2.1列代数式(2015年)

合集下载

北京课改版数学七年级上册2.1.2《列代数式》教学设计

北京课改版数学七年级上册2.1.2《列代数式》教学设计

北京课改版数学七年级上册2.1.2《列代数式》教学设计一. 教材分析《列代数式》是北京课改版数学七年级上册第二章第一节的一部分,主要介绍了代数式的概念、分类和简单运算。

本节课的内容是学生学习代数式的入门知识,对于学生理解和掌握代数式及其运算规律具有重要意义。

教材通过实例引入代数式,使学生在具体的情境中感受代数式的实际意义,培养学生的抽象思维能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算规律有一定的认识。

但代数式作为一种抽象的数学概念,对于学生来说还是较难理解的。

因此,在教学过程中,需要关注学生的认知水平,从学生的实际出发,循序渐进地引导学生理解和掌握代数式及其运算规律。

三. 教学目标1.知识与技能:使学生理解代数式的概念,掌握代数式的分类和简单运算方法。

2.过程与方法:培养学生观察、分析、归纳和总结的能力,提高学生的抽象思维能力。

3.情感态度与价值观:激发学生学习代数式的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:代数式的概念、分类和简单运算。

2.难点:对代数式的理解和运用。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。

通过实例引入代数式,激发学生的兴趣;引导学生观察、分析、归纳和总结代数式的特点和运算规律;学生进行小组讨论和合作交流,提高学生的抽象思维能力。

六. 教学准备1.准备相关的实例,用于导入和讲解。

2.准备PPT,用于呈现教材内容和辅助教学。

3.准备练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入代数式,如“小明的年龄比小红大3岁,小红今年12岁,求小明的年龄。

”让学生尝试用数学符号表示小明的年龄,从而引出代数式的概念。

2.呈现(15分钟)利用PPT呈现教材中的内容,包括代数式的定义、分类和简单运算。

在呈现过程中,引导学生观察、分析、归纳和总结代数式的特点和运算规律。

3.操练(15分钟)让学生分组进行练习,运用所学的代数式进行计算。

《2.1 代数式的概念和列代数式》 知识清单

《2.1 代数式的概念和列代数式》 知识清单

《2.1 代数式的概念和列代数式》知识清单《21 代数式的概念和列代数式》知识清单一、代数式的概念在数学中,代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。

单独的一个数或者一个字母也叫做代数式。

例如:5,a,3x + 2y,ab 等都是代数式。

需要注意的是,代数式中不含有关系符号(如等号、大于号、小于号)。

像 3 = x ,x > 5 这样的式子就不是代数式。

代数式可以分为有理式和无理式。

有理式包括整式和分式。

整式是指只包含加、减、乘运算的代数式,且除数不能为字母。

像 3x,x² 2x + 1 等都是整式。

分式则是指除数中含有字母的有理式,例如 2 / x ,(x + 1) /(x 1) 等。

无理式是指被开方数含有字母的代数式,如√x ,³√(x + y) 等。

二、列代数式列代数式就是把问题中与数量有关的词语,用含有数、字母和运算符号的式子表示出来。

1、抓住关键词语在列代数式时,要认真审题,抓住题目中的关键语句,准确理解数量关系。

例如,“x 的 3 倍与 5 的差”,其中“x 的 3 倍”表示为 3x ,“差”用减法,所以代数式为 3x 5 。

2、明确运算顺序在列代数式时,要注意运算顺序。

一般先读的先写,后读的后运算。

比如,“x 与 y 的和的平方”,先算和,即 x + y ,再平方,所以代数式为(x + y)²。

3、正确使用括号当需要改变运算顺序时,要正确使用括号。

比如,“a 减去 b 与 c 的和”,先算 b 与 c 的和,即 b + c ,所以代数式为 a (b + c) 。

4、注意单位在列代数式时,如果遇到单位名称,要根据具体情况添加括号。

例如,“小明跑步的速度是 a 米/秒,他跑了 5 分钟,所跑的路程是多少?”因为 5 分钟= 300 秒,所以路程为 300a 米。

5、多种情况分别列式当问题中涉及到多种情况时,要分别列式。

2.1代数式的概念和列代数式(1)(课件)七年级数学上册(湘教版2024)

2.1代数式的概念和列代数式(1)(课件)七年级数学上册(湘教版2024)
驶时的速度.
分析:顺水行驶时,船的速度=船在静水中的速度+水流速度;
逆水行驶时,船的速度=船在静水中的速度-水流速度.
解:船在这条河中顺水行驶的速度是 (v 2.5) km/h,逆
水行驶的速度是 (v 2.5)km/h.
挑战自我
1.某城市为了鼓励居民节约用水,对自来水用户按阶梯标准收费:
若每户每月用水不超过a吨,按每吨m元收费;若超过a吨,则超过



为 m/s;

m/s ;类似地,若小婷跑100m花了14s,则她的平均速度
若小华跑100m花了t s,则他的平均速度为


m/s
探究新知
做一做
(3)已知一个正方形的边长为2,将正方形的一组对边的长度各增加1,
另 一组对边的长度不变,则所得到的长方形与原正方形的面积之差是
(2+1)×2-22。若正方形的边长为a,进行同样的变化,则所得到的
的部分以每吨2m元收费.现有一户居民本月用水x吨,则应交水费
多少元?
分析:根据题意,分别按照不超过a吨和超过a吨进行分类列式即可;
解:① 若x ≤ a 时,应交水费为 mx 元;
② 若x > a 时,am+2m(x-a) ,即:(2mx-am)元 .
课堂小结
代数式的书写要求
代数式的概念
代数式
的概念
(a+1)×a-a2
长方形与原正方形的面积之差是

观察
观察下面的一些式子,找出它们的共同特征。
1603.9×a


(a+1)×a-a2
它们都是数与表示数的字母用运算符号
连接而成的式子
探究新知

北京课改版数学七年级上册2.1.2《列代数式》说课稿

北京课改版数学七年级上册2.1.2《列代数式》说课稿

北京课改版数学七年级上册2.1.2《列代数式》说课稿一. 教材分析《列代数式》是北京课改版数学七年级上册第2章第1节的一部分,本节课的主要内容是让学生掌握代数式的概念,了解代数式的构成要素,以及如何正确地列出代数式。

教材通过具体的例子,引导学生理解代数式的实际意义,培养学生的抽象思维能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和数学语言有一定的了解。

但他们对代数式的概念和构成要素可能还比较陌生,因此需要通过具体的例子和实际操作来帮助他们理解和掌握。

三. 说教学目标1.知识与技能目标:学生能够理解代数式的概念,掌握代数式的构成要素,能够正确地列出代数式。

2.过程与方法目标:通过具体的例子和实际操作,培养学生的抽象思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、合作探究的学习习惯。

四. 说教学重难点1.教学重点:代数式的概念和构成要素。

2.教学难点:如何引导学生理解代数式的实际意义,培养他们的抽象思维能力。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。

2.教学手段:利用多媒体课件、实物模型和教学卡片等辅助教学。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何用数学语言来表示这个问题,从而引出代数式的概念。

2.新课导入:介绍代数式的构成要素,通过具体的例子让学生理解代数式的实际意义。

3.案例分析:分析一些实际问题,让学生运用代数式来解决问题,巩固他们对代数式的理解和掌握。

4.小组合作学习:学生分组讨论,分享他们是如何列出代数式的,互相学习和交流。

5.总结与反思:让学生回顾本节课所学的内容,总结代数式的概念和构成要素,反思自己在学习过程中的优点和不足。

七. 说板书设计板书设计要简洁明了,能够突出代数式的概念和构成要素。

可以设计一个代数式的框架,包括代数式的定义、构成要素和例子等。

八. 说教学评价教学评价可以通过学生的课堂表现、作业完成情况和小组合作学习的参与度来进行。

人教版数学七年级上册2.1.1章前引言及列代数式教案

人教版数学七年级上册2.1.1章前引言及列代数式教案
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代数式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对代数式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
(1)符号意识:对于字母表示数的概念,学生可能较难理解。
难点解析:通过实例解释字母表示数的含义,让学生在具体情境中感受符号的作用。
(2)逻辑推理能力:在列代数式和化简代数式的过程中,学生可能遇到逻辑推理困难。
难点解析:引导学生按照逻辑顺序进行思考,从问题出发,逐步列出代数式并进行化简。
(3)数学建模能力:将实际问题转化为代数式,学生可能感到困难。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解代数式的基本概念。代数式是由数字、字母和运算符号组成的表达式。它在数学中非常重要,可以帮助我们简化和解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何根据实际问题列出代数式,以及如何通过代数式来解决问题。
3.重点难点解析:在讲授过程中,我会特别强调代数式的定义和列代数式的方法这两个重点。对于难点部分,如符号意识和逻辑推理,我会通过举例和比较来帮助大家理解。
举例:通过具体例题,让学生区分有理式和无理式,加深对分类的理解。
(3)列代数式的方法:学会根据题意列出代数式,理解代数式与实际问题之间的关系。
举例:给出具体问题,指导学生如何将问题转化为代数式,突出代数式的实际意义。

2.1 代数式的概念和列代数式 第2课时 教案 数学湘教版七年级上册(2024年)新版教材

2.1 代数式的概念和列代数式 第2课时  教案 数学湘教版七年级上册(2024年)新版教材

第2章代数式第2课时【教学目标】1.进一步理解字母表示数的意义,能结合具体情境赋予字母实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情境中能求出代数式的值.2.掌握列代数式的方法,会列代数式表示实际问题中的数量关系.体会用代数式表示数量和数量关系的简洁性与一般性.3.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题的能力和数学探究意识.【重点难点】1.重点:理解具体代数式的意义,能够用代数式表示简单的数量关系.2.难点:正确列出代数式,解释代数式的实际意义.【教学过程】一、创设情境(多媒体展示:播放新中国成立70周年国庆阅兵式上女民兵和三军女兵两种方队的视频影像.)[过渡语]有一种视觉叫震撼!有一种感觉叫澎湃!相信国庆阅兵一定给同学们留下了难以磨灭的记忆,接下来请同学们完成下面的问题.在国庆阅兵式上,检阅了女民兵和三军女兵两种特殊方队,请据此回答:(1)若女民兵有a人,三军女兵有b人,两种方队共有女兵________人.(2)若三军女兵平均年龄为m岁,比女民兵平均年龄大n岁,则女民兵平均年龄为________岁.(3)若三军女兵共有m排,且每排有25人,则三军女兵的人数为________人.(4)女民兵方队用t秒走了s米,她们的平均速度可以表示为________米/秒.[处理方式]让学生独立思考理解题意,选出4名同学依次说出4个问题相应的数量关系式,其他同学纠错互评,规范答案.教师小结.这就是我们本节课所要学习的内容——列代数式.二、探究归纳探究点1:列代数式1.【说一说】出示P67“说一说”及P67例题前的内容.教师给出问题导引:围一个六边形需要6根火柴棍.(1)按教材的方式,围2个六边形需要几根火柴棍?围3个六边形需要几根火柴棍?(2)围10个这样的六边形,需要多少根火柴棍?(3)围100个这样的六边形,需要多少根火柴棍?你是怎样得到的?(4)每增加1个六边形就增加几根火柴棍?如果用m表示所围六边形的个数,那么围m个这样的六边形,需要多少根火柴棍?此过程可以使学生经历运用数学符号描述变化规律的过程,发展符号感和抽象思维.2.【典例评析】(1)出示P67例4.指定三名学生上台做题,然后学生小组内共同批改“板演”,待学生交流汇总后,请学生代表回答、评议、补充、总结.指导学生在列代数式时,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”“和”等,从而明确其中的运算关系,实际问题中要认真分析存在的数量关系,正确地列出代数式.(2)出示P68例5.分析:分段计费问题,读懂表格中的信息,判断用水量在哪个范围内,选择正确的水价,根据水费=用水量×水价进行列代数式.指导学生在列代数式时,理解实际问题中的数量关系,结果需带单位的不要忘记单位,有的还需要给代数式加上括号.【方法归纳】列代数式就是把实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为符号语言.①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②厘清语句层次,明确运算顺序;③记一些概念和公式.【针对性训练】教材P69练习T1,2探究点2:代数式的意义1.【说一说】出示P68“说一说”.出示问题:25a表示什么呢?请大家编写能用此式来表达的实际问题.指导学生在独立思考的基础上,建立自己的情境框架,小组交流,随后全班交流,教师给予鼓励和引导,并作出积极的评价,共同归纳:25a可以赋予很多的实际意义.投影展示学生思考的多种结果.2.【方法指导】解这类问题的关键是:(1)认真分析代数式中含有哪些运算,它们运算顺序是什么,从而正确、简明地体现出代数式的运算顺序;(2)不会引起误解;(3)为了简明地叙述代数式的意义,也可以找出最后的运算,把它用语言表达出来,其他的运算用代数式表示.【针对性训练】教材P69练习T3三、交流反思引导学生回答如下问题:本节课学习了哪些基本内容?应注意什么问题?本节课中,我们认识了代数式,主要学习了:1.列代数式2.代数式的表示意义.四、检测反馈1.一个两位数,十位上的数字为a,个位上的数字为b,则这个两位数是()A.abB.a+bC.10a+bD.10ab2.已知三个连续偶数中间的一个为2n,则这三个数的和为________.3.某校共有学生a人,其中女生占45%,女生有________人,男生有________人.4.一件上衣x元,打八折后的售价是________元.5.一辆汽车由甲地以每小时60千米的速度驶向乙地,行驶4小时可到达乙地,则汽车朝乙地行驶t小时(t≤4)后离甲地________千米,离乙地________千米.6.今年李明m岁,前年李明________岁,8年后李明________岁.7.一个长方形的宽为a cm,长比宽的2倍少1 cm,这个长方形的长是________cm.8.举例说明下列代数式的意义.(1)4a2可以解释为________________.(2)x(1-5%)可以解释为________________.9.一台电视机成本价为a元,销售价比成本价增长25%,因库存积压,所以就按销售价的70%出售,问每台电视机的实际售价是多少元?五、布置作业基础:课本P69~70习题2.1T2,3,4,5综合:课本P70习题2.1T6,7六、板书设计七、教学反思在教学的过程中要注意积极参与到学生的小组讨论中,及时发现问题,解决问题.增强学生的自学与理解能力.优点:在实际情境中说明代数式的意义,让学生通过交流创设生活中最感兴趣的情境,学生从中能体会代数式在社会生活中的实际意义.发挥小组合作的积极作用,使每个同学都参与课堂,培养了学生善于观察、乐于探索研究的学习品质及与他人合作交流的意识.缺点:让学生小组合作解决疑惑时,仍有部分学生参与不到发现问题、探讨问题、解决问题的状态中,对于这部分学生教师关注度还不是很高.。

“2.1.1 列代数式”教学设计与反思

“2.1.1 列代数式”教学设计与反思

“2.1.1 列代数式”教学设计与反思泸州市蓝田中学罗宏一、教材分析数学是关于客观世界数量关系和空间形式的科学,而代数式的引入则标志着学生的数学学习过程进入了一个崭新的阶段。

在初中代数式以前的数学教学中,学生关注的主要是数、数与数之间的运算关系、运算法则、运算过程、运算结果。

思维的模式主要是:一个现成的式子,学生运用相关的运算法则计算出一个正确的结果。

而代数式的引入将改变这个思维模式:弄清事物间的数量关系,并通过列出代数式把这种关系表达出来。

数学教学从此开始进入到一个崭新的阶段:探讨和研究客观世界数量关系。

从前后知识间的关系来看,代数式是前面所学内容的概括与抽象,更是后面学习方程、不等式和函数等应用的基础。

二、学情分析七年级学生的认知水平正在从感性向理性过渡,思维水平处于由形象向抽象过渡的转折期。

而我认为,从数学思想方法来看,"代数式"又是数学学习的一个转折点。

这个"转折期"和"转折点"的不期而遇,使得看似简单的"列代数式"变得举足轻重。

从学生已有的知识结构与新知识之间的关系来看,学生通过对有理数混合运算的学习,对各种算式、不同算式的运算关系、运算法则已经非常熟悉,通过有理数混合运算的一些应用题,也初步涉及到了关于如何分析数量间的关系并列式进行计算等方面的知识。

这些已有的知识和经验会在"列代数式"的学习中产生迁移作用而有利于新知识的学习。

三、教学目标1、知识与技能目标掌握“代数式”的概念,会运用一些分析事物间数量关系的方法列代数式。

2、过程与方法目标通过分析客观事物间的数量关系并用代数式将这些关系表达出来的学习过程,培养学生分析问题、思考问题和解决问题的能力。

并在这一过程中,实现对学生的逻辑思维的训练,提高学生的认知水平和思维水平。

通过三角形的个数与火柴棍的根数关系和第n个大正方形中小正方形个数的探索,让学生感受从特殊到一般的辩证思想。

七年级数学上册-2.1 整式(第3课时)--列代数式 教案

七年级数学上册-2.1 整式(第3课时)--列代数式 教案

2.1 整式---代数式整式---列代数式1、代数式的概念; 3、代数式的书写注意事项。

2、文字语言和代数语言的相互转化;作业设计最佳解决方案个基础:一、选择题1.三个连续的偶数中若中间的一个是,是代数式表示其它两个偶数是().(A)(B)(C)(D)2.某钢铁厂每天生产钢铁吨,现在每天比原来增加,现在每天钢铁的产量是()吨.(A)(B)(C)(D)3.下列各式:(1);(2);(3);(4);(5);(6)其中代数式的个数为().A.2 B.3 C.4 D.54.代数式,用语言叙述正确的是().A.与的平方差 B.的平方减 5乘以的平方C.的平方与的平方的5倍的差D.与的差的平方综合:二、填空题1.用字母表示三个连续奇数的和_________.2.的2倍与3的差_________.3.的平方的5倍与的和_________.4.比、的积的小7的数_________.5.李明有本教科书,课外书比教科书多本,那么他共有_________本书.6.一件上衣售价为元,降价10%后的售价为_________.拓展:三、解答题1.如图,圆中挖掉一个正方形,试用r表示阴影部分面积.答案:一、1.C2.D3.B4.C二、1.设为自然数,则三个连续的奇数和为=2.3.4.5.6.元三、1.(提示:如答图,把正方形分成两个三角形,其中三角形的面积是.教学反思:《列代数式》是数学课程标准中“数与代数”领域的一部分,主要让学生通过探索发现最简单图形的变化规律、及某些数变化规律。

一、注重过程和体验,让学生自己去“感悟”。

这部分内容活动性和探究性比较强,注重过程体验,同时在过程体验中,培养学生观察、猜测、实验、推理等能力。

《数学新课程标解读》中关于“推理能力”的培养有这样一段阐述:“能力的形成并不是学生‘懂’了,也不是学生‘会’了,而是学生自己‘悟’出道理、规律和思考方法……”所以我想有必要给学生足够的时间去思考问题。

回答时暴露其思维过程。

最新人教版七年级上册数学第二章整式的加减同步强化训练(含答案)

最新人教版七年级上册数学第二章整式的加减同步强化训练(含答案)

第二章整式的加减第23课时2.1.1列代数式用字母表示数应注意:①在含有字母的式子中如果出现乘号,通常将乘号写作“·”或省略不写,例如100×t 可以写成__100t__.②当数字与字母相乘时,数字在前,字母在后,例如0.5×t或0.5t.③数字和字母相除时,或字母和字母相除时,可以写成分数形式,如x÷3应写成__x3__.④1乘字母时,1可以省略不写,如1×a可写成__a__;-1乘字母时,只要在那个字母前加上“-”号,如-1×a 可写成__-a__.⑤用含有字母的式子表示某种量时,若结果是加、减关系,有单位的必须把式子用括号括起来后再写单位名称,如(x+3)千米.(1)(2020·长春中考)我市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费__(30m +15n)__元.(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量是__mn件__.(1)某钢铁厂每天生产钢铁m吨,现在每天比原来增加20%,现在每天钢铁的产量是__1.2m__吨.(2)用式子表示数a 的相反数是__-a__.甲、乙两人的年龄和等于甲、乙两人年龄差的3倍,设甲为x 岁,乙为 y 岁,则他们的年龄和用年龄差表示为( C ) A .(x +y )岁 B .(x -y )岁 C .3(x -y )岁 D .3(x +y )岁用含字母的式子表示下面各题的数量关系:①一个数加上m 后得3,这个数是3-m ;②一个数减去x 后得15,这个数是15-x ;③一个数乘x 得36,这个数是36÷x ;④一个数除以5得k ,这个数是5k ,其中正确的有( C )A .1个B .2个C .3个D .4个下列式子符合代数式书写格式的是( B ) A .215 xy B .12 a C .2÷mD .mn ·7(2021·唐山期中)下列各式:ab ·2,m ÷2n ,53 xy ,113 a ,a -b4 其中符合代数式书写规范的有__2__个.1.式子x -y2 的意义为( B ) A .x 与y 的一半的差 B .x 与y 的差的一半C .x 减去y 除以2的差D .x 与y 的12 的差2.“比t 的13 大4的数”用式子表示是( B )A .t ⎝ ⎛⎭⎪⎫13+4 B .13 t +4 C .53 tD .t 13 +43.某商店举办促销活动,促销的方法是将原价为x 元的衣服以⎝ ⎛⎭⎪⎫45x -10 元出售,则下列说法中,能正确表达该商店促销方法的是( B ) A .原价减去10元后再打8折 B .原价打8折后再减去10元 C .原价减去10元后再打2折 D .原价打2折后再减去10元4.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( A )A .10-xB .10-yC .10-x +yD .10-x -y5.用含字母的式子表示下面各题的数量关系. (1)a 与4的和的7倍__7(a +4)__;(2)比m 的8倍少n 的一半的数__8m -12 n __; (3)比x 的5倍少8的数__5x -8__;(4)一台电视机原价 t 元,现按原价的8.5折出售,这台电视机现在的售价是__0.85t __元;(5)一个两位数,十位数字是 a ,个位数字是b ,则这个两位数是__10a +b __; (6)电影院里座位的总排数是m ,若第一排的座位数是a ,并且后一排总比前一排的座位数多1个,则电影院里最后一排有__(a +m -1)__个座位.6.如图为园子一角,正方形边长为x ,里面有两个半圆形花池,阴影部分是草坪,则草坪的面积是__x 2-14 πx 2__.1.某企业今年2月份产值为a 万元,3月份比2月份增加了15%,4月份比3月份减少了5%,则4月份的产值为( C ) A .(a +15%)(a -15%)万元 B .a (1+85%)(1-95%)万元 C .a (1+15%)(1-5%)万元 D .a (1+15%-5%)万元2.(2020·聊城中考改编)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图○n 表示,那么图○50 中的白色小正方形地砖的块数是__355__.3.(2020·抚宁期中)如图,是小明用火柴搭的1条、2条、3条“金鱼”……,分别用去火柴棒8根、14根、20根、…,则搭n条“金鱼”需要火柴棒__(6n+2)__根(含n的代数式表示).第24课时 2.1.2 单 项 式1.表示__数或字母__的积组成的式子叫做单项式.单独的一个__数__或一个__字母__也是单项式.注意:数与字母之间是乘积关系.2.单项式的系数是指单项式中的__数字因数__,如果一个单项式只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为-1.3.一个单项式中,所有字母的__指数的和__叫做这个单项式的次数.在式子1x ,2x +5y ,0.9,-2a ,-3x 2y ,x +13 中,单项式是__0.9,-2a ,-3x 2y__.下列各代数式:(1)x +12 ;(2)abc ;(3)b 2;(4)-5ab 2;(5)y +x ; (6)-xy 2;(7)-5,是单项式的有(填序号):__(2)(3)(4)(6)(7)__.(2020·日照中考)单项式-3ab 的系数是( B ) A .3 B .-3 C .3a D .-3a说出单项式13 a 2h ,2πr ,abc ,-m 的系数与次数. 【解析】单项式13 a 2h2πr abc -m系数 13 2π 1 -1 次数3131写出所有系数是-12 ,且都只含字母x ,y 的五次单项式. 【解析】-12 xy 4,-12 x 2y 3,-12 x 3y 2,-12 x 4y .下面各题的判断是否正确? ①-7xy 2的系数是7;( × ) ②-x 2y 3与x 3没有系数;( × ) ③-ab 3c 2的次数是5;( × ) ④-a 3的系数是-1;( √ ) ⑤-32x 2y 3的次数是7;( × ) ⑥13 πr 2h 2的系数是13 .( × )1.下列各式中,为四次单项式的是( C ) A .3 B .-2πxy C .xyz 2 D .x 3+1 2.(2021·酒泉期末)下列说法中错误的是( C ) A .-23 x 2y 的系数是-23 B .0是单项式 C .23 xy 的次数是1D .-x 是一次单项式3.下列各式:-n ,a +b ,-12 ,x -1,3ab ,1x ,其中单项式有__3__个.4.(1)系数为-3,只含有字母x ,y 的四次单项式有__3__个,它们是__-3xy 3,-3x 2y 2,-3x 3y __.(2)(2021·北京期末)一个单项式满足下列两个条件:①含有两个字母;②次数是3.请写出一个同时满足上述两个条件的单项式__-2ab 2(答案不唯一)__. 5.填表6.用单项式填空,并指出它们的系数和次数:(1)圆的半径为r ,则它的面积为__πr 2__,它的系数是__π__,次数是__2__; (2)每包书有12册,n 包书有12n 册,它的系数是__12__,次数是__1__; (3)a 的相反数是__-a __,它的系数是__-1__,次数是__1__;(4)底边长为a ,高为h 的三角形的面积为12 ah ,它的系数是__12 __,次数是__2__; (5)一台电视机原价a 元,现按原价的9折出售,这台电视机现在的售价为0.9a 元,它的系数是__0.9__,次数是__1__;(6)一个长方形的长是0.5,宽是a ,这个长方形的面积是0.5a ,它的系数是__0.5__,次数是__1__.7.观察下面的三行单项式: x 、2x 2、4x 3、8x 4、16x 5、32x 6……① -2x 、4x 2、-8x 3、16x 4、-32x 5、64x 6……②2x 2、-3x 3、5x 4、-9x 5、17x 6、-33x 7……③(1)根据你发现的规律,第①行第8个单项式为__128x 8__;(2)第②行第8个单项式为__256x 8__,第③行第8个单项式为__-129x 9__. 8.(1)写出系数是-1,含有字母a ,b 的所有四次单项式; (2)写出系数是-12 ,含有字母a ,b ,c 的所有五次单项式. 【解析】(1)-a 3b ,-a 2b 2,-ab 3.(2)-12 ab 2c 2,-12 ab 3c ,-12 a 2bc 2,-12 a 2b 2c ,-12 abc 3,-12 a 3bc .9.刘明家前年收入a 元,去年比前年收入增加x %,求去年收入多少元?今年又比去年收入增加x %,求今年收入多少元? 【解析】去年收入为a +a ×x %=a (1+x %)(元).今年收入为a (1+x %)+ a (1+x %)×x %=a (1+x %)(1+x %)=a ⎝⎛⎭⎫1+x % 2(元).若3x m y n 是含有字母x 和y 的5次单项式,求m n 的最大值.【解析】根据题意得,m =1,n =4 或m =2,n =3 或 m =3,n =2 或m =4,n =1,m n 的最大值是9.第25课时 2.1.3 多 项 式1.__几个单项式的和__叫做多项式.在多项式中,每个单项式叫做多项式的__项__,其中不含字母的项叫做__常数项__.一个多项式有几项就叫做几项式. 2.多项式里,__次数最高项__的次数,叫做这个多项式的次数. 3.__单项式__与__多项式__统称整式.下列各式:2+x 2,2x ,xy 2,3x 2+2x -1,abc ,1-2y ,x -y 3 中,多项式有__4__个.(2021·上海期末)下列说法正确的是( D ) A .a 2+2a +32是三次三项式 B .xy 24 的系数是4 C .x -32 的常数项是-3 D .0是单项式多项式x 2-2xy 3-12 y -1是( C ) A .三次四项式 B .三次三项式 C .四次四项式 D .四次三项式 ,如果多项式(a -2)x 5-23 x b+x -9是关于x 的四次三项式,那么ab 的值为__8__.多项式2-xy 2-4x 3y 的各项为__2,-xy 2,-4x 3y __,次数为__4__. a 2b -ab +1是__三__次__三__项式,写出所有的项:__a 2b ,-ab ,1__,其中三次项的系数是__1__,二次项的系数为__-1__,常数项为__1__.代数式3x 2y -4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( D ) A .-4x 3y 2+3x 2y -5xy 3-1 B .-5xy 3+3x 2y -4x 3y 2-1 C .-1+3x 2y -4x 3y 2-5xy 3 D .-1-5xy 3+3x 2y -4x 3y 2(2021·上海期末)将多项式2-3xy 2+5x 3y -13 x 2y 3按字母y 降幂排列是__-13x 2y 3-3xy 2+5x 3y +2__.1.组成多项式2x 2-x -3的单项式是下列几组中的( B ) A. 2x 2,x ,3 B. 2x 2,-x ,-3 C. 2x 2,x ,-3 D. 2x 2,-x ,32.(2020·绵阳中考)若多项式xy |m -n |+(n -2)x 2y 2+1是关于x ,y 的三次多项式,则mn =__0或8__.3.若多项式(k +1)x 2-3x +1中不含 x 2项,则k 的值为__-1__.4.(2021·辽阳期末)多项式5a m b 4-2a 2b +3与单项式6a 4b 3c 的次数相同,则m 的值为__4__.5.已知多项式(m -1)x 4-x n +2x -5是三次三项式,则(m +1)n =__8__. 6.多项式2x 3-x 2y 2-3xy +x -1是__四__次__五__项式.7.将多项式5x 2y +y 3-3xy 2-x 3按x 的升幂排列为__y 3-3xy 2+5x 2y -x 3__. 8.写出一个只含有字母x ,y 的二次三项式__x 2+xy +y 2(答案不唯一)__. 9.如图,用式子表示圆环的面积.当R =15 cm ,r =10 cm 时,求圆环的面积(结果保留π).【解析】圆环面积为πR 2-πr 2, 当R =15 cm ,r =10 cm , 圆环的面积=πR 2-πr 2=125π cm 2.10.(2021·北京质检)已知多项式-3x 2y m +1+x 3y -3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同. (1)求m ,n 的值;(2)把这个多项式按x 的降幂排列.【解析】(1)因为多项式-3x 2y m +1+x 3y -3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同,所以m +1=3,2n +3-m =5,解得:m =2,n =2;(2)按x 的降幂排列为-3x 4+x 3y -3x 2y 3-1.11.(2021·长春期末)已知下面5个式子:①x 2-x +1,②m 2n +mn -1,③x 4+1x+2,④5-x 2,⑤-x 2. 回答下列问题:(1)上面5个式子中有________个多项式,次数最高的多项式为________(填序号),整式有________个.(2)选择2个二次多项式,并进行加法运算.【解析】(1)上面5个式子中有3个多项式,分别是:①②④, 次数最高的多项式为②, 整式有4个,分别是①②④⑤. 答案:3 ② 4(2)选择2个二次多项式:①+④=-x +6.(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的多项式. (1)当m ,n 满足什么条件时,该多项式是关于x 的二次多项式; (2)当m ,n 满足什么条件时,该多项式是关于x 的三次二项式.【解析】(1)因为(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的二次多项式, 所以3m -4=0,2n -3≠0,解得m =43 ,n ≠32 .(2)因为(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的三次二项式, 所以3m -4≠0,2n -3=0,2m +5n =0, 解得n =1.5,m =-3.75.第26课时2.2 整式的加减(1)【合并同类项】1.所含字母相同,并且相同字母的__指数__也相同的项叫同类项.所有的常数项都是同类项.2.把多项式中的同类项合并成一项,叫做__合并同类项__.3.合并同类项后,所得项的系数是合并前各同类项的系数的__和__,且字母连同它的指数__不变__.下列各组中属于同类项的是( D ) A .2a 与2a 2 B .x 2y 3z 与2x 2y 3 C .2x 2与2y 2 D .-52 yx 2与5x 2y下列各组式子中,是同类项的是( B ) A .3x 2y 与-3xy 2 B .3xy 与-2yx C .2x 与2x 3 D .5xy 与5yz(2020·湘潭中考)已知2x n +1y 3与13 x 4y 3是同类项,则n 的值是( B ) A .2 B .3 C .4 D .5(1)若5a 2x -3b 与-3a 5b 4y +5是同类项,则x =__4__,y =__-1__. (2)写出-12 xy 3的一个同类项:xy 3(答案不唯一).下列各式合并同类项结果正确的是( B ) A .3x 3-x 3=3 B .3a 2-a 2=2a 2 C .3a 2-a 2=a D .3x 2+5x 3=8x 5化简:(1)3x 2+x 2-3x 2=__x 2__; (2)2a 2b -3a 2b =__-a 2b __.已知-3x m y 与-5y n x 3是同类项,则m =__3__,n =__1__.1.下面是小明同学做的四道题:①3m +2m =5m ;②5x -4x =1;③-p 2-2p 2=-3p 2;④3+x =3x . 他做正确了( B )A .1道B .2道C .3道D .4道2.(2020·黔西南州中考)若7a x b 2与-a 3b y 的和为单项式,则y x =__8__.1.在下列各组式子中,不是同类项的一组是( B ) A .2,-5B .-0.5xy 2, 3x 2yC .-3t ,200πtD .ab 2,-b 2 a2.把2x 2-5x +x 2+4x +3x 2合并同类项后,所得的多项式是( A ) A .二次二项式 B .二次三项式 C .一次二项式 D. 三次二项式3.把(x +y )看成整体,将(x +y )+2(x +y )-4(x +y )合并同类项得( B ) A. x +yB. -(x +y )C. -x +yD. x -y4.(2020·天津中考)计算x +7x -5x 的结果等于__3x __.5.(2020·广东中考)如果单项式3x m y 与-5x 3y n 是同类项,那么m +n =__4__. 6.求k 为多少时,代数式2x 2-kxy -3y 2+13 xy -8中不含xy 项.【解析】k =137.先化简,再求值:7x 2-3x 2-2x -2x 2+5+6x ,其中x =-2. 【解析】原式=2x 2+4x +5, 当x =-2时,原式=8-8+5=5.8.已知-2a m bc 2与4a 3b n c 2是同类项,求多项式3m 2n -2mn 2-m 2n +mn 2的值. 【解析】由同类项定义得m =3,n =1, 3m 2n -2mn 2-m 2n +mn 2=⎝⎛⎭⎫3-1 m 2n +⎝⎛⎭⎫-2+1 mn 2=2m 2n -mn 2,当m =3,n =1时,原式=2×32×1-3×12 =18-3=15.对于多项式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题是:当k为何值时,多项式中不含xy项,第二个问题是:在第一问的前提下,如果x=2,y=-1,多项式的值是多少?(1)王明同学很快就完成了第一个问题,也请你把你的解答写在下面吧.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,可是他得到的最后结果却是正确的,你知道这是为什么吗?【解析】(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy.所以只要7-k=0,这个多项式就不含xy项.即k=7时,多项式中不含xy项.(2)因为在第一问的前提下原多项式为3x2+8y2.当x=2,y=-1时,原式=3x2+8y2=3×22+8×(-1)2=12+8=20.当x=2,y=1时,原式=3x2+8y2=3×22+8×12=12+8=20.所以马小虎的最后结果是正确的.第27课时2.2整式的加减(2)【去括号】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__相同__;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__相反__.下列去括号正确的是(B)A.-(a+b-c)=-a+b-cB.-2(a+b-3c)=-2a-2b+6cC.-(-a-b-c)=-a+b+cD.-(a-b-c)=-a+b-c(2019·黄石中考)化简13(9x-3)-2(x+1)的结果是(D)A.2x-2 B.x+1 C.5x+3 D.x-3化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b). 【解析】(1)原式=13a+b;(2)原式=5a+3b-3a2.化简:(1)m -(5m -3n )+2(n -m ); (2)3a 2-[2a 2-(2ab -a 2)+4ab ].【解析】(1)原式=m -5m +3n +2n -2m =-6m +5n ; (2)原式=3a 2-[2a 2-2ab +a 2+4ab ] =3a 2-2a 2+2ab -a 2-4ab =-2ab .(1)a +b -c =a +(__b -c __); (2)a -b -c =a -(__b +c __); (3)-(x +y )=(__-x -y __).(1)-a +b +c =-(__a -b __)+c; (2)-a +b +c -d =-(__a -b __)+c -d ; (3)-(x -y )=(__-x +y __).先化简,再求值:2(3x 2-y )-(x 2+y ),其中x =-1,y =2. 【解析】原式=5x 2-3y ,当x =-1,y =2时,原式=5-6=-1.2a +[a 2-(3a 2+2a -1)],其中a =12 .【解析】原式=2a +[a 2-3a 2-2a +1]=-2a 2+1, 当a =12 时,原式=-12 +1=12 .1.下列计算中,正确的是(C)A.-2(a+b)=-2a+bB.-2(a+b)=-2a-b2C.-2(a+b)=-2a-2bD.-2(a+b)=-2a+2b2.把a-2(b-c)去括号正确的是(D)A.a-2b-c B.a-2b-2cC.a+2b-2c D.a-2b+2c3.不改变多项式3b3-2ab2+4a2b-a3的值,把后三项放在前面是“-”号的括号中,以下正确的是(D)A.3b3-(2ab2+4a2b-a3)B.3b3-(2ab2+4a2b+a3)C.3b3-(-2ab2+4a2b-a3)D.3b3-(2ab2-4a2b+a3)4.化简x-y-(x-y) 的最后结果是(B)A.2x B.0 C.-2y D.2x-2y5.-a+b-c的相反数是(B)A.a-b-c B.a-b+cC.a+b-c D.a+b+c6.化简下列各式:(1)3(2a+b);(2) -2(m+2n);(3)3(2xy-y)-2xy;(4)(-3a+5b)-(-5a+7b);(5)2(6a-10b)+(-4a+5b);(6)(3x+5y)-3(2x-3y).【解析】(1)原式=6a+3b;(2)原式=-2m-4n;(3)原式=4xy-3y;(4)原式=2a-2b;(5)原式=8a-15b;(6)原式=-3x+14y.7.当k为何值时,多项式2(2x2-3xy-2y2)-(2x2+2kxy+y2)中不含xy项?【解析】原式=4x2-6xy-4y2-2x2-2kxy-y2=2x2-5y2+(-6-2k)xy,因为不含xy项,所以-6-2k=0,k=-3.阅读下面材料:计算:1+2+3+4+…+99+100如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5 050 根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)【解析】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m +…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m) =101a+101m×50=101a+5 050m.第28课时2.2整式的加减(3)【求代数式的值】1.整式加减的实质是合并同类项,若有括号,就要先用去括号法则去掉括号,然后再合并同类项.2.应用整式加减解决实际问题,就是把实际问题中的数量关系数学化,把题目中的量用整式表示出来,然后进行整式的加减运算.x-y的相反数是__y-x__,x+y的相反数是__-x-y__.如果a-b=12,那么-3(b-a)的值是(C)A.-35B.23C.32D.16一个整式减去a2-2b2等于a2+2b2,则这个整式是(C)A.2b2B.-2b2C.2a2D.-2a2一个多项式与x2-2x+1的和是3x-2,则这个多项式为(B)A.x2-5x+3 B.-x2+5x-3C.-x2+x-1 D.x2-5x-13某位同学做一道题:已知两个多项式A,B,求A-B的值,他误将A-B看成A+B,求得的结果是3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求A-B的正确答案.【解析】(1)由已知,A+B=3x2-3x+5,则A=3x2-3x+5-(x2-x-1)=3x2-3x+5-x2+x+1=2x2-2x+6;(2)A-B=2x2-2x+6-(x2-x-1)=2x2-2x+6-x2+x+1=x2-x+7.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支,买这些笔记本和圆珠笔,小红和小明共花费多少钱?【解析】根据题意列得:(3x+2y)+(4x+3y)=7x+5y,则小红与小明一共花费(7x+5y)元.1.(2020·无锡中考)若x+y=2,z-y=-3,则x+z的值等于(C)A.5 B.1 C.-1 D.-52.化简下列各式:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)8m2-[4m2-2m-(2m2-5m)];(4) (8xy-x2+y2)-3(-x2+y2+5xy).【解析】(1)原式=7x+y;(2)原式=4a-2b;(3)原式=6m 2-3m ;(4)原式=8xy -x 2+y 2+3x 2-3y 2-15xy =2x 2-2y 2-7xy . 3.先化简,再求值.3a 2+(4a 2-2a -1)-2(3a 2-a +1),其中a =-12 . 【解析】原式=a 2-3 当a =-12 时,原式=-114 .4.(2021·武汉期末)先化简,再求值: 3a 2b -2ab 2-2⎝ ⎛⎭⎪⎫ab -32a 2b +ab +3ab 2,其中a =-3,b =-2.【解析】原式=3a 2b -2ab 2-2ab +3a 2b +ab +3ab 2 =6a 2b +ab 2-ab ;当a =-3,b =-2时,原式=6×9×(-2)+(-3)×4-6=-108-12-6=-126. 5.若A =9a 3b 2-5b 3-1,B =-7a 3b 2+8b 3+2. 求(A +2B )-(B -A )的值. 【解析】(A +2B )-(B -A ) =A +2B -B +A =2A +B . 因为A =9a 3b 2-5b 3-1, B =-7a 3b 2+8b 3+2,所以原式=2(9a 3b 2-5b 3-1)+(-7a 3b 2+8b 3+2) =18a 3b 2-10b 3-2-7a 3b 2+8b 3+2 =11a 3b 2-2b 3.6.(2021·泉州期末)化简求值:(1)化简:(3a2-b2)-3(a2-2b2);(2)先化简,再求值:2(a2b+ab)-3(a2b-1)-2ab-4,其中a=2019,b=12 019. 【解析】(1)原式=3a2-b2-3a2+6b2=5b2;(2)原式=2a2b+2ab-3a2b+3-2ab-4=-a2b-1,当a=2019,b=12 019时,原式=-20192×12 019-1=-2 019-1=-2 020.7.做大小两个长方体纸盒,尺寸如下(单位:厘米).(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?长宽高小纸盒 a b c大纸盒 1.5a 2b 2c【解析】(1)2(1.5a×2b+2b×2c+1.5a×2c)+2(ab+bc+ac)=6ab+8bc+6ac+2ab +2bc+2ac=8ab+10bc+8ac(平方厘米).答:做这两个纸盒共用料(8ab+10bc+8ac)平方厘米.(2)2 (1.5a×2b+2b×2c+1.5a×2c)-2(ab+bc+ac)=6ab+8bc+6ac-(2ab+2bc+2ac)=4ab+6bc+4ac(平方厘米).答:做大纸盒比做小纸盒多用料(4ab+6bc+4ac)平方厘米.已知a+b=6,ab=3,求(5ab-4a-7b)-(6a+3ab)-(4ab+3b)的值.【解析】原式=5ab-4a-7b-6a-3ab-4ab-3b=-2ab-10a-10b=-2ab-10(a+b).当a+b=6,ab=3时,原式=-6-60=-66.第29课时2.2 整式的加减(4)【综合练习】1.计算:(1)(2x -2)-(3x +5); (2)-(2a 2-2a)+3(3a -a 2); (3)2(4x 2y -5xy 2)-3(x 2y -4xy 2); (4)3(2x 2-2x -1)-2(2x 2-x -7); (5)2a -[-3b -3(3a -b)];(6)⎝ ⎛⎭⎪⎫13a 3-2a -6 -12 ⎝ ⎛⎭⎪⎫12a 3-a -7 . 【解析】(1)原式=-x -7; (2)原式=-5a 2+11a ; (3)原式=5x 2y +2xy 2; (4)原式=2x 2-4x +11; (5)原式=11a ;(6)原式=112 a 3-32 a -52 .2.(2021·西安期末)先化简,再求值:2(x 2y +xy 2)-2(x 2y -x)-2xy 2-2y ,其中x =2,y =-2. 【解析】原式=2x 2y +2xy 2-2x 2y +2x -2xy 2-2y =2x -2y ,当x =2,y =-2时,原式=2×2-2×(-2)=4+4=8.3.三个队植树,第一队植树a棵,第二队植的树比第一队的2倍还多8棵,第三队植的树比第二队的一半少6棵,问三队共植树多少棵?并求当a=100时,三个队共植树的棵数.【解析】因为第一队植树a棵,第二队植的树比第一队的2倍还多8棵,所以第二队植的树的棵数为2a+8,第三队植的树的棵数为(2a+8)÷2-6=a-2.所以三个队共植树的棵数=a+(2a+8)+(a-2)=4a+6,当a=100时,4a+6=406(棵).答:三个队共植树(4a+6)棵,当a=100时,三个队共植树406棵.4.小船在静水中的速度是50千米/时,水流速度是a千米/时,顺水航行4小时的行程与逆水航行3小时的行程相差多少千米?【解析】顺水速度为(50+a)千米/时,逆水速度为(50-a)千米/时,故顺水航行4小时比逆水航行3小时多:4(50+a)-3(50-a)=(7a+50)千米.5.已知(2x2+ax-y+b)-(2bx2-3x+5y-1)的值与字母x的取值无关,求3(a2-ab-b2)-(4b2+ab+b2)的值.【解析】原式=2x2+ax-y+b-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+1+b,因为与字母x的取值无关,所以b=1,a=-3,3(a2-ab-b2)-(4b2+ab+b2)=3a2-3ab-3b2-4b2-ab-b2=3a2-4ab-8b2,将b=1,a=-3代入,得3a2-4ab-8b2=3×(-3)2-4×(-3)×1-8×12=31.6.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12 还多1岁,求这三名同学的年龄之和是多少. 【解析】因为小红的年龄比小明的年龄的2倍少4岁, 所以小红的年龄为(2m -4)岁.又因为小华的年龄比小红的年龄的12 还多1岁, 所以小华的年龄为12 (2m -4)+1(岁), 则这三名同学的年龄的和为m +(2m -4)+⎣⎢⎡⎦⎥⎤12(2m -4)+1 =m +2m -4+[m -2+1]=4m -5. 答:这三名同学的年龄的和是(4m -5)岁. 7.已知□,★,△分别代表1~9中的三个自然数.(1)若□+□+□=15,★+★+★=12,△+△+△=18,那么□+★+△=________;(2)如果用★△表示一个两位数,将它的个位和十位上的数字交换后得到一个新的两位数△★,若★△与△★的和恰好为某自然数的平方,则该自然数是________;和是________;(3)①如果在一个两位数★△前插入一个数□后得到一个三位数□★△,设★△代表的两位数为x ,□代表的数为y ,则三位数□★△用含x ,y 的式子可表示为________;②设a 表示一个两位数,b 表示一个三位数,把a 放在b 的左边组成一个五位数m ,再把b 放在a 的左边,组成一个新五位数n.试探索:m -n 能否被9整除?并说明你的理由.【解析】(1)若□+□+□=15,★+★+★=12,△+△+△=18,则□=5,★=4,△=6,则□+★+△=15.答案:15(2)根据题意,得★△+△★=(★+△)×10+(△+★)=(★+△)×11由于★△与△★之和恰为某自然数的平方,故★+△=11,★△+△★=121.答案:11121(3)①根据题意,得三位数□★△用含x,y的式子可表示为100y+x.答案:100y+x②m-n能被9整除.理由如下:根据题意,得m=1 000a+b,n=100b+a,所以m-n=9(111a-11b)所以m-n能被9整除.第30课时单元复习课——整式的加减①__次数__ ②__同类项__ ③__括号__ ④__合并__用字母表示数1.(2018·常州中考)已知苹果每千克m 元,则2千克苹果共需要的费用是( D ) A .(m -2)元 B .(m +2)元 C .m2 元D .2m 元2.(2018·大庆中考)某商品打七折后价格为a 元,则原价为( B ) A .a 元B .107 a 元 C .30%a 元D .710 a 元【特别提醒】用字母表示数的三个“注意事项”1.注意把握问题中的关键词,如,多、少、倍、分、折等. 2.注意问题中的字母所表示的含义.3.在同一个问题中,相同字母所表示的数是同一个数,不同的数应该用不同的字母来表示.求代数式的值1.(2017·海南中考)已知a =-2,则代数式a +1的值为( C ) A .-3 B .-2 C .-1 D .12.(2017·重庆中考A 卷)若x =-13 ,y =4,则代数式3x +y -3的值为( B ) A .-6 B .0 C .2D .63.(2018·徐州中考)若2m +n =4,则代数式6-2m -n 的值为__2__. 4.(2018·岳阳中考)已知a 2+2a =1,则3(a 2+2a )+2的值为__5__. 【特别提醒】代数式求值的三个“注意事项” 1.求代数式的值时,一定不要改变原来的运算. 2.在代入数值之前,必须把代数式进行化简. 3.在求代数式的值时,经常用到整体思想.整式的有关概念1.(2018·淄博中考)若单项式a m -1b 2与12 a 2b n 的和仍是单项式,则n m 的值 是( C )A .3B .6C .8D .92.(2017·西宁中考)13 x 2y 是__3__次单项式.3.(2017·玉林崇左中考)若4a 2b 2n +1与a m b 3是同类项,则m +n =__3__. 【特别提醒】理解同类项的两“相同”和两“无关”两相同:一是所含字母相同,二是相同字母的指数也相同. 两无关:与字母的顺序无关,与系数无关.整式的加减1.(2017·无锡中考)若a -b =2,b -c =-3,则a -c 等于( B ) A .1 B .-1 C .5 D .-52.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( A )A .3a +2bB .3a +4bC .6a +2bD .6a +4b3.代数式2a 2+b -2c 与-4b +c -a 2的和为a 2-3b -c . 4.下面是徐颖化简整式的过程,仔细阅读后解答所提出的问题. 解:x (x +2y )-(x +1)2+2x=x2+2xy-x2+2x+1+2x第一步=2xy+4x+1第二步(1)徐颖的化简过程从第________步开始出现错误;(2)对此整式进行化简.【解析】(1)括号前面是负号,去掉括号应变号,故第一步出错.答案:一(2)x(x+2y)-(x+1)2+2x=x2+2xy-x2-2x-1+2x=2xy-1.【特别提醒】整式的加减的两个注意事项1.准确熟练应用去括号法则和合并同类项法则.2.如果括号外面有数字,在去括号时,可以分为两个步骤:第一,利用乘法分配律把数字与括号内各项相乘,第二,用去括号法则去掉括号.规律探索1.(2018·烟台中考)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第○n个图形中有120朵玫瑰花,则n的值为(C)A.28 B.29 C.30 D.312.如图表示的是用火柴棒搭成的图形,第一个图形用了5根火柴,第二个图形用了8根火柴,…,则用281根火柴棒搭成了第________个图形.(C)A.93 B.94C.80 D.813.(2017·娄底中考)刘莎同学用火柴棒依图的规律摆成六边形图案,用10 086根火柴棒摆出的图案应该是第__2__017__个.【特别提醒】解决探索规律题的一般步骤1.利用已知条件猜测隐含的规律.2.对猜测的规律进行验证.3.依次进行猜测——验证……猜测——验证,直到验证成功为止.。

优质课【部优】《2.1 第1课时 列代数式》教学设计

优质课【部优】《2.1 第1课时 列代数式》教学设计

教学设计整式(第1课时)——大连市知行中学季彧一、内容与内容解析1.内容用含字母的式子表示数量关系.2.内容解析本节课内容属于“数与代数”领域,是在学习了用字母表示数、简单的列式表示实际问题中的数量关系和简易方程的基础上,进一步研究含有字母的式子(整式)表示实际问题中的数量关系,是初中数学的重要概念,是今后学习分式、二次根式、方程以及函数等知识的基础.本节课的核心内容是进一步理解用字母表示数的意义,正确分析实际问题中的数量关系并列式表示.由于字母表示数,因此字母可以和数一样参与运算,这正是理解用整式表示数量关系的核心.用含字母的式子表示数量关系时,需要结合具体情境,分析问题中的数量,寻找数量之间的关系,并依据数量关系用运算符号把数和表示数的字母连接起来.基于以上分析,本节课的教学重点:进一步理解用字母表示数的意义,正确分析实际问题中的数量关系并用含字母的式子表示数量关系,感受其中“抽象”的数学思想.二、目标与目标分析1.目标(1)进一步理解用字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.(2)经历用含有字母的式子表示实际问题中的数量关系的过程,体会从具体到抽象的认知过程,发展符号意识.2.目标分析目标(1)是让学生会用字母表示数,认识字母和数一样可以参与运算,能正确分析实际问题中的数量关系,将字母看成数参与运算,列出含有字母的式子.目标(2)是“内容所蕴含的思想方法”,学生需要结合大量的具体问题,分析数量关系并用式子表示,从中体会由实际问题抽象出数学问题,用数学符号表示数量关系的思想.感受式子中的字母表示数,含有字母的式子可以表示实际问题中的数量关系,式子更具有一般性三、教学问题诊断分析在前面的学习中,主要学习的是数的有关概念和运算,学生习惯用数的相关知识解决实际问题.由“数”到“式”的过程,是一个抽象的过程.虽然小学学过用字母表示数,对含有字母的数学式子不会感到生疏,但七年级的学生符号意识较弱,分析问题的能力有待提高.在具体的问题情境中,对于如何分析问题、寻找相关数量、确定数量之间的关系、用数学符号表达数量关系,学生会感到困难.教学中要通过大量的学生熟悉的实际问题,有针对性地进行引导,充分展示分析数量关系并列式的过程,积累感性认识,丰富学习体验,培养学生解决实际问题的能力.基于以上分析,本节课的教学难点:正确分析实际问题中的数量关系,用式子表示数量关系.四、教学条件支持分析在章引入时,通过微课程,介绍“青藏铁路”以及引言问题背景,引出本章学习的主要内容,达到激发学生学习兴趣,明确本章研究内容的目的.在例题中借助几何画板解决问题,更具直观性,一图多用,节省时间.在练习中借助iPad上传小组讨论结果,节省时间,方便小组展示讨论结果.五、教学过程设计1.创设情境,章前引入微课程引入.青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段、非冻土地段的行驶速度分别为100km/h和120km/h.请根据这些数据回答下列问题:(1)列车在冻土地段行驶时,2h的路程是多少3h呢t h呢(2)在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所需时间的倍,如果通过冻土地段需要t h,能用含t的式子表示这段铁路的全长吗师生活动:借助微视频提出问题,让学生思考,点明想要解决这些问题需要用到本章学习的内容,引出课题.设计意图:借助引言问题,引出本章学习的主要内容.通过视频播放,激发学生的学习兴趣,并借助微课程把引言问题的背景交代清楚.2.问题探索,学习新知问题2我们来看引言中的问题(1),你能求出问题的答案吗师生活动:学生独立回答,教师板书.问题3100t这个式子与其他式子有什么区别师生活动:学生独立回答,教师归纳:本节主要学习含字母的式子.问题4t 代表什么它与100之间是什么样的关系100t表示了什么师生活动:学生独立回答,教师归纳:字母可以像数一样参与运算,用含字母的式子可以表示数量关系.问题5100t这个式子与其他式子有什么联系追问用含字母的式子表示数量关系有什么优点师生活动:学生独立回答,教师归纳:用含字母的式子可以表示数量关系,更具有简洁性和一般性.设计意图:让学生经历由数到式的过程,感受从特殊(具体)到一般(抽象)的认识过程,体会用字母表示数的必要性.使学生认识到含字母的式子可以用来表示数量关系,更具有简洁性和一般性.3.巩固基础,学以致用问题6怎样分析数量关系,并用含字母的式子表示数量关系呢例题(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;(2)右下图是一所住宅的建筑平面图(图中长度单位:m),用式子表示这所住宅的建筑面积.师生活动:教师与学生共同完成,在解决例题(2)时借助几何画板解决问题.教师引导学生归纳分析实际问题时:抓住关键词,理清语句层次,联想相关概念.强调书写时注意事项.引导学生发现,用含字母的式子表示了题目中的和差、相乘等数量关系.设计意图:熟悉用含字母的式子表示实际问题中的数量关系,为形成单项式和多项式概念进行铺垫.在用数学符号表示数量关系中,感受其中“抽象”的数学思想.在例题(2)中借助几何画板解决问题,更具直观性,一图多用,节省时间.练习1(1)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;(2)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;(3)用式子表示数n的相反数.(4)一条河的水流速度是km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(5)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数;(6)如左下图(图中长度单位:cm),用式子表示三角尺的面积;师生活动:学生先独立列式,小组交流,利用iPad上传结果进行展示,教师巡视发现学生问题.教师引导学生归纳船在河流中行驶时,船速度的公式.设计意图:熟悉用含字母的式子表示实际问题中的数量关系,在用数学符号表示数量关系中,感受其中“抽象”的数学思想.利用小iPad上传并展示小组讨论结果,便于比较小组间结果的差异,方便小组展示交流.练习2(1)某种商品每袋元,在一个月内的销售量是m袋,则这个月内销售这种商品的收入为多少(2)有两片棉田,一片有m hm²(公顷,1hm²=10000m²),平均每公顷产棉花a kg,另一片有n hm²,平均每公顷产棉花b kg,则两片棉田上棉花的总产量为多少5.小结归纳,自我完善问题7(1)本节课学了哪些主要内容(2)用含有字母的式子表示数量关系有什么意义(3)用含有字母的式子表示数量关系时要注意什么师生活动:教师提出问题,学生思考作答,教师根据学生回答整理形成树形图.设计意图:通过小结,使学生梳理本节课所学内容.借助树形图,更好的突出本节课的重点.6.布置作业教科书习题第1,2,7题。

2.1代数式的概念和列代数式课时2七年级上册数学湘教版

2.1代数式的概念和列代数式课时2七年级上册数学湘教版

4.07
超过260 m³的部分
6.07
解 由于一年总用水量为(210+c) m3,其大于260 m3,不超过260 m3
的部分为2.07×180+4.07×(260-180)= 698.2(元),超过260m3
的部分为[6.07×(c-260)] 元.因此,这样的家庭一年的水费为
{698.2+[6.07×(c-260)]} 元.
六边形的个数 1 2 3 4 …
m(m为正整数)
图案
… …
所需火柴(根) 6
6+5=11 6 + 5 × 2=26 6 + 5 × (4-1) =__2_1___
… 6 + 5 ×(m-1) =_6_+_5_(m__-1)
新知探究 知识点 代数式的应用
例1 填空:
(1) 日平均气温可以用一天中2:00,8:00,14: 00,20:00 四
(2n+1)2- (2n-1)2 =8×n
新知探究 知识点 代数式的应用
例2 为了增强公民节水意识,某市鼓励居民合 理利用水资源,对自来水的水费实行阶梯水价, 并实行“一户一表”计费.对于5人及以下的家庭, 规定如下:
每户每年用水量 180 m³及以下
超过180 m³但不超过260 m³的部分 超过260 m³的部分
售出(剩2)下一的批一货半物,共还x剩t,下第货一物天__售__出13_x_这__批t.货物的13 ,第二天 (3)一件进价为x元的商品,卖出后利润率为25%,则这
件商品的利润(利润=进价×利润率)为__2_5_%__x___.
新知探究 知识点 代数式的应用
2.观察下列式子: 32-12 = 8×1 ; 52-32 = 8×2 ; 72-52 = 8×3 ; 92-72 = 8×4 ; ···. 探索以上式子的规律,写出第 n 个等式.

数学人教版七年级上册§2.1.1整式——列代数式

数学人教版七年级上册§2.1.1整式——列代数式

§2.1.2整式——单项式及求单项式的值【学习目标】1.能识别单项式,会求单项式的系数、单项式的次数;2.通过自学、独立思考,合作探究,经历概念的形成过程;3.全力以赴,积极参与,养成细致、严谨的学习品质.【学法指导】1.自学教材P.56思考—P.57内容,用红笔进行勾画;再针对自学预习案二次阅读教材,解答自学预习案中的问题;2.将自学中的疑惑记录在教学案上,准备课上讨论质疑;3.预习后,A层同学完成拓展提升,B层同学力争完成交流研讨,C层同学力所能及完成相应部分.自学预习一、复习回顾列代数式:(1)每包书有20册,n包书有_________册;(2)底边长为a cm,高为h cm的三角形的面积是________________cm2;(3)长方体的长和宽都是a cm,高是h cm,则它的体积是______________cm3;(4)某商品原价m元,现按原价的的8折出售,这种商品现在的价格是___________元;(5)数n的相反数是__________.二、预习自学1.什么样的式子是单项式?除了教材中的例子,请你再举3个例子;2.什么是单项式的系数?除了教材中的例子,请你再举3个例子;3.什么是单项式的次数?除了教材中的例子,请你再举3个例子;4.我的疑惑.交流研讨研讨一:会判定单项式1.判断:下列各式中,是单项式的请打“√”(1)abc()(2)32x+()(3)2xy-()(4)y()(5)45()(6)7m-()针对训练:2.判断:下列各式中,是单项式的请打“√”(1)27x y-()(2)34m n-()(3)0()(4)x()(5)3a()(6)3a()【小结】_____________________________________ _______ ____ 研讨二:会求单项式的系数和次数1.22a的系数是____________,次数是____________;2. 1.2h-的系数是____________,次数是____________;3.223vt-的系数是____________,次数是____________;【小结】________________________________________________________针对训练:4.2xy的系数是____________,次数是____________;5.t-的系数是____________,次数是____________;6.2337a b c的系数是____________,次数是____________;研讨三:会求单项式的值1.已知2x=,3y=-,求单项式222x y-的值:【小结】________________________________________________________针对训练:2.已知2a =-,3b =-,求单项式323a b 的值:拓展提升1.写出所有的系数为2014,且只含两个字母x 、y 的三次单项式:2、在单项式63ma b 与257n a b -中,a 、b 的指数分别相同,则m=_______,n=__________; 3.已知227n x yπ-是一个六次单项式,则n=___________.【课堂小结】1.主要知识点:2.数学思想、方法________________________________ ___________当堂检测1.下列代数式a -,5,26a b ,2456x y ,3a b -,1x 中,单项式有________个;2.填表:3.已知1a =-,3b =,求单项式23a b -的值.课后反思。

第2章 整式的加减(教案)华东师大版(2024)数学七年级上册

第2章 整式的加减(教案)华东师大版(2024)数学七年级上册

第2章 整式的加减 2.1 列代数式1.使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系; 2.初步培养学生观察、分析及抽象思维的能力; 3.学生能熟练地根据题意列出相应的代数式; 4.能用代数式表示一些有特别含义的数.重点如何根据题意列出正确的代数式. 难点能处理表示特别意义的数的代数式.一、导入新课1.从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?2.若用s 表示路程,t 表示时间,v 表示速度,你能用s 与t 表示v 吗?3.一个正方形的边长是a 厘米,则这个正方形的周长是多少?面积是多少? (用l 表示周长,则l =4a 厘米;用S 表示面积,则S =a 2平方厘米) 二、探究新知 1.用字母表示数从这些例子,我们可以体会到,用字母表示数之后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义.我们在书写含有字母的式子的时候要注意什么? ①代数式中出现的乘号,通常写作“·”或省略不写,如5×n ,常写作5·n 或5n ; ②数字与字母相乘时,数字写在字母前面,如5n ,一般不写作n5;③除法运算写成分数形式,如1500÷t 通常写作1500t (t ≠0).2.代数式代数式的定义:在前面的研究中出现的如16n ,s 5 ,2a +32 b 2,a ,b ,a +b ,ab ,a 2,(a+b)2,15,5 050,n (n +1)2 ,5x ,st 等式子,它们都是由数和字母、字母和字母用运算符号连接所形成的式子,我们称它们为代数式.注意:单独的一个数或一个字母也是代数式.3.列代数式:通过前面的探究,我们知道可以用字母来表示数.在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列代数式,使问题变得简洁,更具有一般性.三、课堂练习1.设甲数为a ,乙数为b ,用代数式表示:(1)甲乙两数的和的2倍________;(2)甲、乙两数的平方和________;(3)甲乙两数的和与甲乙两数的差的积____________;(4)甲、乙两数和的平方________.2.我们知道:23 =2×10+3;865=8×100+6×10+5=8×102+6×10+5.类似地:3725=________×103+7×________+2×10+5×________.3.某三位数的个位数字为a,十位数字为b,百位数字为c,则此三位数可表示为________.四、课堂小结1.代数式的定义:由数和字母、字母和字母用运算符号连接所形成的式子,我们称它们为代数式.注意:单独的一个数或一个字母也是代数式.2.列代数式时应注意弄清楚数量之间的关系,正确列出代数式,还要注意其语言的顺序,按先后顺序来列出正确的代数式,并结合规范的代数式表达方式.五、课后作业教材习题3.1第1,4,5,6题.本节课是学生由具体的数之间的数量关系到用字母表示数字的过渡,让学生体会由具体思维到抽象思维的过渡,故在设计其教学过程中,注意所选例题及练习题由易到难,循序渐进,使学生逐步掌握好这一内容,为今后的学习打下一个良好的基础,同时也使学生的抽象思维能力得到初步培养.2.2代数式的值1.使学生掌握代数式的值的概念,并会求代数式的值;2.培养学生准确地运算能力,并适当地渗透对应的思想.重点当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.难点正确地求出代数式的值.一、导入新课1.某礼堂第1排有18个座位,往后每排比前一排多2个座位,问:(1)第n排有多少个座位?(用含n的代数式表示)(2)第10排、第15排、第23排各有多少个座位?2.学生以小组为单位进行探索,得出结果:(1)第n排有18+2(n-1)个座位;(2)第10排,即当n=10时,18+2(n-1)=18+2×9=36;第15排,即当n=15时,18+2(n-1)=18+2×14=46;第23排,即当n=23时,18+2(n-1)=18+2×22=62.二、探究新知由前面的探究可知:当n 取不同的数值时,代数式18+2(n -1)计算得出的结果不同,以上结果可以说明:当n =10时,代数式18+2(n -1)的值是36.一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算出的结果,叫做代数式的值.小结:(1)求代数式的值的步骤:①代入,将字母所取的值代入代数式中;②计算,按照代数式指明的运算进行计算,得出结果. (2)注意的几个问题:①由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母取值,把“当……时”写出来;②如果字母的值是负数、分数,代入时应加上括号; ③代数式中省略了乘号时,代入数值以后必须添上乘号. 三、课堂练习1.当x =12 时,代数式12 (x 2+1)的值是什么?2.当a =-1,b =4时,求代数式a2+3(b -1)的值.3.已知a ,b 互为相反数,c ,d 互为倒数,m 的相反数是-7,求-m 2-4cd +a +bm的值.四、课堂小结 1.代数式的定义一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.2.求代数式的值的步骤及应该注意的问题. 五、课后作业 教材习题3.2本节课的重点是代数式的值的概念,难点是如何准确求出代数式的值.前一节刚学习了列代数式,本节可以从列代数式引入,在引出概念时,教材给出字母的一个值,求代数式的值.我觉得不能让学生体验到代数式的值的不唯一,应该自己根据问题的背景,给出代数式中的字母的几个值,求出相应代数式的值.由于代数式的值是由代数式里的字母所取的值决定的,因此在设计教学过程中,注意渗透对应的思想.2.3 整式 2.3.1 单项式1.要求学生能充分理解单项式的特征,能分辨一个代数式是不是单项式; 2.能写出一个单项式的系数与次数; 3.能根据条件,写出符合条件的单项式.重点能熟练写出一个单项式的次数与系数. 难点能逆向写出符合条件的单项式.一、导入新课1.什么样的式子是代数式? 2.列代数式:(1)若正方形的边长为a ,则正方形的面积是________;(2)若三角形一边长为a ,并且这条边上的高为h ,则这个三角形的面积为________; (3)若m 表示一个有理数,则它的相反数是________;(4)小明从每月的零花钱中拿出x 元钱捐给希望工程,一年下来小明共捐款________元. 二、探究新知 1.单项式的概念观察思考:前面通过探究得到的代数式a 2,12 ah ,-m ,12x.它们的共同的特点是什么?小结:上面列出的代数式是由数字与字母的乘积组成的代数式,这样的代数式叫做单项式.注意:(1)单项式是只有数字与字母的积; (2)单独的一个数或一个字母也是单项式. 2.单项式的系数和次数既然单项式是由数字与字母组成的,为了方便,我们有: (1)一个单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中的所有字母因数的指数和叫做这个单项式的次数,同时这个单项式也称为几次式.注意:(1)圆周率π是常数;(即π是数字而不是字母); (2)当一个单项式的系数是1或-1时,“1”通常省略; (3)单项式的系数是带分数时,通常写成假分数. 三、课堂练习1.在①m ,②-23 a ,③16 x 2y ,④x +y 2 ,⑤abc ,⑥3a +b ,⑦0中,是单项式的有________________(只填序号).2.单项式-2x 2y3的系数是________,次数是________.3.若单项式(3m -2)xy n -1的系数是2,次数是4,则n 2-3m =________. 四、课堂小结1.单项式的定义:由数字与字母的乘积组成的代数式,这样的代数式叫做单项式. 注意:(1)单项式是只有数字与字母的积; (2)单独的一个数或一个字母也是单项式. 2.单项式的系数和次数:(1)一个单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中的所有字母因数的指数和叫做这个单项式的次数,同时这个单项式也称为几次式.注意:(1)圆周率π是常数;(即π是数字而不是字母)(2)当一个单项式的系数是1或-1时,“1”通常省略;(3)单项式的系数是带分数时,通常写成假分数.五、课后作业教材习题3.3第1题.本节课的主要内容是在学习代数式中的单项式,学习分辨一个代数式是否是单项式,所以要掌握单项式的主要特征.在掌握此概念的基础上,理解单项式的系数与次数,要特别注意单项式的次数的教学,可以从正反两个方面进行训练,加深学生对单项式的次数的理解.2.3.2多项式2.3.3升幂排列与降幂排列1.要求学生能充分认识单项式与多项式的区别;2.能掌握多项式的有关概念,包括多项式的项、项数、次数、最高次项等;3.能将一个多项式按某个字母的升幂排列和降幂排列.重点多项式的相关概念.难点多项式的次数.一、导入新课1.什么样的式子是单项式?单项式的系数和次数分别是什么?2.列代数式:(1)若三角形的三条边长分别为a,b,c,则三角形的周长是________;(2)某班有男生x人,女生21人,则这个班的学生一共有________人;(3)如图,阴影部分的面积为________.二、探究新知1.多项式的有关概念(1)观察思考:上面探究的这些式子是单项式吗?a+b+c x+212ar-πr2(2)它们都有什么共同特点?它们与单项式有什么联系和区别?由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的表达能力,通过对特征的讲述,由学生自己归纳出多项式的定义,教师可给予适当的提示及补充.小结:(1)多项式的概念:上面列出的代数式都是由几个单项式相加而成的,几个单项式的和叫做多项式.(2)多项式的项:多项式中的每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.(3)多项式的次数:多项式中次数最高项的次数,叫做多项式的次数.(4)整式的概念:单项式和多项式统称整式.注意:(1)多项式是由单项式构成的,它是几个单项式的和;(2)多项式的次数不是所有项的次数之和;(3)多项式的每一项都包括它前面的符号.教师介绍多项式的项和次数以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.2.升幂排列与降幂排列(1)任意交换多项式x2+x+1中各项的位置,可以得到哪些不同的排列方式?在这些排列方式中,你认为哪几种比较有规律?(2)学生自主探究,得出结论;任意交换多项式x2+x+1中各项的位置,可以得到6种不同的排列方式,在这些排列方式中,“x2+x+1”与“1+x+x2”的排列是比较有规律的,那么,它们有什么规律呢?(3)学生观察思考后回答.教师小结:我们可以发现:这两种排列方式有一个共同特点:x的指数呈现一种逐渐变小或逐渐变大的排列顺序.从上面的两种整齐的写法中,我们发现:除了美观之外,还会为今后的计算带来方便,因而我们常常把一个多项式各项的位置按照其中一字母的指数大小顺序来排列.(4)升幂排列与降幂排列的概念:把一个多项式按照同一个字母的指数从大到小的顺序排列,叫做这个多项式按此字母的降幂排列;把一个多项式按照同一个字母的指数从小到大的顺序排列,叫做这个多项式按此字母的升幂排列.三、课堂练习1.填空题:(1)下列整式:-25x2,12(a+b)c,3xy,0,2a-33,-5a2+a中,是单项式的有________________________________________________________________________,是多项式的有________________________________________________________________________.(2)多项式-53a3b-7ab-6ab4+1是________次________项式,次数最高项的系数是________.(3)-54a2b-43ab+1是________次________项式,其中三次项系数是________,二次项为________,常数项为________.2.指出下列多项式的次数与项: (1)2xy 3 -14; (2)a 2+2a 2b +ab 2-b 2.3.把多项式3xy -4x 2y 2+x 3-5y 3重新排列: (1)按x 的升幂排列________________________________________________________________________ (2)按y 的升幂排列________________________________________________________________________ 四、课堂小结1.多项式的相关概念及应该注意的问题. 2.升幂排列与降幂排列及应该注意的问题. 五、课后作业教材第98页练习,第100页练习1,2题.本节课主要内容是多项式的相关概念和升幂排列与降幂排列,首先以实际的例子引入多项式,主要让学生区别多项式与单项式,找到多项式的特征,弄清多项式与单项式的联系与区别;接着教师指出多项式的项和次数,这里要特别注意多项式的次数与单项式次数的区别,避免学生混淆.教师通过具体的实例,让学生体会什么是升幂排列与降幂排列,这里主要提醒学生注意在移动多项式的项的时候,要连同它的符号一起移动.2.4整式的加减2.4.1同类项2.4.2合并同类项1.使学生能掌握同类项的概念,并能在多项式中找到同类项;2.能逆向运用同类项的概念,确定某些指数的值;3.理解合并同类项的法则并能熟练运用;4.能在合并同类项的基础上,进行简单的化简求值的运算.重点作为同类项必须满足的条件,会合并同类项.难点同类项概念的逆向运用.一、导入新课1.指出多项式3x2y-4xy2-3+5x2y+2xy2+5的项有哪些.学生观察后回答:这个多项式的项中有3x2y,-4xy2,-3,5x2y,2xy2,5.2.我们常常把具有相同特征的事物归为一类.你能按照一定的标准,将上面的项进行分类吗?怎样分?你的标准是什么?学生自主探究后,进行小组讨论,得出结果,教师鼓励学生进行不同的尝试,并进行比较.二、探究新知1.同类项的概念(1)上面同学们按照不同的标准将以上六项进行了分类,如果我们按照如下分类:3x2y与5x2y,-4xy2与2xy2,-3与5,同学们观察一下,它分类的标准是什么?小结:所含字母相同,相同字母的指数相同.引导学生思考这些所谓相同特征的项有什么相同的特征.(2)同类项的概念:所含字母相同,并且相同字母的指数也相等的项叫做同类项.(3)注意:①同类项中要注意到两个相同:字母相同及相同的字母的指数也相同;②所有的常数项都是同类项;③同类项的判断是以它的总体特征来判断,而不能仅仅看它们的位置,如:系数字母指数3x2y 3x 2y 15x2y 5从上我们很容易发现,这两个所谓的同类项,只有系数不同,而字母相同,而且相同的字母的指数也相同.2.合并同类项(1)单项式3x2y与5x2y是不是同类项?(2)试一试计算3x2y+5x2y的结果是多少?怎样进行计算?3x2y+5x2y=(3+5)x2y=8x2y(3)小结:把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(4)想一想:怎样合并下列多项式中的同类项?3x2y-4xy2-3+5x2y+2xy2+5学生尝试计算,教师示范讲解:3x2y-4xy2-3+5x2y+2xy2+5=3x2y+5x2y-4xy2+2xy2-3+5=(3x2y+5x2y)+(-4xy2+2xy2)+(-3+5)=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2(5)通过刚才的解答,请同学们总结合并同类项的一般步骤有哪些?小结:进行合并同类项的一般步骤:(1)先用相同的划线找到同类项;(2)利用加法交换律与加法结合律把同类项放在一起;(3)利用有理数的加减混合运算,进行系数相加;(4)字母与字母的指数不变.三、课堂练习1.所含________相同,并且________也相同的项叫做同类项.2.在代数式4x2+4xy-8y2-3x+1-5x2+6-7x2中,4x2的同类项是____________,6的同类项是________.3.若2x k y k+2与3x2y n的和为5x2y n,则k=________,n=________.4.若-3x m-1y4与13x2y n+2是同类项,求m,n的值.5.合并同类项:(1)3x2-1-2x-5+3x-x2;(2)-0.8a2b-6ab-1.2a2b+5ab+a2b.四、课堂小结1.同类项的概念:所含字母相同,并且相同字母的指数也相等的项叫做同类项.2.理解同类项的概念及要注意的问题.3.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.4.进行合并同类项的一般步骤.五、课后作业教材第102页练习1,2,3题,第105页练习第1,2,3题.本节课教学内容是同类项、合并同类项,它是本章的重点内容,也是本章的一个难点内容,对后面的学习非常重要,所以一定要要求学生掌握同类项的特征,会正确的合并同类项.在教学中,要通过具体的实例来讲解同类项的特征,举出容易混淆的例子让学生进行辨别,以加深学生的理解,然后通过反向运用,渗透逆向思维的数学思想.在讲解合并同类项时,一是紧扣法则进行计算,二是强调步骤与方法的规范性.2.4.3去括号与添括号1.了解去括号法则依据,理解去括号法则,并初步理解去括号法则的合理性;2.使学生掌握添括号法则,并能熟练地按要求正确地添括号,进行整式的化简.重点理解去括号与添括号法则并能用法则进行正确去括号和添括号.难点括号前面是“-”号和括号前有系数的括号的去法,运用添括号进行整式的简便运算.一、导入新课情境1:某时,2路某趟公交车上有乘客a名,后来在第一个停靠站上来了b名乘客,在第二个停靠站又上来了c名乘客,则(1)此时,此公交车上有乘客________名;(2)还可以理解为:后来一共上来了乘客________名,因而此时公交车上共有乘客________名.由于以上的两个式子________与________都表示同一个量,所以我们有________________.由情境1得到:a+(b+c)=a+b+c情境2:若图书馆内有x名同学,后来有些同学因上课要离开,第一批走了y名同学,第二批又走了z名同学,试用与“情境1”相同的方法,用两种方式写出图书馆内还剩下的同学数.由情境2得到:x-(y+z)=x-y-z.二、探究新知1.去括号法则:(1)由a+(b+c)=a+b+c和x-(y+z)=x-y-z,你发现去括号有什么规律?(2)去括号法则:①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.2.需要注意的几个问题:(1)去括号是去掉了两部分:括号与括号前的符号;(2)括号内的项的变与不变是统一的;(3)如果括号前有数字,那么这个数字必须乘以括号内的每一项.3.添括号法则:(1)从去括号的运算中,我们知道:a+(b+c)=a+b+ca-(b+c)=a-b-c根据等式的性质,我们有:a+b+c=a+(b+c)a-b-c=a-(b+c)观察思考:变化后的式子相当于添加了括号,那么添括号有什么规律?(2)教师小结添括号法则:所添括号前面是“+”号,括到括号里的各项都不变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.注意:添括号与去括号的过程正好相反,添括号是否正确,可以用去括号进行检验.三、课堂练习1.根据去括号法则,在横线上填上“+”号或“-”号:(1)a________(-b+c)=a-b+c;(2)a________(b-c-d)=a-b+c+d;(3)________(a-b)________(c+d)=c+d-a+b.2.已知x+y=2,则x+y+3=________,5-x-y=________.3.化简:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b);(4)3(5x+4)-(3x-5).四、课堂小结1.去括号法则及去括号时注意的问题.2.添括号法则及添括号时注意的问题.五、课后作业教材第107页练习第1,2,3题,第109页练习第1,2题.本节课去括号的知识是在旧知识的基础上进行发展的.在去括号过程中,必须抓住其特征:括号前是“+”号还是“-”号,去掉括号与符号后,括号内的项到底要不要变号,有什么规律,都必须有总结性的结果.而添括号法则,关键是在实际题目中的应用,在应用中当所添括号前的符号是“-”时,所括到括号内的所有的项都必须改变正负号,这是本节最难的,也是最容易出错的知识点.另外,正确的掌握去括号法则是进行整式加减的基础,所以可以通过不同类别的去括号的训练,增强学生对法则运用的熟练性和去括号的准确性,为后面的学习奠定基础.2.4.4整式的加减1.通过对以前所学知识的综合复习,从而顺利过渡到整式的加减运算;2.在整式的加减中,能灵活结合各方面运算法则,进行正确的计算,提高计算的灵活性.重点结合各方面知识进行整式的加减运算.难点如何更灵活,更准确地进行整式的加减.一、导入新课做一做:某学生合唱团出场时第一排站了n人,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?①学生写出答案:n+(n+1)+(n+2)+(n+3)②提问:以上答案还能进一步化简吗?如何化简?我们进行了哪几步运算?③学生尝试计算.二、探究新知出示投影:例1①求单项式5x2y,-2x2y,2xy2,-4x2y的和;②5x2y+(-2x2y)+2xy2+(-4x2y).提问:在这几个单项式相加时,为什么-2x2y,-4x2y要加上括号.(在学生讨论后,教师作必要强调)出示投影:例2 1.说出下列单项式的和:①-3x,-2x,-5x2,5x2;②-2n,3n2,-5n2.2.写出下列第一个式子减去第二个式子的差:①3ab,-2ab;②5ax2,-4x2a.出示投影:例3①求3x2+6x+3与4x2+7x-6的和.②n+(n+1)+(n+2)+(n+3).教师巡视,然后针对学生出现的问题,集中讲评在列代数式时,可能有的学生对多项式不加括号,教师要引导学生分析为什么每个多项式要加括号.变式训练:(3x2+6x+3)-(4x2+7x-6).小结(1)整式的化简实质上就是整式的加减,去括号和合并同类项是整式加减的基础.(2)整式加减的一般步骤可以总结为:①如果有括号,那么先去括号;②如果有同类项,再合并同类项.三、课堂练习1.将代数式先化简,再求值:2a2-b2+2(b2-a2)-(a2+2b2),其中a=243,b=3.2.计算:2(x-3x2+1)-3(2x2-x-2).3.先化简,再求值:5x-[3x-x(2x-3)],其中x=2.4.如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少b cm,求这个三角形的周长.四、课堂小结1.整式的加减实际上就是去括号、合并同类项这两个知识的综合.2.整式的加减的一般步骤:(1)如果有括号,那么先算括号;(2)如果有同类项,则合并同类项.3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便.4.数学是解决实际问题的重要工具.五、课后作业教材第111页练习第1,2,3题.通过实际问题,让学生经历一个实际背景,去体会进行整式的加减的必要性.通过“去括号、合并同类项”习题的练习归纳、总结出整式的加减的一般步骤,培养学生的观察、分析、归纳和概括的能力,掌握知识的发生发展过程,理解整式的加减实质就是去括号、合并同类项,教学过程中由学生小组讨论概括出整式的加减的一般步骤,然后出示例题,由学生解答.同时采取由学生出题,其他同学抢答等形式,来提高学生的学习兴趣,充分发挥他们的主观能动性,提高课堂教学效益.。

2.1 代数式的概念和列代数式第1课时 代数式的概念和列代数式 (课件)湘教版数学七年级上册

2.1 代数式的概念和列代数式第1课时 代数式的概念和列代数式 (课件)湘教版数学七年级上册
湘教版·七年级上册
第1课时 代数式的概念 和列代数式
y 8 6 4 2 –3 –2 –1 O 1 2 3 x
读儿歌
1只青蛙1张嘴,2只眼睛4条腿,1声扑通跳下水; 2只青蛙2张嘴,4只眼睛8条腿,2声扑通跳下水; 3只青蛙3张嘴,6只眼睛12条腿,3声扑通跳下水;…
你能用一句话表示这首儿歌吗? n只青蛙 _n_张嘴, _2n_只眼睛_4_n条腿, _n_声扑通跳下水.
做一做
(1) 据新华社2021年10月17日报道:由“杂交水稻之 父”袁隆平院士专家团队研发的杂交水稻双季亩产为 1 603.9 kg (其中早稻平均亩产为667.8 kg,晚稻平均亩产 为936.1 kg).按照双季亩产1603.9 kg计算, 10亩的产量为 (1603.9 ×10) kg , 16.5亩的产量(1603.9×16.5)kg, a 亩
1603.9×a
,
100
t
,
(a遍意义,能为叙述和
研究问题带来方便.
注意:字母可以表示任意的数.但是在同一个问题中, 相同的字母必须表示相同的数,不同的数必须用不 同字母表示.
数与表示数的字母用运算符号连接而成 的式子叫作代数式.
这里的运算一般是加、减、乘、除、乘方、 开方.
4.如左下图(图中长度单位:cm),用式子表 示三角尺的面积;
三角尺的面积(单位:cm2 )是 1 ab πr 2. 2
5.右下图是一所住宅的建筑平面图(图中 长度单位:m),用式子表示这所住宅的建筑 面积.
这所住宅的建筑面 积(单位:m2)是 x2+2x+18.
列代数式 注意事项
数与字母相乘,乘号通常省略,数字 写在字母前面
规定:单独一个字母或一个数也是代数式.

湘教版七年级数学上册 2.1 代数式的概念和列代数式(第二章 代数式 学习、上课课件)

湘教版七年级数学上册 2.1 代数式的概念和列代数式(第二章  代数式  学习、上课课件)

感悟新知
2.代数式的书写要求:
知2-讲
(1) 数字与字母相乘时,数字在前,字母在后,“ × ”通常
省略不写;数字因数是 1 或 - 1 时,“1”常省略不写;
(2) 当字母和带分数相乘时,要把带分数化成假分数;
(3)字母与字母相乘时,“ × ”通常省略不写或写成“ · ”;
(4) 含有字母的除法运算中,最后结果要写成分数形式,分
乘积,所以它们也是代数式;
3. 代数式中可以有括号,它的作用是指明运算顺序 .
感悟新知
例2 母题 教材P69练习T1 填空: (1)若 m为整数,则 2m为__偶___数,2m - 1 为 ____奇_____数;(填“奇” 或“偶”)
知2-练
(2)三个连续偶数,若中间一个数为 2n,则其余两个 数分别为 _2_n__-__2_,__2_n_+_2__;
量关系简明地表示出来 .
感悟新知
注意
知1-讲
用字母表示实际问题中的某个量时,字母的取值必须使式子
有意义且符合实际情况 .
特别提醒 同一问题中,相同的字母必须表示相同的
量,不同的量必须用不同的字母表示.
感悟新知
例1 [母题 教材P65例2 ]填空:
知1-练
(1)买单价为 6 元的钢笔 a支,共需___6_a__元;
(3)一辆汽车的行驶速度是 v km/h, t h 行驶__v_t __ km;
(4)长方形绿地的长、宽 分别是 a m, b m,若长增 加 x m, 则新增加的绿地面积是 __b_x__ m2.
感悟新知
知识点 2 代数式的概念
知2-讲
1. 把数与表示数的字母用运算符号连接而成的式子叫作代数 式 . 单独一个字母或者一个数也是代数式 . 温馨提示: 基本的运算符号包括加、减、乘、除、乘方以及以后 学习的开方运算 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. (2015 湖北省咸宁市) 端午节期间,“惠民超市”销售的粽子打8折后卖a 元,则粽子的原价卖 元.
答案: a
2. (2015 湖北省恩施自治州) 随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%,现售价为b 元,则原售价为( )
A . (a+b )元
B . (a+b )元
C . (b+a )元
D . (b+a )元
答案:
分析: 可设原售价是x 元,根据降价a 元后,再次下调了20%后是b 元为相等关系列出方程,用
含a ,b 的代数式表示x 即可求解.
解答: 解:设原售价是x 元,则
(x ﹣a )(1﹣20%)=b ,
解得x=a+b ,
故选A .
点评: 解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,
再求解
3. (2015 四川省自贡市) 为庆祝抗战70周年,我市某楼盘让利于民,决定将原价a 元/米2的商品房价降价10%销售,降价后的售价为 ( )
A.%a 10-
B.%a 10⋅ C .()%a 110- D .()%a 110+
答案:
分析:根据题意列出代数式解答即可.
解答:解:根据题意可得:a (1﹣10%),
故选C .
点评:此题考查代数式,关键是根据将原价为a 元/米2
的商品房价降价10%销售列出代数式.
4. (2015 湖南省株洲市) 如果手机通话每分钟收费m元,那么通话a分钟,
收费元。

答案:试题分析
本题考点是:列代数式,根据公式:收费=单价×时间
答案为:am。

相关文档
最新文档