铸件宏观凝固组织的控制
铸造-宏观凝固组织
第一章:铸造凝固组织的形成和控制1.1铸件宏观凝固组织的特征1.1.1特征根据液态金属的成份、铸型的性质、浇注及冷却条件,宏观凝固组织一般包括如下三个部分:表面细晶区,中间柱状晶去,内部等轴晶区。
图:p97 图8-1,b),(1)表面细晶区:紧靠铸型型壁的激冷组织,因此也称激冷区;由无规则的细小等轴晶组成。
特点:非常薄,只有几个晶粒厚。
(2) 中间柱状晶区:紧连细晶区;垂青于型壁(散热方向);彼此平行排列;断面形状为柱状。
特殊情况:全部是柱状晶区,p97 图8-1,a)(3)内部等轴晶区:各相同性;没有方向性;晶粒尺寸远大于表面细晶区。
特殊情况:全部是等轴晶区:表面细晶区的数量非常小,对工件的整体性能影响不大,而柱状晶区和内部等轴晶区的数量非常大,因此,材料的性能主要取决于这两个相的相对比例。
具体的影响下面再谈。
1.1.2 铸件结晶组织对铸件性能的影响:(1)表面细晶区:特点:晶粒细且没有方向性;性能非常好;非常薄——几个晶粒的厚度:小于1mm。
对铸件性能的影响:对于薄壁铸件:如厚度在4~6mm的铸件,具有一定的意义对于大部分铸件:意义不大,这个厚度所占比例非常小:结论:一般不给与特别重视。
对于特别薄的铸件有一定的意义。
(2)中间柱状晶区:特点:a)晶粒长、粗大、晶界面积小、排列位向一致,b)杂质、非金属夹杂、气体等,一般存在在结晶界面上,特别是最后结晶的界面上。
而在柱状晶区,这些杂质主要存在于柱状晶与柱状晶或柱状晶与等轴晶的界面上,形成性能弱面。
C)进一步的加工,如塑性加工或轧制:在杂质较多的结合界面上产生裂纹。
性能:有方向性;纵向好,横向差;有性能弱面。
结论:一般情况下尽量避免。
特殊情况下充分利用。
举例:高锰钢锤头锤柄。
工况条件,旋转,打击、破碎。
高锰钢成分:Mn=13,C=1.2高锰钢锤头结构及组织示意图性能:韧性非常好,同时加工硬化。
实际生产中遇到的问题:但是浇注出来的铸件,拿锤子一砸就断。
第三讲连铸坯宏观组织及控制.
柱状晶生长过程的动态演示
铸
型
液 态 金 属
柱状晶生长过程的动态演示
柱状晶结构有以下弱点:
①柱状晶的枝干较纯,而枝晶偏析较严重,热变形后由于枝晶偏析区被 延伸,组织具有带状特性。这样使钢的力学性能具有明显的方向性,特别是 使钢的横向性能和韧性降低; ②在柱状晶交界面,由于杂质(硫、磷夹杂物)的沉积,构成了薄弱面, 是裂纹容易扩展的地方,加工时易脆裂; ③柱状晶充分发展时,铸坯可形成穿晶结构,会造成中心疏松和缩孔, 降低了致密度,增加了中心偏析。
一般情况下,连铸坯从边缘到中心也是由激冷层、柱状 晶带和锭心带组成,与钢锭无本质区别。
只是由于冷却强度大,连铸坯的激冷层往往要厚些,柱
状晶较发达但不如钢锭那么粗大,锭心带也是粗大等轴晶组 成。 连铸坯整个结构比钢锭致密,晶粒也要细一些,且液相 穴很长的铸坯凝固,钢水补缩困难,易产生中心疏松。
三个晶区的特征
而在平行模壁方向散热能力较差,并且晶粒径 向仅能长大较短距离相邻晶粒就互相接触,停止生 长。因此在细晶区形成后,接着形成了一个柱状晶 区。 柱状晶区金属较致密,沿柱状晶轴向强度很高, 但近于平行的柱状晶晶粒之间的径向结合强度却较 低。柱状晶区有明显的各向异性。当对铸锭进行塑 性变形时柱状晶区易出现晶间开裂。
①激冷层:铸坯表皮由细小等轴晶组成,叫激冷层,是在结晶器弯月
面处冷却速度最高的条件下形成的。宽度一般为2~5mm,主要决定于钢 水过热度,浇注温度越高,激冷层就越薄;温度越低,激冷层就厚一些。 ②柱状晶区:铸坯激冷层形成过程中的收缩,使结晶器弯月面以下约 100~150mm的器壁处产生了气隙,降低了传热速度。同时,钢液内部 向外散热使激冷层温度升高,不再产生新的晶核。在钢液定向传热得到 发展的条件下,柱状晶带开始形成。靠近激冷层的柱状晶很细,基本上 不分叉。从纵断面看,柱状晶并不完全垂直于表面而是向上倾斜一定角 度(约10°),从外缘向中心,柱状晶个数由多变少呈竹林状。柱状晶 的发展是不规则的,在某些部位可能会贯穿铸坯中心形成穿晶结构。对 于弧形连铸机,铸坯低倍结构具有不对称性。由于重力作用,晶体下沉, 抑制了外弧柱状晶生长,故内弧侧柱状晶比外弧侧要长些,且铸坯内裂 纹也常常集中在内弧侧。 ③中心等轴晶区:随着凝固前沿的推移,凝固层和凝固前沿的温度梯 度逐渐减小,两相区宽度不断扩大,铸坯心部钢水温度降至液相线温度 后,大量等轴晶产生并迅速长大,形成无规则排列的等轴晶带。中心区 有可见的不致密的疏松和缩孔并伴随有元素的偏析(如S、P、C、Mn)。 与钢锭比较,由于连铸坯柱状晶的发展,中心等轴晶区要窄得多,晶粒 也细一些。
第三讲 连铸坯宏观组织及控制
三、 枝晶熔断及结晶雨理论
生长着的柱状枝晶在凝固界面前方的熔断、游 离和增殖导致了内部等轴晶晶核的形成,称为“枝 晶熔断”理论。 液面冷却产生的晶粒下雨似地沉积到柱状晶区 前方的液体中,下落过程中也发生熔断和增殖,是 铸锭凝固时内部等轴晶晶核的主要来源,称为“结 晶雨”理论。
目前比较统一的看法是内部等轴晶区的 形成很可能是多种途径起作用。 在一种情况下,可能是这种机理起主导
①激冷层:铸坯表皮由细小等轴晶组成,叫激冷层,是在结晶器弯月
面处冷却速度最高的条件下形成的。宽度一般为2~5mm,主要决定于钢 水过热度,浇注温度越高,激冷层就越薄;温度越低,激冷层就厚一些。 ②柱状晶区:铸坯激冷层形成过程中的收缩,使结晶器弯月面以下约 100~150mm的器壁处产生了气隙,降低了传热速度。同时,钢液内部 向外散热使激冷层温度升高,不再产生新的晶核。在钢液定向传热得到 发展的条件下,柱状晶带开始形成。靠近激冷层的柱状晶很细,基本上 不分叉。从纵断面看,柱状晶并不完全垂直于表面而是向上倾斜一定角 度(约10°),从外缘向中心,柱状晶个数由多变少呈竹林状。柱状晶 的发展是不规则的,在某些部位可能会贯穿铸坯中心形成穿晶结构。对 于弧形连铸机,铸坯低倍结构具有不对称性。由于重力作用,晶体下沉, 抑制了外弧柱状晶生长,故内弧侧柱状晶比外弧侧要长些,且铸坯内裂 纹也常常集中在内弧侧。 ③中心等轴晶区:随着凝固前沿的推移,凝固层和凝固前沿的温度梯 度逐渐减小,两相区宽度不断扩大,铸坯心部钢水温度降至液相线温度 后,大量等轴晶产生并迅速长大,形成无规则排列的等轴晶带。中心区 有可见的不致密的疏松和缩孔并伴随有元素的偏析(如S、P、C、Mn)。 与钢锭比较,由于连铸坯柱状晶的发展,中心等轴晶区要窄得多,晶粒 也细一些。
柱状晶的特点是各向异性,对于诸如磁性材料、发动机和螺旋浆叶 片等这些强调单方向性能的情况,采用定向凝固获得全部柱状晶的零件 反而更具优点。 如何在技术上有效地控制铸件的宏观组织十分重要。因此有必要了 解各晶区组织的形成机理。
铸造质量控制
铸造质量控制一、概述铸造质量控制是指通过一系列的措施和方法,确保铸造件在制造过程中达到预期的质量要求。
本文将从铸造工艺、质量控制方法和质量控制指标三个方面详细介绍铸造质量控制的标准格式文本。
二、铸造工艺1. 铸型制备:铸造件的质量直接受到铸型的影响,因此应根据铸造件的形状、尺寸和材料特性,选择合适的铸型材料和制备工艺。
铸型制备应符合相关标准和规范,确保铸型的精度和表面质量。
2. 熔炼与浇注:熔炼是铸造过程中的关键环节,应严格控制熔炼温度、熔炼时间和熔炼材料的质量。
浇注过程中,应注意铸液的温度控制、浇注速度和浇注方式,以避免铸造缺陷的产生。
3. 凝固与冷却:凝固过程是铸造件形成的关键阶段,应根据铸件的结构特点和材料性能,合理控制凝固速度和冷却方式,以获得理想的组织结构和性能。
4. 除砂与清洁:铸件出模后,应进行除砂和清洁工作,以去除铸件表面的砂粒和杂质,确保铸件的表面光洁度和尺寸精度。
三、质量控制方法1. 工艺参数控制:通过对铸造工艺参数的控制,如熔炼温度、浇注速度、凝固时间等,来影响铸件的质量。
可以通过设定合理的参数范围、监测和调整参数数值,以达到质量控制的目的。
2. 检测与检验:采用合适的检测与检验方法,对铸件的尺寸、形状、组织结构和性能进行评估。
常用的检测方法包括尺寸测量、金相分析、硬度测试、无损检测等。
3. 过程监控:通过实时监测铸造过程中的关键参数和指标,如铸液温度、浇注速度、凝固时间等,及时发现异常情况并采取相应措施,以确保铸件的质量稳定。
4. 环境管理:铸造过程中的环境条件对铸件的质量也有一定影响。
应通过控制环境温度、湿度和灰尘等因素,来减少外界环境对铸件质量的影响。
四、质量控制指标1. 尺寸精度:铸件的尺寸精度是衡量其质量的重要指标之一。
应根据铸件的设计要求和使用环境,制定合理的尺寸公差,并通过尺寸测量和检验来评估尺寸精度。
2. 表面质量:铸件的表面质量直接影响其外观和使用寿命。
应通过除砂、清洁和表面处理等措施,确保铸件表面的光洁度和无裂纹、气孔等缺陷。
材料成形原理第四章铸件结晶组织的形成与控制
4.1.4内部等轴晶的形成
2 关于等轴晶区的形成过程:(1)索新(Southin)等人认为不仅要求界面前方存在有等轴晶晶核,而且还要求这些晶核长到一定的大小,并形成网络以阻止柱状晶区的生长。(2)富兰杰克逊(Fredikesson)认为内部等轴晶区的产生并不要求游离晶形成网络阻止柱状晶区的生长,而是由一部分游离晶的沉淀和一部分游离晶被侧面生长着的状状前沿捕获后而形成的。(3)我国学者,认为内部等轴晶区的形成是由于凝固界面的生长速率R与游离晶垂直于界面的运动速率v之间互相作用的结果。当两者之差远大于界面捕获游离晶所必需的临界速率时,即可形成内部等轴晶区。
4.1.4内部等轴晶的形成
从本质上说,内部等铀晶区的形成是由于熔体内部晶核自由生长的结果。但是,关于等轴晶晶核的来源以及这些晶核如何发展并最终形成等轴晶区的具体过程,存在不同的争议。 1、关于等轴晶晶核的来源: (1)过冷熔体直接生核理论 (2)界面前方晶粒游离理论 (3)激冷晶游离理论
依附于型壁的晶粒生长时引起溶质再分配,界面前沿液态凝固点降低,其实际过冷度减小。晶体根部紧靠型壁,溶质不易扩散,偏析严重,生长受到抑制。而远离根部处易于通过扩散和对流而均匀,生长快。这样将在根部产生“缩颈”现象。
在流体的冲刷和温度反复波动所形成的热冲击作用下,熔点最低而又最脆弱缩颈部位极易断开,晶粒自型壁脱落而导致晶粒游离。
4.1.4内部等轴晶的形成
无论是关于等轴晶晶核的来源问题,还是等轴晶区形成的具体过程问题,上述各理论与看法均有自己的实验根据,然而也受到各自实验条件的限制。关于等轴晶区的形成过程比较统一的看法是,中心等轴晶区的形成很可能是多种途径的。在一种情况下,可能是这种机理起主导作用;在另一种情况下,可能是另一种机理在起作用,或者是几种机理的综合作用,而各自作用的大小当由具体的凝固条件所决定。
第三章 铸件宏观组织及其控制
纯金属几乎得不到等轴晶。 因为纯金属晶体的游离是很困难。 由于型壁处过冷度最大,所以沿型壁方向晶 体的长大速度最快,晶体之间很快能连接起来 形成凝固壳。当一个整体的凝固壳形成后,晶 体再型壁处游离出去就很困难。
固溶体时:
在晶体与型壁交会处形成溶质的偏析,容易使 晶体与型壁的交会处产生“脖颈”。 具有脖颈的晶体不易 沿型壁连接形成 凝固壳; 在浇注过程和凝固 初期存在的对流容易 冲断脖颈,使晶体脱落并游离出去。
晶粒生成和游离的场所,也就是等轴晶生成 的起源处,随着浇注温度的降低逐渐向浇口处 转移。
上述同样的铸型,同样的99.7%铝,在680℃ 情况下浇注。
即使改变了冷铁的位置,铸件中的等轴晶区 并不象700℃那样,而是没有多大变化。
这是由于等轴晶生成的起源移动到浇道口 内壁处的原因
从这个试验结果可知,冷铁虽然对从别处生 成有利的晶粒运动到它附近时,有避免这些晶 粒再融化而消失的作用,但是,如果把它放在 希望产生晶粒生成和游离的地方,使这里的冷 却能力增大的化,则反而抑制了等轴晶的生成 和游离
如,对铝合金来说,Ti、Ni、 Fe等的偏析系数较大,易细 化晶粒; Zn、Mn等偏析系数较小, 组织难细化
前面指出,当过冷度增加到一定程度,等轴晶 的生成和游离就不发生,而在型壁上一开始就 形成了稳定的凝固壳,从而得到柱状晶。 这表示,铸型的激冷能力越大,稳定的凝固壳 形成得越快,等轴晶的生成和游离就越困难。
另外,型壁面上 的凹处使晶粒沿 着型壁面上的成 长受到阻碍,从 而使晶粒易于游 离
冷却能力较小的铸型的 型壁面上,晶粒和邻近 的晶粒接触形成凝固壳 缩需时间比起冷却能力 大水冷金属等冷却能力大的铸型,在型壁上迅速形成 稳定的凝固壳(b),在这种情况下晶粒游离的机会比a小。 一旦形成稳定的凝固壳之后,即使在那里有液体的运动, 晶粒也难以游离。
第五章 凝固组织的控制
Wizke等及Lipton等的研究 表明,液相流动对凝固界 面前的液相成分过冷度的 形成具有重要影响,而该 过冷度则是决定等轴晶形 成的关键因素,可作为柱 状晶向等轴晶转变的判据。
3. 等轴晶的形核
(1)型壁处的晶粒游离
合金的浇注过热度对游 离晶的形成具有决定性 的影响
液态金属在铸型型壁的激冷作用下依附型壁形核,这些晶粒在长大过 程中由于根部溶质的富集产生根部“缩颈”现象,并在流体的机械冲刷和 温度反复波动的热冲击下,自型壁脱落形成游离晶。 (2)枝晶熔断
2017/12/15 金属凝固原理
2. 铸件的典型凝固组织与形成过程
表面细晶区 内部等轴晶区
表面细晶粒区。它是紧靠型 壁的一个外壳层,由紊乱排 列的细小等轴晶所组成;
柱状晶区。由自外向内沿着 热流方向彼此平行排列的柱 状晶所组成;
内部等轴晶区。由紊乱排列 的粗大等轴晶所组成。
柱状晶区
铸件典型凝固组织
2017/12/15
金属凝固原理
4. 铸件凝固组织形态的控制
凝固组织形态的控制主要是晶粒形态和相结构的控制。相结构在很大程 度上取决于合金的成分,而晶粒形态及其尺寸则是由凝固过程决定的。 晶粒形态的控制是凝固组织控制的关键,其次是晶粒尺寸。 柱状晶比较粗大,晶界面积小,并且位向一致。因而其性能具有明显的方 向性:纵向好,横向差。此外,其凝固界面前方常汇集有较多的第二相杂质, 特别是当不同方位的柱状晶区相遇而构成晶界时大量夹杂与气体等在该处聚集 将导致铸件热裂,或者使铸件在以后的塑形加工中产生裂纹。 等轴晶区的界面积大,杂质和缺陷分布比较分散,且各晶粒之间位向 也各不相同,故性能均匀而稳定,没有方向性。其缺点是枝晶比较发达,显 微缩松较多,凝固后组织不够致密。等轴晶细化能使杂质和缺陷分布更加分 散,从而在一定程度上提高各项性能。一般说来,晶粒越细,其综合性能就 越好,抗疲劳性能也越高。 基于上述原因,大多数情况下希望获得较多的甚至是全部细小的等轴晶组 织。晶粒形态的控制主要是通过形核过程的控制实现的。促进形核的方法包括 浇注过程控制方法、化学方法、物理方法、机械方法、传热条件控制方法等。
材料成形原理--液态成形重点
本复习题仅适用于贵州大学机械学院12-13年度上学期1、液态成形温度场的数学解释法的假设条件:P64(1)金属的结晶范围很小,可忽略不计,即视为恒温下结晶。
(2)不考虑结晶潜热。
(3)铸件和铸型潜热。
(4)铸件与铸型紧密接触,无间隙,传热方式为传热方式为热传导。
2、铸件凝固时间的计算:(1)铸件的凝固时间是指从液态金属充满铸型的时刻至凝固完毕所需要的时间。
(2)单位时间内凝固层的增长厚度称为凝固速度。
(3)凝固时间是制定液态成形工艺的重要参数。
(4)平方根定律:t=ξ2/ k2(适合于大平板铸件和结晶间隔小的合金铸件)折算厚度法则:t=R2/ k2(R=V1/A2,R为折算厚度或铸件模数)(5)总结:为什么生产中多为球形晶?因为球的面积A越小,R越大,t越长,充型能力越好;疏松为小而分散的空洞,难防止;缩孔为大而集中的空洞,易防止。
第三章:1、(1)金属的熔化:是从晶界开始的。
P74晶粒间出现相对流动,称为晶界粘性流动。
☆熔化潜热:在熔点的固态变为同温度的液态时,金属要吸收大量的热量。
熔化:金属以规则的原子排列突变为紊乱的非晶结构的过程。
(2)研究金属的液态结构方法:一:间接方法,就是通过固态→液态、固态→气态转变后一些物理性质的变化来判断液态的原子结构状况。
二:直接,通过液态金属的X射线或中子线的结构分析来研究液态的原子情况。
(3)液态铝中的原子的排列在几个原子间距的小范围内,与其固态铝原子的排列方式基本一致,而远离的原子就完全不同于固态了。
这种结构称为微晶,液态铝的这种结构称为近程有序而远程无序的结构,而固态的原子结构为远程有序的结构。
(4)液态金属的结构的特点:1)原子的排列在较小间距内仍具有一定规律性,即原子间仍保持较强的结合能,且其平均原子间距增加不大。
2)在熔化时,晶体的结构已受到部分破坏,故其排列的规律性仅保持在较小范围内,这个范围是由十几个到几百个组成的集团。
3)液态中原子热运动的能量大,能量起伏也大,每个集团中具有动能大的原子能克服临近的原子的束缚,产生很强的热运动,并能成簇地脱离原有集团而加入别的集团或组成新的集团。
铸件宏观组织与控制
铸件宏观组织的发展趋势与展望
01
智能化铸造
随着智能化技术的发展,未来铸造过程将更加自动化和智能化,有望实
现更精准的铸件宏观组织控制。
02
新材料的应用
新型合金和复合材料的研发和应用,将为铸件宏观组织的优化提供更多
可能性。
03
跨学科研究与应用
铸件宏观组织与控制涉及到材料科学、物理学、化学等多个学科领域,
铸件宏观组织与控制
• 铸件宏观组织的基础知识 • 铸件宏观组织的控制方法 • 铸件宏观组织的缺陷与防止 • 铸件宏观组织的优化与应用 • 案例分析与实践
01
铸件宏观组织的基础知识
铸件宏观组织的形成
01
02
03
液态金属浇注
液态金属在浇注过程中, 受到冷却剂的作用,开始 凝固并形成铸件宏观组织。
凝固过程
其他宏观组织缺陷的防止
01
02
03Leabharlann 04气孔铸件内部存在的气体孔洞。
防止措施
控制金属液中的气体含量,优 化浇注系统和模具设计,以及
使用除气剂。
夹渣和夹杂物
铸件中夹带的外来固体颗粒或 与金属液不混溶的相。
防止措施
控制金属液的纯净度,去除金 属液中的氧化物和夹杂物,以 及优化浇注系统和模具设计。
04
铸件宏观组织的优化与应用
铸造缺陷
铸件宏观组织中可能存在铸造缺陷, 如缩孔、疏松和夹杂物等,这些缺 陷对铸件的性能和使用寿命产生不 利影响。
铸件宏观组织对性能的影响
力学性能
铸件宏观组织对铸件的力 学性能如强度、塑性和韧 性等具有重要影响。
物理性能
铸件宏观组织对铸件的物 理性能如导热性、导电性 和磁性等也有影响。
材料成形基本原理3版-合工大第7章答案
第七章铸件与焊缝宏观组织及其控制1.铸件典型宏观凝固组织是由哪几部分构成的,它们的形成机理如何?答:铸件的宏观组织通常由激冷晶区、柱状晶区和内部等轴晶区所组成。
表面激冷区的形成:当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用,产生很大的过冷度而大量非均质生核。
这些晶核在过冷熔体中也以枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。
柱状晶区的形成:在结晶过程中由于模壁温度的升高,在结晶前沿形成适当的过冷度,使表面细晶粒区继续长大(也可能直接从型壁处长出),又由于固-液界面处单向的散热条件(垂直于界面方向),处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,以表面细等轴晶凝固层某些晶粒为基底,呈枝晶状单向延伸生长,那些主干取向与热流方向相平行的枝晶优先向内伸展并抑制相邻枝晶的生长,在淘汰取向不利的晶体过程中,发展成柱状晶组织。
内部等轴晶的形成:内部等轴晶区的形成是由于熔体内部晶核自由生长的结果。
随着柱状晶的发展,熔体温度降到足够低,再加之金属中杂质等因素的作用,满足了形核时的过冷度要求,于是在整个液体中开始形核。
同时由于散热失去了方向性,晶体在各个方向上的长大速度是相等的,因此长成了等轴晶。
2.试分析溶质再分配对游离晶粒的形成及晶粒细化的影响。
答:对于纯金属在冷却结晶时候没有溶质再分配,所以在其沿型壁方向晶体迅速长大,晶体与晶体之间很快能够连接起来形成凝固壳。
当形成一个整体的凝固壳时,结晶体再从型壁处游离出来就很困难了。
但是如果向金属中添加溶质,则在晶体与型壁的交汇处将会形成溶质偏析,溶质的偏析容易使晶体在与型壁的交会处产生“脖颈”,具有“脖颈”的晶体不易于沿型壁方向与其相邻晶体连接形成凝固壳, 另一方面,在浇注过程和凝固初期存在的对流容易冲断“脖颈”,使晶体脱落并游离出去,形成游离晶。
一些游离晶被保留下来并发生晶体增殖,成为等轴晶的核心,形成等轴晶,从而起到细化晶粒的作用。
铸件典型宏观凝固组织
铸件典型宏观凝固组织
铸造是一种传统的制造工艺,被广泛应用于许多领域,包括航空、汽车制造、机械制造等。
在铸造过程中,铸件的凝固组织是非常重要的,它会影响到铸件的力学性能和耐用性。
下面我们来一起探讨一下铸件的典型宏观凝固组织。
首先,铸件的典型宏观凝固组织包括两个主要部分:晶体区和凝固缩孔区。
晶体区是由多个晶粒组成的,晶粒的大小和形状对铸件的机械性能具有重要影响。
凝固缩孔区是铸件中的缩孔和气孔区域,它们通常会影响铸件的外观和表面质量。
在铸造过程中,凝固过程是铸件形成的关键步骤。
当铸件被注入熔融金属时,它会逐渐冷却并凝固。
在凝固过程中,熔融金属会凝固成固态晶体。
晶体的生长速度和形状取决于温度梯度和成分梯度。
通常情况下,晶体生长速度越快,晶粒就越小,晶体生长速度越慢,晶粒就越大。
此外,晶粒的形状也会受到铸型结构和流动条件的影响。
随着铸件的逐渐冷却,凝固缩孔区也会逐渐形成。
凝固缩孔区具有较高的孔隙率和局部亚晶粒,这会影响铸件的力学性能和表面质量。
为了降低凝固缩孔区的缺陷率,通常需要采取相应的铸造措施,例如增加铸造温度、改进铸型和流道设计等。
总之,铸件的典型宏观凝固组织是由晶体区和凝固缩孔区组成的。
晶体区由多个晶粒组成,晶粒大小和形状对铸件的机械性能具有重要影响。
凝固缩孔区具有较高的孔隙率和局部亚晶粒,会影响铸件
的力学性能和表面质量。
因此,在铸造过程中,需要采取相应的铸造措施来提高铸件的质量和性能。
控制宏观偏析的方法和效果
控制宏观偏析的方法和效果宏观偏析亦称为“区域偏析”,指金属铸锭(铸件)中各宏观区域化学成分不均匀的现象。
包括正常偏析、反常偏析和比重偏析。
宏观偏析造成铸锭(铸件)组织和性能的不均匀性。
它和材料本性、浇铸条件、冷却条件等许多因素有关,虽然无法绝对避免,但应当控制在一定范围之内。
宏观偏析的形成原因:铸件过厚、浇注温度过高、凝固时冷却速度过慢,易使凝固温度范围宽的合金产生区域偏析。
合金吸气较严重时,会加重区域偏析,偏析使铸件的力学性能降低,易导致热裂和冷裂,降低铸件的耐蚀性,严重时会导致铸件因性能不合格或断裂而报废或失效。
区域偏析可通过扩散退火、热变形加工和热等静压处理减轻。
减少宏观偏析的措施:1. 保证合金成分,使凝固过程中液体密度差别最小。
2. 适当的铸件或铸锭高度。
3. 采用加入孕育剂、振动、搅拌等细化晶粒的措施,减少枝晶间液体金属流动。
4. 加大冷却速度,缩短固液相区的凝固时间。
电磁振荡对半连铸7075址合金的宏观偏析的抑制作用。
电磁振荡对抑制溶质元素的宏观偏析,大致可归结为以下几个方面原因。
(1)初凝壳高度影响因素。
熔体形成凸起的弯液面,与结晶器壁间的接触高度和接触压力变小,次冷却强度降低。
此外,洛仑兹力的搅拌作用,强化了晶粒从结晶器壁的瓣离,因而初凝壳高度减小,形成位置点降低,消除了这部分以结晶器壁为基底的晶粒在长大过程中凼颈缩和“搭桥”而封闭富集溶质的熔体,以及发生再熔化逆偏析,形成表面偏析瘤.造成溶质元素在铸锭表面含量偏高的现象,抑制了宏观偏析。
(2)液穴因素。
液穴深度变浅,降低了各溶质元素四密度不恻在液穴内部分布不均匀而造成的密度偏析,有利于溶质元素在截面尺度范围内的均衡分布和扩散,降低了宏观偏析的程度。
(3)温暖场和浓度场因素。
极大地均匀了液穴中温度场和浓度场,抑制了枝晶的生长,从而避免了枝晶臂彼此接触“搭桥”,在晶间及二次枝晶臂根部封闭充盈富集溶质元素的熔体,而导致的溶质宏观偏析。
《金属凝固原理》思考题解答
金属凝固原理思考题1.表面张力、界面张力在凝固过程的作用和意义。
2. 如何从液态金属的结构特点解释自发形核的机制。
答:晶体熔化后的液态结构是长程无序,而短程内却存在不稳定的、接近有序的原子集团。
由于液态中原子运动较为强烈,在其平衡位置停留时间甚短,故这种局部有序排列的原子集团此消彼长,即结构起伏和相起伏。
当温度降到熔点以下,在液相中时聚时散的短程有序原子集团,就可能成为均匀形核的晶胚,从而进行均匀形核。
3.从最大形核功的角度,解释0/=∆dr G d 的含义。
4.表面张力、界面张力在凝固过程和液态成形中的意义。
5.在曲率为零时,纯镍的平衡熔点为1723K ,假设镍的球形试样半径是1cm ,1μm 、0.01μm ,其熔点温度各为多少?已知△H=18058J/mol ,V m =606cm 3/mol ,σ=255×107J/cm 26.(与第18题重复)证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。
答:对于球形晶核:过冷液中出现一个晶胚时,总的自由能变化为ΔG=(4πr 3ΔG V /3)+4πr 2σ。
临界晶核的半径为r *,由d ΔG/dr=0求得:r *=-2σ/ΔG v =2σT m /L m ΔT ,则临界形核的功及形核功为:ΔG *球=16πσ3/3ΔG v 2=16πσ3T m 2/3(L m ΔT)2.对于立方形晶核:同理推得临界半径形r *=-4σ/ΔG v ,形核功ΔG *方=32σ3/ΔG v 2。
则ΔG *球<ΔG *方,所以在相同的过冷度下均质形核时,球形晶核比立方形晶核更容易。
7.用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的平面。
8.用相变热力学分析为何形核一定要在过冷的条件下进行。
答:在一定温度下,从一相转变为另一相的自由能变化:ΔG=ΔH-T ΔS 。
令液相到固相转变的单位体积自由能变化为:ΔG V =G S -G L ,(G S 、G L 分别为固相和液相单位体积自由能)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
获得全部等轴晶的条件
获得全部柱状晶的条件
型壁冷速不能太大, 因为 激冷铸型形成稳定的凝 形成稳定的凝固层不利 固层,防止晶体游离 于晶体游离(薄壁件除 外) 加 1-k0 大 的 溶 质 元 素 提高金属的纯度,减小 产生缩颈, 有利于熔断或 成分过冷、缩颈和生核 折断 能力 加强液体流动, 促使晶体 减小液体流动(如采用 游离 固定磁场) 低温浇注, 使游离晶体不 提高浇注温度使游离晶 重熔 体重熔
但柱状晶的各项性能存在着明显的各 向异性:纵向性能与横向性能有着明 显的差别。此外,柱状晶的生长方向 是与热通量平行的。因而在铸件(锭)的 转角处或中心,从不同方向生长的柱 状晶彼此相遇时形成的交界面,易于 聚集气体和夹杂物,对铸件(锭)的性能 有很大损害。
因此,柱状晶组织通常是不受欢迎的。
但由于柱状晶不存在横向的晶界,所
第二节 铸件宏观凝固组织的控制
一、铸件凝固组织对铸件性能的影响 同一种合金的铸件,因其结晶组织的差
别往往使其性能有十分显著的变化。晶
粒的形态、 晶粒的粗细、晶粒度的一致
性以及枝臂间距的大小等组织持征,对
铸件的机械性能和物理性能有着强烈的
影响。
(一)柱状晶组织对铸件性能的影响 柱状晶的凝固区域较窄小,在生长过 程中容易从它的前方熔体中获得液态 金属的补缩。同时,其横向生长受到 相邻晶体的阻碍而使横向分枝不能充 分发展,分枝较细。因此,柱状晶组 织致密,不容易形成缩松和晶间夹杂 等宏观缺陷。
以特别适用于只受纵向应力的零件。
应用。
(二)等轴晶组织对铸件性能的影响
等轴晶是在成分过冷区和凝固区域较大 的范围内生长而成的。它的分枝比较发 达。等轴晶的晶界面积与其体积之比大 于柱状晶的晶界面积/体积比。故晶界夹 杂等缺陷比较分散。且各晶粒取向具有 宏观的各向同性,故其性能比较均匀和 稳定。
(二) 浇注工艺
① 浇注温度; ② 浇注方法;重力浇注,压力浇注, 真空浇注,保护气氛等。
(三) 铸型特点
① 造型材料的热物理性质;
② 铸型预热的温度; ③ 铸型的激冷方法。 (四) 铸件的结构和尺寸
三、铸件宏观组织的控制途径和措施
控制铸件的宏观组织就是要控制铸
件(锭)中柱状晶区和等轴晶区的
相对比例。
一般铸件希望获得全部细等轴晶组织。 通过强化非均质生核和促进晶体游离以 抑制凝固过程中柱状晶区的形成和发展, 就能获得等轴晶组织。
非均质晶核数目越多,晶粒游离作用越 强,熔体内部就有利于游离晶体的残存, 则形成的等轴晶组织就越细。
具体措施如下:
外加晶核
通过反应形 成晶核
在液体中造 成很大的微 区富集
孕育处理
合理选用 孕育剂 合理确定 孕育工艺
低温浇注
采用生 核剂 采用强成分 过冷元素
获 得 细 等 轴 晶 的 措 施
控制浇 注条件
采用合理的 浇注工艺 铸型性质和 铸件结构
控制铸型 激冷能力
增大液态金 属与铸型表 面的润湿角 提高铸型表 面粗糙度
厚壁铸件: 采用低蓄热 能力的铸型 并配合其它 细化措施 薄壁铸件: 采用高蓄热 能力的铸型
动态晶粒 细化
振动
搅拌
The end.
其缺点是枝晶分枝比较发达,显微缩松
较多,组织不够致密。这些缺点通常经
晶粒细化加以克服。
细等轴晶组织有着较为理 想的综合机械性能, 疲劳强度也随着晶粒的细化而提高。 但对于热强合金,其高温持久强度却随着晶 粒细化而降低。这是因为晶界在高温下急剧 破坏的缘故。至于晶粒大小不均匀。或在一 种组织中夹杂着另一种形态的晶体(例如在等 轴晶组织中夹杂柱状晶),则都将对铸件的性 能起损害作用。
二、 影响铸件宏观组织的因素
铸件的宏观组织受到成分过冷现象 和晶粒游离、枝晶熔断和晶粒增殖 等的影响。因此,凡是与成分过冷 和晶粒游离、枝晶熔断和增殖有关 的因素都将对铸件宏观组织产生影 响。这些因素大致可概括为以下四 个方面。
(一) 合金性质
① 合金的纯度,溶质含量与性质, 有否形核剂或晶粒细化剂; ② 合金的结晶温度范围和溶质平衡 分配系数,扩散系数,以及其他 的热物理系数。