(9)21101211364x x x --+-=- (10)0.10.2130.020.5
x x -+-=
二、 思考•运用 (11)代数式1322
y
y +-的值与1互为相反数,试求y 的值。

(12)当3x =时,代数式()54x a +的值比()4x a -的值的2倍多1,求a 的值。

(13)若6x =是关于x 的方程2()136
ax x a -=-的解,求代数式221a a ++的值。

三、 列一元一次方程解决应用问题
(14)某校七年级共有65名同学在植树节活动中担任运土工作,现有45根扁担,请你安排一下有多少人抬土,多少人运土,可使扁担和人数恰好相配
(15)某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女生人数就占全组人数的2
3
,求这个课外活动小组的人数。

(16)食堂有煤若干,原来每天烧煤3t,用去15t后,改进设备,耗煤量为原来的一半,结果多烧了10天,求原来存煤量。

(17)徐程的舅舅来看他,徐程问舅舅多少岁,舅舅说:“我像你这么大时,你才3岁;等你到了我这么大时,我就36岁了。

”问徐程和舅舅现在各几岁
(18)一个邮递员骑自行车在规定时间内把特快专递送到单位,他每小时行15千米,可以早到24分钟,如果每小时行12千米,就要迟到15分钟。

求原来的时间是多少
(19)用火车运送一批货物,如果每节车厢装34吨,还有18吨装不下;如果每节多装4吨,那么还可以多装26吨,问共有几节火车车厢
(20)体育馆入场券3元一张,若降价后观众增加一半,收入增加1
4
,那么每张入场券降
价多少元
(21)甲、乙两人生产同一种零件,上月两人计划生产量的比是4:5,月底甲的实际生产量超过计划的15%,乙的实际生产量超过计划的12%,两人实际生产零件一共1632个。

问甲、乙原计划各生产零件多少件
(22)一列火车进入长300m的隧道,从进入隧道到完全离开需20s,火车完全在隧道的时间是10s,求火车长
(23)要修一条公路,甲独修12天完成,乙工作效率是甲的2
3
,现在甲先修2天,剩下的
由甲、乙合修,问还需几天完成
(24)某自来水公司按如下规定收取水费:如果每月用水不超过10t,按每吨元收费;如果每月用水超过10t,超过部分按每吨2元收费,小明家9月份的水费是元,小明家9月份用水多少
(25)学校准备添置一批课桌椅,原计划订购60套,每套100元。

店方表示:如果多购可以优惠。

结果校方订购72套,每套减价3元,但商店获得同样多的利润,求每套课桌椅的成本是多少。

相关文档
最新文档