浙教版八年级上定义与命题
浙教版八年级数学上册同步新课课件第1章 定义与命题
![浙教版八年级数学上册同步新课课件第1章 定义与命题](https://img.taocdn.com/s3/m/8fee2cf1541810a6f524ccbff121dd36a32dc4ad.png)
条件是: 一个三角形的三个角相等 结论是: 这个三角形是等边三角形 改写成: 如果一个三角形的三边相等,那么这个三角
形是等边三角形.
2 真命题与假命题
(1)三角形的内角和等于180° (2)如果两个角是对顶角,那么这两个角相等;
(3)两直线平行,同旁内角相等; (4)直角都相等; (5)经过一点确定一条直线.
(3)不相等的两个角不是对顶角;
(4)欢迎前来参观! (5)两个锐角的和是钝角;
(6)取线段AB的中点C.
注意:祈使句、疑问句、 感叹句都不是命题.
解:(2)(3)(5)是命题.像(1)(4)(6)这样对
某一件事的对错没有给出任何判断就不是命题.
试一试 1.你能举出一些命题吗? 2.能否举出一些不是命题的语句?
条件
结论
已知事项
由已知事项推断 出来的事项
归纳:命题都可以写成“如果……,那么……”的形
式,其中用“如果”开始的部分就是条件,用“那么”开
始的部分就是结论.
典例精析
新课讲解
例2 指出下列命题的条件和结论,并改写成“如果……,
那么……”的形式:
⑴同位角相等,两直线平行;
条件是: 同位角相等 结论是: 两直线平行 改写成: 如果同位角相等,那么两直线平行. ⑵三个角都相等的三角形是等边三角形.
新课讲解
根据前面的学习,我们可以判断(1)(2)(4)是正确的, 也就是说,如果条件成立,那么结论一定成立.像这样的命题,称 为真命题.
其中(3)(5)是错误的,也就是说,当条件成立时,不能保 证结论总是正确,或者说结论不成立,像这样的命题,称为假命题.
例3 哪些是真命题,哪些是假命题?
(1)一个角的补角大于这个角; 假命题
浙教版八上第一章1.2定义与命题
![浙教版八上第一章1.2定义与命题](https://img.taocdn.com/s3/m/dff4c12b360cba1aa911da81.png)
1.2 定义与命题知识点梳理1、命题与定理1、判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.3、定理是真命题,但真命题不一定是定理.4、命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.5、命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2、角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE3、三角形的外角性质(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.题型梳理题型一真假命题的辨析1.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=3 2.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.33.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A.3B.2C.1D.04.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个5.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形6.下列命题中是假命题的是()A.两直线平行,同位角互补B.对顶角相等C.直角三角形两锐角互余D.平行于同一直线的两条直线平行7.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形8.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=29.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直10.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°11.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.−12C.0D.1212.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.直角的补角仍然是直角D.垂线段最短13.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:√7,则△ABC是直角三角形14.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连接菱形各边中点所得的四边形是矩形题型二寻找“条件”与“结论”1.把命题“对顶角相等”改写成“如果…那么…”的形式:.2.把命题“等角的补角相等”改写成“如果…那么…”的形式是.3.命题“对顶角相等”的逆命题是.4.命题“对顶角相等”的逆命题是命题(填“真”或“假”).5.把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:.6.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为.题型三角平分线性质的应用1.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.42.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.23.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:54.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.√3B.2C.3D.√3+25.如图,△ABC中,∠ABC、∠EAC的角平分线P A、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③6.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD =4,则四边形ABCD的面积是()A.24B.30C.36D.427.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC长是.9.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.10.已知如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB是度.11.如图,已知:BD是∠ABC的平分线,DE⊥BC于E,S△ABC=36cm2;,AB=12cm,BC =18cm,则DE的长为cm.题型四“燕尾模型”与三角形的外角性质1.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°2.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④4.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.5.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.6.如图,∠BCD=150°,则∠A+∠B+∠D的度数为.7.如图,在△ABC中,∠A、∠B的平分线相交于点I,若∠C=70°,则∠AIB=度,若∠AIB=155°,则∠C=度.8.已知:如图,在△ABC中,∠A=55°,H是高BD、CE的交点,则∠BHC=度.9.如图,CE平分∠ACD,交AB于点E,∠A=40°,∠B=30°,∠D=104°,则∠BEC 的度数为.10.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.11.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∠1=12∠ABC,∠2=12∠ACB∴∠1+∠2=12(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠A∴∠1+∠2=12(180°−∠A)=90°−12∠A∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°−12∠A)=90°+12∠A探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC 与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC 与∠A有怎样的关系?(只写结论,不需证明)结论:.12.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.13.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.题型五“拐点模型”与三角形的外角性质1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°2.如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D 的度数是()A.24°B.59°C.60°D.69°3.如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E的度数是()A.20°B.30°C.50°D.70°4.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为度.答案和解析题型一真假命题的辨析1.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选:B.2.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.3【分析】直接利用平行线的判定与性质分别判断得出各结论的正确性.【解答】解:如图所示:当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当②∠C=∠D,故∠4=∠C ,则DF ∥AC ,可得:∠A =∠F ,即①②}⇒③;当①∠1=∠2,则∠3=∠2,故DB ∥EC ,则∠D =∠4,当③∠A =∠F ,故DF ∥AC ,则∠4=∠C ,故可得:∠C =∠D ,即①③}⇒②;当③∠A =∠F ,故DF ∥AC ,则∠4=∠C ,当②∠C =∠D ,则∠4=∠D ,故DB ∥EC ,则∠2=∠3,可得:∠1=∠2,即②③}⇒①,故正确的有3个.故选:D .3.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等;⑤相等的角是对顶角;⑥垂线段最短A.3B.2C.1D.0【分析】根据平行公理、图形的平移、平行线的性质定理判断即可.【解答】解:过直线外一点有且只有一条直线与已知直线平行,①是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,②是假命题;图形平移的方向不一定是水平的,③是假命题;两直线平行,内错角相等,④是假命题;相等的角不一定是对顶角,⑤是假命题;垂线段最短,⑥是真命题,故选:C.4.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个【分析】①根据对顶角的定义进行判断;②根据同位角的知识判断;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;根据点到直线的距离的定义对④进行判断.【解答】解:①对顶角相等,相等的角不一定是对顶角,①假命题;②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题;④从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④假命题;真命题的个数为0,故选:A.5.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.6.下列命题中是假命题的是()A.两直线平行,同位角互补B.对顶角相等C.直角三角形两锐角互余D.平行于同一直线的两条直线平行【分析】根据平行线的判定和性质、对顶角的性质、直角三角形的性质判断即可.【解答】解:A、两直线平行,同位角相等,故本选项说法是假命题;B、对顶角相等,本选项说法是真命题;C、直角三角形两锐角互余,本选项说法是真命题;D、平行于同一直线的两条直线平行,本选项说法是真命题;故选:A.7.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.8.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.9.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.10.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.11.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.−12C.0D.12【分析】反例中的n满足n<1,使n2﹣1≥0,从而对各选项进行判断.【解答】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.12.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.直角的补角仍然是直角D.垂线段最短【分析】根据线段、垂线段的公理、平行线的性质以及直角的概念判断即可.【解答】解:A、两点之间,线段最短,是真命题;B、两直线平行,同旁内角互补,原命题是假命题;C、直角的补角仍然是直角,是真命题;D、垂线段最短,是真命题;故选:B.13.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:√7,则△ABC是直角三角形【分析】根据勾股定理的逆定理和直角三角形的判定解答即可.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:√7,32+(√7)2=42,则△ABC是直角三角形,正确;故选:D.14.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连接菱形各边中点所得的四边形是矩形【分析】根据矩形的性质和正方形的判定方法对A进行判断;根据菱形的判定方法对B 进行判断;根据矩形的性质对C进行判断;根据三角形中位线的性质和矩形的判定方法对D进行判断.【解答】解:A、对角线垂直的矩形是正方形,所以A选项为假命题;B、对角线垂直平分的四边形是菱形,所以B选项为真命题;C、矩形的对角线平分且相等,所以C选项为真命题;D、顺次连接菱形各边中点所得的四边形是矩形,所以D选项为真命题.故选:A.题型二寻找“条件”与“结论”1.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.2.把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么这两个角相等.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:它们相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么这两个角相等.故答案为:如果两个角是等角的补角,那么这两个角相等.3.命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为:相等的角为对顶角.4.命题“对顶角相等”的逆命题是假命题(填“真”或“假”).【分析】先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【解答】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为假.5.把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:如果两条直线都与第三条直线平行,那么这两条直线互相平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:命题可以改写为:“如果两条直线都与第三条直线平行,那么这两条直线互相平行”.故答案为:如果两条直线都与第三条直线平行,那么这两条直线互相平行.6.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为如果两条直线平行于同一条直线,那么这两条直线相互平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:命题可以改写为:“如果两条直线平行于同一条直线,那么这两条直线相互平行”.题型三角平分线性质的应用1.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.4【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=12BC•EF=12×5×2=5,故选:C.2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.2【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得P A=PE,PD=PE,那么PE=P A=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,P A⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴P A=PE,PD=PE,∴PE=P A=PD,∵P A+PD=AD=8,∴P A=PD=4,∴PE=4.故选:C.3.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO=12•AB•OE:12•BC•OF:12•AC•OD=AB:BC:AC=2:3:4,故选:C.4.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.√3B.2C.3D.√3+2【分析】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选:C.5.如图,△ABC中,∠ABC、∠EAC的角平分线P A、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③【分析】过点P分别作AB、BC、AC的垂线段,根据角平分线上的点到角的两边的距离相等可以证明点P到AC、BC的垂线段相等,再根据到角的两边距离相等的点在角的平分线上即可证明①正确;根据四边形的内角和等于360°可以证明②错误;根据①的结论先证明三角形全等,再根据全等三角形对应边相等即可证明③正确;利用三角形的一个外角等于与它不相邻的两个内角的和利用△ABC 与△PBC 写出关系式整理即可得到④正确.【解答】解:如图,过点P 作PM ⊥AB ,PN ⊥BC ,PD ⊥AC ,垂足分别为M 、N 、D , ①∵PB 平分∠ABC ,P A 平分∠EAC ,∴PM =PN ,PM =PD ,∴PM =PN =PD ,∴点P 在∠ACF 的角平分线上(到角的两边距离相等的点在角的平分线上),故本小题正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,很明显∠MPN ≠∠APC ,∴∠ABC +∠APC =180°错误,故本小题错误;③在Rt △APM 与Rt △APD 中,{AP =AP PM =PD, ∴Rt △APM ≌Rt △APD (HL ),∴AD =AM ,同理可得Rt △CPD ≌Rt △CPN ,∴CD =CN ,∴AM +CN =AD +CD =AC ,故本小题正确;④∵PB 平分∠ABC ,PC 平分∠ACF ,∴∠ACF =∠ABC +∠BAC ,∠PCN =12∠ACF =∠BPC +12∠ABC ,∴∠BAC =2∠BPC ,故本小题正确.综上所述,①③④正确.故选:B .6.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD =4,则四边形ABCD的面积是()A.24B.30C.36D.42【分析】过D作DH⊥AB交BA的延长线于H,根据角平分线的性质得到DH=CD=4,根据三角形的面积公式即可得到结论.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=12AB•DH+12BC•CD=12×6×4+12×9×4=30,故选:B.7.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°【分析】过D作DE⊥AB于E,DF⊥AC于F,DG⊥BC于G,依据角平分线的性质,即可得到DE=DG,再根据三角形外角性质,以及角平分线的定义,即可得到∠ADB=∠DBE﹣∠BAD=12(∠CBE﹣∠BAC)=12∠ACB.【解答】解:如图所示,过D作DE⊥AB于E,DF⊥AC于F,DG⊥BC于G,∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DF=DE,又∵∠ACD=136°,∠BCD=44°,∴∠ACB=92°,∠DCF=44°,∴CD平分∠BCF,又∵DF⊥AC于F,DG⊥BC于G,∴DF=DG,∴DE=DG,∴BD平分∠CBE,∴∠DBE=12∠CBE,∵AD平分∠BAC,∴∠BAD=12∠BAC,∴∠ADB=∠DBE﹣∠BAD=12(∠CBE﹣∠BAC)=12∠ACB=12×92°=46°,故选:D.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC长是3.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.【解答】解:∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∴S △ABC =12×4×2+12AC •2=7,解得AC =3.故答案为:3.9.如图,在Rt △ABC 中,∠A =90°,∠ABC 的平分线BD 交AC 于点D ,AD =3,BC =10,则△BDC 的面积是 15 .【分析】过D 作DE ⊥BC 于E ,根据角平分线性质求出DE =3,根据三角形的面积求出即可.【解答】解:过D 作DE ⊥BC 于E ,∵∠A =90°,∴DA ⊥AB ,∵BD 平分∠ABC ,∴AD =DE =3,∴△BDC 的面积是12×DE ×BC =12×10×3=15, 故答案为:15.10.已知如图,∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,则∠EAB 是 35 度.【分析】过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°﹣35°=55°,进而得到∠CDA和∠DAB的度数,即可求得∠EAB的度数.【解答】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∵∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°﹣35°=55°,∴∠CDA=110°,∵∠B=∠C=90°,∴DC∥AB,∴∠CDA+∠DAB=180°,∴∠DAB=70°,∴∠EAB=35°.故答案为:35.11.如图,已知:BD是∠ABC的平分线,DE⊥BC于E,S△ABC=36cm2;,AB=12cm,BC =18cm,则DE的长为 2.4cm.【分析】过点D作DF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△BCD列出方程求解即可.【解答】解:如图,过点D作DF⊥AB于F,∵BD是∠ABC的平分线,DE⊥BC,∴DE=DF,S△ABC=S△ABD+S△BCD,=12AB•DF+12BC•DE,=12×12•DE+12×18•DE,=15DE,∵△ABC=36cm2,∴15DE=36,解得DE=2.4cm.故答案为:2.4.题型四“燕尾模型”与三角形的外角性质1.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P 的度数,即可求出结果.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选:C.2.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°【分析】根据角平分线的定义得到∠EBM=12∠ABC、∠ECM=12∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=12∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=12∠ACM,则∠BEC=∠ECM﹣∠EBM=12×(∠ACM﹣∠ABC)=12∠A=30°,故选:B.3.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【分析】依据角平分线的性质以及三角形外角性质,即可得到∠1=2∠2,∠BOC=90°+12∠1,∠BOC=90°+∠2.【解答】解:∵CE为外角∠ACD的平分线,BE平分∠ABC,∴∠DCE=12∠ACD,∠DBE=12∠ABC,又∵∠DCE是△BCE的外角,∴∠2=∠DCE﹣∠DBE,=12(∠ACD﹣∠ABC)=12∠1,故①正确;∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12ABC,∠OCB=12∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠1)=90°+12∠1,故②、③错误;∵OC平分∠ACB,CE平分∠ACD,∴∠ACO=12∠ACB,∠ACE=12ACD,∴∠OCE=12(∠ACB+∠ACD)=12×180°=90°,∵∠BOC是△COE的外角,∴∠BOC=∠OCE+∠2=90°+∠2,故④正确;故选:C.4.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=30°.【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM﹣∠CBP=50°﹣20°=30°,故答案为:30°.5.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是75°.【分析】先根据直角三角形两锐角互余求出∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°﹣60°=30°,∴∠α=30°+45°=75°.故答案为:75°.6.如图,∠BCD=150°,则∠A+∠B+∠D的度数为150°.。
浙教版数学八年级上册.1定义与命题课件
![浙教版数学八年级上册.1定义与命题课件](https://img.taocdn.com/s3/m/c02b824411a6f524ccbff121dd36a32d7275c74f.png)
书包
情境导入
猜一猜我在描述什么!
地球吸引
一种力
重力
探究新知
可见,交流必须对某些名称和术语 有共同的认识才能进行.
为此,就要对名称和术语的含义加 以描述,作出明确的规定,也就是 给出它们的定义.
探究一 “具有中华人民共和国国籍的人叫做中华人民共和国公 民”是“中华人民共和国公民”的定义; “两点之间线段的长度叫做这两点之间的距离”是“两点 之间的距离”的定义; “连接三角形的顶点和对边中点的线段叫做三角形的中 线”是“三角形的中线”的定义.
同位角相等.
结论 (结论)
现阶段我们在数学上学习的命题可看作由条件(或题 设)和结论两部分组成.条件是已知事项,结论是下列命题的条件和结论:
命题
条件
结论
两直线平行, 内错角相等. 若a2=b2 ,
则a=b. 两个锐角的和 为钝角 三角形的内角 和为180°
两直线平行 a2=b2
练一练
指出下列命题的条件和结论,并改写成“如果… 那么…”的情势:
(2)直角三角形两个锐角互余. 如果两个角是一个直角三角形的两个锐角, 那么这两个角互余.
比一比
全班分成男女两组,每个小组说出三个 命题,另一组把它改成“如果…那么…” 的情势.看哪一组表现较好.
课堂小结
通过本节课的学习,你有哪些收获?
练一练
例1、下列语句属于定义的是( D )
A、明天是晴天 B、长方形的四个角都是直角 C、等角的补角相等 D、平行四边形是两组对边分别平行的四边形
分析:作出正确选择的关键是理解定义的含义. A是对天气的预测;B是描述长方形的性质;C是描述 补角的性质;只有D符合定义的概念.故选D.
定义指的是对术语和名称的含义的描述,是对一 个事物区分于其他事物的本质特征的描述,而不是对 其性质的判断.
浙教版八年级数学上册课件:定义与命题
![浙教版八年级数学上册课件:定义与命题](https://img.taocdn.com/s3/m/d09ae6a2910ef12d2af9e770.png)
判断下列语句是不是命题?是用“√”,不 是用“× 表示。
1)长度相等的两条线段是相等的线段吗?(×) 2)两条直线相交,有且只有一个交点(√ ) 3)不相等的两个角不是对顶角(√ ) 4)一个平角的度数是180度(√ ) 5)相等的两个角是对顶角(√ ) 6)取线段AB的中点C;(× ) 7)画两条相等的线段( × )
⑵直角三角形两个锐角互余。
如果两个角是一个直角三角形的两个锐角 ,那么这两个角互余。
全班分为两组,每个小组说出三个命题, 另一组把它改写“如果……那么……”的形式 。看哪一组表现较好。
浙教版八年级数学上册 课件:定义与命题
2020/9/22
什么叫法律 ?
什么是法盲 ?
法律就是法国 的律师
法盲就是法国 的盲人
可见,在交流时对名称和术语要有共同的认识才行。
一般地,能清楚地规定某一名称或术语的意 义的句子叫做该名称或术语的定义。
例如: 1、“具有中华人民共和国国籍的人,叫做中华人 民共和国公民” 是“中华人民共和国公民 ”的定义;
2、 “两点之间 线段的长度,叫做这两点之间理数: 无限不循环小数叫做无理数。
⑵直角三角形:有一个角是直角的三角形叫做
直角三角形。
(3)压强:单位面积所受的压力叫做压强。
(4)频率: 每一组频数与数据总数(或实验总次数)
的比叫做这一组数据(或事件)的频率
判断一个句子是不是命题的关键是什么?
下图表示某地的一个灌溉系统.
如果C地水流被污染,那么__E_、__F____的水流也被污染。
B C E
A
P D
F
GH I
JK
根据上图,你能说出其他的命题吗?
触类旁通
命题可看做由题设(条件)和结论两部分 组成。题设是已知事项,结论是由已知事项推 出的事项。
浙教版数学八年级上册1.2《定义与命题》教案2
![浙教版数学八年级上册1.2《定义与命题》教案2](https://img.taocdn.com/s3/m/a829e503f11dc281e53a580216fc700aba685213.png)
浙教版数学八年级上册1.2《定义与命题》教案2一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。
本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。
定义是对于一个概念或者事物的本质特征进行准确的描述,而命题是判断一件事情的语句。
本节课通过具体的例子让学生理解定义与命题的区别和联系,提高学生的逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经学习了七年级的数学知识,对于一些基本的概念和语句有一定的理解。
但是,对于定义与命题的深入理解和运用还需要进一步引导。
通过观察学生的学习情况,我发现他们对于实际例子的理解较为直观,但对于理论层面的抽象思维还需要加强。
因此,在教学过程中,我需要结合具体例子引导学生理解定义与命题的概念,并培养他们的逻辑思维能力。
三. 教学目标1.理解定义与命题的概念,并能够正确区分它们。
2.学会如何阅读和理解定义与命题,提高逻辑思维能力。
3.能够运用定义与命题解决实际问题,培养解决问题的能力。
四. 教学重难点1.重点:理解定义与命题的概念,学会正确运用它们。
2.难点:对于抽象定义与命题的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动思考和探索。
2.通过具体例子讲解定义与命题的概念,让学生直观理解。
3.小组讨论,培养学生的合作意识和沟通能力。
4.运用多媒体教学手段,增加课堂的趣味性和互动性。
六. 教学准备1.准备相关定义与命题的例子,用于讲解和练习。
2.设计小组讨论的问题,促进学生的思考和讨论。
3.准备多媒体教学材料,如PPT等,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过一个简单的例子引入定义与命题的概念,激发学生的兴趣。
例子:请同学们判断以下语句是定义还是命题?解答:根据语句的特点,判断其为定义或命题。
2.呈现(15分钟)讲解定义与命题的概念,引导学生理解它们的本质区别。
定义:对于一个概念或者事物的本质特征进行准确的描述。
浙教版八年级数学上册课件:1.2定义与命题 (共13张PPT)
![浙教版八年级数学上册课件:1.2定义与命题 (共13张PPT)](https://img.taocdn.com/s3/m/af1a321e376baf1ffc4fadf8.png)
所有的定理是真命题 。 √
所有的公理是真命题 。 √
通过本节课的学习,你学到了什么?把 你的收获说出来,和大家一起分享!
课堂小结
• 1、命题都是由条件和结论两部分组成
“如果……那么……”
条件
举反例
结论
• 2、说明一个命题是假命题的方法: • 3、说明一个命题是真命题的方法:
证明
证明的依据:基本事实(等式的性质) 定义、已证明的定理
(1)人们经过长期实践后而公认为正确的.
数学中通常挑选一部分人类经过长期实践 后公认为正确的命题在本书中叫做基本事 实. (2)通过推理的方式,即根据已知的事实来推断
未知事实;
用推理的方法判断为正确的命题叫做定理.
定理和基本事实都可以作为判断其他命 题真假的依据.
判一判
所有的命题都是公理。Χ
Χ 所有的真命题都是定理 。
判别下列命题的真假,并说明理由:
(1)已知∠1和∠2如图,则∠1>∠2; (真命题) 。 。
因为∠1=60, ∠2=40 1 2
所以∠1>∠2
(2)三角形的两边之和大于第三边; (真命题)
根据“两点之间线段最短”。
(3)会飞的动物是鸟. (假命题)
因为会飞的不一定是鸟,如蝉。
判定一个命题是真命题的方法:
• 1.2 定义与命题
(1)什么是定义? 一般地,能清楚地规定某一名称或术语 的意义的句子叫做该名称或术语的定义.
(2)什么是命题?
命题由哪两部分组成?
一般地,对某一件事情作出正确或不正 确的判断的句子叫做命题. 命题由可看做由题设(或条件)和结论两 部分组成.
判断下列句子中,哪些是命题?哪些不是命题?
如何证实一个命题是真命题呢
浙教版八年级上册第一章1.2定义、 命题、证明 课件(21张PPT)
![浙教版八年级上册第一章1.2定义、 命题、证明 课件(21张PPT)](https://img.taocdn.com/s3/m/3bdbfb65ef06eff9aef8941ea76e58fafab0453e.png)
三 证明与举反例
三、基本事实的概念
1.数学中有些命题的正确性是人们在长期实践中总结出
来的,并把它们作为判断其他命题真假的原始依据,
这样的真命题叫做基本事实.
直线:
两点确定一条直线.
线段:
两点间线段最短.
平行线:
经过直线外的一点有且仅有一条直线
与已知直线平行.
平行线性质: 两直线平行,同位角相等.
平行线判定: 同位角相等,两直线平行.
二、命题的结构 观察下列命题,你能发现这些命题有什么共同的结构特 征?与同伴交流. (1)如果两个三角形的三条边相等,那么这两个三角
形的周长相等; (2)如果两个数的绝对值相等,那么这两个数也相等; (3)如果一个数的平方等于9,那么这个数是3.
都是“如果……那么……”的形式
命题一般都可以写成“如果……那么……”的形式. 1.“如果”后接的部分是题设, 2.“那么”后接的部分是结论. 如命题:熊猫没有翅膀.改写为: 如果这个动物是熊猫,那么它就没有翅膀.
定义、命题、证明
讲授新课
一 定义 一、定义的概念
一般地,能清楚的规定某一名称或术语的意义 的句子叫做该名称或术语的定义. 例如: 物体单位面积受到的压力叫做压强; 在同一平面内,不相交的两条直线叫做平行 线。
导入新课
观察与思考
下列语句在表述形式上,有什么共同特点? (1)如果两条直线都与第三条直线平行,那么这
3.举反例说明下列命题是假命题. (1)若两个角不是对顶角,则这两个角不相等; (2)若ab=0,则a+b=0.
解:(1)两条直线平行形成的内错角,这两个角不 是对顶角,但是它们相等;
(2)当a=5,b=0时,ab=0,但a+b≠0.
浙教版-数学-八年级上册1.2定义与命题 精品课件
![浙教版-数学-八年级上册1.2定义与命题 精品课件](https://img.taocdn.com/s3/m/7f7ab56c195f312b3069a525.png)
2.找出命题的条件和结论,并改写成“如果 …,那么…”的形式:
(1)两条边和他们的夹角对应相等的 两个三角形全等.
如果两个三角形的两条边和他们的夹角 对应相等,那么这两个三角形全等.
(2)直角三角形的两个锐角互余.
如果两个角是直角三角形的两个锐角, 那么这两个锐角互余.
(1)若a<b,则 b a; (2)三角形的三条高交于一点; (3)两点之间线段最短;
(4)1 2≠3;
(5)解方程 x2 2x 3 0
(6)在ΔABC中,若AB>AC,则∠C>∠B吗?
2.找出命题的条件和结论,并改写成“如果…,那 么…” 的形式:
(1)两条边和他们的夹角对应相等的两个三角 形全等.
说出下列名词的定义: (1)无理数;(2)直角三角形;数. (2)有一个角是直角的三角形是直角三角形. (3)一组数据的最大值与最小值的差叫做极差.
判断
比较下列句子在表述形式上,哪些对事情作 了判断?哪些没有对事情作出判断?
(1)鸟是动物. (2)若a2=4,求a的值. (3)若a2=b2,则a=b. (4)a,b两条直线平行吗? (5)画一个角等于已知角. (6)0.33是无理数. (7)两直线平行,同位角相等.
(3) 以下有一些关于多个“跳点”间关系的叙述: A.“跳点”(-1,-2)和(1,2)关于原点对称. B.三个“跳点”不可能构成三角形.
你能模仿以上命题来说一些命题吗?
1.定义:能清楚地规定某一名称或术语的意 义的句子。
2.命题:对某一件事情作出正确或不正确的 判断的句子。
3.命题的结构:由条件和结论两部分组成。
在平面直角坐标系中,有一列横坐标和纵坐标都是整数的点:
八年级上册数学定义与命题浙教版
![八年级上册数学定义与命题浙教版](https://img.taocdn.com/s3/m/8e27047382c4bb4cf7ec4afe04a1b0717fd5b39b.png)
八年级上册数学定义与命题浙教版【实用版】目录1.八年级上册数学定义与命题浙教版的概念2.定义与命题的区别与联系3.命题的分类4.如何判断命题的真假5.运用实例加深理解正文一、八年级上册数学定义与命题浙教版的概念在浙教版八年级上册数学教材中,定义与命题是两个重要的概念。
定义是对数学概念或性质的阐述,是对概念内涵的明确。
命题则是对事情的陈述,可以判断为真或假。
二、定义与命题的区别与联系定义与命题在数学中有着密切的联系,但又有所区别。
定义是对某个概念或性质的描述,是一个陈述句,通常没有判断真假的问题。
而命题则是对某个事情的陈述,可以判断为真或假。
从这个角度看,定义与命题的区别在于是否需要判断真假。
然而,在实际运用中,定义与命题往往相互联系,定义常常是命题的基础。
三、命题的分类在数学中,命题可以根据其真假性质进行分类,主要分为真命题和假命题。
真命题是指在所有情况下都为真的命题,而假命题则是指至少存在一种情况使其为假的命题。
此外,还有一种特殊的命题,即无法判断真假的命题,称为未定命题。
四、如何判断命题的真假要判断一个命题的真假,通常需要运用数学定理、公式或逻辑推理。
对于一些简单的命题,可以直接通过观察或实验得出结论。
而对于复杂的命题,则需要运用数学知识进行分析和判断。
五、运用实例加深理解例如,我们来看一个命题:“所有动物都需要氧气呼吸。
”这是一个全称命题,可以通过列举反例来证明其为假命题。
比如,有些细菌不需要氧气就能生存,这就说明并非所有动物都需要氧气呼吸。
通过以上讲解,相信大家对八年级上册数学定义与命题浙教版有了更深入的理解。
浙教版八年级数学上册知识点梳理
![浙教版八年级数学上册知识点梳理](https://img.taocdn.com/s3/m/58b7798e3b3567ec112d8ad5.png)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯第一章 三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。
命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。
命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。
正确的命题叫真命题,不正确的命题叫假命题。
基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。
定理:用逻辑的方法判断为正确并作为推理的根据的真命题。
注意:基本事实和定理一定是真命题。
[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。
[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形 [三角形按边分类]三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形[三角形按内角分类]三角形 锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角钝角三角形:有一个内角是钝角 [三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。
三角形三内角和等于180°。
三角形的一个外角等于与它不相邻的的两个内角之和。
[三角形的三种线]顶角的角平分线:三条,交于一点 三角形的中线:三条,交于一点 三角形的高线:三条,交于一点。
思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形. [全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角. [全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。
还有其它推出来的性质:全等三角形的周长相等、面积相等。
全等三角形的对应边上的对应中线、角平分线、高线分别相等。
[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角的内部到角的两边的距离相等的点在角的平分线上。
浙教版初中数学八年级上册定义、命题与证明 知识讲解
![浙教版初中数学八年级上册定义、命题与证明 知识讲解](https://img.taocdn.com/s3/m/b01df49a89eb172ded63b791.png)
定义、命题与证明知识讲解【学习目标】1.了解定义、命题、定理的含义,会区分命题的题设(条件)和结论,会在简单情况下判断一个命题的真假;2.能用基本的逻辑术语、几何证明的步骤、格式和规范进行几何证明;3.了解证明的含义,理解证明的必要性,体会证明的过程要步步有据.【要点梳理】要点一、定义、命题、基本事实与定理1.定义一般地,能清楚的规定某一名称或术语的意义的句子叫做该名称或术语的定义.2.命题一般地,判断某一件事情的句子叫命题.正确的命题叫做真命题;不正确的命题叫做假命题.命题通常由条件、结论两个部分组成,条件是已知事项,结论是由已知事项得到的事项.通常命题可以写成“如果……那么……”的形式,其中以“如果“开始的部分是条件,”那么“后面的部分是结论.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.当证明一个命题是假命题时只要举出一个反例就可以.3.基本事实人们经过长期实践后公认为正确的命题,作为判断其他命题的依据,也可称为公理.4.定理用推理的方法判断为正确的命题.定理也可以作为判断其他命题真假的依据.要点诠释:满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.要点二、证明1.证明从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步推得结论成立,这样的推理过程叫做证明.2.证明表述格式证明几何命题时,表述格式一般如下:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程.要点诠释:在解决几何问题时,有时需要添加辅助线,添辅助线的过程要写入证明中,辅助线通常要画出虚线.【典型例题】类型一、命题1. 判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?做出判断的哪些是正确的?哪些是错误的?(1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等; (4)a ,b 两条直线平行吗?(5)鸟是动物; (6)若24a =,求a 的值;(7)若22a b =,则a =b .【答案与解析】句子(1)(3)(5)(7) 对事情作了判断,其中 (1)(3)(5)判断是正确的,(7)判断是错误的. 句子(2)(4)(6)没有对事情作出判断.其中(2)属于操作性语句,(4)属于问句,都不是判断性语句.【总结升华】主要考察命题的定义.举一反三:【变式】下列语句中,哪些是命题,哪些不是命题?(1)若a b <,则<-b a -;(2)三角形的三条高交于一点;(3)在ΔABC 中,若AB >AC ,则∠C >∠B 吗?(4)两点之间线段最短;(5)解方程2230x x --=;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题,(3)(5)不是命题.2. (2016春•南陵县期末)下列命题中,(1)一个锐角的余角小于这个角;(2)两条直线被第三条直线所截,内错角相等;(3)a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ⊥c ;(4)若a 2+b 2=0,则a ,b 都为0.是假命题的有 .(请填序号)【思路点拨】利用锐角的定义、平行线的性质、垂直的定义等知识分别判断后即可确定正确的选项.【答案】(1)(3)【解析】解:(1)一个锐角的余角小于这个角,错误,是假命题;(2)两条直线被第三条直线所截,内错角相等,正确,是真命题;(3)a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ∥c ,故错误,是假命题;(4)若a 2+b 2=0,则a ,b 都为0,正确,为真命题,【总结升华】本题考查了命题与定理的知识,解题的关键是了解锐角的定义、平行线的性质、垂直的定义等知识,难度不大.举一反三:【变式】下列命题中,真命题的个数有( )①对顶角相等②同位角相等③4的平方根是2 ④若a>b,则-2a>-2b A.3个B.1个C.4个D.2个【答案】B3.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;【答案与解析】(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。
新浙教版八年级上册初中数学 第1课时 定义与命题 教学课件
![新浙教版八年级上册初中数学 第1课时 定义与命题 教学课件](https://img.taocdn.com/s3/m/96f3da8a68dc5022aaea998fcc22bcd126ff4212.png)
1.2 定义与命题
第1课时 定义与命题
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
1.定义的定义. 2.命题的定义(重点)
新课导入
一对父子的谈话
爸爸,什 么叫法律?
法律就是法 国的律师
那么什么 是法盲?
解:(1)条件:一个角是锐角;结论:这个角的补角大于这个角的余角 (2)条件:两个角不相等;结论:这两个角不是对顶角 (3)条件:两个数异号;结论:这两个数相加得零
新课讲解
知识点2
命题的定义
两直线平行,同位角相等。
如果两直线平行,那么同位角相等。
题设(条件)
结论
命题看做由题设(条件)和结论两部分组成。题设是已知事
项,结论是由已知事项推出的事项。
新课讲解
典例分析
例 下列语句中,属于命题的是( C ) A.直线AB和CD垂直吗 B.过线段AB的中点C画AB的垂线 C.同旁内角不互补,两直线不平行 D.连结A,B两点
当堂小练
2.下列语句是命题的是( C ) A.延长线段AB B.你吃过午饭了吗 C.直角都相等 D.连结A,B两点
当堂小练
3.命题:“线段垂直平分线上的点到线段两端点的距离相等” 的条件是线段垂直平分线上的点 , 结论是 到线段两端点的距离相等,
拓展与延伸
指出下列命题的条件和结论. (1)一个锐角的补角大于这个角的余角; (2)不相等的两个角不是对顶角; (3)异号两数相加得零.
新课讲解
练一练
下列语句不是命题的是( D ) A.相等的角不是对顶角 B.2既是质数又是偶数 C.凡能被5整除的数,末位是5 D.延长线段AB
浙教版八年级上册数学第1章 定义与命题
![浙教版八年级上册数学第1章 定义与命题](https://img.taocdn.com/s3/m/ecfe0628ae45b307e87101f69e3143323968f5f1.png)
条件是__如__果__两__个__角__相,等结,论那是么__它__们__的__余__角__也__相__等__.
两个角相等
它们的余角也相等
9 【中考·上海】当三角形中一个内角α是另一个内角 β的两倍时,我们称此三角形为“特征三角形”,其 中α称为“特征角”.如果一个“特征三角形”的“特征 角”为100°,那么这个“特征三角形”的最小内角的 度数为________.
4 下列句子:①直角小于90°;②两点之间,线段最 短;③希望明天下雨;④作AD=BC;⑤同旁内角
互补,两直线平行.其中是命题的是( )
A.①②③B.①②⑤
B
C.①②④⑤D.①②④
5 下列四个选项中不是命题的是( B ) A.对顶角相等 B.过直线外一点作直线的平行线 C.三角形任意两边之和大于第三边 D.如果a=b,a=c,那么b=c
浙教版八年级上
第1章三角形的初步知识
1.2.1 定 义 与 命 题
习题链接
温馨提示:点击 进入讲评
1B 2C 3D 4B
5B 6D 7C 8
答案呈现
9 30° 10
1 【慈溪期中】下列语句中,是定义的是( B ) A.两点确定一条直线
B.在同一平面内,不相交的两条直线叫做平行线
C.三角形的角平分线是一条线段
D.同角的余角相等
2 下列不属于定义的是( C ) A.两点之间的线段的长度叫做这两点之间的距离 B.含有未知数的等式叫做方程 C.同角或等角的余角相等 D.求一个数的立方根的运算叫做开立方
3 给出下列叙述:①两点之间线段最短;②同位 角相等;③两直线平行,同旁内角互补;④点 到直线的距离是该点到这条直线的垂线段的长 度.其中是定义的是( ) A.①B.②C.③D.④D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每个命题都有条件和结论两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.一般地,命题都可以写出“如果+条件,那么+结论”的形式.有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式.如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”.
(1)直角三角形的两个锐角互余(2)角平分线上的点到角两边的距离相等.(3)在同一平面内,垂直于同一条直线的两条直线平行.(4)绝对值相等的两个数一定相等.
五、能力提升
12.观察下列这类整式的次数和项数,找出它们的共同特征,给以名称并作出定义.
13.在数学运算中,除了加、减、乘、除等运算外,还可以定义新的运算.如定义一种“星”运算,“*”是它的运算符号,其运算法则是:
于是:
按以上定义,填空: _____________; __________
1.下列句子中哪些是命题?(写出序号)
(1)猴子是动物的一种;(2)玫瑰花是动物;(3)美丽的天空;
(4)三个角对应相等的两个三角形一定全等;(5)负数都小于零;
(6)你的作业做完了吗?(7)所有的质数都是奇数;(8)动物都需要水;
(1)对顶角相等;(2)画一个角等于已知角;(3)两直线平行,同位角相等;(4)a,b两条直线平行吗?(5)鸟是动物;(6)a²=4,求a的值;
(7)若a²=b²,则a=b.
二、知识梳理:
3.能清楚地()某一()的意义的句子叫做该名称或术语的()
注意:定义必须是严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现.
(9)过直线a外一点作a的平行线;(10)如果a>b,a>c,那么b=c.
2.上面命题中,真命题有哪些?(写出序号)
结论:正确的命题称为__________,不正确的命题称为_________.
3.你还能再举出命题和真命题的例子吗?
二、合作探究:
下列各命题的条件是什么?结论是什么?并判断真假(说明理由).
在解决几何问题时,有时需要添加辅助线。添辅助线的过程要写入证明中,辅助线通常画成虚线。
1.2定义与命题
1、情境导入
1.请写出下列名词的定义:
(1)无理数();
(2)直角三角形():
(3)三角形的中线()
(4)分式();
(5)因式分解()
2.比较下列句子在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?
假命题通过举反例(具备命题的条件但不具备命题的结论的实例)
3.互逆命题原命题、逆命题互逆定理原定理、逆定理
每个命题都有它的逆命题,但每个真命题的逆命题不一定是真命题。
4.证明:从命题的条件出发,根据已知的定义、基本事实、定理(包括推论)、一步一步推得结论成立的推理过程。
证明几何命题的格式:(1)按题意画出图形(2)分清命题的条件和结论,结合图形,在已知中写出条件,在求证中写出结论(3)在证明中写出推理过程。
(5)同角的余角相等(6)8不是偶数
(7)若 则 (8)三角形的三条高交于一点.
(9)两点之间线段最短(10)1+2 3.
(11)如果 ,那么a=b.
10.写出下列命题的条件和结论.
(1)对顶角相等.(2)如果a2=b2,那么a=b.
(3)同角或等角的补角相等.(5)过两点有且只有一条直线.
11.把下列命题改写成“如果……那么……..”的形式.
5.指出下列命题的条件和结论,并把下列命题改写成“如果-ቤተ መጻሕፍቲ ባይዱ----,那么-------”的形式.
(1)三条边对应相等的两个三角形全等;
(2)在同一个三角形中,等角对等边.
三、应用新知
6.下列语句是命题的是()
A.过点A作直线MN的垂线B.正数都大于负数吗?
C.你必须完成作业D.两点之间,线段最短.
7.下列描述属于定义的是( )
A.对顶角相等B.三角形的内角和等于1800
C.平行四边形的对角相等D.链接三角形两边中点的线段叫三角形的中位线
8.下列语句不是命题的是()
A.鲸鱼是哺乳动物乳B.植物都需要水
C.你必须完成作业D.实数不包括零
9.下列语句哪些是命题,哪些不是命题.
(1)在线段AB上任取一点C(2)两点确定一条直线
(3)作线段AB的中垂线(4)两个锐角的和大于直角吗?
尧旭教育个性化辅导授课案(6 )
教师:学生:年级:时间:2017年月日段
一、授课目的与考点分析:
2、授课内容:
七、定义、命题与证明
1.定义:能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。
2.命题:定义:判断某一件事情的句子
结构:由条件和结论两部分组成。
句式改写:如果……那么……
分类:真命题通过推理的方式来判断、人们经过长期实践公认为正确的
1、学生上次作业评价:○好○较好○一般○差
2、学生本次上课情况评价:○好○较好○一般○差
教师签字:
教导处签字:
尧旭教育教导处
年月日
(4)如图,若∠1=∠2,则∠3=∠4.用推理的方法说明它是真命题.
B
2
(5)三角形任意一边上的中线分成的两个三角形的面积相等.
(6)证明:两条平行线被第三条直线所截,则它们的一对同位角的平分线互相平行.(要求画图,说明理由)
三、学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字:
四、教师评定:
(1)如果两个角相等,那么它们是对顶角;
(2)如果a>b,b>c,那么a=c;
(3)如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.
说明一个命题是假命题,通常举出一个反例就可以了,使之具备命题的条件,而不具有命题的结论,这种例子称为__________.但是要说明一个命题是正确的无论验证多少个特例,也无法保证命题的正确性.这就需要我们学会简单的推理论证.