midasGEN对单层网壳非线性分析
Midas Gen系列培训资料
图 1 例题—框剪结构推覆分析
要点关注
图 2 某超高层推覆分析
位移控制
图 3 某体育场馆推覆分析
结果列举
性能控制点
设定荷载增幅次数 和迭代次数
静力弹塑性分析控制
静力弹塑性分析荷载工况
提供多折线类型和 FEMA 类型,亦可由 用户自定义
用户也可自定义铰 特性值的有关参数
类型
可对剪力墙直接分 配墙单元塑性铰 FEMA 类型,亦可自
图 3 某穹顶组合结构
结果列举
将荷载类 型分为可 变与不变
屈曲分析控制数据
最低阶模态屈曲向量
使用位移控制法
失稳临 界点
临界荷载系数
图 4 屈曲模态
图 5 临界荷载系数
稳定系数
非线性分析控制数据
荷载-位移全过程曲线
钢结构节点细部分析
背景 为精确分析开口部位的应力状态,使用板单元进行细部建模和分析,利用刚性连 接功能将采用板单元建立的开口部位模型和采用梁单元建立的其他部分的模型 连为一体,查看板单元开口部位细部分析的结果。
目录
一 钢筋混凝土框剪结构抗震分析及设计 二 钢结构分析及优化设计 三 单层网壳屈曲分析 四 钢结构节点细部分析 五 组合结构分析 六 钢筋混凝土结构施工阶段分析 七 转换结构细部分析 八 钢筋混凝土静力弹塑性推覆分析 九 筒仓的建模分析 十 索单元的应用 十一 边界非线性分析 十二 动力弹塑性分析 十三 大体积混凝土水化热分析 十四 弹性地基梁分析 十五 超长板温度应力分析 十六 错层框剪结构分析及设计
梁单元
板单元
实体单元
图 1 例题—转换深粱结构(梁、板、实体)图 2 某转换粱结构来自图 3 某多塔转换结构
要点关注
Midas Gen常见问题解答
建模问题 6、定义板厚时,平面内厚度和平面外厚度的区别? 板单元可以输入两种厚度, 面内厚度是用来计算板单元平面内抗拉及抗压刚度 面外厚度是用来计算板单元面外抗弯刚度 假设N为面内厚度,W为面外厚度, 程序计算自重时一般取用N值; 当N=0、M>0时,以M值计算自重
建模问题
7、问:在MIDAS/Gen中建立模型时,如何考虑楼板刚性及弹性问题?
B、可以直接在定义材料的对话框里选择“用户定义”的方式,手动
的输入各项参数。
建模问题 4、数据库中没有的不规则截面如何输入? 两种方法来解决: A、模型》材料和截面》添加截面》数值 在数值型截面中直接输入已知截面特性值; B、工 具》截面特性值计算器
画出真实截面形状,计算出特性值后导入midas Gen中使用。
荷载问题 3、定义地震作用时,有两个放大系数,两者是什么关系?最终地 震作用取值如何? A、菜单:荷载》反应谱分析数据》反应谱函数(图一) 此时的放大系数会放大所有方向的地震作用 B、菜单:荷载》反应谱分析数据》反应谱荷载工况(图二) 此处只放大该作用方向上的地震作用, 两个系数相乘作为最终该方向工况的放大系数。
导入问题 2、导入SATWE文件形成MIDAS的模型需要注意的问题? 用转换程序导入SATWE的模型文件后,形成.MGT的命令流文件,在
MIDAS中导入此文件,应注意以下问题:
A、风荷载及反应谱荷载没有导进来,需要在MIDAS中重新定义; B、剪力墙洞口无法导入,楼面荷载自动转换为梁荷载; B、需要定义自重、质量; C、需要定义层信息; D、注意比较一下SATWE的质量与MIDAS的质量。 定义质量:midas Gen中有两个地方,模型-结构类型-将结构的自重 转换为质量、模型-质量-将荷载转换成质量,竖向荷载可以通过两个软件 的质量总和进行比较确认是否有丢失;
MIDASGen软件常见问题与解答2
MIDASGen软件常见问题与解答2问:转换梁上支撑两道剪力墙怎么建模?答:可以在转换梁两侧设两个结点,在结点上再建立两道剪力墙,同时将此两节点与对应的转换梁节点采用刚性连接(刚臂)。
问:一个柱子上设置两道平行的框架梁怎么建模?答:可以将一根梁设置在柱节点上,然后再设置一新节点,利用刚性连接功能,将此节点与柱节点做刚性连接,再在此节点上建立另外一个框架梁。
问:跨层转换梁的建模问题,即一根转换梁连接上下层楼板?答:可将转换梁用板单元来建模即可。
问:对于有斜柱的结构个别层的层间位移没有输出的原因?答:原因可能由于本层的节点与下一层没有对应的节点,一般是指同一杆件的上、下节点。
问:转换层结构分析建模时,需要注意那些问题?答:需要注意:1、需将转换层的楼板刚性假定解除,否则转换梁分析完不会出现轴力,无法按偏心受拉构件进行配进设计。
2、转换梁上部的墙单元或板单元需要细分,且转换梁也需要细分,满足位移协调条件。
问:MIDAS/Gen能否计算箱基?答:使用MIDAS/Gen计算箱基的步骤如下:1、用板单元建立侧墙和底板、顶板,用梁单元模拟梁、柱。
2、将土压力、核爆等荷载按压力荷载或流体压力荷载输入。
3、如果考虑为弹性地基板,可在底板处加单向受压弹簧。
4、分析后,使用“结果/局部方向内力的合力”功能或查看板单元内力时候使用“剖断面”功能,求出板单元的内力。
问:PKPM中刚性板及弹性楼板在MIDAS/Gen中如何实现?答:一、PKPM中的“刚性楼板”即楼板面内无限刚,面外刚度为零。
MIDAS/Gen中只需在定义层数据时选择考虑刚性板即可。
二、PKPM中的“弹性板6”即采用壳元真实计算楼板平面内和平面外的刚度。
MIDAS/Gen中用板单元建立楼板,在定义板厚时真实输入板的面内和面外厚度。
注意在定义层数据时应该选择不考虑刚性板。
三、PKPM中的“弹性板3”即假定楼板平面内无限刚,楼板平面外刚度是真实的。
MIDAS/Gen中用板单元建立楼板,在定义板厚时,输入平面内厚度为0,平面外厚度为楼板真实厚度。
Midas Gen常见问题解答
常见问题解答
北京迈达斯技术有限公司
MIDAS/Gen常见问题解答
定位问题 导入问题 建模问题 荷载问题 分析设计问题
MIDAS/Gen常见问题解答
定位问题
MIDAS/Gen定位 建筑结构通用有限元分析与设计软件,主要解决问题如下:
小震问题:静力地震作用、反应谱分析、弹性时程分析 中震问题:中震弹性分析及设计、中震不屈服分析及设计
B、可以直接在定义材料的对话框里选择“用户定义”的方式,手动
的输入各项参数。
建模问题 4、数据库中没有的不规则截面如何输入? 两种方法来解决: A、模型》材料和截面》添加截面》数值 在数值型截面中直接输入已知截面特性值; B、工 具》截面特性值计算器
画出真实截面形状,计算出特性值后导入midas Gen中使用。
菜单:模型》建筑物数据》层 在“楼板刚性楼板”一栏中选择“考虑”
即可,程序默认为“考虑”,即所有楼层都按刚性板考虑;
如果想解除某一层楼板的刚性,可在“楼板刚性楼板”一栏中选择“不 考虑”,此时该层楼板按弹性板来考虑, 注意:考虑刚性板假定可以不建立楼板, 不考虑刚性板假定时需要设计者在该楼层建立楼板(用板单元建 立)即可。
菜单:边界->弹性支承->节点弹性支承 菜单:边界->弹性支承->面弹性支承
大震问题:静力弹塑性(Pushover)分析、动力弹塑性分析
空间大跨结构:几何非线性分析 特种结构:静力分析、材料非线性分析 其他分析:边界非线性动力分析(消能减震、阻尼器、摩擦摆隔 震装置)、预应力分析、施工阶段分析
MIDAS/Gen常见问题解答
导入问题
导入问题 1、midas Gen 可以导入和导出哪些数据文件?与其它哪些程序可以互导?
midas gen 结构类型
midas gen 结构类型
MIDAS GEN 是一种结构分析与设计软件,广泛应用于建筑和土木工程领域。
在MIDAS GEN 中,可以进行多种结构类型的分析和设计。
以下是一些常见的结构类型,它们可以通过MIDAS GEN 进行建模和分析:
一、框架结构:包括平面框架和空间框架,是建筑和桥梁等结构常见的类型。
二、楼板结构:用于分析和设计楼板系统,包括悬挑楼板、叠合楼板等。
三、墙体结构:包括竖向墙和横向墙,用于分析和设计建筑物的承重墙体。
四、梁柱结构:用于建模和分析梁和柱的相互作用。
五、基础结构:用于分析和设计建筑物的基础系统,包括承台、隔震基础等。
六、层间连接:用于建模不同楼层之间的结构连接,考虑水平和垂直的连接性。
七、非线性分析:MIDAS GEN 还支持非线性分析,可以考虑材料和几何非线性效应。
八、动力分析:用于分析结构的动态响应,包括自振频率、模态分析等。
这些结构类型可以相互组合,形成复杂的三维结构模型。
MIDAS GEN 提供了直观的建模界面和强大的分析功能,适用于各种不同类
型的工程项目。
具体的结构类型和分析功能可能会在软件的不同版本中有所不同,。
midasGEN对单层网壳非线性分析
midasGEN对单层网壳非线性分析
midasGEN网壳稳定分析过程算例
根据《空间网格结构技术规程》(JG17-2010)一下规定:
需要计算网壳的安全系数>4.2
以下分别为midasGEN和sap2000进行单层网壳稳定性分析步骤1、工程介绍:
直径D=32m,矢高f=4.5m单层网壳,支座约束均为固定铰支座,如下图所示:
恒活荷载见模型中数值。
2、下面先进行第一步------屈曲分析
勾选仅考虑正值是,如果出现负值,说明是反向荷载按照一定倍
数施加先破坏,但是常规结构一般都是竖直向下荷载会使结构破坏。
勾选检查斯图姆序列是要把最不利的模态排列在前面。
F5运行
显示最不利节点为264节点,记住这一个节点号。
然后施加初始缺陷
点击根据“初始缺陷更新模型”
一般都是选择第一模态(第一模态屈曲因子最小,也是结构最先屈曲的荷载倍数,个人觉得要是模型第一模态要是出现局部屈曲,需要调整模型直至第一模态为整体屈曲模态)
最大值为D/300(注意单位)
然后update会生成另外一个模型。
在这个模型中,需要添加一个非线性分析工况先添加一个组合
适用之后就会生成一个D+L工况接下来就是非线性分析
我们选择几何非线性----位移控制法------主节点264方向dz位移不足数量10子步骤内迭代次数10最大控制位移:-350mm(正方向向上,这个位移需要进行反复试验才能使分析收敛,分析结果才会有效)点击确认
然后F5进行分析
窗口显示以下内容,说明已经收敛
通过步骤图表输出位移-----安全系数曲线
K最大值为21.6>4.2满足要求。
Gen非线性分析
3、荷载和位移控制法:(弧长法)
几何非线性—分析收敛判断
位移范数小于此值,收敛
几何非线性—影响收敛的因素
步骤数量多易收敛 迭代次数多易收敛
值大容易收敛
1 2
3
几何非线性—P-∆分析
P-∆分析:(重力二阶效应)
考虑重力荷载在水平作用位移上引起的附加的内力和变形。 ( 小变形问题,荷载变化影响结构的刚度,压力:几何刚度 减小,拉力:几何刚度增大)
(1)无应力索长 (2)初拉力 (3)水平力 特点: • 仅用于几何非线性分析; • 对所有的荷载工况结果都有影响; • 迭代计算时,第一步即产生初始刚度,该
拉力对其他构件也有影响 • 张拉后,索中拉力不是定义时添加的初拉
力
几何非线性—非线性单元索单元 索单元施加预应力的方法:
2、初拉力荷载
特点: • 用于线性分析和非线性分析 • 需定义荷载工况,对其他荷载工况不起作用 • 为外荷载,需设定荷载工况,对其它构件有影响 • 施工阶段分析时,可采用该方法对索分批张拉
变形前
变形后
My = Vy - Px 弯矩图
不考虑P-Delta效 果的情况
考考虑虑PP的的--DD情情eell况况ttaa效效果果
几何非线性—非线性单元索单元 索:
• 通过轴向的拉伸来抵抗外荷载作用; • 一般采用高强钢丝,如钢丝束,钢绞线,钢丝绳等; • 仅在受拉情况下工作;受压状态下即退出工作;
阻尼系数按厂家提供的单位 输入时,参考速度输入1.0
-弹簧器刚度kb:与阻尼器串联的弹簧刚度 没有时不用输入
边界非线性 常见的非线性连接—滞后系统
几何非线性—非线性单元索单元 索单元施加预应力的方法:
4、初始单元内力
网壳非线性分析安全系数
3D3S\sap200\midas gen都可以做单层网壳的特征值屈曲分析,ANSYS 还可以做更加接近工程实际情况的非线性屈曲分析,来考虑初始缺陷请问各位老师,网壳规程要求其承载力大于第一屈曲模态下力的5倍,即k=5。
那么ansys和3d3s分析时如何查询这个K值?A:1、过去k=5,如今的新规程已将k取为4.2。
具体说明如下:确定系数K时考虑到下列因素:(1) 荷载等外部作用和结构抗力的不确定性可能带来的不利影响;(2) 复杂结构稳定性分析中可能的不精确性和结构工作条件中的其他不利因素。
对于一般条件下的钢结构,第一个因素可用系数1.64来考虑;第二个因素暂设用系数1.2来考虑,则对于按弹塑性全过程分析求得的极限承载力,系数K应取为1.64*1.2=2.0。
对于按弹性全过程分析求得的极限承载力,系数K中尚应考虑由于计算中未考虑材料弹塑性而带来的误差;对单层球面网壳、柱面网壳和双曲扁网壳的系统分析表明,塑性折减系数cp(即弹塑性极限荷载与弹性极限荷载之比)从统计意义上可取为0.47,则系数K应取为1.64*1.2/0.47=4.2。
对其它形状更为复杂的网壳无法作系统分析,对这类网壳和一些大型或特大型网壳,宜进行弹塑性全过程分析。
2、假定设计载荷为2kN/m2,可给网壳施加约12kN/m2的载荷,通过载荷-位移全过程曲线判断临界载荷,假如得出为10kN/m2,则其k=10/2=5。
①单层网壳以及厚度小于跨度1/50的双层网壳均应进行稳定性计算;②网壳的稳定性可按考虑几何非线性的有限元法(荷载—位移全过程分析)进行计算,分析中可假定材料保持为弹性,也可考虑材料的弹塑性。
对于大型和形状复杂的网壳结构宜采用考虑弹塑性的全过程分析方法;③球面网壳的全过程分析可按满跨均布荷载进行,圆柱面网壳和椭圆抛物面网壳除考虑满跨均布荷载外,宜补充考虑半跨活荷载分布的情况。
进行网壳全过程分析时应考虑初始曲面形状的安装偏差的影响,可采用结构的最低阶屈曲模态作为初始几何缺陷分布模态,其缺陷最大计算值可按网壳跨度的1/300取值;④按以上②和③条进行网壳结构全过程分析求得的第一个临界点处的荷载值,可作为该网壳的极限承载力。
(完整word版)MIDAS新手问题之GEN篇
MIDAS新手问题之GEN篇问1:midas采用弹性楼板时,能自动考虑梁翼缘的作用吗?即自动刚度放大!答:梁翼缘作用在分析时主要是反应在梁刚度放大上,在程序中可以通过“截面特性调整系数”这一选项进行修改边梁及中梁刚度。
另外在截面定义的时候也可以修改刚度值。
问2:midas建模是不是太复杂啊?可不可以先PKPM建模再调入计算分析!答:在midas中支持与其他软件的接口,例如pkpm、sap、staad及CAD等程序进行数据转换。
在pkpm中经过SATWE计算后的模型可以转换到midas中,其中需要有个转换的程序,这个是midas自带的。
转换后的模型中包括材料特性、模型特征、楼面荷载等信息。
如果熟悉程序的话midas建模也是相当快的,比画图也差不多了多少。
问3:请教面荷载的输入方法?我知道一个方法:一个个地点一个封闭平面的节点去选择一个面,然后输入荷载,还有其它快捷的方法吗?如像PKPM的面荷载输入?答:面荷载的输入分为2种情况:a 、一种是结构存在竖向面荷载——例如楼面荷载、屋面荷载,b、一种是横向面荷载——如风荷载,水压力或土压力。
在竖向荷载布置的时候,可以通过选择四个角点来布置已经定义的楼面荷载值或压力荷载(注意:只需要选择最外围的角点即可,不需要逐个房间点取)。
在不规则结构中无法形成刚性板因此无法由程序直接计算风荷载,此时需要在结构立面建立一个专为导荷载而用的“虚面”——即该板单元刚度和重量对结构的影响可以忽略不计。
在虚面上进行加载,可以形成实际的风荷载。
问4:若模型中有只拉单元,是不是还要加个非线性工况?怎么加?怎么组合?答:模型中的只受拉单元在一般计算时通常是等代为桁架单元来计算的,因此在非线性分析才显示出只受拉单元的特性。
做非线性的时候按照常规组合即可,读取内力、位移等数值时查看只受拉单元就OK. 至于你想做个自定义的工况的话,在形成荷载组合那个菜单里自己修改参数定义一下就行。
注意:该种情况用的不多,通常程序已经按照荷载规范中荷载组合方式进行组合了,先看看组合说明再做,别做无用功。
基于MIDAS的单层网壳稳定性分析
工程建设与设计Construction&Design For P roject基于MIDAS的单层网壳稳定性分析Stability Analysis of Single-Layer Reticulated Shell Based on MIDAS Software杜涛(青岛北洋建筑设计有限公司,山东青岛266071)DU Tao(Qingdao Beiyang Architectural Design Co.Ltd.,Qingdao266071,China)【摘要】以一个单层网壳项目为例,采用有限元分析软件MIDAS GEN进行了屈曲模态分析和非线性稳定分析,简要介绍了非线性稳定分析的原理和分析步骤,证实该网壳能够满足稳定性承载力的要求,可供类似工程设计参考。
[Abstract]The buckling modal analysis and nonlinear stability analysis of a single-layer reticulated shell project were carried out by using the finite element analysis software MIDAS GEN.This paper briefly introduces the principle and procedure of nonlinear stability analysis,and proves that the reticulated shell can meet the requirements of stability bearing capacity,which can provide reference for similar engineering design.【关键词】单层网壳;初始缺陷;几何非线性;稳定性分析[Keywords]single-layer reticulated shell;initial imperfection;geometrically nonlinear;stability analysis【中图分类号1TU312【文献标志码】A【文章编号】1007-9467(2019)08-0008-04【DOI】ki.gcjsysj.2019.08.0031引言近年来,大跨度空间结构发展非常迅猛,应用范围日益扩大。
midasGEN 对单层网壳非线性分析
midasGEN网壳稳定分析过程算例
根据《空间网格结构技术规程》(JG17-2010)一下规定:
需要计算网壳的安全系数>4.2
以下分别为midasGEN和sap2000进行单层网壳稳定性分析步骤
1、工程介绍:
直径D=32m,矢高f=4.5m单层网壳,支座约束均为固定铰支座,如下图所示:
恒活荷载见模型中数值。
2、下面先进行第一步------屈曲分析
勾选仅考虑正值是,如果出现负值,说明是反向荷载按照一定倍数施加先破坏,但是常规结构一般都是竖直向下荷载会使结构破坏。
勾选检查斯图姆序列是要把最不利的模态排列在前面。
F5运行
显示最不利节点为264节点,记住这一个节点号。
然后施加初始缺陷
点击根据“初始缺陷更新模型”
一般都是选择第一模态(第一模态屈曲因子最小,也是结构最先屈曲的荷载倍数,个人觉得要是模型第一模态要是出现局部屈曲,需要调整模型直至第一模态为整体屈曲模态)
最大值为D/300(注意单位)
然后update会生成另外一个模型。
在这个模型中,需要添加一个非线性分析工况
先添加一个组合
适用之后就会生成一个D+L工况接下来就是非线性分析
我们选择几何非线性----位移控制法------主节点264方向dz位移不足数量10子步骤内迭代次数10最大控制位移:-350mm(正方向向上,这个位移需要进行反复试验才能使分析收敛,分析结果才会有效)点击确认
然后F5进行分析
窗口显示以下内容,说明已经收敛
通过步骤图表输出位移-----安全系数曲线
K最大值为21.6>4.2满足要求。
MIDAS几何非线性理论知识
MIDAS几何非线性理论知识当结构的变形相对杆件长度已不能忽略时,为了在结构变形后的形状上建立平衡,并考虑初始缺陷对结构屈曲承载力的影响,必须对结构进行基于大挠度理论的非线性屈曲分析。
在midas中可以这样处理:对于索结构或张悬梁结构中,定义的只受拉索单元并不能进行特征值分析,因为其只能定义在几何非线性分析中。
如要进行特征值分析,那么要将只受拉索单元转换为只受拉桁架单元。
先对该结构进行几何非线性,得出自重作用下的初始索力,然后将索单元定义为只受拉桁架单元,将计算所得的索力按初始荷载加到单元中:荷载,>初始荷载,>小位移,>初始单元内力加入张力。
1、问:在MIDAS 中如何计算自重作用下活荷载的稳定系数(屈曲分析安全系数)? 答:稳定分析又叫屈曲分析,所谓的荷载安全系数(临界荷载系数)均是对应于某种荷载工况或荷载组合的。
例如:当有自重W 和集中活荷载P 作用时,屈曲分析结果临界荷载系数为10 的话,表示在10*(W+P)大小的荷载作用下结构可能发生屈曲。
但这也许并不是我们想要的结果。
我们想知道的是在自重(或自重+二期恒载)存在的情况下,多大的活荷载作用下会发生失稳,即想知道W+Scale*P 中的Scale 值。
我们推荐下列反复计算的方法。
步骤一:先按W+P 计算屈曲分析,如果得到临街荷载系数S1。
步骤二:按W+S1*P 计算屈曲,得临界荷载系数S2。
步骤二:按W+S1*S2*P 计算屈曲,得临界荷载系数S3。
重复上述步骤,直到临街荷载系数接近于1.0,此时的S1*S2*S3*Sn 即为活荷载的最终临界荷载系数。
(参见下图)midas官方网站的说话,供大家参考:考虑几何非线性同时进行稳定分析可以实现。
方法如下:1、将进行稳定分析所用荷载定义在一个荷载工况下;2、定义非线性分析控制,选择几何非线性,在非线性分析荷载工况中添加此荷载工况,并对其定义加载步骤;3、分析;4、查看结果中的阶段步骤时程图表,查找变形发生突变的位置点,及加载系数,即可推知发生失稳的极限荷载。
midas材料非线性分析
midas材料非线性分析AnalyiforCivilStructuremidaCivilmidaCivilAnalyiforCivilStructuremidaCivilmidaCivilAnalyiforCivilStructuremidaCivil篇二:MIDAS非线性边界分析概要此例题将介绍利用MIDAS/Gen做边界非线性分析的整个过程,以及查看分析结果的方法。
此例题的步骤如下:1.隔震器算例简介2.设定操作环境及定义材料和截面3.用建模助手建立模型4.建立框架柱5.楼层复制及生成层数据6.定义边界条件7.输入楼面荷载8.定义结构类型9.定义质量10.输入时程分析数据11.运行时程分析12.时程分析结果13.阻尼器算例简要分析14.定义阻尼器特性值15.查看阻尼器算例时程分析结果1.简要基本数据如下:轴网尺寸:见平面图柱:600某600梁:250某600混凝土:C30层高:一~五层:3.0m地震波:ElCentro设防烈度:7o分析时间:20秒图1.分析模型注:也可以通过程序右下角随时更改单位。
2.设定操作环境及定义材料和截面在建立模型之前先设定环境及定义材料和截面1.主菜单选择文件>新项目2.主菜单选择文件>保存:输入文件名并保存3.主菜单选择工具>单位体系:长度m,力kN图2.定义单位体系4.主菜单选择模型>材料和截面特性>材料:添加:定义C30混凝土材料号:1名称:C30规范:GB(RC)混凝土:C30材料类型:各向同性5.主菜单选择模型>材料和截面特性>截面:添加:定义梁、柱截面尺寸图3定义材料图4定义梁、柱截面3.用建模助手建立模型主菜单选择文件>新项目主菜单选择模型>结构建模助手>框架:输入:添加某坐标,距离6,重复4;添加z坐标,距离6,重复1;距离3,重复1;距离6,重复1编辑:Beta角,90度;材料,C30;截面,250某600;生成框架;插入:插入点,0,0,0;Alpha,-90度图5建立框架4.建立框架柱生成框架柱的步骤如下:主菜单选择模型>单元>扩展:扩展类型:节点——线单元单元类型:梁单元材料:C30注:此处柱子高度-3,负号代截面:600某600输入柱子高度:dz=-3在模型窗口中选择生成柱的节点Z轴负表沿向。
关于用Midas-Gen对单层球壳屈曲分析的方法
57科技创新导报 Science and Technology Innovation Herald 工 业 技 术沈阳沈北新区市民活动中心单层球壳,直径为80m、矢高为68米的单层短程线型球,杆件采用圆钢管,主要规格为圆管Φ159×5,Φ180×6,Φ219×8,Φ245×12,Φ299×14。
材料弹性模量,剪切模量,网壳仅承受竖向和水平荷载,制作情况为周边铰接,网壳恒荷载为:1kN,风荷载为:3kN,杆件均采用梁单元。
第一步:建立模型短程线球面网壳是由正20面体在球面上划分网格,每一个平面为正三角形,把球面划分为20个等边球面三角形。
在实际工程中,正20面体的边长太大,需要再划分。
再划分后杆件的长度都有微小差异。
本文主要对每边划分成了12份。
该结构建模型采用软件autoCAD。
第二步:定义杆件将CAD建完的模型导入midas软件,将杆件定义截面、材质。
关于用Mi das -Ge n 对单层球壳屈曲分析的方法任怀丽(哈尔滨工业大学建筑设计研究院钢结构分院 哈尔滨 150090)摘 要:随着现代科技的发展,对于计算机软件的应用越来越多,甚至可以说是计算机软件在人们工作中是必不可少的工具。
对于我们建筑行业也不例外,计算机软件在不断的更新发展,现在钢结构设计人员除了使用3d3s,sap,Ansys等软件外,用midas软件的人们也越来越多了。
本文将用Midas-Gen对单层球壳屈曲分析过程进行介绍。
现以直径为80米、矢高为68米的单层短程线型球为例进行介绍。
(网壳结构的稳定性是单层网壳结构设计中的关键问题。
)关键词:单层球面网壳 屈曲分析 稳定中图分类号:TP31文献标识码:A 文章编号:1674-098X(2011)08(b)-0057-01第三步:添加荷载荷载均为集中荷载:恒荷载为1kN;风荷载为3k N 。
第四步:计算分析添加荷载组合,进行分析。
MIDAS几何非线性理论知识
MIDAS⼏何⾮线性理论知识当结构的变形相对杆件长度已不能忽略时,为了在结构变形后的形状上建⽴平衡,并考虑初始缺陷对结构屈曲承载⼒的影响,必须对结构进⾏基于⼤挠度理论的⾮线性屈曲分析。
在midas中可以这样处理:对于索结构或张悬梁结构中,定义的只受拉索单元并不能进⾏特征值分析,因为其只能定义在⼏何⾮线性分析中。
如要进⾏特征值分析,那么要将只受拉索单元转换为只受拉桁架单元。
先对该结构进⾏⼏何⾮线性,得出⾃重作⽤下的初始索⼒,然后将索单元定义为只受拉桁架单元,将计算所得的索⼒按初始荷载加到单元中:荷载->初始荷载->⼩位移->初始单元内⼒加⼊张⼒。
1、问:在MIDAS 中如何计算⾃重作⽤下活荷载的稳定系数(屈曲分析安全系数)?答:稳定分析⼜叫屈曲分析,所谓的荷载安全系数(临界荷载系数)均是对应于某种荷载⼯况或荷载组合的。
例如:当有⾃重W 和集中活荷载P 作⽤时,屈曲分析结果临界荷载系数为10 的话,表⽰在10*(W+P)⼤⼩的荷载作⽤下结构可能发⽣屈曲。
但这也许并不是我们想要的结果。
我们想知道的是在⾃重(或⾃重+⼆期恒载)存在的情况下,多⼤的活荷载作⽤下会发⽣失稳,即想知道W+Scale*P 中的Scale 值。
我们推荐下列反复计算的⽅法。
步骤⼀:先按W+P 计算屈曲分析,如果得到临街荷载系数S1。
步骤⼆:按W+S1*P 计算屈曲,得临界荷载系数S2。
步骤⼆:按W+S1*S2*P 计算屈曲,得临界荷载系数S3。
重复上述步骤,直到临街荷载系数接近于1.0,此时的S1*S2*S3*Sn 即为活荷载的最终临界荷载系数。
(参见下图)midas官⽅⽹站的说话,供⼤家参考:考虑⼏何⾮线性同时进⾏稳定分析可以实现。
⽅法如下:1、将进⾏稳定分析所⽤荷载定义在⼀个荷载⼯况下;2、定义⾮线性分析控制,选择⼏何⾮线性,在⾮线性分析荷载⼯况中添加此荷载⼯况,并对其定义加载步骤;3、分析;4、查看结果中的阶段步骤时程图表,查找变形发⽣突变的位置点,及加载系数,即可推知发⽣失稳的极限荷载。
midasGen-边界非线性分析
例题边界非线性分析2 例题五.边界非线性分析概要此例题将介绍利用midas Gen进行边界非线性分析的整个过程,以及查看分析结果的方法。
此例题的步骤如下:1.简介2.设定操作环境及定义材料和截面3.用建模助手建立模型4.建立框架柱5.楼层复制及生成层数据6.输入楼面荷载7.定义边界条件8.定义结构类型9.定义质量10.输入时程分析数据11.运行时程分析12.时程分析结果13.阻尼器算例简介14.定义阻尼器特性值15.查看阻尼器算例时程分析结果例题边界非线性分析1.简介本例题介midas Gen进行边界非线性分析的方法。
通过两个例题模型来分别说明midas Gen在进行有隔震器和阻尼器的结构的时程分析过程及结果。
(本例题数据仅供参考)图1 分析模型基本数据如下:轴网尺寸:X方向(4@6),Y方向(6,3,6),单位:m柱:600mm×600mm梁:250mm×600mm混凝土:C30层高:一~五层,3.0m地震波:EI Centro设防烈度:7°分析时间:20s3例题边界非线性分析42.设定操作环境及定义材料和截面在建立模型之前先设定环境及定义材料和截面。
1.主菜单选择文件>新项目2.主菜单选择文件>保存:输入文件名并保存3.主菜单选择工具>设置>单位体系:长度 m,力 kN图2 定义单位体系4.主菜单选择特性>材料>材料特性值添加:定义C30混凝土材料号:1 名称:C30 规范:GB10(RC)混凝土:C30 材料类型:各向同性阻尼比:0.055.主菜单选择特性>截面>截面特性值添加:定义梁、柱截面尺寸注:也可以通过程序右下角随时更改单位。
例题 边界非线性分析5图3 定义材料图4 定义截面例题边界非线性分析63.用模助手建立模型主菜单选择模型>建模助手>基本结构>框架输入:添加x左边,距离6,重复4;添加z左边,距离6,重复1;距离3,重复1;距离6,重复1 编辑:Beta角,90度;材料,C30;截面,250×600,;生成框架;插入:点(0,0,0);Alpha,-90度。
MIDAS边界非线性分析
北京迈达斯技术有限公司2008年5月根据我国规范提出的结构抗震设计中“小震不坏、中震可修、大震不倒”三个设防水准,以及弹性阶段承载力设计和弹塑性阶段变形验算的两阶段设计理论,进入到大震状态(罕遇地震)是允许结构部分构件出现塑性发展的,并且需要程序能够进行一定深度的弹塑性分析并给出相关的效应结果。
此外,目前很多实际工程中已经开始使用隔振器、阻尼器等复杂的保护装置,这些装置一般需要使用边界非线性连接单元去模拟,而线性时程分析不能够考虑非线性连接单元的非线性属性。
综上所述,特定工程需要进行相关条件下结构的非线性动力分析,也就要求程序能够完成这一分析。
一、MIDAS/CIVIL 非线性类型在使用MIDAS/CIVIL 进行非线性时程分析之前需要明确一个概念,即程序中可以考虑结构非线性属性的范围。
目前MIDAS/CIVIL 程序可以考虑的非线性属性根据性质大致分为四个类型:几何非线性、材料非线性、连接单元的非线性和边界非线性,这些非线性也基本涵盖了结构分析所需要的几种非线性类型。
但要注意的是,并不是所有的非线性时程分析类型都可以考虑这些非线性类型,不同的时程类型所能够考虑的非线性的类型是不一样的。
几何非线性主要是指:∆-P 效应、几何大变形分析等与结构几何性质相关的非线性。
传统意义上的线性静力和动力分析都是以结构小变形假设为基础的,这对于一般结构体系是适用的,但是对于大跨度或柔性结构体系一般就不适用了。
几何非线性的主要任务是在这一假设与实际结构相差比较大的情况下,考虑真实大变形(主要是大位移)的情况。
材料非线性主要是指构成结构材料属性所带来的结构非线性,对于土木工程结构常用的钢材和混凝土材料,其应力-应变在一定应力范围内的表现基本是线性的,这是我们常规结构分析和设计的基础,而当应力超过这一范围后则会表现出很强的非线性属性,因此结构材料承载力特性总体上就会表现为非线性属性,结构材料的非线性还包括有些时候在结构分析中考虑的单拉或单压结构材料单元。
midas gen单层网壳屈曲分析
单层网壳屈曲分析
培训目的
---熟悉单层网壳特征值屈曲的操作过程 ---熟悉单层网壳特征值屈曲的操作过程 ---了解单层网壳初始缺陷的施加方法 ---了解单层网壳初始缺陷的施加方法 ---掌握单层网壳非线性屈曲的分析方法 ---掌握单层网壳非线性屈曲的分析方法
操作步骤
---打开建好的网壳模型, ---打开建好的网壳模型,建立荷载工况并施加荷载 打开建好的网壳模型 ---定义屈曲分析控制数据 ---定义屈曲分析控制数据 ---运行分析得到结构基本屈曲模态的屈曲向量 ---运行分析得到结构基本屈曲模态的屈曲向量 ---按规范规定考虑初始缺陷调整模型 ---按规范规定考虑初始缺陷调整模型 ---给模型施加实际荷载 ---给模型施加实际荷载 ---查看屈曲模态和临界荷载系数 ---查看屈曲模态和临界荷载系数
图3. 输入自重
注:若模型需要考虑初始缺 陷,那么施加恒荷 载和活荷载中不应 采用虚面得方式施 加!
图4. 屋顶荷载的施加
3、定义屈曲分析控制数据 、
定义屈曲分析控制数据, 定义屈曲分析控制数据, 运行屈曲分析, 运行屈曲分析, 找到网壳结构最 低阶屈曲模态 第一屈曲模态) (第一屈曲模态) 的屈曲向量, 的屈曲向量,通 过该模态的屈曲 向量考虑结构的 初始缺陷
注:在极限状态设计法中屋 面活荷载与普通层 的活荷载的荷载分 项系数不同, 项系数不同,故荷 载工况也需单独输 入。
图5.屈曲分析控制数据
二、考虑初始缺陷
1、屈曲向量表格 、
① ② 主菜单>结果>分析结果表格>屈曲模态 勾选模态1如图6 点击功能列表按鼠标右键(图7 ),可以选择表格数据的小数位数
图6. 分屈曲模态表格始缺陷 、
基于midas Gen的单层球形网壳结构分析及应用研究
基于midas Gen的单层球形网壳结构分析及应用研究
王亮;聂向东;崔传峰;秦兴宽;梁思浩
【期刊名称】《建筑技术》
【年(卷),期】2024(55)5
【摘要】基于midas Gen软件模型,在不同应力比下对实体工程金属网壳模型进行分析,获得了工程实体金属网壳模型静力荷载下铸钢铰支座反力、罕遇地震时铸钢铰支座反力、静力荷载销轴反力、罕遇地震销轴反力分布情况。
将设计模型得到的实体工程金属网壳荷载–位移曲线与有关设计模型网壳荷载–位移曲线进行对比,通过实体工程金属网壳模型设计实例,分析了不同应力下的杆件位移情况,从而证明了实体工程金属网壳模型设计的准确性及合理性。
【总页数】5页(P583-587)
【作者】王亮;聂向东;崔传峰;秦兴宽;梁思浩
【作者单位】中国建筑第八工程局有限公司南方公司
【正文语种】中文
【中图分类】TU0
【相关文献】
1.单层网壳与双层网壳钢结构冷却塔结构分析及比较
2.单层球形网壳结构的分析及实验研究
3.关于用Midas-Gen对单层球壳屈曲分析的方法
4.基于MIDAS的单层网壳稳定性分析
5.基于MIDAS GEN的单层球面网壳稳定性分析
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
midasGEN网壳稳定分析过程算例
根据《空间网格结构技术规程》(JG17-2010)一下规定:
需要计算网壳的安全系数> 4.2
以下分别为midasGEN和sap2000进行单层网壳稳定性分析步骤
1、工程介绍:
直径D=32m,矢高f=4.5m单层网壳,支座约束均为固定铰支座,如下图所示:
恒活荷载见模型中数值。
2、下面先进行第一步------屈曲分析
勾选仅考虑正值是,如果出现负值,说明是反向荷载按照一定倍数施加先破坏,但是常规结构一般都是竖直向下荷载会使结构破坏。
勾选检查斯图姆序列是要把最不利的模态排列在前面。
F5运行
显示最不利节点为264节点,记住这一个节点号。
然后施加初始缺陷
点击根据“初始缺陷更新模型”
一般都是选择第一模态(第一模态屈曲因子最小,也是结构最先屈曲的荷载倍数,个人觉得要是模型第一模态要是出现局部屈曲,需要调整模型直至第一模态为整体屈曲模态)
最大值为D/300(注意单位)
然后update会生成另外一个模型。
在这个模型中,需要添加一个非线性分析工况
先添加一个组合
适用之后就会生成一个D+L工况接下来就是非线性分析
我们选择几何非线性----位移控制法------主节点264方向dz位移不足数量10子步骤内迭代次数10最大控制位移:-350mm(正方向向上,这个位移需要进行反复试验才能使分
析收敛,分析结果才会有效)点击确认
然后F5进行分析
窗口显示以下内容,说明已经收敛
通过步骤图表输出位移-----安全系数曲线
K最大值为21.6>4.2满足要求。