必修4+三角函数同步练习答案(适合考试)

合集下载

新人教A版高中数学必修四三角函数两角和同步练习习题(含答案解析)

新人教A版高中数学必修四三角函数两角和同步练习习题(含答案解析)

三角函数练习10 两角和与差的正弦、余弦、正切11.已知sin αcos60°-cos αsin60°=21,α∈(0,2π),则α=( ) A.2πB. 67πC. 6π或23πD. 2π或67π2.tan11.5°+tan33.5°+tan11.5°·tan33.5°=( ) A.1B.-1C.2D.-23.若y =3sin θ-4cos θ=-5cos(θ+φ),tan φ=( ) A.34B.43 C.-34 D.-43 4.△ABC 中,已知sinAsinB+sinAcosB+cosAsinB+cosAcosB =2,则△ABC 是( ) A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形5.若tan α,tan β是方程x 2-px+q =0的两根,cot α,cot β是方程x 2-rx+s =0的两根,则下列成立的式子有几个( )(1)ps =r (2)qs =1 (3)qr =p (4)r(1-q)=p(s-1) A.1B.2C.3D.46.xx xx cos sin cos sin -+=( )A.tan(x-4π)B.tan(x+4π)C.cot(x-4π)D.cot(x+4π)7.设α,β∈(-2π,2π),tan α,tan β是一元二次方程x 2+33x+4=0的两个根,则α+β为( )A. 3πB. 34πC.- 32π或3π D.-32π8.︒︒-︒20cos 20sin 10cos 2=( )A. 3B.1C.23D.-23 9.tanAtanB =tanA+tanB+1,则cos(A+B)的值是( ) A.-22 B.22 C.±22D.±21 10.已知tanx+tany =25,cotx+coty =30,则tan(x+y)=( )A.120B.150C.180D.200二、填空题11.已知α、β均为锐角,tan α=43,cos(α+β)=-1411,则cos β= . 12.已知sin αsin β=1则cos(α+β)的值为 . 13.求值:︒︒-︒︒︒+︒8sin 30sin 22cos 8sin 30cos 22sin = .14.已知sin(α+β)=21,sin(α-β)=31,则)tan(tan tan tan )tan(2βαββαβα+--+= . 15.若α+β=3π,给如下四个式子: (1) 3 (tan αtan β+α)+tan α+tan β=3 (1+α)(2) 3 (tan αtan β+α)+tan α+tan β=33(1+α) (3) 3(tan αtan β+α)+tan α+tan β=33(1-α) (4) EMBED Equation.3 (tan αtan β+α)+tan α+tan β)= EMBED Equation.3(3+π-3β)其中正确的是 .16.命题甲:3sin ααcos β(α+β)=sin(2α+β)是命题乙:tan(α+β)=2tan α成立的是 条件.三、解答题17.已知 EMBED Equation.3= EMBED Equation.3,求cosx 的值.18.矩形ABCD 中AB =a,BC =2a ,在BC 上取一点P ,使AB+BP =PD ,求tan ∠APD 的值.19.设cos(α- EMBED Equation.3 )=- EMBED Equation.3,sin( EMBED Equation.3-β)= EMBED Equation.3 ,且 EMBED Equation.3 <α<π,0<β< EMBED Equation.3,求cos(α+ β)的值.参考答案一、1.D 2.A 3.B 4.C 5.D 6.C 7.D 8.A 9.C 10.B 一、11. EMBED Equation.3 12.-1 13. EMBED Equation.314.5 15.(1)(4) 16.必要不充分三、17.解:原式变形为 EMBED Equation.3+ EMBED Equation.3= EMBED Equation.3EMBED Equation.3 EMBED Equation.3 EMBED Equation.3 EMBED Equation.3EMBED Equation.33cosx =3cos2x-sin2xEMBED Equation.3 3cosx =4cos2x-1 EMBED Equation.34cos2x-3cosx-1=0EMBED Equation.3cosx =1或- EMBED Equation.318.解:设BP =x 则PD =a+x PC =2a-x在Rt △PCD 中,(a+x)2=(2a-x)2+a2 EMBED Equation.3 x = EMBED Equation.3a EMBEDEquation.3BP = EMBED Equation.3a PC = EMBED Equation.3a设∠APB =α ∠DPC =β,则tan α= EMBED Equation.3 ,tan β= EMBED Equation.3∴tan ∠APD =-tan(α+β)=- EMBED Equation.3 =18又∵cos(α- EMBED Equation.3 )=- EMBED Equation.3 sin( EMBED Equation.3-β)= EMBED Equation.3∴sin(α-2β)=954 cos(2α-β)=35∴cos(2α+2β)=cos [(α-2β)-( 2α-β)]=-91·35 + 32·954=-2757∴cos(α+β)=2cos 22βα+-1=2×(-2757)2-1=-729239。

必修四第一章 三角函数 精选练习题(有答案和解析)

必修四第一章 三角函数 精选练习题(有答案和解析)

必修四第一章 三角函数精选练习题一、选择题1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30°B [因为-510°=-360°×2+210°,因此与-510°终边相同的角是210°.] 2.cos 420°的值为( ) A .12 B .-12C .32D .-32A [cos 420°=cos(360°+60°)=cos 60°=12,故选A.]3.已知角θ的终边上一点P (a ,-1)(a ≠0),且tan θ=-a ,则sin θ的值是( ) A .±22 B .-22 C .22 D .-12B [由题意得tan θ=-1a =-a , 所以a 2=1, 所以sin θ=-1a 2+(-1)2=-22.] 4.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是( ) A .1 B .2 C .3 D .4C [设扇形的半径为r ,中心角为α,根据扇形面积公式S =12lr 得6=12×6×r ,所以r =2, 所以α=l r =62=3.]5.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( ) A .23 B .13 C .-23 D .-13 C [∵已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,∴1+2sin θcos θ=169,∴2sin θcos θ=79,故sin θ-cos θ=-(sin θ-cos θ)2 =-1-2sin θ·cos θ =-23,故选C.]6.函数y =tan(sin x )的值域是( ) A .⎣⎢⎡⎦⎥⎤-π4,π4B .⎣⎢⎡⎦⎥⎤-22,22C .[]-tan 1,tan 1D .[]-1,1C [sin x ∈[-1,1],又-π2<-1<1<π2,且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,所以y min =tan(-1)=-tan 1,y max =tan 1.]7.将函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝ ⎛⎭⎪⎫12x -π2C .y =sin ⎝ ⎛⎭⎪⎫12x -π6D .y =sin ⎝ ⎛⎭⎪⎫2x -π6 C [函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x -π3,再将所得的图象向左平移π3个单位,得到函数y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π3-π3=sin ⎝ ⎛⎭⎪⎫12x -π6.] 8.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间是( ) A .⎣⎢⎡⎦⎥⎤0,π8B .⎣⎢⎡⎦⎥⎤π8,π2C .⎣⎢⎡⎦⎥⎤0,3π8D .⎣⎢⎡⎦⎥⎤3π8,π2C [令2k π-π2≤2x -π4≤2k π+π2(k ∈Z )得k π-π8≤x ≤k π+3π8(k ∈Z ),k =0时,x∈⎣⎢⎡⎦⎥⎤-π8,3π8,又x ∈⎣⎢⎡⎦⎥⎤0,π2, ∴x ∈⎣⎢⎡⎦⎥⎤0,3π8,故选C.]9.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4D .y =2sin ⎝ ⎛⎭⎪⎫2x -3π4C [由图可知A =2,4⎝ ⎛⎭⎪⎫π8+π8=2πω得ω=2,且2×⎝ ⎛⎭⎪⎫-π8+φ=π2+2k π(k ∈Z )∴φ=2k π+3π4(k ∈Z ), 又∵|φ|<π, ∴φ=3π4,故选C.]10.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )C [∵P 0(2,-2),∴∠P 0Ox =π4.按逆时针转时间t 后得 ∠POP 0=t ,∠POx =t -π4. 此时P 点纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,∴d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4.当t =0时,d =2,排除A ,D ; 当t =π4时,d =0,排除B.]11.设α是第三象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z . ∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2是第二象限的角.]12.化简1+2sin (π-2)·cos (π-2)得( )A .sin 2+cos 2B .cos 2-sin 2C .sin 2-cos 2D .±cos 2-sin 2 C [1+2sin (π-2)·cos (π-2) =1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.]13.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称; ③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3D .f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6B [依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.]14.已知函数f (x )=-2tan(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π16=-2,则f (x )的一个单调递减区间是( )A .⎝ ⎛⎭⎪⎫3π16,11π16B .⎝ ⎛⎭⎪⎫π16,9π16C .⎝ ⎛⎭⎪⎫-3π16,5π16D .⎝ ⎛⎭⎪⎫π16,5π16 A [由f ⎝ ⎛⎭⎪⎫π16=-2得-2tan ⎝ ⎛⎭⎪⎫π8+φ=-2,所以tan ⎝ ⎛⎭⎪⎫π8+φ=1,又|φ|<π,所以φ=π8,f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π8, 令k π-π2<2x +π8<k π+π2,k ∈Z 得 k π2-5π16<x <k π2+3π16,k ∈Z .可得f (x )的单调递减区间是⎝ ⎛⎭⎪⎫k π2-5π16,k π2+3π16,k ∈Z ,令k =1,可得f (x )的一个单调递减区间是⎝ ⎛⎭⎪⎫3π16,11π16.]二、填空题15.对于锐角α,若tan α=34,则cos 2α+2sin 2α=________. 6425 [由题意可得:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.]16.已知sin α=13,且α是第二象限角,那么cos(3π-α)的值为________. 223[cos(3π-α)=-cos α=-(-1-sin 2α)=1-⎝ ⎛⎭⎪⎫132=223.] 17.函数y =3-tan x 的定义域是________.⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ) [作出三角数线如图,由函数可知3-tan x ≥0中tan x ≤3,而3对应角为π3,由图中阴影部分可得定义域为⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ).]18.函数y =tan ⎝ ⎛⎭⎪⎫2x -π4的定义域为________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π8+k π2,k ∈Z[2x -π4≠π2+k π,即x ≠3π8+k π2,k ∈Z .]19.若函数y =sin(ωx +φ)(ω>0)的部分图象如图所示,则ω=________.4 [观察图象可知函数y =sin(ωx +φ)的半个周期为π4, 所以2πω=π2,ω=4.]20.已知函数f (x )=sin(ωx +φ)(ω>0),若将f (x )的图象向左平移π3个单位长度所得的图象与将f (x )的图象向右平移π6个单位长度所得的图象重合,则ω的最小值为________.4 [由条件可知,图象变换后的解析式分别为y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ3+φ和y =sin ⎝ ⎛⎭⎪⎫ωx -ωπ6+φ,由于两图象重合,所以ωπ3+φ=-ωπ6+φ+2k π(k ∈Z ). 即ω=4k (k ∈Z ),由ω>0,∴ωmin =4.]21.一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则C -1S 的最大值为________.4 [由已知可得弧长l =2r ,周长C =4r ,面积S =12×lr =r 2,∴C -1S =4r -1r 2=-1r 2+4r =-⎝ ⎛⎭⎪⎫1r -22+4,故C -1S 的最大值为4.] 22.已知角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值是________.5π3 [角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32, tan α=-3212=-3,且α为第四象限角,所以角α的最小正值是5π3.]23.函数y =2+cos x2-cos x(x ∈R )的最大值为________.3 [由题意有y =42-cos x-1,因为-1≤cos x ≤1,所以1≤2-cos x ≤3,则43≤42-cos x ≤4,由此可得13≤y ≤3,于是函数y =2+cos x 2-cos x (x ∈R )的最大值为3.]24.对于函数f (x )=⎩⎨⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2k π(k ∈Z )对称; ④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22. 其中正确命题的序号是________. ③④ [作出函数f (x )的图象如图所示:由图象可知f (x )为周期函数,T =2π,①错误;当x =2k π+π或x =2k π+3π2时,取最小值-1,故②错误;x =π4+2k π(k ∈Z )和x =5π4+2k π(k ∈Z )都是该图象的对称轴,故③正确; 当2k π<x <π2+2k π(k ∈Z )时,f (x )图象在x 轴上方且f (x )max =22. 故0<f (x )≤22.故④正确.]三、解答题25.已知sin(π-α)·cos(-8π-α)=60169,且α∈⎝ ⎛⎭⎪⎫π4,π2,求sin α与cos α的值.[解] 由已知条件可得sin αcos α=60169,∴(sin α+cos α)2=1+2sin αcos α=1+120169=289169, (sin α-cos α)2=1-2sin αcos α=1-120169=49169. ∵x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α>cos α, ∴⎩⎪⎨⎪⎧sin α+cos α=1713,sin α-cos α=713,解方程组得sin α=1213,cos α=513.26.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值; (3)已知角α终边上一点P 到x 轴的距离与到y 轴的距离之比为3∶4,求2sin α+cos α的值.[解] (1)∵α终边过点P (4,-3),∴r =|OP |=5,x =4,y =-3, ∴sin α=y r =-35,cos α=x r =45, ∴2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.(2)∵α终边过点P (4a ,-3a )(a ≠0), ∴r =|OP |=5|a |,x =4a ,y =-3a . 当a >0时,r =5a ,sin α=y r =-35, cos α=x r =45, ∴2sin α+cos α=-25;当a <0时,r =-5a ,∴sin α=y r =35, cos α=x r =-45, ∴2sin α+cos α=25.综上,2sin α+cos α=-25或25. (3)当点P 在第一象限时,sin α=35, cos α=45,2sin α+cos α=2; 当点P 在第二象限时,sin α=35, cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35, cos α=-45,2sin α+cos α=-2; 当点P 在第四象限时,sin α=-35, cos α=45,2sin α+cos α=-25.27.是否存在角α,β,α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.[解] 假设存在角α,β满足条件,则{sin α=2sin β, ①3cos α=2cos β, ② 由①2+②2得sin 2α+3cos 2α=2. ∴cos 2α=12, ∴cos α=22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4.当α=π4时,代入②得:cos β=32, ∵0<β<π,∴β=π6,代入①可知成立; 当α=-π4时,代入②得cos β=32,∵0<β<π,∴β=π6,此时代入①式不成立,故舍去. ∴存在α=π4,β=π6满足条件.28.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. (1)求函数f (x )的最大值,并求取得最大值时x 的值; (2)求函数f (x )的单调递增区间.[解] (1)当2x +π3=2k π+π2,则x =k π+π12(k ∈Z )时,f (x )max =3. (2)当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12时,函数f (x )为增函数.故函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). 29.如图是函数y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π2)的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的? [解] (1)由图象知A =-12-⎝ ⎛⎭⎪⎫-322=12,k =-12+⎝ ⎛⎭⎪⎫-322=-1,T =2×⎝ ⎛⎭⎪⎫2π3-π6=π,∴ω=2πT =2.∴y =12sin(2x +φ)-1. 当x =π6,2×π6+φ=π2,∴φ=π6. ∴所求函数解析式为y =12sin ⎝ ⎛⎭⎪⎫2x +π6-1.(2)把y =sin x 向左平移π6个单位得到y =sin ⎝ ⎛⎭⎪⎫x +π6,然后纵坐标保持不变、横坐标缩短为原来的12倍,得到y =sin ⎝ ⎛⎭⎪⎫2x +π6,再横坐标保持不变,纵坐标变为原来的12倍,得到y =12sin ⎝ ⎛⎭⎪⎫2x +π6,最后把函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6的图象向下平移1个单位,得到y=12sin ⎝ ⎛⎭⎪⎫2x +π6-1的图象.30.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(1)求f (x )的解析式;(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),然后再将所得的图象向右平移π3个单位,得到函数g (x )的图象,写出函数g (x )的解析式,并用五点作图的方法画出g (x )在长度为一个周期的闭区间上的图象.[解] (1)由f (x )=A sin(ωx +φ)在y 轴上的截距为1,最大值为2,得1=2sin φ,所以sin φ=12.又|φ|<π2,所以φ=π6.由题意易知T =2[(x 0+3π)-x 0]=6π, 所以ω=2πT =13, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π6.(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),得到y =2sin ⎝ ⎛⎭⎪⎫x +π6的图象;再把所得图象向右平移π3个单位,得到g (x )=2sin ⎝ ⎛⎭⎪⎫x -π3+π6=2sin ⎝ ⎛⎭⎪⎫x -π6的图象.列表:。

(word完整版)高中数学必修4三角函数综合测试题和答案解析详细讲解

(word完整版)高中数学必修4三角函数综合测试题和答案解析详细讲解

必修4三角函数综合测试题及答案详解一、选择题1 •下列说法中,正确的是()A. 第二象限的角是钝角B. 第三象限的角必大于第二象限的角C. —831 °是第二象限角D. —95° 20', 984° 40', 264° 40'是终边相同的角a n2.若点(a, 9)在函数y = 3x的图象上,贝U tang的值为()A. 0B. -3 C . 1 D. 33g3 .若|cos g | = cos g , |tan g | = —tan B ,则㊁的终边在()A. 第一、三象限B. 第二、四象限C•第一、三象限或x轴上D.第二、四象限或x轴上4 .如果函数f(x)= sin(n x + B )(0< B <2n )的最小正周期是T,且当x = 2时取得最大值,那么()A. T= 2, n 十g= ~ B . T= 1, g = nC. T= 2,n g = n D . T= 1, g=5 .若sin—x =—于,且n<xv2n,则x 等于()4 A.§n7 B・6nc.)小11 D.§n6 .已知a是实数,而函数f (x)= 1 + asin ax的图象不可能是()7.将函数y = sin x的图象向左平移© (0 < © <2n )个单位长度后,得到yn=sin x-~6的图象,贝U ©=( )7n 11 n8.若tan 9 = 2,则2sin B —cosBsin 9 + 2cos 9的值为(A. 0B. 1D.5tan x9.函数f(x)= 的奇偶性是()1 + cosx ' /A. 奇函数B. 偶函数C•既是奇函数又是偶函数D.既不是奇函数也不是偶函数10.函数f(x) = x —cosx 在(0,+x)内()A.没有零点B•有且仅有一个零点C. 有且仅有两个零点D. 有无穷多个零点11 _ cosA = n 贝U igsin A 的值是( B. m- n 1D ・2(m- n)n12. 函数f (x) = 3sin 2x -空 的图象为C,n 5 n② 函数f (x )在区间—12,刁2内是增函数;n③由y 二3sin2x 的图象向右平移 ㊁个单位长度可以得到图象C,其中正确命 题的个数是( )A. 0B. 1C. 2D. 3二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)- n 1 n ,13. ___________________________________________________ 已知 sin a +~2 = 3, a € —-^, 0,则 tan a = ________________________________ .14. 函数y = 3cosx(0 <x <n )的图象与直线y = — 3及y 轴围成的图形的面 积为 ________ .15 .已知函数f (x) = sin( 3x + © )( 3 >0)的图象如图所示,贝U 3 =16. 给出下列命题:① 函数y = cos / +专 是奇函数;11.已知 A 为锐角,lg(1 + cosA) = m ig 1A. RH-①图象C 关于直线x =11n 12 对称;②存在实数x,使sinx + cosx = 2;③若a , B是第一象限角且a <B ,贝U tan a <tan B ;④ X = nn 是函数y = sin 2X + 5n 的一条对称轴;nn⑤ 函数y = sin 2X + -3的图象关于点12, 0成中心对称.其中正确命题的序号为 __________ . 三、解答题17. (10 分)已知方程 sin( a -3n ) = 2cos( a -4n ),n 32sinn —a 3n+ 5cos 2 n — a的18.a — sin(12 分)在^ ABC 中, sin A + cosA = _22求tan A 的值.19. (12 分)已知f(x)= sin 2X+6 + 2, x€ R.(1) 求函数f(x)的最小正周期;(2) 求函数f(x)的单调减区间;(3) 函数f (x)的图象可以由函数y= sin2x(x € R的图象经过怎样变换得到?n20. (12 分)已知函数y = Asi n( ”+© )( A>0, co >0)的图象过点P^, 0 ,n图象与P点最近的一个最高点坐标为nn, 5 .(1)求函数解析式;⑵求函数的最大值,并写出相应的x的值;(3)求使y W0时,x的取值范围.21. (12 分)已知cos nn —a = 2cos 3 n+B , 3sin —an=—• 2s in — + B,且0< a <n, 0< B <n,求a , B 的值.22. (12 分)已知函数f(x) = x2+ 2xtan 9 —1, x € [—1, 3],其中n n-T , y.n(1)当9 =——时,求函数的最大值和最小值;⑵求9的取值范围,使y = f(x)在区间[—1, .3]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).必修4三角函数综合测试题答案可知 COS aM 0. sin a + 5cos a•原式—一2C0S a + Sin a—2cos a + 5cos a 3COS a——2cos a — 2cos a — — 4COS a — x/2 18 .解 I sin A + cosA =-^,①1两边平方,得2sinAcosA = — 2,n 从而知 cosAvO,'./ A € —, n••• si nA — cosA = ,: sin A + cosA 2— 4s in AcosA 由①②,得 sinA -cosA — — 6+,2,sin A厂、 选择题1. D;2.;3. D;4. A ;5.6.D 7. D ;8.C ; 9.A ; 10.11. D; 12. C二_ 填空题13. —2.2 1 4. 33n; 15.2;三、 解答题17. 解 T sin( a — 3 n ) — 2cos( a — 4• — sin(3 n 一 a ) — 2cos(4 n —a•• — sin( n- —a)—2cos( — a ).①④3 4. BB 16.n )• • sin a —•tanA二cosA—2- 3.小n21.解cos ——a = 2cos 3n+ B ,即sin a = 2sin B ①3sin 3n— a=—2sin ,即,3cos a = 2cos B ②22 2 2n19. 解(1)T=_y 二n.n n 3 n(2)由2k n + — <2x + — <2 k 冗+, k € Z,n , 2 n ,得k n + x < k n + , k € Z.6 3所以所求的单调减区间为, n , 2 nk 冗+石,k n+~^(k€ Z).n3⑶把y二sin2x的图象上所有点向左平移厉个单位,再向上平移3个单位,即得n3函数f (x) = sin 2x +石+ 2的图象.T n n n20. 解(1)由题意知4="3—12="4,••• T=n.2 n . n /口n —"•①=~T = 2,由3 • 12+ © = 0,得© = —"6,又A= 5,n•y = 5sin 2x —百.n n⑵函数的最大值为5,此时2x —石=2k n+ y(k € Z).・ n .•x = k n+"3(k € Z).n ■n . .(3) - 5sin 2x —< 0,・• 2k n — n<2 x —<2 k n( k € Z)., 5 n , n ,• k n-在 < x< k n+/(k € Z).9=-_6 时, 2 2 ; 3 , 3 2 4 =x -亍-1= x -§ - v x € [ - 1, .3],二当 x = f 时,f(x)的最小值为一3 ,⑵f (x) = (x + tan 9 )2-1-tan 2 9是关于x 的二次函数.它的图象的对称轴为x =—tan 9 .又 v a € (0 ,n ) , — a n、 =N , 或 a 3 =—n 4n ■n f, 当 a ==时,COS a 4€ (0 ,n ), 5 n ,宀「 :B = -y.综上, ~6,或a 3n , 5 n B =〒 22. f(x) 当x =- 1时,f(x)的最大值为 2,3 3 . ¥,COS ⑵ cos B COS a =当v y= f(x)在区间[-1, 3]上是单调函数,/• —tan 9 <—1,或一tan 9 > _ 3,即卩tan 9 > 1,或tan 9<-,3.nnn,二9的取值范围是n n 2,一3。

必修4第一章三角函数基础训练及答案

必修4第一章三角函数基础训练及答案

(数学4必修)第一章 三角函数()一、选择题1. 设α角属于第二象限,且2cos 2cos αα-=,则2α角属于( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限2. 给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tan cos 107sin πππ. 其中符号为负的有( ) A . ① B . ② C . ③ D . ④3. 02120sin 等于( )A . 23±B . 23C . 23-D . 21 4. 已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于( ) A . 43- B . 34- C . 43 D . 34 5. 若α是第四象限的角,则πα-是( ) A . 第一象限的角 B . 第二象限的角 C . 第三象限的角 D . 第四象限的角6. 4tan 3cos 2sin 的值( )A . 小于0B . 大于0C . 等于0D . 不存在二、填空题1. 设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________.3. 若角α与角β的终边关于y 轴对称,则α与β的关系是___________.4. 设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .5. 与02002-终边相同的最小正角是_______________. 三、解答题1. 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值.2. 已知2tan =x ,求xx x x sin cos sin cos -+的值.3. 化简:)sin()360cos()810tan()450tan(1)900tan()540sin(00000x x x x x x --⋅--⋅--4. 已知)1,2(,cos sin ≠≤=+m m m x x 且, 求(1)x x 33cos sin +;(2)x x 44cos sin +的值.数学4(必修)第一章 三角函数(上)参考答案一、选择题1. C 22,(),,(),2422k k k Z k k k Z ππαππαππππ+<<+∈+<<+∈当2,()k n n Z =∈时,2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限; 而cos coscos 0222ααα=-⇒≤,2α∴在第三象限; 2. C 00sin(1000)sin 800-=>;000cos(2200)cos(40)cos 400-=-=>tan(10)tan(310)0π-=-<;77sincos sin 7171010,sin 0,tan 01717109tan tan 99πππππππ-=>< 3. B0sin1202== 4. A 43sin 4sin ,cos ,tan 55cos 3ααααα==-==- 5. Cπααπ-=-+,若α是第四象限的角,则α-是第一象限的角,再逆时针旋转0180 6.A 32,sin 20;3,cos30;4,tan 40;sin 2cos3tan 40222ππππππ<<><<<<<>< 二、填空题1. 四、三、二 当θ是第二象限角时,sin 0,cos 0θθ><;当θ是第三象限角时,sin 0,cos 0θθ<<;当θ是第四象限角时,sin 0,cos 0θθ<>;2. ② 1717sin 0,cos 01818MP OM ππ=>=< 3. 2k αβππ+=+ α与βπ+关于x 轴对称4. 2 21(82)4,440,2,4,22l S r r r r r l rα=-=-+===== 5. 0158 0000020022160158,(21603606)-=-+=⨯三、解答题1. 解:21tan 31,2tan k k αα⋅=-=∴=±,而παπ273<<,则1tan 2,tan k αα+==得tan 1α=,则sin cos 2αα==-,cos sin αα∴+= 2. 解:cos sin 1tan 123cos sin 1tan 12x x x x x x +++===---- 3. 解:原式=000sin(180)1cos tan()tan(90)tan(90)sin()x x x x x x -⋅⋅---- sin 1tan tan ()sin tan tan x x x x x x=⋅⋅-=- 4. 解:由sin cos ,x x m +=得212sin cos ,x x m +=即21sin cos ,2m x x -= (1)233313sin cos (sin cos )(1sin cos )(1)22m m m x x x x x x m --+=+-=-=(2)24244222121sin cos 12sin cos 12()22m m m x x x x --+++=-=-=。

北师大版高中数学必修4第一章三角函数训练题(含详细答案)

北师大版高中数学必修4第一章三角函数训练题(含详细答案)

高中数学《必修四》三角函数训练题一、选择题(本大题共10小题,每小题3分,共30分)1.命题p :α是第二象限角,命题q:α是钝角,则p 是q 的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分又非必要条件2.若角α满足sin αcos α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.集合M ={x |x =42ππ±k ,k ∈Z }与N ={x |x =4πk ,k ∈Z }之间的关系是( ) A.M N B.N MC.M =ND.M ∩N=∅4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是( )A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)5.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于( )A.52B.-52C.51D.-51 6.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于( )A.-23 B.23 C.21 D.±237.已知sin α>sin β,那么下列命题成立的是( )A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2B.1sin 2C.2sin1D.sin2 9.如果sin x +cos x =51,且0<x <π,那么cot x 的值是( )A.-34 B.-34或-43 C.-43 D.34或-43 10.已知①1+cos α-sin β+sin αsin β=0,②1-cos α-cos β+sin αcos β=0.则sinα的值为( )A.3101- B.351- C.212- D.221-二、填空题(本大题共4小题,每小题4分,共16分)11.tan300°+cot765°的值是_______.12.已知tan α=3,则sin 2α-3sin αcos α+4cos 2α的值是______.13.若扇形的中心角为3π,则扇形的内切圆的面积与扇形面积之比为______. 14.若θ满足cos θ>-21,则角θ的取值集合是______.三、解答题(本题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=42x , 求sin α与tan α的值.17.(本小题满分12分)已知sin α是方程5x 2-7x -6=0的根,求)(cos )2cos()2cos()2(tan )23sin()23sin(22απαπαπαπαππα-⋅+⋅--⋅-⋅--的值.已知sin α+cos α=-553,且|sin α|>|cos α|,求cos 3α-sin 3α的值.19.(本小题满分12分) 已知sin(5π-α)=2 cos(27π+β)和3cos(-α)=- 2cos(π+β), 且0<α<π,0<β<π,求α和β的值.三角函数训练题(2)参考答案:1.解析:“钝角”用集合表示为{α|90°<α<180°},令集合为A ;“第二象限角”用集合表示为{α|k ²360°+90°<α<k ²360°+180°,k ∈Z },令集合为B .显然A B . 答案:B 2.解析:由sin αcos α<0知sin α与cos α异号;当cos α-sin α<0,知sin α>cos α.故sin α>0,cos α<0.∴α在第二象限.答案:B3.解法一:通过对k 的取值,找出M 与N 中角x 的所有的终边进行判断.解法二:∵M ={x |x =4π²(2k ±1),k ∈Z },而2k ±1为奇数,∴M N . 答案:A4.解析:787°=2³360°+67°,-957°=-3³360°+123°. -289°=-1³360°+71°,1711°=4³360°+271°. ∴在第一象限的角是(1)、(3). 答案:C5.解析:∵r=a a a 5)4()3(22-=+-.α为第四象限.∴53cos ,54sin ==-==r x r y αα.故sin α+2cos α=52. 答案:A6.解析:∵cos(π+α)=-21,∴cos α=21,又∵23π<α<2π. ∴sin α=-23cos 12-=-α.故sin(2π-α)=-sin α=23. 答案:B7.答案:D8.解析:∵圆的半径r =1sin 2,α=2 ∴弧度l=r ²α=1sin 2. 答案:B9.分析:若把sin x 、cos x 看成两个未知数,仅有sin x +cos x =51是不够的,还要利用sin 2x +cos 2x =1这一恒等式.解析:∵0<x <π,且2sin x cos x =(sin x +cos x )2-1=-2524. ∴cos x <0.故sin x -cos x =57cos sin 4)cos (sin 2=-+x x x x ,结合sin x +cos x =51,可得sin x =54,cos x =-53,故co t x =-43. 答案:C10.分析:已知条件复杂,但所求很简单,由方程思想,只要由①、②中消去β即可.解析:由已知可得:sin β=ααsin 1cos 1-+,cos β=ααsin 1cos 1--.以上两式平方相加得:2(1+cos 2α)=1-2sin α+sin 2α. 即:3sin 2α-2sin α-3=0.故sin α=3101-或sin α=3101+ (舍). 答案:A11.解析:原式=tan(360°-60°)+cot (2³360°+45°)=-tan60°+cot45°=1-3.答案:1-312.分析:将条件式化为含sin α和cos α的式子,或者将待求式化为仅含tan α的式子.解法一:由tan α=3得sin α=3cos α,∴1-cos 2α=9cos 2α.∴cos 2α=101. 故原式=(1-cos 2α)-9cos 2α+4cos 2α=1-6cos 2α=52. 解法二:∵sin 2α+cos 2α=1.∴原式=52194991tan 4tan 3tan cos sin cos 4cos sin 3sin 222222=++-=++-=++-ααααααααα 答案:5213.分析:扇形的内切圆是指与扇形的两条半径及弧均相切的圆. 解析:设扇形的圆半径为R ,其内切圆的半径为r ,则由扇形中心角为3π知:2r +r =R ,即R =3r .∴S 扇=21αR 2=6πR 2,S 圆=9πR 2.故S 扇∶S 圆=23. 答案:23 14.分析:对于简单的三角不等式,用三角函数线写出它们的解集,是一种直观有效的方法.其过程是:一定终边,二定区域;三写表达式.解析:先作出余弦线OM =-21,过M 作垂直于x 轴的直线交单位圆于P 1、P 2两点,则OP 1、OP 2是cos θ=21时θ的终边.要cos θ>-21,M 点该沿x 轴向哪个方向移动?这是确定区域的关键.当M 点向右移动最后到达单位圆与x 轴正向的交点时,OP 1、OP 2也随之运动,它们扫过的区域就是角θ终边所在区域.从而可写出角θ的集合是{θ|2k π-32π<θ<2k π+32π,k ∈Z }. 答案:{θ|2k π-32π<θ<2k π+32π,k ∈Z }15.解:设扇形的中心角为α,半径为r ,面积为S ,弧长为l,则:l+2r =C ,即l=C -2r .∴16)4()2(212122C C r r r C lr S +--=⋅-==.故当r =4C 时,S max =162C ,此时:α=.2422=-=-=CCC rrC r l∴当α=2时,S max =162C .16.解:由三角函数的定义得:cos α=52+x x ,又cos α=42x , ∴34252±=⇒=+x x x x . 由已知可得:x <0,∴x =-3.故cos α=-46,sin α=410,ta n α=-315. 17.解:∵sin α是方程5x 2-7x -6=0的根. ∴sin α=-53或sin α=2(舍).故sin 2α=259,cos 2α=⇒2516tan 2α=169. ∴原式=169tan cot )sin (sin tan )cos (cos 222==⋅-⋅⋅-⋅ααααααα.18.分析:对于sin α+cos α,sin α-cos α及sin αcos α三个式子,只要已知其中一个就可以求出另外两个,因此本题可先求出sin αcos α,进而求出sin α-cos α,最后得到所求值.解:∵sin α+cos α=-553, ∴两边平方得:1+2sin αcos α=⇒59sin αcos α=52. 故(cos α-sin α)2=1-2sin αcos α=51.由sin α+cos α<0及sin αcos α>0知sin α<0,cos α<0. 又∵|sin α|>|cos α|,∴-sin α>-cos αcos α-sin α>0. ∴cos α-sin α=55. 因此,cos 3α-sin 3α=(cos α-sin α)(1+sin αcos α)=55³(1+52)=2557.评注:本题也可将已知式与sin 2α+cos 2α=1联解,分别求出sin α与cos α的值,然后再代入计算.19.分析:运用诱导公式、同角三角函数的关系及消元法.在三角关系式中,一般都是利用平方关系进行消元.解:由已知得sin α=2sin β ①3cos α=2cos β ②由①2+②2得sin 2α+3cos 2α=2.即:sin 2α+3(1-sin 2α)=2. ∴sin 2α=⇒21sin α=±22,由于0<α<π,所以sin α=22. 故α=4π或43π.当α=4π时,cos β=23,又0<β<π,∴β=6π, 当α=43π时,cos β=-23,又0<β<π,∴β=65π.综上可得:α=4π,β=6π或α=43π,β=65π.。

版高一必修四三角函数练习题及答案

版高一必修四三角函数练习题及答案

三角函数练习题1.sin(1560o)的值为()1B 1C33A222 22.假如cos(A)1,那么sin(A)=()221B 1C33A222 23.函数ycos(2x)的最小正周期是()5A B 5C2D5 254.轴截面是等边三角形的圆锥的侧面睁开图的中心角是(A B2C43335.已知tan100o k,则sin80o的值等于()AkB C1k21k2k21k2Dk6.若sincos2,则tancot的值为()12C27.以下四个函数中,既是(0,)上的增函数,又是以为周期的偶函数的是()2ysinx B|sinx|C ycosx Dy|cosx|8 .已知tan1,tan2,ctan3,则()Aabc Bcba Cbca Dbac9.已知sin()1)的值为(),则cos(633B 1C1D1A233 210.是第二象限角,且知足cossin2(sincos)2,那么()2222是第一象限角B是第二象限角是第三象限角D 可能是第一象限角,也可能是第三象限角[5,3]11.已知f(x)是以为周期的偶函数,且x[0,]时,f(x)1sinx,则当x22时,f(x)等于()A1sinxB1sinxC 1sinxD 1 sinx12. 函数 f(x)Msin( x)(0) 在 区间 [a,b] 上 是 增 函 数 , 且f (a)M,f(b)M ,则g(x) Mcos(x)在[a,b]上()A 是增函数B 是减函数二、填空题(每题 4分,计C 能够获得最大值16分)MD 能够获得最小值M13.函数 y tan(x )的定义域为___________。

14.函数y3 12)(x[0,2])的递加区间__________23 15.对于y3sin(2x)有以下命题, 4① 若f(x1) f(x2) 0 ,则 x 1 x 2是的整数倍,②函数分析式可改为ycos3(2x),③函数图象对于x对称,④函数图象对于点( ,0) 对称。

必修四第一章三角函数精选练习题(有答案和解析)

必修四第一章三角函数精选练习题(有答案和解析)

4 ∏1.必修四第一章 、选择题 在0°〜3600的范围内, 330° B . 210° 2. [因为一510°= — 3600 cos 420o 的值为(1 1 32 B. — 2 c. ^2^ [cos 420°= cos(360 3.已知角θ的终边上一点 A .±孑 B . — 2 C . 亠 —1 B [由题意得tan θ==a 所以a 2= 1, 二角函数精选练习题与一510°终边相同的角是()C . 150°D . 30°× 2 + 210° ,因此与一510°终边相同的角是 210 .]5.已知 A .彳Si n + 60o ) = cos 60 1=2故选A.] P(a , — 1)(a ≠ 0),且 tan θ= — a,则 Sin θ的值是( 2 c 1 -Jt- D 一 _2 D . 2 =—a , 所以 Sin θ= a 2+(- 1) 2= 4.一个扇形的弧长与面积的数值都是 6,这个扇形中心角的弧度数是( )A . 1B . 2C . 3D . 4 C [设扇形的半径为r ,中心角为α 1 1 根据扇形面积公式S =步 得6 = 2× 6× r ,所以u 2,6= 3.]所以 CO= = ^ =θ÷ cos θ= 3C .Si n 二 1 + 2sinθosθ∈ 0, R ,则 Sin θ— cos θ 的值为( )FD ∙θ+CoS16θ=~9, 7.∙∙ 2si n fcos ="9,θ=3 θ∈ 0,故 Sin (一 cos A —p (Sin θ-COS θ) 2 =—1 — 2sin θ ∙ cos θ-^32故选 C .]6. C .函数y =tan (sin x )的值域是(∏ π 4,4 [—tan 1, tan 1]√2 √2 2, 2 [T ,1]∏ ∏ ∏ ∏[sin x ∈ [ — 1, 1],又一^<— 1v 1v"2,且 y =tan X 在一㊁,㊁上是增函数,所以 y min = tan(— 1)= — tan 1, y max =tan1.]7.将函数y = Sin x —3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 1A . y = sin^x才个单位,得到的图象对应的解析式为()1 _nB . y = Sin *—"21 πy= Sin 2x —6C BC CD CSI n T tA B Tt CD88 2C T t ∈ 8JlTO 卫I 03π 8' 2 冗π 0 3π°,8 1 π 2x —6 •] ∏ ∏8.函数f(x) = sin 2x — 4在0, 2上的单调递增区间是( )C πA . y = 2sin 2x — 4Sin 2x —π,再将所得的图象向左平移 ∏个单位,得到函数y = Sin g X ^n— ∏ = 冗2 ?3π,又 x ∈ 0,3 π t ..∙∙∙x ∈ 0, §,故选 C.]9.已知函数y= ASin(ωχ+ φ)(A>0, ω>0, |φ IV π的一段图象如图所示,贝U函数的解析式为() L t∏ ∏且 2× — 8 + φp + 2k ∏K ∈Z)∙ φ = 2k ∏+ 34(k ∈ Z),又 τ l φ<π3 π∙ φ =3π故选 C.]10.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为PoC 2,—. 2),角速度为1,那么点P 到X 轴的距离d 关于时间t 的函数图象大致为( )C ∏D . y = Sin 2x —百 ∏ [函数y = Sin x — 3的图象上所有点的横坐标伸长到原来的 2倍可得y = C ∏ 亠 C 3 π y = 2sin 2x —玄或 y =2sin 2x +43πy= 2sin 2x+~^ C 3π y=2sin2x —匸∏, ∏ 2 ∏口 C[由图可知A = 2, 4θ+8 =匚得ω= 2,C [ V P o ( .2, — 2),[令 2k ∏- 2≤ 2x —∏≤2k ∏+ ∏(k∏ 3 ∏∈ Z)得 kn — 8≤x ≤k ∏+^8(k ∈ Z), k = 0 时,XIwYZπ∠ P 0°xp按逆时针转时间t后得∏∠ PoP o= t, ∠ PoX= t — 4.∏此时P点纵坐标为2sin t—4 ,π.∙∙ d = 2 Sin t—4 .当t= 0时,d= 2,排除A , D;当t= ∏⅛, d= 0,排除 B.]11•设α是第三象限的角,且CoSa = —cog,则2的终边所在的象限是( ) A•第一象限B•第二象限C第三象限D•第四象限B [ V a是第三象限的角,3π.∙∙ ∏+ 2k∏v aV~2 + 2k∏, k∈ Z.π , a 3 π I•石+ k∏<2<才 + k∏, k∈ Z..∙∙ a在第二或第四象限.a a又V COS^ = —cos^,•COSa < o.•a是第二象限的角.]12.化简,1+ 2sin (π- 2)∙COS ∏-2)得()A . Sin 2+ COS 2B . COS 2— Sin 2C. Sin 2 —cos 2 D . ± cos 2— Sin 2C 1 + 2sin ( ∏—2) ∙COS ∏-2)=1 + 2sin 2 •(—cos 2)= (Sin 2—cos 2) 2,πV2< 2< ∏ • Sin 2— cos 2>0.•原式=Sin 2—cos 2.]13.同时具有下列性质的函数可以是( )①对任意x∈ R, f(x+ ∏ = f(x)恒成立;②图象关于直线X=3对称;∏ ∏③在—吞3上是增函数.X πA.f(x) = sin ㊁ + 6C ∏B.f(x) = Sin 2x—石C ∏C.f(x) = cos 2x+~3πD . f(x) = cos 2x—石B [依题意知,满足条件的函数的周期是∏图象以直线x=∏为对称轴,且在∏ π—6, 3上是增函数.对于A选项,函数周期为4π,因此A选项不符合;对于C选∏ ∏ ∏项,f^3 =—1,但该函数在—石,勺上不是增函数,因此C选项不符合;对于D选∏ ∏项,f 3 ≠± 1,即函数图象不以直线X =3为对称轴,因此D 选项不符合.综上可知, 应选B.]π14. 已知函数f(x)= — 2tan(2x + φ)(∣ φv∏ )若f 花=—2,贝U f(x)的一个单调递 减区间是()3π 11 π π 9 π 3 π 5 ππ 5 πA . 16,76 B. 16,16 C . —16,16 D . 16,16, ∏ ,r ∏A [由 fψ6 = — 2 得—2tan § + φ= — 2, ∏所以 tan 8 + Φ = 1,又 I ΦV ∏ ∏ ∏所以 Φ= 8,f(x) = — 2tan 2x + g , 令 kn — ∏V 2x+ ∏V k∏+ ~,k∈ Z 得k∏ 5 π k∏ 3 π 厂 2—16VX V 刁+16, k ∈L可得f(x)的单调递减区间是k ∏— 1n ,k ∏+1∏,k ∈ Z ,3 π 11 π令k = 1,可得f(x)的一个单调递减区间是36,,16π.]二、填空题315.__________________________________________________ 对于锐角a ,若tan ■ 则 cos 2 α+ 2sin 2 a= _______________________________________ .2642COS a+ 4sin OCOS a 1 + 4tan a 64[由题意可得:COS 2 a+ 2sin 2a= 2 2 = 厂=.]25cos 2 a+ sιn 2 a 1 + tan 2 a 25 J116. 已知sin a=空,且a 是第二象限角,那么cos(3 — a 的值为仃.函数y=U — tan X 的定义域是 ____________ .冗冗tk n — 2, k ∏+ 3 (k ∈ Z)[作出三角数线如图,由函数可知.3 — tan x ≥ 0中tan X ≤√3,而√3对应角为才 由图中阴影部分可得定义域为 kn —才,k ∏+扌(k ∈Z).]∏18. ____________________________________ 函数y = tan 2x —N 的定义域为 . 3 π k nπ π 3 π k nX x ≠+ ~2 , k ∈ Z[2x — 4≠2+ kn, 即 x ≠^8 +^2, k ∈ Z.]19. 若函数y = Sin(ωX φ(ω>0)的部分图象如图所示,贝U ω= ___________ .∕Γ‰I i4 [观察图象可知[cos(3 — a = — COs a= — 2晋] (—∖,i 1 —sin 2a =n 函数y= Sin(ω汁φ的半个周期为-,2n n _所以—=^2, ω= 4.]ω 24 [由条件可知,图象变换后的解析式分别为 y = Sin ω汁^^3 + Φ和y =Sin ωχ- 6 + φ ,由于两图象重合,所以 3 + Φ=— 6 + Φ+ 2k ∏ K ∈ Z).即 ω= 4K(K∈ Z),由 ω>0, ∙°∙ ωmin = 4.]C — 121. 一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则可的最大 值为 4 1 2 + cos X≤ 2— COS x ≤ 4,由此可得3≤ y ≤ 3,于是函数y = 2 — cos χ(x ∈ R)的最大值为3.]Sin X , Sin x ≤ COS X ,24•对于函数f(x)=给出下列四个命题:cos X , Sin x > cos X ,① 该函数是以π为最小正周期的周期函数;② 当且仅当X = π+ K ∏K ∈ Z)时,该函数取得最小值—1;5 ∏③ 该函数的图象关于X =^4 + 2K π K ∈ Z)对称;4 [由已知可得弧长 1I = 2r ,周长 C = 4r ,面积 S =㊁× Ir = r 2, C — 1 4r — 1 S = r 2 =④当且仅当 2K∏VXv ∏+ 2K ∏K ∈ Z)时,Ovf(x)≤今. -和 4 =- 1-22+ 4, 其中正确命题的序号是22.已知角 α终边C — 1故S 的最大值为4.]③④[作出函数f(x)的图象如图所示:点P 的坐标为sin"5?,, coS 5Π ,贝蛹的最小正值是5?[角α终边上一点P 的坐标为sin^5∏t , coS 5∏ ,即1 ,—弩, -逅―2tan α= —1 — =— 3 ,且α为第四象限角,2所以角α的最小正值是竽]由图象可知f(x)为周期函数,T = 2 ∏①错误;当X = 2K π+ π或X = 2K π+时, 取最小值—1 ,故②错误;x =∏+ 2K ∏K ∈ Z)和X =5∏+ 2K ∏K ∈ Z)都是该图象的对称轴,故③正确; ∏当 2k∏vXV - + 2K∏K∈ Z)时,∏20.已知函数f(x)= Sin(ω汁φ)( ω> 0),若将f(x)的图象向左平移空个单位长度所 得的图象与将f(x)的2+ cos X23•函数y= ------- (x ∈ R)的最大值为2— cos X43 [由题意有 y =2 — cos X — 1,因为一1 ≤ cos x ≤ 1,所以 1 ≤ 2 — cos2 .• r = |OP|= 5, X = 4, y = — 3,⑵ V α终边过点 P(4a , — 3a)(a ≠ 0),2• ∙ 2si n α+ cos α= 5. 宀 2、2 综上,2sin α+ cos a=—5或5.4 0 •丄 2Cos a= — 5, 2Sin a+ CoS a= 5;xf 2故0v f(x)≤三.故④正确.] • Sin α= y=3X 4 5, cos a=^r = 5 3 4 • 2s in a+ cos a= 2× —"5 +^5 = 25.25.已知 sin( —α ∙ C o —(8 冗一 α=π,求 Sin α与 cos α 的值.∙°∙ r = IoPl = 5∣a∣, X= 4a , y = — 3a.[解]由已知条件可得Sin CCOS a= 169,当 a>0 时,r = 5a , Si ny OC== r 3 5,2^120 289• ∙ (Sin a+ cos 0) = 1 + 2sin OCOS O= 1 +169=169,X 4cos a= r = 5 2 , C ∙. 120 49 (Sin a — cos 0 = 1 — 2s In CCOS a= 1 —169=169"∙ 2si n α+ cosα=25;π Vx∈ 4,当 a<0 时,r = — 5a , ∙ SinO=∙ Sin α> COS α, X 4cos a= ~r = — 512 5解方程组得 Sin C= 13, cos a= 13.⑶当点P 在第一象限时,Sin3α= 5,26. (1)已知角α的终边经过点P(4,— 3),求2sin α+ cos α的值; (2)已知角α的终边经过点P(4a ,— 3a)(a ≠0),求2sin α+ cos α的值; 4 .cos α= 5, 2sin α+ cos α= 2;(3)已知角α终边上一点P 到X 轴的距离与到y 轴的距离之比为3 : 4,求2sin α当点P 在第二象限时,Sin α= 35,f(x)图象在X 轴上方且f(x) max三、解答题17Sin α+ cos a=ZSin a — cos a=+ cos α的值.[解](1) V α终边过点P(4, — 3),4 c • 2COS α=匚,2sin (Ur COS C=^-.5 527.是否存在角a, β, α∈ —2’ 2 , β∈ (0, ∏)使等式Sin(3 —O =2COS~2—β , J3cos(- O = -ΛJ2COS(r β同时成立?若存在,求出a, β的值;若不存在,请说明理由.[解]假设存在角a , β满足条件,则{Sin a= 12sin β , ① 3cos a= . 2cos β , ②由①2+②2得sin2 a+ 3CO$ a= 2.π28.已知函数f(x)= 2sin 2x+^ + 1.(1)求函数f(x)的最大值,并求取得最大值时X的值;(2)求函数f(x)的单调递增区间.[解](1)当2x+ 3= 2k∏+∏,则X= k∏+ 1∏(k∈ Z)时,f(x)max= 3.⑵当2k∏-∏≤2X+3≤2k∏+ ∏,即k∏-5∏≤ x≤ k∏+ W时,函数f(x)为增函数.5∏∏故函数f(x)的单调递增区间是kn—p , k∏+p(k∈ Z).当点P在第二象限时,Sin C=3 5,COS (O=4.,2sin Crr COS U=- 2;5当点P在第四象限时,Sin U=35,'T Ov β< ∏∏∙∙∙β= 6 ,此时代入①式不成立,故舍去..∙.存在a=4 β=^6满足条件.• COS a= 2y.29.如图是函数y= ASin(ωχ+φ+ k(A>0 ,∏ω>0 , φ |<"2)的一段图象.∙.∙a∈当O= 4时,代入②得:COS β= ,T Ov β< ∏∏.∙. β= 6,代入①可知成立;当a=- π∏时,代入②得COS β=^23 , (1)求此函数解析式;(2)分析一下该函数是如何通过y= Sin X变换得来的?(1)由图象知A=.∙∙ coS2O= 2'1 3—2+ — 2k= 2 =_ 1,2 π πT=2× J-6 二∏2π 1.∙. ω= T = 2..∙∙ y=qsin(2x+ φ— 1.π π ππ当X= 6, 2× 6+ φ= 2,■ ■ φ = 6*1 ∏•••所求函数解析式为y=^sin 2x+6 —1.∏ ∏(2)把y= Sin X向左平移舌个单位得到y= sin x+石,然后纵坐标保持不变、横坐标缩短为原来的2倍,得到y=sin 2x+ 6 ,再横坐标保持不变,纵坐标变为原来的舟倍,1 ∏ 1 ∏得到y=^sin 2x+ 6 ,最后把函数y=2sin 2x+6的图象向下平移1个单位,得到y1 ∏=2sin 2x+6 — 1 的图象•∏30.已知函数f(x) = ASi n( ωX (D A> 0, ω> 0, ∣φ IV㊁的图象在y轴上的截距为1,它在y轴右侧的第一个最大值点和最小值点分别为(x o, 2)和(x o+ 3∏ —2).(1)求f(x)的解析式;1⑵将f(x)的图象上的所有点的横坐标缩短到原来的3倍(纵坐标不变),然后再将所得的图象向右平移∏个单位,得到函数g(x)的图象,写出函数g(x)的解析式,并用五点作图的方法画出g(x)在长度为一个周期的闭区间上的图象.[解](1)由f(x) = ASin(ω汁D)在y轴上的截距为1,最大值为2,得1 = 2sin D,1 ∏ ∏ 所以Sin D = 2.又IDVq,所以由题意易知T = 2[(x o + 3 π —x o] = 6 ∏2 ∏ 1 所以ω=亍=3X ∏ 所以f(x) = 2sin 3+6 .⑵将f(x)的图象上的所有点的横坐标缩短到原来的£倍(纵坐标不变),得到y=∏ ∏ ∏ ∏2sin x+6的图象;再把所得图象向右平移§个单位,得到g(x) = 2sin x—§+石=冗2sin x—石的图象.列表:描点画图:。

新人教A版高中数学必修四任间角三角函数同步练习习题(含答案解析)

新人教A版高中数学必修四任间角三角函数同步练习习题(含答案解析)

若x x sin |sin |+|cos |cos x x +x x tan |tan |=-1,则角x 一定不是( )A .第四象限角B .第三象限角C .第二象限角D .第一象限角解:D 由于第一象限中sin ,cos ,tan θθθ都为正,故x x sin |sin |+|cos |cos x x +x x tan |tan |=3 所以角x 一定不是每一象限的角sin2·cos3·tan4的值( )A .小于0B .大于0C .等于0D .不存在 解:B 15718,211436,317154,422912''''=∴===所以sin 20,cos30,tan 40><>,故sin 2cos3tan 40⋅⋅>若θ是第二象限角,则( )A .sin2θ>0 B .cos 2θ<0 C .tan 2θ>0 D .cot 2θ<0 解:C22,2422k k k k ππθππθππππ+<<+∴+<<+即得2θ是第一象限或第三象限的角 故选C已知角α的终边在直线y =-3x 上,则10sin α+3sec α=_________.解: 0 在角α的终边上任取一点(,3)(0)x x x -≠,则|r x == 所以310sin 10y r α===,sec rx α=== 故 10sin 3sec 10(010sin 3sec 10010αααα+=+=+=⋅-=或 若tan 0,cos 0αα><,则α是A .第一象限角B .第二象限角C .第三象限角D .第四象限角解: A ,tan 0cos 0ααααα><由得角在第一、三象限由得角在第一、四象限,故角在第一象限。

高一必修四三角函数练习题及答案

高一必修四三角函数练习题及答案

三角函数练习题1. sin( 1560o ) 的值为()1 B1 C3 D3A22221 ,那么 sin(A) =( )2. 假如 cos(A)221 B1C3 D3A22223. 函数 y cos(2x) 的最小正周期是 ()35AB5 C 2D5254. 轴截面是等边三角形的圆锥的侧面睁开图的中心角是 ()AB2 CD4 3335. 已知 tan100 ok ,则 sin80 o 的值等于 ()AkBk C1 k 21 k 21 k21 k2kDk6. 若 sin cos 2 ,则 tancot的值为 ( )A1B 2C 1D27. 以下四个函数中,既是(0, ) 上的增函数,又是以为周期的偶函数的是()2A y sin xBy |sin x |Cy cos xDy | cos x |8. 已知 atan1 b tan2 , c tan3,则 (),A a b cB c b aC b c aD b a c9. 已知 sin()1 ,则 cos() 的值为()3631B1 C1D1A2 33210. 是第二象限角,且知足cos sin(sincos )2 ,那么 ()2 22 2 2A是第一象限角 B 是第二象限角C是第三象限角D 可能是第一象限角,也可能是第三象限角[5,3]11. 已知 f ( x) 是以为周期的偶函数, 且 x[0, ] 时, f ( x) 1 sin x ,则当 x22 时, f (x) 等于 ()A 1 sin xB 1 sin xC 1 sin xD 1 sin x12. 函 数f (x) M sin( x)(0)在 区 间 [ a, b]上是增函数,且f (a) M , f (b)M ,则 g (x)M cos( x ) 在 [a,b] 上 ( )A 是增函数 B是减函数 C能够获得最大值M D能够获得最小值M二、填空题(每题 4 分,计16 分)13. 函数 ytan(x) 的定义域为 ___________ 。

高一数学必修4三角函数练习题及答案

高一数学必修4三角函数练习题及答案

高一必修4三角函数练习题一、选择题(每题4分,计48分) 1.sin(1560)-的值为( )A 12- B 12 C - D 2.如果1cos()2A π+=-,那么sin()2A π+=( )A 12- B 12 C D 3.函数2cos()35y x π=-的最小正周期是 ( ) A 5π B 52π C 2π D 5π4.轴截面是等边三角形的圆锥的侧面展开图的中心角是 ( )A3π B 23π C π D 43π 5.已知tan100k =,则sin80的值等于 ( )AB CD6.若sin cos αα+=tan cot αα+的值为 ( )A 1-B 2C 1D 2-7.下列四个函数中,既是(0,)2π上的增函数,又是以π为周期的偶函数的是( )A sin y x =B |sin |y x =C cos y x =D |cos |y x =8.已知tan1a =,tan 2b =,tan3c =,则 ( )A a b c <<B c b a <<C b c a <<D b a c << 9.已知1sin()63πα+=,则cos()3πα-的值为( )A 12B 12- C 13 D 13-10.θ是第二象限角,且满足cossin22θθ-=2θ是 ( )象限角 A 第一 B 第二 C 第三 D 可能是第一,也可能是第三 11.已知()f x 是以π为周期的偶函数,且[0,]2x π∈时,()1sin f x x =-,则当5[,3]2x ππ∈时,()f x 等于 ( )A 1sin x +B 1sin x -C 1sin x --D 1sin x -+12.函数)0)(sin()(>+=ωϕωx M x f 在区间],[b a 上是增函数,且M b f M a f =-=)(,)(, 则)cos()(ϕω+=x M x g 在],[b a 上 ( )A 是增函数B 是减函数C 可以取得最大值MD 可以取得最小值M -二、填空题(每题4分,计16分)13.函数tan()3y x π=+的定义域为___________。

苏教版高中数学必修四学同步训练三角函数一Word含答案

苏教版高中数学必修四学同步训练三角函数一Word含答案

1.2.2 同角三角函数关系(一)一、填空题1.若sin α=45,且α是第二象限角,则tan α=______. 2.已知sin α=55,则sin 4α-cos 4α=________. 3.已知α是第二象限角,tan α=-12,则cos α=________. 4.已知sin αcos α=18且π4<α<π2,则cos α-sin α=____. 5.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是______. 6.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ=________. 7.已知sin α+cos α=15,α∈(0,π),则tan α=______. 8.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=________.二、解答题9.已知sin α=m (|m |<1且m ≠0),求tan α的值.10.已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值. (1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.11.已知sin α-cos α=-55,π<α<3π2,求tan α的值. 三、探究与拓展12.已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ).(1)求sin 3θ+cos 3θ的值;(2)求tan θ+1tan θ的值.答案1.-43 2.-35 3.-255 4.-32 5.-13 6.23 7.-43 8.459.解 ∵sin α=m (m ≠0,m ≠±1), ∴cos α=±1-sin 2α=±1-m 2(当α为第一、四象限角时取正号,当α为第二、三象限角时取负号).∴当α为第一、四象限角时,tan α=m 1-m 2; 当α为第二、三象限角时,tan α=-m 1-m 2. 10.解 由已知4sin θ-2cos θ3sin θ+5cos θ=611, ∴4tan θ-23tan θ+5=611. 解得:tan θ=2.(1)原式=5tan 2θ+2tan θ-3=55=1. (2)原式=sin 2θ-4sin θcos θ+3cos 2θ=sin 2θ-4sin θcos θ+3cos 2θsin 2θ+cos 2θ=tan 2θ-4tan θ+31+tan 2θ=-15. 11.解 由⎩⎪⎨⎪⎧sin α-cos α=-55sin 2α+cos 2α=1,消去sin α得 5cos 2α-5cos α-2=0.∴cos α=255或cos α=-55. ∵π<α<3π2,∴cos α<0. ∴cos α=-55,∴sin α=-25 5. ∴tan α=sin αcos α=-255-55=2. 12.解 (1)由根与系数的关系知:sin θ+cos θ=a ,sin θ·cos θ=a .∵(sin θ+cos θ)2=1+2sin θcos θ,∴a 2=1+2a .解得:a =1-2,a =1+2(舍).∴sin 3θ+cos 3θ=(sin θ+cos θ)(sin 2θ-sin θcos θ+cos 2θ)=(sin θ+cos θ)(1-sin θcos θ)=a(1-a)=2-2.(2)tan θ+1tan θ=sin θcos θ+cos θsin θ=sin2θ+cos2θsin θcos θ=1sin θcos θ=1a=11-2=-1- 2.。

高一数学必修4三角函数练习题及答案

高一数学必修4三角函数练习题及答案

高一必修4三角函数练习题一、选择题(每题4分,计48分) 1.sin(1560)- 的值为( )A 12-B 12C 32-D 322.如果1cos()2A π+=-,那么sin()2A π+=( )A 12-B 12C 32-D 323.函数2cos()35y x π=-的最小正周期是 ( )A 5πB 52π C 2π D 5π4.轴截面是等边三角形的圆锥的侧面展开图的中心角是 ( )A3π B 23π C π D 43π 5.已知tan100k = ,则sin80的值等于 ( )A 21k k +B 21k k-+ C 21k k + D 21k k +-6.若sin cos 2αα+=,则tan cot αα+的值为 ( )A 1-B 2C 1D 2-7.下列四个函数中,既是(0,)2π上的增函数,又是以π为周期的偶函数的是( ) A s i n y x = B |sin |y x = C cos y x = D |c o s |y x = 8.已知tan1a =,tan 2b =,tan 3c =,则 ( )A a b c <<B c b a <<C b c a <<D b a c <<9.已知1sin()63πα+=,则cos()3πα-的值为( )A 12B 12- C 13 D 13-10.θ是第二象限角,且满足2cos sin (sin cos )2222θθθθ-=-,那么2θ是 ( )象限角A 第一B 第二C 第三D 可能是第一,也可能是第三11.已知()f x 是以π为周期的偶函数,且[0,]2x π∈时,()1sin f x x =-,则当5[,3]2x ππ∈时,()f x 等于 ( )A 1sin x +B 1sin x -C 1sin x --D 1sin x -+12.函数)0)(sin()(>+=ωϕωx M x f 在区间],[b a 上是增函数,且M b f M a f =-=)(,)(, 则)cos()(ϕω+=x M x g 在],[b a 上 ( )A 是增函数B 是减函数C 可以取得最大值MD 可以取得最小值M -二、填空题(每题4分,计16分) 13.函数tan()3y x π=+的定义域为___________。

必修四三角函数练习题(简单,限时训练,含答案)

必修四三角函数练习题(简单,限时训练,含答案)

3.1任意角、弧度制和任意角的三角函数值时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.已知角α终边上一点的坐标是(3,-4),则sin α=( )A.35 B .-35 C.45 D .-452.圆内一条弦长等于半径,这条弦所对的圆心角为( )A.π6弧度B.π3弧度C.12弧度 D .以上都不对 3.若sin θ>0且sin θcos θ<0,则角θ的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在5.在下列各组角中,终边不相同的是( )A .60°与-300°B .230°与950°C .1050°与-300°D .-1000°与800°6.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( )A .40π cm 2B .80π cm 2C .40 cm 2D .80 cm 2二、填空题(每小题5分,共15分)7.写出-720°到720°之间与-1068°终边相同的角的集合________________.8.已知α的顶点在原点,始边与x 轴非负半轴重合,点P (-4m,3m )(m >0)是α终边上一点,则2sin α+cos α=________.9.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限.三、解答题(共15分)10.设90°<a <180°.角α的终边上一点为P (x ,5),且cos α=24x ,求sin α与tan α的值.3.2同角三角函数及诱导公式时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.cos300°=( )A .-32B .-12 C.12 D.322.已知sin α=35,则sin ⎝⎛⎭⎫π2+α的值为( ) A .±45 B .-45 C.45 D .-353.α是第四象限角,tan α=-34,则sin α=( ) A.35 B .-35 C.45 D .-454.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( )A .1B .2sin 2αC .0D .25.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.356.若sin α+cos α2sin α-cos α=2,则tan α=( ) A .1 B .-1 C.34 D .-43二、填空题(每小题5分,共15分)7.已知tan α=3,则sin α+cos αsin α-2cos α=______.8.cos (-585°)sin495°+sin (-570°)的值是______. 9.若sin θ=-45,tan θ>0,则cos θ=________. 三、解答题(共15分)10.求证:cos (θ+π)·sin 2(θ+3π)tan (π+θ)·cos 3(-π-θ)=tan θ.3.3三角函数的图象与性质时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.函数f (x )=2sin ⎝⎛⎭⎫π2-x 是( )A .最小正周期为2π的奇函 数B .最小正周期为2π的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数2.使cos x =1-m 有意义的m 值为( )A .m ≥0B .m ≤0C .0≤m ≤2D .-2≤m ≤03.函数y =4sin(2x +π)的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线x =π2对称 4.函数y =sin ⎝⎛⎭⎫2x +π3图象的对称轴方程可能是( ) A .x =-π6 B .x =-π12 C .x =π6 D .x =π125.函数y =2-sin x 的最大值及取最大值时x 的值为( )A .y max =3,x =π2B .y max =1,x =π2+2k π(k ∈Z ) C .y max =3,x =-π2+2k π(k ∈Z ) D .y max =3,x =π2+2k π(k ∈Z ) 6.下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°二、填空题(每小题5分,共15分)7.函数y =sin 2x +sin x -1的值域为________.8.设M 和m 分别是函数y =13cos x -1的最大值和最小值,则M +m =________. 9.函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是________. 三、解答题(共15分)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f (x )的单调增区间.3.4函数y =A sin(ωx +φ)的图象时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.函数y =3sin ⎝⎛⎭⎫x +π3的图象的一个对称中心是( ) A .(0,0) B.⎝⎛⎭⎫π3,0 C.⎝⎛⎭⎫-π3,0 D .(3,0) 2.要得到函数y =sin ⎝⎛⎭⎫2x -π4的图象,可以把函数y =sin2x 的图象( ) A .向左平移π8个单位 B .向右平移π8个单位 C .向左平移π4个单位 D .向右平移π4个单位 3.函数y =sin(2x +φ)(0≤φ≤π)是R 上的偶函数,则φ的值是( )A .0 B.π4 C.π2D .π 4.下列函数中,图象的一部分如图J3-4-1的是( )图J3-4-1A .y =sin ⎝⎛⎭⎫x +π6B .y =sin ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫4x -π3 D .y =cos ⎝⎛⎭⎫2x -π6 5.函数y =2sin ⎝⎛⎭⎫3x -π4的图象的两条相邻对称轴之间的距离是( ) A.π3 B.2π3 C .π D.4π36.若函数f (x )=2sin(ωx +φ),x ∈R ⎝⎛⎭⎫其中ω>0,|φ|<π2的最小正周期是π,且f (0)=3,则( ) A .ω=12,φ=π6 B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π3二、填空题(每小题5分,共15分)7.将函数y =sin ⎝⎛⎭⎫x +π3的图象向右平移π6个单位,再向上平移2个单位所得图象对应的函数解析式是________.8.函数f (x )=A sin ⎝⎛⎭⎫ωx +π3(A >0,ω>0)在一个周期内,当x =π12时,函数f (x )取得最大值2,当x =7π12时,函数f (x )取得最小值-2,则函数解析式为________.9.对于函数f (x )=sin ⎝⎛⎭⎫2x +π3,有下列四个结论: ①f (x )的图象关于直线x =π3对称; ②f (x )的图象关于点⎝⎛⎭⎫π4,0对称;③把f (x )的图象向左平移π12个单位,得到一个偶函数的图象; ④f (x )的最小正周期为π,且在⎣⎡⎦⎤0,π6上为增函数. 其中正确命题的序号是________.三、解答题(共15分)10.已知函数y =sin ⎝⎛⎭⎫2x +π4+1. (1)用“五点法”画出函数的草图;(2)函数图象可由y =sin x 的图象怎样变换得到?3.5两角和与差及二倍角的三角函数公式时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.若tan α=3,tan β=43,则tan(α-β)等于( ) A .-3 B .-13 C .3 D.132.下列各式中,值为32的是( ) A .2sin15°cos15° B .cos 215°-sin 215° C .2sin 215° D .sin 215°+cos 215°3.已知sin α=35⎝⎛⎭⎫0<α<π2,则cos ⎝⎛⎭⎫α+π4=( ) A.7 210 B.210 C .-7 210 D .-2104.已知sin α=55,则sin 4α-cos 4α=( ) A.35 B.15 C .-35 D .-155.函数f (x )=sin2x -cos2x 的最小正周期是( )A.π2B .ΠC .2πD .4π 6.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan2x 等于( ) A.724 B .-724 C.247 D .-247二、填空题(每小题5分,共15分)7.计算sin43°cos13°-cos43°sin13°的结果等于________8.已知sin(π+α)=-13,且α是第二象限角,那么sin2α=________. 9.函数f (x )=2cos 2x +sin2x 的最小值是________.三、解答题(共15分)10.已知tan(π+α)=-13,求sin2⎝⎛⎭⎫π2-α+4cos 2α10cos 2α-sin2α的值.3.6简单的三角恒等变换时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.已知sin α=35,则sin ⎝⎛⎭⎫π2+2α的值为( ) A .±1225 B .-725 C.725 D.12252.已知α是第二象限角,且cos α=-35,则cos ⎝⎛⎭⎫π4-α的值是( ) A.210 B .-210 C.7 210 D .-7 2103.sin α+cos α=35,则sin2α=( ) A.1625 B .-1625 C .-825 D .±8254.1-3tan75°3+tan75°的值等于( ) A .2+ 3 B .2-3 C .1 D .-15.2-sin 22+cos4=( ) A .sin2 B .-cos2 C.3cos2 D .-3cos26.若cos2αsin ⎝⎛⎭⎫α-π4=-22,则sin α+cos α的值为( ) A .-72 B .-12 C.12 D.72二、填空题(每小题5分,共15分)7.若cos α=17,α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫α+π3=________. 8.设tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,则tan ⎝⎛⎭⎫α+π4=______. 9.若sin θ2-2cos θ2=0,则tan θ=________. 三、解答题(共15分) 10.已知α为第二象限角,且sin α=154,求sin ⎝⎛⎭⎫α+π4sin2α+cos2α+1的值.3.7正弦定理和余弦定理时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.已知△ABC 中,a =2,b =3,B =60°,那么角A =( )A .135°B .90°C .45°D .30°2.已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )(a +b +c )=ab ,则角C 的大小为( )A .60°B .90°C .120°D .150°3.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形4.在△ABC 中,若b =2a sin B ,则A 等于( )A .30°或60°B .45°或60°C .120°或60°D .30°或150°5.有下列判断:①△ABC 中,a =7,b =14,A =30°,有两解;②△ABC 中,a =30,b =25,A =150°,有一解;③△ABC 中,a =6,b =9,A =45°,有两解;④△ABC 中,b =9,c =10,B =60°,无解.不正确的结论有( )A .1个B .2个C .3个D .4个6.在△ABC 中,已知sin A cos B =sin C ,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形二、填空题(每小题5分,共15分)7.若在△ABC 中,A =60°,b =2,△ABC 的面积为2 3,则a =________.8.在△ABC 中,若b =1,c =3,C =2π3,则a =________. 9.在△ABC 中,若a =14,b =7 6,B =60°,则C =________.三、解答题(共15分)10.在△ABC 中,B =120°,AC =7,AB =5,求△ABC 的面积.3.8解三角形应用举例时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( )A .α>βB .α=βC .α+β=90°D .α+β=180°2.两灯塔A ,B 与海洋观察站C 的距离都等于a (km),灯塔A 在C 北偏东30°,B 在C 南偏东60°,则A ,B 之间距离为( ) A.2a km B.3a km C .a km D .2a km3.如图J3-8-1,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.25 22m 4.渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4 km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)( )A .14.5 km/hB .15.6 km/hC .13.5 km/hD .11.3 km/h5.甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,40 33m B .10 3 m,20 3 m C .10(3-2) m,20 3 m D.15 32 m ,20 33m 6.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为( )A .20 kmB .30 kmC .20 2 kmD .30 2 km二、填空题(每小题5分,共15分)7.某人从A 处出发,沿北偏东60°行走3 3 km 到B 处,再沿正东方向行走2 km 到C 处,则A ,C 两地距离为________km.8.在200 m 高的山顶上,测得山下一塔的塔顶与塔底的俯角分别是30°,60°,则塔高为________m.9.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.三、解答题(共15分)10.隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.参考答案3.11.D 2.B 3.B 4.A 5.C6.B 解析:72°=2π5,∴S 扇形=12αR 2=12×2π5×202=80 π(cm 2). 7.{-708°,-348°,12°,372°}8.25 解析:由条件可求得r =5m ,所以sin α=35,cos α=-45.所以2sin α+cos α=25. 9.二 解析:∵点P (tan α,cos α)在第三象限,∴tan α<0,cos α<0.∴角α在第二象限.10.解:∵r =x 2+5,∴cos α=x x 2+5.从而24x =x x 2+5,解得x =0或x =±3. ∵90°<α<180°,∴x <0,因此x =- 3.故r =2 2,sin α=52 2=104,tan α=5-3=-153. 3.21.C 2.A 3.B 4.D 5.B 6.A 7.4 8.2-2 9.-3510.证明:左边=-cos θ·sin 2θtan θ·(-cos 3θ)=1tan θ·tan 2θ=tan θ=右边. 3.31.B 2.C 3.B 4.D5.C 解析:∵y =2-sin x ,∴当sin x =-1时,y max =3,此时x =-π2+2k π(k ∈Z ). 6.C 解析:sin168°=sin(180°-12°)=sin12°,cos10°=cos(90°-80°)=sin80°.因为正弦函数y =sin x 在区间[0,90°]上为增函数,所以sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°. 7.⎣⎡⎦⎤-54,1 解析:(数形结合法)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈ [-1,1],画出函数图象如图D4,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎡⎦⎤-54,1.图D48.-2 解析:∵cos x ∈[-1,1],∴M =13×1-1=-23,m =13×(-1)-1=-43.∴M +m =-23-43=-2.9.⎝⎛⎭⎫k π2-π8,0(k ∈Z ) 解析:由2x +π4=k π,k ∈Z ,得x =k π2-π8,k ∈Z ,故交点坐标为⎝⎛⎭⎫k π2-π8,0(k ∈Z ).10.解:(1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z .又-π<φ<0,则-54<k <-14,k ∈Z .∴k =-1,则φ=-3π4.(2)由(1),得f (x )=sin ⎝⎛⎭⎫2x -3π4.令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z , 可解得π8+k π≤x ≤5π8+k π,k ∈Z .因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 3.41.C 2.B 3.C 4.D 5.A6.D 解析:由T =2πω=π,∴ω=2.由f (0)=3⇒2sin φ=3,∴sin φ=32.又|φ|<π2,∴φ=π3.7.y =sin ⎝⎛⎭⎫x +π6+2 解析:y =sin ⎝⎛⎭⎫x +π3向右平移π6个单位得y =sin ⎝⎛⎭⎫x -π6+π3=sin ⎝⎛⎭⎫x +π6,再向上平移2个单位得y =sin ⎝⎛⎭⎫x +π6+2. 8.f (x )=2sin ⎝⎛⎭⎫2x +π3 解析:由题意可知A =2.T 2=7π12-π12=π2.∴T =π.∴2πω=π,即ω=2.∴f (x )=2sin ⎝⎛⎭⎫2x +π3. 9.③10.解:(1)列表:图D5描点,连线如图D5.将y =sin ⎝⎛⎭⎫2x +π4+1在⎣⎡⎦⎤-π8,7π8上的图象向左、向右平移(每次π个单位长度), 即可得到y =sin ⎝⎛⎭⎫2x +π4+1的图象. (2)y =sin xy =sin ⎝⎛⎭⎫x +π4 y =sin ⎝⎛⎭⎫2x +π4 y =sin ⎝⎛⎭⎫2x +π4+1. 3.51.D 2.B 3.B 4.C 5.B6.D 解析:∵x ∈⎝⎛⎭⎫-π2,0,cos x =45.∴sin x =-35,∴tan x =-34.∴tan2x =2tan x1-tan 2x =2×⎝⎛⎭⎫-341-⎝⎛⎭⎫-342=-247. 7.128.-4 29 解析:∵由题意知,sin α=13,且α是第二象限角,∴cos α=-2 23.∴sin2α=2sin αcos α=2×13×⎝⎛⎭⎫-2 23=-4 29.9.1-2 解析:∵f (x )=2cos 2x +sin2x =1+cos2x +sin2x =1+2sin ⎝⎛⎭⎫2x +π4,∴f (x )min =1- 2. 10.解:∵tan(π+α)=-13.∴tan α=-13.∴sin2⎝⎛⎭⎫π2-α+4cos 2α10cos 2α-sin2α=sin (π-2α)+4cos 2α10cos 2α-sin2α=2sin αcos α+4cos 2α10cos 2α-2sin αcos α=sin α+2cos α5cos α-sin α=tan α+25-tan α=516. 3.61.C 2.A 3.B 4.D 5.D 6.C 7.-1114 8.3229.-43 解析:由sin θ2-2cos θ2=0,得tan θ2=2.则tan θ=2tanθ21-tan 2θ2=-43.10.解:原式=22(sin α+cos α)2sin αcos α+2cos 2α=2(sin α+cos α)4(cos αsin α+cos 2α).∵α为第二象限角,且sin α=154,∴sin α+cos α≠0,cos α=-14. ∴原式=24cos α=- 2.3.71.C 2.C 3.C 4.D 5.C 6.A 7.2 38.1 解析:∵c 2=a 2+b 2-2ab cos C ,∴(3)2=a 2+1-2a cos 2π3.∴a 2+a -2=0.解得a =1或a =-2(舍).9.75° 解析:由正弦定理知,a sin A =b sin B .又a =14,b =76,B =60°,∴sin A =a sin B b =14sin60°7 6=22.∵a <b ,∴A <B .∴A =45°.∴C =180°-(B +A )=180°-(60°+45°)=75°.10.解:由余弦定理得b 2=a 2+c 2-2ac cos B , 即49=a 2+25-2×5×a cos120°.整理得a 2+5a -24=0,解得a =3或a =-8(舍). ∴S △ABC =12ac sin B =12×3×5sin120°=15 34.3.81.B 2.A 3.A 4.C 5.A 6.D7.7 解析:如图D6,由题意可知AB =3 3,BC =2,∠ABC =150°.由余弦定理,得AC 2=27+4-2×3 3×2×cos150°=49,AC =7.则A ,C 两地距离为7 km.图D68.40039.10 3 解析:如图D7,OM =AO tan45°=30(m),ON =AO tan30°=33×30=10 3(m),由余弦定理,得MN =900+300-2×30×10 3×32=300=10 3(m).图D710.解:如图D8,在△ACD 中.∵∠ADC =30°,∠ACD =120°,图D8∴∠CAD =30°,AC =CD =3(千米), 在△BDC 中,∠CBD =180°-45°-75°=60°. 由正弦定理,得BC =3sin75°sin60°=6+22(千米).在△ABC 中,由余弦定理,可得 AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA , 即AB 2=(3)2+⎝⎛⎭⎪⎫6+222-2 3·6+22cos75°=5. ∴AB = 5 (千米).所以,两目标A ,B 间的距离为5千米.。

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。

苏教版高中数学必修四学同步训练三角函数Word含答案(1)

苏教版高中数学必修四学同步训练三角函数Word含答案(1)

1.1.2 弧度制一、填空题1.-300°化为弧度是________.2.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是________.3.若扇形圆心角为216°,弧长为30π,则扇形半径为________.4.若2π<α<4π,且角α的终边与-7π6角的终边垂直,则α=______. 5.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B =________.6.已知α为第二象限的角,则π-α2所在的象限是第________象限. 7.扇形圆心角为π3,则扇形内切圆的圆面积与扇形面积之比为________. 8.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=____________. 二、解答题9.用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(包括边界,如图所示).10.用30 cm 长的铁丝围成一个扇形,应怎样设计才能使扇形的面积最大?最大面积是多少?11.如图所示,半径为1的圆的圆心位于坐标原点,点P 从点A (1,0)出发,依逆时针方向等速沿单位圆周旋转,已知P 点在1 s 内转过的角度为θ(0<θ<π),经过2 s 达到第三象限,经过14 s 后又回到了出发点A 处,求θ.三、探究与拓展12.已知一扇形的中心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c (c >0),当α为多少弧度时,该扇形有最大面积?答案1.-53π 2.2sin 1 3.25 4.7π3或10π35.{α|-4≤α≤-π,或0≤α≤π}6.二或四7.2∶38.-11π3,-5π3,π3,7π39.解 (1)⎩⎨⎧⎭⎬⎫α|2k π-π6≤α≤2k π+5π12,k ∈Z . (2)⎩⎨⎧⎭⎬⎫α|k π+π6≤α≤k π+π2,k ∈Z . 10.解 设扇形的圆心角为α,半径为r ,面积为S ,弧长为l ,则有l +2r =30,∴l =30-2r ,从而S =12·l ·r =12(30-2r )·r =-r 2+15r =-⎝⎛⎭⎫r -1522+2254. ∴当半径r =152 cm 时,l =30-2×152=15 cm , 扇形面积的最大值是2254cm 2, 这时α=l r=2 rad. ∴当扇形的圆心角为2 rad ,半径为152 cm 时,面积最大,为2254cm 2. 11.解 因为0<θ<π,且2k π+π<2θ<2k π+3π2(k ∈Z ), 则必有k =0,于是π2<θ<3π4, 又14θ=2n π(n ∈Z ),所以θ=n π7, 从而π2<n π7<3π4,即72<n <214, 所以n =4或5,故θ=4π7或5π7. 12.解 (1)设弧长为l ,弓形面积为S 弓,∵α=60°=π3,R =10, ∴l =αR =10π3(cm). S 弓=S 扇-S △=12×10π3×10-12×2×10×sin π6×10×cos π6=50⎝⎛⎭⎫π3-32 (cm 2). (2)扇形周长c =2R +l =2R +αR ,∴α=c -2R R, ∴S 扇=12αR 2=12·c -2R R·R 2 =12(c -2R )R=-R 2+12cR =-⎝⎛⎭⎫R -c 42+c 216. 当且仅当R =c 4,即α=2时,扇形面积最大,且最大面积是c 216.。

苏教版高中数学必修四学同步训练三角函数Word含答案(2)

苏教版高中数学必修四学同步训练三角函数Word含答案(2)

1.3 三角函数的图象和性质1.3.1 三角函数的周期性一、填空题1.函数f (x )=sin ⎝⎛⎭⎫2πx +π4的最小正周期是________. 2.函数y =sin ⎝⎛⎭⎫ωx +π4的最小正周期是2π3,则ω=________. 3.函数f (x )=cos π6x ,则f (2 014)=________. 4.已知函数f (x )=8sin ⎝⎛⎭⎫k 3x -π3-2的最小正周期不大于3,则正整数k 的最小值是________.5.若函数f (x )=2cos ⎝⎛⎭⎫ωx +π3的最小正周期为T ,且T ∈(1,3),则正整数ω的最大值是_______. 6.函数y =cos(sin x )的最小正周期是________.7.已知奇函数y =f (x )(x ∈R )且f (x )=f (x +4),f (1)=2,则f (2)+f (3)+f (4)=________.8.已知定义在R 上的函数f (x )满足f (x +1)=1f (x ),且当x ∈[0,1]时,f (x )=2x ,则f (7.5)=_______. 二、解答题9.求下列函数的周期:(1)y =4sin(π3x +π4)+2; (2)y =3cos(π3-2x )-1. 10.设f (x )是定义在R 上且最小正周期为32π的函数,在某一周期上f (x )=⎩⎪⎨⎪⎧cos 2x (-π2≤x <0)sin x (0≤x <π),求f (-15π4)的值. 11.设偶函数f (x )对任意的x ∈R 都有f (x +3)=-1f (x ),且当x ∈[-3,-2]时,f (x )=2x ,求f (113.5)的值.三、探究与拓展12.若函数f (n )=sin n π3(n ∈Z ),求f (1)+f (2)+f (3)+…+f (2 013)的值.答案1.1 2.±3 3.12 4.7 5.6 6.π 7.-2 8.229.解 (1)T =2ππ3=6. (2)T =2π|-2|=π. 10.解 ∵f (x )的周期为3π2, ∴f (-15π4)=f (-15π4+3×3π2) =f (34π). ∵0<34π<π,∴f (34π)=sin 34π=sin π4=22, 即f (-15π4)=22. 11.解 由于f [(x +3)+3]=-1f (x +3), 而f (x +3)=-1f (x ), 则f (x +6)=f (x ),即函数的周期为6,于是f (113.5)=f (19×6-0.5)=f (-0.5),f (-0.5)=-1f (3-0.5)=-1f (2.5), 又函数为偶函数, 因此f (2.5)=f (-2.5)=2×(-2.5)=-5,因此f (-0.5)=-1f (2.5)=-1-5=15, 也即f (113.5)=15. 12.解 f (n )=sin n π3=sin(2π+n π3) =sin 6π+n π3, f (n +6)=sin n π+6π3, ∴f (n )=f (n +6).即6是f (n )的一个周期.又f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π=0 且2 013=6×335+3∴f (1)+f (2)+f (3)+…+f (2 013)=[f(1)+f(2)+…+f(2 010)]+f(2 011)+f(2 012)+f(2 013) =f(2 011)+f(2 012)+f(2 013)=f(6×335+1)+f(6×335+2)+f(6×335+3)=f(1)+f(2)+f(3)=sin π3+sin23π+sin33π=32+32+0= 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 三角函数§1.1 任意角和弧度制班级 姓名 学号 得分一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 (A) 90°-α (B)90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 (A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z} (C){α|α=k ·180°,k ∈Z}(D){α|α=k ·90°,k ∈Z}3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z) (A) α+β=π (B) α-β=2π(C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为(A)3π (B 32π (C)3 (D)2 5.将分针拨快10分钟,则分针转过的弧度数是(A)3π (B)-3π C)6π (D)-6π*6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A④A ∩C =B ,其中正确的命题个数为 (A)0个 (B)2个 (C)3个 (D)4个 二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 . 8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍.*10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 .三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?*14.如下图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.§1.2.1.任意角的三角函数班级 姓名 学号 得分一.选择题 1.函数y =|sin |sin x x +cos |cos |x x +|tan |tan x x的值域是( )(A){-1,1} (B){-1,1,3} (C) {-1,3}(D){1,3} 2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是( ) (A)25 (B-25 (C) 25或 -25(D) 不确定 3.设A 是第三象限角,且|sin 2A |= -sin 2A ,则2A是 ( ) (A) 第一象限角(B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( ) (A)大于0(B)小于0 (C)等于0 (D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形*6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2的终边在 ( )(A)第二、四象限 (B)第一、三象限 (C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 二.填空题7.若sin θ·cos θ>0, 则θ是第 象限的角; 8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ; 9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ;*10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角.三.解答题11.求函数y =lg(2cos x12.求:13sin330tan()319cos()cos6906ππ︒⋅--⋅︒的值.13.已知:P(-2,y)是角θ终边上一点,且sinθ= -55,求cosθ的值.*14.如果角α∈(0,2π),利用三角函数线,求证:sinα<α<tanα.§1.2.2 同角三角函数的基本关系式班级 姓名 学号 得分一、选择题1.已知sin α=45,且α为第二象限角,那么tan α的值等于 ( )(A)34(B)43- (C)43(D)43-2.已知sin αcos α=81,且4π<α<2π,则cos α-sin α的值为 ( )(A)23 (B)43 (C) (D)±233.设是第二象限角,则sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=31,π<θ<32π,则sin θ·cos θ的值为 ( )(A)±310(B)3105.已知sin cos 2sin 3cos αααα-+=51,则tan α的值是 ( )(A)±83(B)83(C)83-(D)无法确定*6.若α是三角形的一个内角,且sin α+cos α=32,则三角形为 ( )(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形二.填空题7.已知sin θ-cos θ=12,则sin 3θ-cos 3θ= ; 8.已知tan α=2,则2sin 2α-3sin αcos α-2cos 2α= ;9.α为第四象限角)= ; *10.已知cos (α+4π)=13,0<α<2π,则sin(α+4π)= .三.解答题 11.若sin x =35m m -+,cos x =425mm -+,x ∈(2π,π),求tan x12.化简:22sin sin cos sin cos tan 1+---x x xx x x .13.求证:tan 2θ-sin 2θ=tan 2θ·sin 2θ.*14.已知:sin α=m(|m |≤1),求cos α和tan α的值.§1.3 三角函数的诱导公式班级 姓名 学号 得分一.选择题1.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是 ( )(A)-53 (B)53 (C)±53 (D)542.若co s100°= k ,则tan ( -80°)的值为 ( )(A)(D)3.在△ABC,则△ABC 必是 ( ) (A)等边三角形(B)直角三角形 (C)钝角三角形 (D)锐角三角形4.已知角α终边上有一点P (3a ,4a )(a ≠0),则sin(450°-α)的值是 ( ) (A)-45(B)-35 (C)±35(D)±455.设A ,B ,C 是三角形的三个内角,下列关系恒等成立的是 ( ) (A)cos(A +B )=cos C (B)sin(A +B )=sin C (C)tan(A +B )=tan C(D)sin2A B+=sin 2C *6.下列三角函数:①sin(n π+43π) ②cos(2n π+6π) ③si n(2n π+3π) ④cos [(2n +1)π-6π]⑤sin [(2n +1)π-3π](n ∈Z)其中函数值与sin 3π的值相同的是 ( )(A)①②(B)①③④ (C)②③⑤(D)①③⑤二.填空题 7.tan(150)cos(570)cos(1140)tan(210)sin(690)-︒⋅-︒⋅-︒-︒⋅-︒= . 8.sin 2(3π-x )+sin 2(6π+x )= .9.= . *10.已知f (x )=a sin(πx +α)+b cos(πx +β),其中α、β、a 、b 均为非零常数,且列命题:f (2006) =1516-,则f (2007) = . 三.解答题11.化简23tan()sin ()cos(2)2cos ()tan(2)ππααπααπαπ-⋅+⋅---⋅-.12. 设f (θ)=3222cos sin (2)cos()322cos ()cos(2)θπθθπθπθ+-+--+++- , 求f (3π)的值.13.已知cos α=13,cos(α+β)=1求cos(2α+β)的值.*14.是否存在角α、β,α∈(-2π,2π),β∈(0,π),使等式sin(3π-α2π-β),α)=π+β)同时成立?若存在,求出α、β的值;若不存在,请说明理由.§1.4.1正弦函数、余弦函数的图象和性质班级 姓名 学号 得分一、选择题1.下列说法只不正确的是 ( )(A) 正弦函数、余弦函数的定义域是R ,值域是[-1,1];(B) 余弦函数当且仅当x =2kπ( k ∈Z) 时,取得最大值1;(C) 余弦函数在[2kπ+2π,2kπ+32π]( k ∈Z)上都是减函数;(D) 余弦函数在[2kπ-π,2kπ]( k ∈Z)上都是减函数2.函数f (x )=sin x -|sin x |的值域为 ( )(A) {0}(B) [-1,1](C) [0,1] (D) [-2,0]3.若a =sin 460,b =cos 460,c =cos360,则a 、b 、c 的大小关系是 ( ) (A) c > a > b (B) a > b > c (C) a >c > b (D) b > c > a4. 对于函数y =sin(132π-x ),下面说法中正确的是 ( ) (A) 函数是周期为π的奇函数 (B) 函数是周期为π的偶函数 (C) 函数是周期为2π的奇函数 (D) 函数是周期为2π的偶函数5.函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是 ( )(A) 4(B)8 (C)2π (D)4π*6.为了使函数y = sin ωx (ω>0)在区间[0,1]是至少出现50次最大值,则的最小值是 ( )(A)98π (B)1972π (C) 1992π (D) 100π 二. 填空题7.函数值sin1,sin2,sin3,sin4的大小顺序是 . 8.函数y =cos(sin x )的奇偶性是 . 9. 函数f (x )=lg(2sin x +1)+的定义域是 ;*10.关于x 的方程cos 2x +sin x -a =0有实数解,则实数a 的最小值是 .三. 解答题11.用“五点法”画出函数y=12sin x+2, x∈[0,2π]的简图.12.已知函数y= f(x)的定义域是[0, 14],求函数y=f(sin2x) 的定义域.13. 已知函数f(x) =sin(2x+φ)为奇函数,求φ的值.*14.已知y=a-b cos3x的最大值为32,最小值为12,求实数a与b的值.§1.4.2正切函数的性质和图象班级 姓名 学号 得分一、选择题 1.函数y =tan (2x +6π)的周期是 ( )(A) π (B)2π (C)2π (D)4π 2.已知a =tan1,b =tan2,c =tan3,则a 、b 、c 的大小关系是 ( ) (A) a <b <c (B) c <b <a (C) b <c <a (D) b <a <c 3.在下列函数中,同时满足(1)在(0,2π)上递增;(2)以2π为周期;(3)是奇函数的是 ( ) (A) y =|tanx | (B) y =cos x (C) y =tan 21x (D) y =-tanx 4.函数y =lgtan2x的定义域是 ( ) (A){x |k π<x <k π+4π,k ∈Z } (B) {x |4k π<x <4k π+2π,k ∈Z } (C) {x |2k π<x <2k π+π,k ∈Z } (D)第一、三象限 5.已知函数y =tan ωx 在(-2π,2π)内是单调减函数,则ω的取值范围是 ( ) (A)0<ω≤ 1 (B) -1≤ω<0 (C) ω≥1 (D) ω≤ -1*6.如果α、β∈(2π,π)且tan α<tan β,那么必有 ( )(A) α<β (B) α>β (C) α+β>32π (D) α+β<32π 二.填空题 7.函数y =2tan(3π-2x)的定义域是 ,周期是 ; 8.函数y =tan 2x -2tan x +3的最小值是 ; 9.函数y =tan(2x +3π)的递增区间是 ; *10.下列关于函数y =tan2x 的叙述:①直线y =a (a ∈R )与曲线相邻两支交于A 、B 两点,则线段AB 长为π;②直线x =k π+2π,(k ∈Z )都是曲线的对称轴;③曲线的对称中心是(4k π,0),(k ∈Z ),正确的命题序号为 . 三. 解答题11.不通过求值,比较下列各式的大小 (1)tan(-5π)与tan(-37π) (2)tan(78π)与tan (16π) 12.求函数y =tan 1tan 1x x +-的值域.13.求下列函数y =的周期和单调区间*14.已知α、β∈(2π,π),且tan(π+α)<tan(52π-β),求证: α+β<32π.§1.5 函数y =A sin(ωx +φ)的图象班级 姓名 学号 得分一、选择题1.为了得到函数y =cos(x +3π),x ∈R 的图象,只需把余弦曲线y =cos x 上的所有的点 ( ) (A) 向左平移3π个单位长度 (B) 向右平移3π个单位长度 (C) 向左平移13个单位长度 (D) 向右平移13个单位长度2.函数y =5sin(2x +θ)的图象关于y 轴对称,则θ= ( ) (A) 2k π+6π(k ∈Z ) (B) 2k π+ π(k ∈Z ) (C) k π+2π(k ∈Z ) (D) k π3. 函数y =2sin(ωx +φ),|φ|<2π的图象如图所示,则 ( )(A) ω=1011,φ=6π (B) ω=1011,φ= -6π(C) ω=2,φ=6π (D) ω4.函数y =cos x 的图象向左平移3π个单位,横坐标缩小到原来的12数图象解析式为 ( ) (A) y =3cos(12x +3π) (B) y =3cos(2x +3π) (C) y =3cos(2x +23π) (D) y =13cos(12x +6π) 5.已知函数y =A sin(ωx +φ)(A >0,ω>0)在同一周期内,当x =12π时,y max =2;当x =712π时,,y min =-2.那么函数的解析式为 ( )(A) y =2sin(2x +3π) (B) y =2sin(2x -6π) (C) y =2sin(2x +6π) (D)y =2sin(2x -3π) *6.把函数f (x )的图象沿着直线x +y =0的方向向右下方平移,得到函数y =sin3x 的图象,则( )(A) f (x )=sin(3x +6)+2 (B) f (x )=sin(3x -6)-2 (C) f (x )=sin(3x +2)+2 (D) f (x )=sin(3x -2)-2 二. 填空题7.函数y =3sin(2x -5)的对称中心的坐标为 ; 8.函数y =cos(23πx +4π)的最小正周期是 ; 9.函数y =2sin(2x +6π)(x ∈[-π,0])的单调递减区间是 ; *10.函数y =sin2x 的图象向右平移φ(φ>0)个单位,得到的图象恰好关于直线x =6π对称,则φ的最小值是 .三. 解答题11.写出函数y=4sin2x (x∈R)的图像可以由函数y=cos x通过怎样的变换而得到.(至少写出两个顺序不同的变换)12.已知函数log0.5(2sin x-1),(1)写出它的值域.(2)写出函数的单调区间.(3)判断它是否为周期函数?如果它是一个周期函数,写出它的最小正周期.k x+5)周期不大于1,求正整数k的最小值.13.已知函数y=2sin(3*14. 已知N(2,2)是函数y=A sin(ωx+φ)(A>0,ω>0)的图象的最高点,N到相邻最低点的图象曲线与x 轴交于A、B,其中B点的坐标(6,0),求此函数的解析表达式.§1.6 三角函数模型的简单应用班级 姓名 学号 得分一、选择题1.已知A ,B ,C 是△ABC 的三个内角, 且sin A >sin B >sin C ,则 ( )(A) A >B >C (B) A <B <C (C) A +B >2π (D) B +C >2π2.在平面直角坐标系中,已知两点A (cos800,sin800),B (cos200,sin200),则|AB |的值是 ( ) (A)12(B)(C) (D) 13. 02年北京国际数学家大会会标是由四个相同的直角三角形与中间的小 正方形拼成的一个大正方形,若直角三角形中较小的锐角为θ,大正方形的面积为1,小正方形的面积是125,则sin 2θ-cos2θ的值是( ) (A) 1 (B) 2425(C) 725(D) -7254.D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是α、 β(α>β),则A 点离地面的高度等于 ( ) (A) tan tan tan tan a αβαβ- (B) tan tan 1tan tan a αβαβ+ (C)tan tan tan a ααβ- (D) 1tan tan a αβ+ 5.甲、乙两人从直径为2r 的圆形水池的一条直径的两端同时按逆时针方向沿池做圆周运动,已知甲速是乙6.电流强度I (安培)随时间t(秒)变化的函数I =A sin(ωt +φ)的图象如图所示,则当t =7120秒时的电流强度 ( )(A)0 (B)10 (C)-10 (D)5 二.填空题7.三角形的内角x 满足2cos2x +1=0则角x = ;8. 一个扇形的弧长和面积的数值都是5,则这个扇形中心角的度数是 ;9. 设y =f (t )是某港口水的深度y (米)关于时间t (小时)的函数,其中0≤t ≤24.下表是该港口某一天从0时至ABCDαβ24时记录的时间t 与水深y 的关系:经长期观察,函数y =f (t )的图象可以近似地看成函数y =k +A sin(ωt +φ)的图象.则一个能近似表示表中数据间对应关系的函数是 .10.直径为10cm 的轮子有一长为6cm 的弦,P 是该弦的中点,轮子以5弧度/秒的角速度旋转,则经过5秒钟后点P 经过的弧长是 . 三.解答题11.以一年为一个周期调查某商品出厂价格及该商品在商店销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8 元,7月份出厂价格最低为4元;而该商品在商店的销售价格是在8元基础上按月份也是随正弦曲线波动的.并已知5月份销售价最高为10元.9月份销售价最低为6元.假设某商店每月购进这种商品m 件,且当月能售完,请估计哪个月盈利最大?并说明理由.12.一个大风车的半径为8米,12离地面2米,求风车翼片的一个端点离地面距离h (米)t (分钟)之间的函数关系式.13.一铁棒欲通过如图所示的直角走廊,试回答下列问题:(1)证明棒长L (θ)=965sin 5cos θθ+; (2)当θ∈(0,2π)时,作出上述函数的图象(可用计算器或计算机);(3)由(2)中的图象求L (θ)的最小值;(4)解释(3)中所求得的L 是能够通过这个直角走廊的铁棒的长度的最大值.数学必修(4)同步练习参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x |x =k ·3600+1800, k ∈Z }, {x |x =k ·1800+450,k ∈Z } ; 8.-345°; 9.31; 10.第二或第四象限, 第一或第二象限或终边在y 轴的正半轴上 三、11.{ α|α=k ·3600+1200或α=k ·3600+3000, k ∈Z } -60° 120°12.由7θ=θ+k ·360°,得θ=k ·60°(k ∈Z)∴θ=60°,120°,180°,240°,300° 13.∵l =20-2r ,∴S =21lr =21(20-2r )·r =-r 2+10r =-(r -5)2+25 ∴当半径r =5 cm 时,扇形的面积最大为25 cm 2,此时,α=rl =55220⨯-=2(rad) 14.A 点2分钟转过2θ,且π<2θ<23π,14分钟后回到原位,∴14θ=2k π,θ=72πk ,且2π<θ<43π,∴ θ=74π或75π§1.2.1 任意角的三角函数一、CCDBCD二、7.一、三; 8. 0 ; 9.4π或54π; 10.二、四三、11.[2kπ, 2kπ,+2)3π( k ∈Z) 12.13.∵sin θ= -55,∴角θ终边与单位圆的交点(cos θ,sin θ)=(,-55) 又∵P (-2, y )是角θ终边上一点, ∴cos θ<0,∴cos θ= -525. 14.略.§1.2.2同角三角函数的基本关系式一、BCDBBA 二、7.1611; 8.0; 9.αsin 2- ; 10.322三、11.512-12.原式=x x x cos sin sin 2--x x x x x 222cos sin cos )cos (sin -+=xx xx x x x x 2222cos sin cos )cos (sin )cos (sin sin -⋅+-+=sin x +cos x13.左边=tan 2θ-sin 2θ=θθ22cos sin -sin 2θ=sin 2θ·θθ22cos cos1-=sin 2θ·θθ22cos sin =sin 2θ·tan 2θ=右边14.(1)当m =0时, α=k π, k ∈Z ,cos α=±1, tan α=0 (2)当|m |=1时, α=k π+2π, k ∈Z ,cos α=0, tan α=0不存在 (3)当0<|m |<1时,若α在第一或第四象限,则cos αtan;若α在第二或第三象限,则cos αtan α=.§1.3 三角函数的诱导公式一、BBCCBC 二、7.23; 8.1 ; 9.1 ; 10. 1516三、11. 112. f (θ)=3222cos 1cos cos 322cos cos θθθθθ+-+-++ = 22(cos 1)(2cos cos 2)2cos cos 2θθθθθ-++++=cos θ-1∴f (3π)=cos 3π-1=-1213.∵cos(α+β)=1, ∴α+β=2k π, k ∈Z. ∴cos(2α+β)= cos(α+α+β)= cos(π+α)=- cos α= -13.14. 由已知条件得:sin α=sin β①, cos α=-cos β②,两式推出sin α=,因为α∈(-2π,2π),所以α=4π或-4π;回代②,注意到β∈(0,π),均解出β=6π,于是存在α=4π,β=6π或α=-4π,β=6π,使两等式同时成立。

相关文档
最新文档