纳米碳酸钙的生产工艺

合集下载

碳化法制备纳米碳酸钙的工业合成方法

碳化法制备纳米碳酸钙的工业合成方法

世上无难事,只要肯攀登
碳化法制备纳米碳酸钙的工业合成方法
纳米碳酸钙的制备方法按制备过程中是否发生化学反应分为化学方法和物理方法,其中化学方法包括碳化法、乳液法、夹套反应釜法、复分解法。

碳化法是生产纳米级轻质碳酸钙的主要方法。

首先,将精选的石灰石煅烧,得到氧化钙和窖气。

然后,使氧化钙消化,并将生成的氢氧化钙悬浊液在高剪切力作用下粉碎、多级悬液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浊液。

然后通入二氧化碳气体,加入适当的晶形控制剂,碳化至终点,得到要求晶形的碳酸钙浆液。

再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。

碳化是整个生产工艺的核心,根据碳化反应过程二氧化碳气体与氢氧化钙悬浮液接触方式的不同,纳米碳酸钙的工业合成方法可分为间歇鼓泡法、喷雾碳化法、喷射吸收法和超重力碳化法。

间歇鼓泡法
间歇鼓泡碳化法是目前国内外大多采用的方法。

间歇鼓泡碳化法,也称釜式碳化法,是将石灰乳通过冷冻机降温到25℃以下,泵入碳化塔,通入CO2 混合气,在搅拌下进行碳化反应。

通过控制反应温度、浓度、搅拌速度、添加剂等工艺条件间歇制备纳米碳酸钙。

该法可以生产普通微细碳酸钙,但对于生产纳米级碳酸钙就需要严格控制一些工艺条件,如碳化反应温度、石灰乳浓度等,而且也相应地需对鼓泡塔做一些改进,比如加搅拌器、挡板或通过气体分布器控制等,但也存在着粒度分布不均匀,而且不易控制、粒度不够细化、批次间产品质量重现差、工业放大困难等缺点。

陈先勇等人采用间歇鼓泡碳化法,通过对碳化反应温度、灰乳密度、添加剂等因素的严格控制,成功制得粒度分布均匀、平均粒径为40nm 左右的单分散球形纳米碳酸钙产品。

多级喷雾碳化法。

纳米碳酸钙的制备及用途

纳米碳酸钙的制备及用途

一、纳米碳酸钙的制备
纳米碳酸钙的制备方法主要有碳化法、复分解法和化学气相沉积法等。其中, 碳化法是最常用的制备方法,其主要原理是在高温高压条件下,将二氧化碳气体 与氢氧化钙溶液反应生成碳酸钙沉淀。具体制备过程包括配料、搅拌、碳化、过 滤、干燥和表面处理等步骤。
为了获得高质量的纳米碳酸钙,需要注意以下几点:
纳米碳酸钙的制备及用途
目录
01 一、纳米碳酸钙的制 备
02
二、纳米碳酸钙的用 途
03
三、纳米碳酸钙的市 场现状和前景
04 四、结论
05 参考内容
随着科技的不断发展,纳米技术在各个领域的应用越来越广泛。其中,纳米 碳酸钙作为一种重要的纳米材料,具有广阔的应用前景和市场价值。本次演示将 详细介绍纳米碳酸钙的制备方法、用途及市场发展情况,以期让更多人了解这一 纳米材料的优势和应用价值。
功能性纳米碳酸钙在许多领域都有广泛的应用,例如橡胶、塑料、涂料、化 妆品和生物医学等。由于其良好的分散性和高透明度,它可以作为塑料的增强填 料和透明剂。此外,纳米碳酸钙还可以用于药物输送,如抗癌药物和疫苗的载体。
五、结论
功能性纳米碳酸钙的制备及性质研究具有重要的实际意义。其制备方法的改 进和性质的优化将进一步拓宽其应用领域,提高其使用性能。对其磁学性质和生 物相容性的进一步研究也将为纳米碳酸钙在生物医学领域的应用带来新的可能。
摘要纳米碳酸钙是一种具有重要应用价值的无机纳米材料,在橡胶、塑料、 涂料、油墨等领域得到广泛应用。本次演示总结了纳米碳酸钙的制备及改性应用 研究进展,并分析了其未来的发展趋势和应用前景。
引言纳米碳酸钙是一种由钙离子和碳酸根离子组成的无机纳米粒子,具有轻 质、高比表面积、吸油性等特性。制备纳米碳酸钙的方法主要有化学沉淀法、气 相水解法、界面沉淀法等。纳米碳酸钙经过改性处理后,可进一步提高其应用性 能,如表面改性技术、插层改性技术等。

纳米碳酸钙合成工艺及应用研究进展(二)

纳米碳酸钙合成工艺及应用研究进展(二)

纳米碳酸钙合成工艺及应用讨论进展(二)1.6微乳液法目前,讨论者尝试各种不同的新方法来合成纳米粒子,重要有微乳液法、膜分散微结构反应器法、溶胶—凝胶法、原位沉积法等。

微乳液法属于Ca2+—R—CO32—反应系统,有机介质R一般为液体油。

通常,微乳液可分为W/O型、O/W型、油水双连续型3种,反相微乳液属于W/O型微乳液。

Niemann等通过在W/O型微乳液系统中制备纳米碳酸钙和硫酸钡试验,建立了微乳液法制备纳米粒子的理论模型,并提出了工艺条件放大的依据。

Sugih等也在微乳液中用石灰乳碳化制备纳米碳酸钙粒子,讨论了水与表面活性剂的摩尔比、连续相的不同、表面活性剂的浓度及搅拌速度等试验条件,得出:纳米粒子粒径随Ca—OT表面活性剂浓度的加添而下降;搅拌速度的加添会使粒径增大、分布变宽;高浓度的石灰乳更有利于碳化过程。

Hu等用亚麻油做表面活性剂,20℃下碳化合成了纳米碳酸钙,亚麻油的最佳用量为纳米碳酸钙产品质量的3%;产品的活化率能达到99.07%,按10︰100比例添加到PVC中,混合PVC材料的机械性能显著改善。

李珍等人讨论了微乳液法制备纳米碳酸钙,试验采纳吐温—80作为表面活性剂,并得出了最佳工艺条件。

赵睿应用反相微乳液法制备了多种形态纳米碳酸钙颗粒,大小均匀,分散性好,较少团聚,粒径从30~100nm不等。

微乳液法制备纳米碳酸钙装置简单,操作简单;制备的纳米粒子粒度分散性好,且粒度可调,有很好的应用前景。

但对于微乳液的形成机理、微结构掌控、体系组分对颗粒形成动力学、尺寸、形态及性质的影响,有待深入讨论。

该技术需要大量的油和表面活性剂,如何分别回收它们,以降低成本,目前还处于试验室讨论阶段,这也是该技术无法大规模商业化生产的一个紧要原因。

有报道,湖南大学利用纳米技术和材料,把握了采纳微乳液法生产纳米碳酸钙新工艺,填补国际技术空白。

目前此种方法正处在讨论之中,还需进一步讨论微乳液性质,寻求高效率、低成本、易回收的表面活性剂,建立适合工业化的生产体系。

纳米碳酸钙制备工艺分析

纳米碳酸钙制备工艺分析

纳米碳酸钙制备工艺分析纳米碳酸钙(nano-CaCO3)是一种具有广泛应用前景的新型纳米材料,可用于陶瓷制品、橡胶制品、塑料制品和涂料等多个行业。

其制备工艺主要包括溶液法、加热碳化法和高压碳酸盐法。

本文将对这些制备工艺进行详细的分析。

首先是溶液法。

该方法通过将硝酸钙和碳酸钠等钙源溶解在水中,然后通过化学反应沉淀出纳米碳酸钙。

这种方法的优点是简单易行,可控性好,能够得到均一分散度较好的纳米碳酸钙颗粒。

然而,溶液法存在一些问题,如反应溶液的酸碱度、温度和搅拌速度等因素对纳米碳酸钙的形貌和颗粒大小具有较大影响,需要进行严密的实验条件控制。

其次是加热碳化法。

该方法通过将一定质量比的钙源与一定比例的碳源混合,在高温下加热反应,使其发生碳化反应生成纳米碳酸钙。

这种方法具有高效、高产出等优点,制备出的纳米碳酸钙具有较好的纯度和形貌。

然而,加热碳化法也存在一些问题,如反应条件的控制较为困难,高温容易引起固相和气相反应的竞争,而且产生的纳米碳酸钙颗粒分散性较差。

最后是高压碳酸盐法。

该方法通过将高压二氧化碳气体与钙氢氧化物反应,生成纳米碳酸钙。

这种方法具有操作简便、反应效果好等优点,制备出的纳米碳酸钙颗粒形状规整、分散性好。

然而,高压碳酸盐法也存在一些问题,如需要较高的压力和温度,设备要求较高。

总的来说,纳米碳酸钙制备工艺各有优缺点,选择合适的制备工艺需要考虑到具体应用的要求以及成本和技术条件的综合因素。

未来的研究方向可以是改进现有制备工艺,提高纳米碳酸钙的颗粒分散性和控制其形貌的技术,以满足不同应用领域对纳米碳酸钙的需求。

纳米碳酸钙的合成工艺研究

纳米碳酸钙的合成工艺研究

纳米碳酸钙的合成工艺研究纳米碳酸钙(Nano CaCO3)是一种颗粒尺寸小于100纳米的碳酸钙粉体材料。

与传统的微米级碳酸钙相比,纳米碳酸钙具有较大的比表面积、高反应活性、良好的机械性能和透明度等特点,广泛应用于领域,如橡胶、塑料、涂料、纺织品、食品、医药等。

本文将介绍纳米碳酸钙的合成工艺研究。

纳米碳酸钙的合成方法多种多样,常用的合成工艺包括溶液法、气相法和固相法等。

以下将分别介绍这三种常用工艺。

溶液法是一种常用的纳米碳酸钙合成方法。

一般来说,该方法通过在钙盐溶液中加入碳酸盐溶液,通过化学反应使碳酸盐与钙盐反应生成纳米碳酸钙。

在该方法中,反应温度、pH值、反应时间等条件对纳米碳酸钙的产率和粒径均具有重要影响。

较高的温度和碱性条件有利于产生较小颗粒尺寸的纳米碳酸钙。

此外,对溶液饱和度的控制也是纳米碳酸钙合成的关键。

通过合理调节溶液浓度和反应时间,可以控制纳米碳酸钙的尺寸和分布。

气相法是另一种常用的纳米碳酸钙合成方法。

该方法主要通过在高温环境下将有机碳源与氧化钙进行热解反应,生成纳米碳酸钙。

常用的有机碳源包括甲烷、丙烷等。

热解温度、反应时间和气体流速等因素对纳米碳酸钙的形貌和分布起着重要作用。

通常情况下,较高的热解温度和较长的反应时间有利于产生较小的颗粒尺寸和较窄的分布。

固相法是一种低成本的纳米碳酸钙合成方法。

该方法通过在固相条件下进行反应,使钙源和碳源在高温下发生化学反应,生成纳米碳酸钙。

常用的钙源包括石灰石和氢氧化钙,而常用的碳源包括葡萄糖、醋酸钠等。

反应温度、反应时间和原料比例等因素对纳米碳酸钙的合成具有重要影响。

较高的反应温度和较长的反应时间有利于生成较小的颗粒尺寸和较高的产率。

纳米碳酸钙的合成工艺研究主要集中在优化合成条件、控制颗粒尺寸和分布以及提高产率等方面。

例如,通过合理调节反应温度、pH值和反应时间等条件,可以获得所需的纳米碳酸钙颗粒尺寸和形貌。

此外,利用表面活性剂和分散剂等添加剂可以改善纳米碳酸钙颗粒的分散性和稳定性。

纳米碳酸钙的生产工艺及用途

纳米碳酸钙的生产工艺及用途

纳米碳酸钙的生产工艺及用途碳酸钙是自然界存在的一种很广泛的矿物质,也是一种传统的无机盐化工产品。

近年来,随着碳酸钙的超细化及表面改性技术的发展,纳米碳酸钙制备技术及应用,已成为国内外竞相开发的研究热点。

本文就有关纳米碳酸钙的主要生产技术及其应用领域作一简介。

【阳山县中棋实业有限公司】关键词纳米碳酸钙生产用途碳酸钙(化学式为CaCO3)在自然界广泛存在,它至少有6种矿物形式[1]:无定形碳酸钙(amorphous CaCO3)、球霰石(vaterite)、文石(aragonite)、方解石(calcite)、单水方解石(monohydro calcite)和六水方解石(ikaite,CaCO3·6H2O),是大理石、石灰石、白垩等天然矿物的主要成分,也是贝壳、珊瑚礁、珍珠的构成成分。

在工业上,碳酸钙作为一种重要的无机盐化工产品,物美价廉。

根据生产方法不同,碳酸钙分为两大类、多种型号,以满足不同行业、不同用途的需要[2]。

以方解石、大理石、白垩、贝壳、石灰石等为原料经机械粉碎及超细研磨等用物理方法制取的碳酸钙粉体产品称重质碳酸钙,以GCC表示;以石灰石为原料经煅烧、消化、碳酸化、分离、干燥分级等化学方法制取的产品称轻质碳酸钙,以PCC表示。

普通型的重质碳酸钙和轻质碳酸钙,通常作一般填料和白色颜料使用。

纳米碳酸钙是20世纪80年代运用纳米技术加工发展而成的一种新型轻质碳酸钙产品,粒径通常在20~100 nm之间。

由于碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,且粒径细而均匀、分布窄、比表面积大、表面活性及分散性好、表面能高,使其在实际使用中体现了很多普通碳酸钙材料所不具备的更加优异的性能,用途更为广泛。

如可广泛大量应用于注塑、挤出、PVC型材、管材、汽车涂料、密封胶、粘结剂涂料、油墨、橡胶等行业,碳酸钙产品的附加值得到很大提高,很快引起了世界各国的普遍关注,现已成为无机非金属材料研究和企业竞争投资的热点[3]。

生产纳米碳酸钙的工艺流程

生产纳米碳酸钙的工艺流程

生产纳米碳酸钙的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 石灰石煅烧:将石灰石(主要成分是碳酸钙)在高温下煅烧,分解为氧化钙(CaO)和二氧化碳(CO2)。

纳米碳酸钙的制备及粒径、形貌控制

纳米碳酸钙的制备及粒径、形貌控制

纳米碳酸钙的制备及粒径、形貌控制
纳米碳酸钙的制备方法有很多,常见的有化学共沉淀法、溶胶凝胶法、水热法等。

其中,化学共沉淀法是一种简单易操作、成本较低的方法,也是应用最广泛的制备方法之一。

化学共沉淀法的制备步骤如下:
1. 将钙盐和碳酸盐的溶液混合,将pH值调节到8左右。

2. 加入一定量的表面活性剂,如CTAB、SDS等,使反应产物均匀分散。

3. 在搅拌的条件下,缓慢滴加含有碱性离子的溶液,如氢氧化钠溶液,使溶液pH值升高,从而促进反应。

4. 继续搅拌反应一定时间,然后离心、洗涤、干燥,得到纳米碳酸钙粉末。

通过控制反应条件,可以实现纳米碳酸钙的粒径、形貌控制。

主要的影响因素包括反应温度、pH值、反应时间、离子浓度、添加剂种类等。

例如,提高反应温度和pH值可以促进反应速度,但同时也容易导致晶体生长,从而增大颗粒大小;添加适量的表面活性剂可以提高反应产物的稳定性和均匀性,有利于得到较为均一的纳米颗粒。

除了化学共沉淀法,还可以采用其他方法来实现纳米碳酸钙的制备和粒径、形貌控制。

例如,溶胶凝胶法可通过不同的预处理和处理条件实现纳米颗粒的控制,水热法可以获得形貌较为复杂的纳米颗粒等。

纳米碳酸钙的制备方法及碳酸钙水分仪使用方法

纳米碳酸钙的制备方法及碳酸钙水分仪使用方法

纳米碳酸钙的制备方法及碳酸钙水分仪使用方法摘要:纳米碳酸钙作为一种优良的填料,具有色白质纯、易于着色、化学性质稳定、成本低廉、粒径和粒子形状可以控制等优势,已经成功地应用在橡胶、塑料、涂料、油墨、造纸等领域。

鉴于纳米碳酸钙优越的性能。

更多的潜在价值也正成为开发热点。

一、纳米碳酸钙制备方法⑴化学方法分为碳化法、苏尔维法、联钙法、苛碱法和氯化钙-苏打法五种方法,其中应用最多的是碳化法,其次是氯化钙-苏打法,其它三种方法应用很少,在此主要介绍碳化法的生产原理。

①碳化法制得的碳酸钙称为轻质碳酸钙或沉淀碳酸钙,其基本方法如下:石灰烧制:CaCO3——CaO+CO2+Q1消化反应,也称化灰反应:CaO+H2O—Ca(OH)2+Q2碳化反应:Ca(OH)2+CO2——CaCO3↓+Q3②苏尔维法(Solvay),即在生产纯碱的过程中联产碳酸钙。

其化学反应过程如下:③联钙法。

以废石灰渣和氯碱工业的廉价盐酸为原料生产碳酸钙。

用盐酸处理消石灰得到氯化钙溶液,氯化钙溶液在吸入氨气后用二氧化碳进行碳化便得到碳酸钙沉淀。

其化学反应过程如下:④苛化碱法。

在烧碱(NaOH)的生产过程中,可得到副产品轻质碳酸钙。

即在纯碱水溶液中加入消石灰,即可生成碳酸钙沉淀,并同时得到烧碱水溶液,最后碳酸钙沉淀经脱水、干燥和粉碎便制得轻质碳酸钙。

其化学反应过程如下:⑤氯化钙—苏打法。

在纯碱水溶液中加入氯化钙进行复分解反应,并进行快速冷却而生成无定形的碳酸钙沉淀,然后经脱水、干燥和粉碎而制得沉淀碳酸钙。

总之,采用上述化学方法生产的轻钙粉体的主要特点是:a粒度小,一般平均粒径在数微米以下;b粒度分布窄,可视为单分散粉体;c粒子晶型多样化,应用于不同行业需要不同的晶型。

⑵物理方法习惯上也称研磨法,即由天然矿物直接经机械粉碎所得产品,因其比重大于轻钙,故名重质碳酸钙(简称重钙,GCC)。

其加工过程又分为干法和湿法两种研磨工艺,产品分普通型,如双飞粉200目、三飞粉(325目、45~125μm)、细粉(325~1250目、10~45μm),超细型(>1250目、2~10μm),超细活性型(经表面活化处理)三种。

纳米碳酸钙制备工艺分析

纳米碳酸钙制备工艺分析

纳米碳酸钙制备工艺分析纳米碳酸钙又被称为超微细碳酸钙,其平均粒子直径大约为40nm。

工艺试验室制备超细碳酸钙通常采用碳化法、复分解法、微乳法三种途径,工业上则一般采用碳化法。

1、纳米碳酸钙的制备方法(1)复分解法复分解法是在一定条件下,将水溶性钙盐(如氯化钙,硫酸钙等)与水溶性碳酸盐(如碳酸铵,碳酸钠等),通过液相到固相的反应过程制得纳米碳酸钙。

试验室使用这种方法制取碳酸钙时,可以通过掌握反应物浓度、反应温度、生成物的过饱和度以及加入适当的添加剂等操作方法,得到粒径小于0.1μm、比表面积大、具有较好溶解性的无定形碳酸钙产品。

这种方法制得的纳米碳酸钙纯度比较高,也有具有很好的白度,但在制取不同晶形的产品时需要很高的成本,所以目前国内外很少采用这种方法工业制取纳米碳酸钙。

(2)碳化法①间歇鼓泡碳化法与复分解法不同,间歇鼓泡碳化法是目前国内外制备纳米碳酸钙广泛采用的方法。

其操作步骤是首先将1.04-1.06g/cm3的Ca(OH)2浆液降温到25℃以下,再将浆液打入到碳化塔中,留意保持一定的液位,然后从碳化塔的底部向塔内通入CO2或者CO2和空气的混合气体,掌握合理的溶液浓度、反应温度、气液比以及添加剂等条件,可以间歇制得纳米级碳酸钙。

②连续喷雾法也是通过碳化法来制取纳米碳酸钙,步骤是将Ca(OH)2浆液通过压力式喷嘴从碳化塔的顶部向下呈雾状喷出,与此同时从塔的底部向上通入CO2或者CO2和空气的混合气体,使喷下的Ca(OH)2浆液与CO2充分接触,发生反应。

这种方法明显增加了CO2气体和Ca(OH)2浆液的接触面积,反应过程可以通过掌握石灰乳的浓度、液滴直径、流量、反应气液比等条件,在常温下制得直径在0.04-0.08μm的纳米碳酸钙。

通过连续喷雾法制得的CaCO3粒径分布窄,颗粒外形比较规则,而且简单分散,综合品质要优于间歇鼓泡法,但由于这种方法能耗较大,而且喷嘴简单发生堵塞,造成了高额生产成本,故难以普及。

纳米碳酸钙生产技术18

纳米碳酸钙生产技术18

活性轻钙
干法活化 湿法活化
≥96
≥92
≥95
≤0.35
≤0.5
≤0.002
≤0.001
9.0~108ml/g
≤0.1
≤0.01
≤0.05
≤0.01
≤0.005
≤0.001
专用纳米碳酸钙
橡塑专用钙 树脂油墨专用钙
≥90
≥95
≥85
≤0.5 ≤0.005
≤1.5 细度≤15μm
3 纳米碳酸钙生产的工艺流程
纳米碳酸钙与普通轻钙和活性轻钙的工艺比较
❖ 从普通轻钙,到活性轻钙,再到活性纳米钙,其工艺流程的变化 规律总的来说是越来越复杂,主要区别在于:
❖ ⑴ 设备方面,纳米钙多了制冷设备、活化设备、沉降槽、解聚 分散机等。
❖ ⑵ 添加剂方面,纳米钙多了晶形导向剂、分散剂、活性剂。 ❖ ⑶ 对原料的要求不同,纳米钙要求生石灰品质高;工艺用水要
❖ 填充剂、添加剂、补强剂、改性剂及增白剂,以节约母料、增容 增量、降低成本、改善制品品质、增强制品功能,增加制品附加 值等。
按专门用途、不同晶形、粒径大小分类
专门用途 晶形分类
粒径分类

橡胶专用钙 无规则体 微粒钙 >5μm

塑料专用钙 纺锤体 微粉钙 1~5μm

涂料专用钙 立方体 微细钙0.1~1μm
❖ 俗称纳米级碳酸钙(简称NCC或NPCC)。
2、纳米碳酸钙的特性与分类
❖ 纳米碳酸钙——碳酸钙行业中的“后起之秀”,作为一种新型高 档无机功能性填料、目前唯一吨价位在万元以内的纳米材料、目 前唯一达到万吨级规模的纳米产业、应用最广泛的纳米产品,
❖ 在增韧性、补强性、透明性、触变性、流平性和消毒杀菌等应用 方面的性能,从而大大拓宽了纳米碳酸钙的应用领域,极大地改 善和提高了相关行业的产品性能和质量。

纳米碳酸钙生产工艺

纳米碳酸钙生产工艺

纳米碳酸钙生产工艺
纳米碳酸钙的生产工艺主要分为以下几个步骤:
1. 碳酸钙预处理:将天然的或人工合成的碳酸钙粉末经过预处理,去除杂质和颗粒物,确保纯净度和质量。

2. 反应:将预处理过的碳酸钙粉末溶解于含有钙离子和碳酸根离子的反应液中,通过控制反应条件(温度、pH等),在反应液中形成纳米级的碳酸钙颗粒。

3. 分离和洗涤:将反应液中的纳米碳酸钙颗粒分离出来,并通过多次洗涤去除残留的反应液和离子。

4. 干燥和粉碎:将洗涤后的纳米碳酸钙颗粒经过低温干燥和粉碎处理,得到最终的纳米碳酸钙产品。

此外,为了提高产品的纯度和稳定性,纳米碳酸钙生产过程中通常采用超声波和高压均质等技术进行物理或化学处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业生产技术的不断革新,给许多新型的产品生产带来可能,其中一种纳米级的碳酸钙颗粒就可运用于多个行业中去。

目前主要采用的制作工艺可以分为炭化法、连续喷雾碳化法、超重力碳化法等。

我们来一一去进行了解。

制备纳米碳酸钙的方法有物理法和化学法。

物理法就是对天然石灰石、白垩石进行机械粉碎而得到。

但是粉碎的粒度是有限的,只有采用特殊的方法和机械才有可能达到0.1μm以下。

所以生产纳米碳酸钙主要采用化学法。

(一)碳化法
这种制备方法是主要的一种生产方式。

将精选的石灰石煅烧,得到氧化钙和窑气。

使氧化钙消化,并将生成的悬浮氢氧化钙在高剪切力作用下粉碎,多级旋液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浮液;然后通入CO2气体,加入适当的晶型控制剂,碳化至终点,得到要求晶型的碳酸钙浆液;再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。

按照碳化过程中CO2气体与氢氧化钙悬浮液接触方式的不同,可将碳化法分为间歇鼓泡碳化法、连续喷雾碳化法和超重力碳化法,以及在间歇鼓泡碳化法
基础上改进的非冷冻法。

该法投资少,易于转化,为国内外大多数厂家所采用。

但是这种方法生产效率低、气液接触差、碳化时间长、粒径粗且不均匀。

(二)连续喷雾碳化法
喷雾碳化法是将石灰乳用喷头喷成雾状,从塔顶喷下,将一定浓度的CO2以某一速度从塔底上升,与雾状石灰乳发生反应。

对于连续喷雾碳化,则重复进行以上过程,最后可获得粒径小于0.1μm的纳米碳酸钙。

该法生产纳米碳酸钙效率高,经济效益可观,并能实现连续自动大规模生产,另外,具有很高的科学性和技术性。

但设备投资较大。

(三)超重力碳化法
利用旋转造成一种稳定的、比地球重力加速度高的多的超重力环境,极大地增加气液接触面积,强化气-液之间的传质过程,从而提高碳化速度。

同时,由于乳液在旋转床中得到高度分散,限制了晶粒的长大,即使不添加晶形控制剂,也可以制备出粒径为15~30nm的纳米碳酸钙。

相关文档
最新文档