工程制图基础-直线的投影 PPT

合集下载

工程制图第3章 点、直线和平面的投影

工程制图第3章 点、直线和平面的投影
W X
β
SH
O
α
Y
H
YH
V
a
A
a
b c
B
b
H
水平面
a
b a W c
C
a
c
b c
b c
b a c
投影特性: 1. abc、 abc积聚为一条线积聚为一直条线,具有积聚性 2. 水平投影abc反映 ABC实形
V b
正平面
b
b
a
B
b
c
W
a
a
A a
2.投影面垂直线
垂直于某一投影面的直线
(1) 铅垂线 (2) 正垂线 (3) 侧垂线
3.一般位置直线
与三个投影面都倾斜的直线
水平线 — 平行于水平投影面的直线 z
Z
a b
a
b
a
b
A
a

X
O
YW

X
B O
b
a
a

b
Y
投影特性:1. ab OX ; ab OYW 3. 反映、 角的真实大小
α
H
V SB
A
b
b
侧垂面
SbW
c β c
a
W
α a
c
C
a
b c
H
a
投影特性: 1、 侧面投影abc积聚为一条直线 2 、 水平投影abc、正面投影 abc为 ABC的类似形
3 、 abc与OZ、 OY的夹角反映α、β角的真实大小
V S
侧垂面的迹线表示 Z
SH
b
QV
a
A
c
C
正垂面
b

土木工程制图第三章点-直线和平面的投影PPT课件

土木工程制图第三章点-直线和平面的投影PPT课件
① 铅垂线与H面垂直同时与V面、W面平行。 ② 正垂线与V面垂直同时与H面、W面平行。 ③ 侧垂线与W面垂直同时与H面、V面平行。
(3)投影面垂直线的投影特点为:在它所垂直的投 影面上的投影积聚为一点,另外两个投影垂直 于相应的投影轴,如图3.15所示。
可编辑课件PPT
24
投影面垂直线
土木工程制图
ax
a●
解法二: 用圆规直接量 取aaz=aax
a● ax
a●
az
a

可编辑课件PPT
7
例2:已知点的两面投影,求第三 投影,如下图所示。
土木工程制图
(a) 已知
(b) 作图
分析:因为根据点的任意可编两辑面课件投PPT影可以求出第三投影。 8
四、特殊位置的点
土木工程制图
注意:A点的侧面投影a"应在OYW轴上,C点的水平投影
(b) 正平线
21
(c) 侧平线
投影面平行线投影特性
土木工程制图
水平线
a b Z a
Xa β γ b YH
实长
实长
b b α
YW X
b
正平线
a Z a
γ
b
侧平线
a
Z a
β
b
α
YW X a
a
b
YH
YH
与H面的夹角:α
实长
b
YW
与V面的夹角:β
投影特性
与W面的夹角:γ
1)在其平行的那个投影面上的投影反映实长, 并反映直线与另两投影面的真实倾角。
O b
a AB实长
△Z
△Z
A0 a′
OX
B0
a
YH

直线的投影2课件(共21张PPT)《土木工程制图与识图》

直线的投影2课件(共21张PPT)《土木工程制图与识图》

c
n
m
【例】 点K在侧平线AB上,已知点K的正面投影k′,求k。
a′
作法一 a′
作法二 a′
a″
k′
k′
k′
b′
b′
b′
X
OX
OX
O
a
a
平行 a
k
任意角度k
b
b
b
k″ b″
作法一:根据定比性 ak/kb=a′k′/k′b′, 在H面投影上用 定比法作出;
作法二:先补出直线的侧面投影,再根据从属性,利用线上定 点的方法求出。
k
b
Y
Z
b″
k″
a″
O
YW
YH
[例] 已知线段AB的投影图,试将C点把AB分成3:2两段,求C点的
投影。
1.过AB 的任一投影的任一
端点如a, 作一条辅助直线,
c'
并在其上从a起量取3个单
位的长度得n点,再量取2个
单位的长度得m点。
2. 连接bn,过m点作bn 的平行线,交ab于点c。
3.过点c做垂直于OX轴的 投影连线,交a′b′于点c′。
d′
a d
d
c
b
c
b
垂直相交
相交(不垂直)
垂直相交
[例] 求点A到水平线BC的垂线
分析:由于BC是水平线。作BC 的垂线将在H面上反映直 角实形。
d'
步骤:(1)过点a作直线垂直 于bc,交bc于点d。
(2)根据长对正的规律, 在b′c′上求出d′ 。
(3)连接a′d′。
d
[例] 过点E作线段AB、CD的公垂线EF。
直于CD,根据直角投影定理,

画法几何与工程制图 第四章 直线的投影

画法几何与工程制图 第四章 直线的投影

[例2]已知侧平线CD上一点E的正面投影e′,求e。
第五节 两直线的相对位置
一、平行两直线 二、相交两直线 三、交叉两直线
[例4-5] [例4-6] [例4-7]
一、平行两直线
如果空间两直线互相平行,则此两直线的各同面投影 必互相平行。 若两直线的各同面投影互相平行,则此两直线在空间 一定互相平行。
第四章 直线的投影
第一节 直线的投影
第二节 直线与投影面的相对位置
第三节 线段的实长及其对投影面的倾角 第四节 直线上的点 第五节 两直线的相对位置直线的投影
第六节 垂直两直线的投影
第一节 直线的投影
一、直线的投影一般仍为直线 二、直线的投影可由直线上两点的同面 投 投影确定
一.直线的投影一般仍为直线

W
H
三、投影面垂直线
铅垂线 正垂线
侧垂线

垂直于W 面的线

小结:
⑴.

投影面垂直线的投影面上的投影集聚成一点;
W
⑵ .投影面垂直线在其它两个投影面上的投影分别垂直于
相应的投影轴,且反映该直线段的实长。
H
第三节
线段的实长及对投影面的倾角
一、线段的实长及其对H面的倾角α
二、线段的实长及其V面的倾角
C
D
c( d )
直线的投影一般仍为直线
特殊情况下积聚为一点
二.直线的投影可由直线上两点的同面投影确定


第二节 直线与投影面的相对位置
一、一般位置直线 二、投影面平行线 三、投影面垂直线
平行于某一投影面而 与其余两投影面倾斜
正平线(平行于V面)
投影面平行线 侧平线(平行于W面)
水平线(平行于H面) 正垂线(垂直于V面) 投影面垂直线 侧垂线(垂直于W面) 铅垂线(垂直于H面)

第二章工程制图A 投影法和点、直线、平面的投影

第二章工程制图A 投影法和点、直线、平面的投影

过ax、az、aYH、aYW等点分别作所 a
在轴的垂线,交点a、a′、a″既为
所求。
12
O
aYH YH
a YW YW
例:根据点的两投影求第三投影
方法一:直接量取法 方法二:45º斜线法
a’ x
z
a”
a’
yW
x
a
yH
a
图2-14 已知点的两投影求第三投影
z a” yW
yH
例 已知点C的两个投影c和c, 求作其水平投影c。
第二章 投影法和点、直线、平面的投影
本 §2-1 投影法概述 §2-2 点的投影
章 §2-3 直线的投影 内 §2-4 平面的投影 容 §2-5 直线与平面、平面与平面
的相对位置
第一节 投影法 一、投影法的基本知识
如图,建立一个平面P和不 在该平面内的一点S,在平面P 和点S之间放一物体A。过点S 发射一光线SA,SA与平面P的 交点a称为物体A在平面P上的 投影。这种确定空间物体投影的方法,称为投影法。
3.3物体的三面投影 W
V
W V
H H
通常情况下,物体的三面投影可 以确定唯一物体的形状
3.4三面投影体系的建立
投影面
◆正面投影面
(简称正面或V面)
◆水平投影面
(简称水平面或H面)
◆侧面投影面
(简称侧面或W面)
投影轴
◆ OX轴 ◆ OY轴 ◆ OZ轴
V面与H面的交线 H面与W面的交线 V面与W面的交线
a ●
X
ax
a●
Z
az
●a
O
YW
ay
ay
YH
2.点的三面投影规律
1、V、H两投影都反映横标,且投影连线垂直X 轴;aa⊥OX轴。

土建工程制图第章点直线平面的投影_图文

土建工程制图第章点直线平面的投影_图文

已知
作图
直线的投影——两直线的相对位置
3.过E点作一直线与已知两交叉直线AB、C直线的相对位置
4.求作正平线MN与交叉三直线AB、CD、EF相交。
已知
作图
直线的投影——两直线的相对位置
5.作直线GH,使其与CD和EF相交且AB平行。
已知
作图
直线的投影——应用题
3.判断直线EF或点K是否在给定的平面上。
已知
作图
平面的投影——各种位置平面的投影
4.求平面内点的另一投影。
已知
作图
平面的投影——各种位置平面的投影
5.求平面ABC内直线EF的H面投影
(a)已知
(b)作图
分析:线段EF在平面ABC上,它一定通过平面上两个点, 作图过程及结果见上图(b)。
平面的投影——各种位置平面的投影
4.已知A、B、C三点的各一投影a、b′、c“,且Bb′=10, Aa=20,C c"=5。完成各点的三面投影,并用直线连接各同
面投影。
已知
点的投影
作图
点的投影
5.作出A、B两点的W面投影,并判断它 们的相对位置
A在B
A在B左前上方
已知
作图
分析:已知点的两投影可以求出点的第三投影,作图过程及 结果见上图(b)
1)过点A作正垂面P,其α为30° 2)过AB作铅垂面△ABC.
3) 过点A作一般面△ABC.
4) 过AB作一般面△ABC.
1)
2)
3)
4)
已知
平面的投影——各种位置平面的投影
3.过已知点、线作平面。
1)过点A作正垂面P,其α为30° 2)过AB作铅垂面△ABC.
3) 过点A作一般面△ABC.

工程制图4(直线的投影)

工程制图4(直线的投影)

本节回顾
• 直线的投影
– 直线投影的定义,直线实长及其与各投影面夹 角的求法
– 直线投影和点投影的关系 – 各种位置直线的投影 – 两直线的相对位置
• 作业
– 习题集17-20页
3-2 直线的投影
一、直线的投影图 二、各种位置直线的投影 三、直线上点的投影 四、两直线的相对位置
一、直线的投影图 z
b’ b”
a’
a”
X
o
YW
b
a
YH
两点决定一条直线。因此,直线直线的的投投影影图可以由直 线上任意两个点的投影来决定。
1. 直线对一个投影面的投影特性
A
B
B
M
A
B
α
A
b
b
a(b)(m) H
b’
c’
Z坐标差
a’
a c
C0

b
三、直线上点的投影
1. 从属性。若点在直线上,则点的各个投影必定在该直线的 同面投影上,并且符合空间一点的投影特性。
2. 定比性。若点在直线上,则点分线段之比等于其投影之比。
AC:CB= ac:cb = a’c’:c’b’ = a”c”:c”b”
b’
z
b”
c’
c”
例6 已知AB∥V面,试过点C作一直线CD与AB垂 直相交。
b’
d’
a’
X
a
d
直线CD与正平线AB所成的 直角正面投影上反映直角。
c’ b
c
例7 求两直线AB、CD的公垂线。
公垂线MN是水平
D N
线 c’
A
n’ d’
a’ m’
M
C
BX

画法几何及土木工程制图 第二章 直线的投影

画法几何及土木工程制图 第二章 直线的投影

1、平行两直线投影特性
两直线的同面投影相互平行,且其长度之比等 于投影长度之比。
如何利用投影特性根据投影判断两直线是否平 行?
如果两直线都不平行于投影轴,则有两个投影面投 影平行则可以认为直线平行。
如果两直线都平行于某投影面,则必须根据第三投 影或比例关系判断。
2.已知直线 AB 平行直线 CD,试完成直线
2、水平投影cd ⊥ox轴,侧 面投影c"d" ⊥oz,且均反映
实长。
1、侧面投影积聚成一点
e"(f")。 2、水平投影ef oxH 正面 投影e f oz,且均反映
实长。
总结:投影面垂直线的投影特性
在所垂直的投影面上积聚为一点; 其它两投影垂直于相应的投影轴。 “一点两平行”
三、一般位置直线的投影特性
直线
水 平 线
正 平 线
侧 平 线
直观图
Y
H
Y
投影图
YW
YH
YW
YH
YW
YH
投影特征
1、水平投影ab反映实长 及直线的倾角β和γ。 2、正面投影a b //ox轴, 侧面投影a"b"//oy w 轴,且
均短于实长。
1、正面投影e f 反映实长 及直线的倾角α和γ。 2、水平投影ef //ox轴,侧 面投影e"f "//oz轴,且均
短于实长。
1、侧面投影e"f" 反映实 长及直线的倾角α和β。 2、水平投影ef//oy H 轴,正 面投影e f //oz轴,且均
短于实长。
总结:投影面平行线的投影特性
在所平行的投影面上的投影反映实长;且 反映直线对另外两个投影面的倾角; 其它两投影平行于相应的投影轴,且小于 实长。 “一斜两平行“ ”

直线的投影《工程制图》讲课PPT

直线的投影《工程制图》讲课PPT
直线的投影
教学目标 重点难点 课前回顾 新课讲授 小结作业
教学目标
了解直线的类型
知识目标 掌握各直线的投影特性
能够作出直线的三面投影
能力目标 能够由直线投影判断直线类型
情感目标
培养学生严谨的学习作风 培养学生归纳总结的学习方法
重点难点
教学重点
各类直线的投影特性 作直线的三面投影
(1)定义: 垂直于一个投影面与另外两个投影面平行
(2)类型:(按所垂直的投影面不同分) 正垂线 -----⊥V面(黑板面) 铅垂线 -----⊥H面(地板面) (重点讲解) 侧垂线 -----⊥ W面(门面)
1.1 直线在三面投影体系中的投影
以铅垂线为例
Z
V a,
a’b’是直线AB在V面的投影
X
2、直线倾斜于投影面时投影是?(图2) 直线(类似性)
3、直线垂直于投影面时投影是?(图3) 点(积聚性)
A
B
B
C
A
D
a
b
图1
a
b
图2
c(d) 图3
二、 直线与投影面的相对位置
空间放置的直尺与投影面的相对 位置,可以分为:
1、投影面垂直线 2、投影面平行线
特殊位 置直线
3、一般位置直线
1、投影面垂直线
总结: 正面投影 a′b′⊥Z轴
侧面投影 a″ b″ ⊥Z轴
a′
b′ a″ b″
a b
侧平线投影特性
与 H 面倾角 与 V 面倾角 平行 W 面
侧面投影 a″ b″ 反映实长
总结: 水平投影 ab ⊥ X轴
正面投影 a′b′⊥ X轴
a′
a″
b′面平行线的投影特性

直线的投影1课件(共20张PPT)《土木工程制图与识图》

直线的投影1课件(共20张PPT)《土木工程制图与识图》

b'
线交点a1′,以a1′为端点在正 投影面上沿OX轴的垂线量取
a 30 °
ΔZ,确定a′;
3. 连接a′b′。a′b′即为直线
b
AB的V面投影。
△ZAB
B0
谢谢观看
AB
【例】已知直线AB的水平投影ab,B点的正面投影b′,直线 AB对H面的倾角α=30°。请完成直线AB的V面投影。
1.根据AB的水平投影ab及倾 角α=30°,作直角△abB0,则 bB0为A、B两点Z坐标之差 ΔZ;
a'
△ZAB
2.过b′作OX轴的平行线,同
时过a点作OX轴的垂线,两直
a1 '
投影面平行线 仅平行于一个投影面的直线。 ( ∥H:水平线;∥V:正平线;∥W:侧平线)

投影面垂直线 垂直于一个投影面的直线。
线
( ⊥H:铅垂线;⊥V:正垂线;⊥W:侧垂线)
一般位 置直线
与三个投影面都倾斜的直线(简称一般线)。
2.3.1 各种位置直线
Z
c′ b′ a′
X
d′
D C
B
Ad cb
a
AB、BC、CD各 为何种位置直线?
c″(d″) b″
AB为一般位置 线
BC为侧平线
a″ CD为侧垂线
Y
1.一般位置直线
立体上的一般 位置直线 Z
一般线的投影和倾角
b′
a′
X
b″ O a″
a b
投影特性:
Y
(1)一般位置直线的三面投影都倾斜于投影轴,它们与投影 轴的夹角均不反映空间直线对投影面倾角的实际大小。
(2)直线的H投影平行OX轴,W投影平行OZ轴,均小于
实长。
投影面平行线的投影及特性:

工程制图---第2章-点、直线、平面的投影市公开课获奖课件省名师示范课获奖课件

工程制图---第2章-点、直线、平面的投影市公开课获奖课件省名师示范课获奖课件

a’ax-b’bx
a’
b’ V
a’ ß
X =ab a
倾角 O
X a
bH
一般位置直线旳投影不反应其空间长度 及其对投影面旳倾角,可用直角三角形 AB
法作图求出
Wang chenggang
AB
b’ O
b
a’ax-b’bx
26/86
例2-6:已知直线AB旳正面投影及端A点旳水平投影α,且已
知AB 直线对V面倾角为30°,B点在A点旳后方,求作AB
b yH
•1.a′b′= //OX,a" b" //OY。
•2. ab=AB。
•3.反应、 角旳真实大小。
Wang chenggang
b
yW
21/86
表2.1 投影面平行线
1 1)在所平行投影面上旳投影反应实长,且它与投影轴旳夹角,
分别等于直线与其他两个投影面旳倾角 。
2) 在另外两个投影面上旳投影平行于相应旳投影轴,长度缩
az
a’’
Z
a’
az
a’’
X
ax
O
Yw
X
45º
a Yh
ax
Wang chenggang
O Yh
Yw
9/86
二、点在三投影面体系第一分角中旳投影 3 点旳直角坐标
a’
a’
V
Ya A
Za
Xa
a’’
X
ax
Za O W X
Xa
Z
a’’ Za
O Ya
Yw
Ya a
H
a Yh
将投影轴视为笛卡尔坐标系旳坐标轴,, 则点旳投影与其 直角坐标一一相应.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程制图基础-直线的投影
直线的投影
a' X
a
Z
b'
b"
o
b
YH
a"
V
YW
a'
X
Z
b' B b"
βγ
W
α
o
A
b
a H
a" Y
铅垂线的投影
铅垂线
V X
Z
a'
b'
A
0
B
H a(b)
a'
W
b'
a"
X
b"
a(b)
Y
Z a"
b"
0
YW
YH
正垂线
V X
Z a '(b ')
a '(b ')
B
b"
W
A 0
X a"
c'
b' V
1'(2')
3'
4'
d'
a' C
DB
X
X
A
0 d
a
2
3(4)
c
1
bH
a' 1'(2') 3' d' 4'
c'
b'
0 c
2
b
a 1 3(4) d
直角的投影
a' X
V
b' c' B C
A
b c
a
H
a' X
a
b' c' 0
b c
例3-5 求点A到正平线BC的距离AD及其投影
0 b
ac
b H
c a
例3-3 求作C∈AB,使AC∶CB=1∶2
平行两直线
相交两直线
c' a'
X
k' b' V
d' B
C
K
A
D
c
b
a
d
H
c'
a'
X
c
a
b' k'
d'
0
b
kd
例3-4 已知M=AB∩CD,
按题给条件求AB的正面投影a′b′
c' k'
a'
X
c
k a
b'
d' O
b d
交叉两直线
Z
V
a'
b'
a"
A
a'
b'
Z a"
b"
B
W
b"
X
o
YW
o
X
a
a
b
H
Y
b
YH
侧平线
Z
V
b'
a' A
a"
W
a'
b'
X
X
Bo
b"
a
a
b
H
b
Y
Z
b
" o
YH
a" YW
直角三角形法
B
α A
b a
ZA
ZB-ZA
ZB
b'
ZB-ZA
a'
X
o
b
a
α
ZB-ZA
直线上的点
a' c'
V
a' c' b'
b'
X
AC
0B
X
b
b
H
a
a
Y
Z a"
b"
0
YW
YH
侧垂线
V X
Z
a'
b'
W
a "( a' b'
a "(b")
0
YW
a
H
b
Y
a
b
YH
水平线的投影
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
正平线
V
a' A
X a
Z Z
b'
b'
b"
B b"
a'
W
a"
X
a"
o
YW
o
a
b
b
H
Y
YH
水平线
相关文档
最新文档