多元统计学多元统计分析试题A卷答案

合集下载

多元统计分析期末试题及答案

多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

2006年研究生《多元统计期末试题》(A卷)

2006年研究生《多元统计期末试题》(A卷)

(10 分)


二、下面是 4 个变量 X 1 , X 2 , X 3 , X 4 两两之间的相关系数矩阵,试用模糊聚类法


作聚类并画出谱系图。
1 0.92 1 R 0.09 0.87 1 0.58 0.75 0.67 1
(8 分)
使用学期
三、 设三个总体 G1 , G2 , G3 的分布分别为: N (2, 0.52 ), N (0, 22 ), N (3,12 ) 。试问
中国地质大学(武汉)研究生课程考试出题专用纸
考试课程名称:多元统计分析 学时: 60
简述动态聚类法的基本思想和步骤,在实际应用中如何确定合理的聚类 数目? (8 分) 六、试比较主成分分析、因子分析、对应分析这三种方法的异同之处并简要介 绍它们的应用。 (14 分) 综合题: (30 分) 七、如果你作为研究人员参加定量研究“和谐社会”这样的课题,对于以下两 个问题,请提出你的设想: (1) 你觉得应该选取涉及哪些方面的指标,构成指标体系?如果有些指标没 有现存的统计数据,兼顾考虑研究的经济成本和样本数据量的话,你该 怎么办? (2) 你觉得在这个课题的研究过程中,可以应用哪些多元统计方法?请指出 每种方法的应用具体设想。 (14 分) 八、某教学研究小组试图利用统计方法研究以下几个问题: (1) 对某专业 100 名学生,进行了多门课程(包含各种基础课程和专业课程) 考试,有的课程是闭卷考试,有的则是开卷考试。为了充分利用这些课 程成绩所提供的信息,你觉得可以采用哪些统计方法做分析?简要说明 你的分析思路。 (2) 如何对这些学生作出合理的综合评价?要做到因材施教,如何确定每个 学生的特点和发展潜力? (3) 研究小组对该专业近几年毕业生(部分继续攻读硕士和博士学位,部分参 加工作)做了问卷和座谈方式的调查,你觉得可以利用怎样的统计方法 进行分析,获得对今后的教学和管理具有指导意义的信息? (16 分)

多元统计分析期末试题及答案

多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计分析期末试题及答案

多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计分析期末试题及答案

多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计分析试卷(A)答案2022

多元统计分析试卷(A)答案2022

多元统计分析试卷(A)答案2022东北大学秦皇岛分校学号课程名称:多元统计分析试卷类型:答案考试形式:开1、(√)随机向量(某1,某2,,某p)的协方差阵D(某)是对称非负定阵。

2、(某)因子载荷矩阵A是对称阵。

3、(某)聚类分析中快速聚类法指的就是模糊聚类法。

4、(√)设某授课专业:数学与应用数学考试日期:2022年12月12日试卷:共3页Np(μ,),WWp(n,),且某与W相互独立,则班级姓名装订装线订线内不要答题题号一二三总分得分阅卷人一、填空题:(每空2分,共30分)1、设某某(1)N)(p2),(1)1112某(2)p(μ,(2),,其中某(1),(1)2122为r1,11为rr,则某(1)Nr(μ(1),11),某(2)Npr(μ(2),22)2、系统聚类分析的方法很多,其中的五种分别为最短距离法、最长距离法、重心法、类平均法、离差平方和法。

3、若p维随机向量某~Np(μ,),W~Wp(n,),且某与W相互独立,则n(某)W1(某)~T2(p,n),np1pnT2(p,n)~F(p,np1)。

m4、某i与前个主成分的全相关系数的平方和2(Yk,某i)称为Y1,Y2,,Ym对原k1始变量某i的方差贡献率,在因子分析中也称之为共同度。

5、Q型因子分析研究样品之间的相关关系,R型因子分析研究变量之间的相关关系。

6、Fiher判别法的基本思想是投影,并利用方差分析的思想来导出判别函数。

二、判断题(每题2分,共10分)n(某-μ)W1(某-μ)T2(p,n)。

5、(某)主成分分析中,从相关矩阵出发求解的主成分一定会比从协方差矩阵出发求解的主成分更可信。

三、计算题(共60分)1、设某=(某的协方差阵为281,某2)89,试分别从协方差和相关矩阵出发求解总体主成分Y1,Y2。

(10分)解:特征方程|E|28890,得特征根:110,2188某110,得特征向量3110的特征方程:81某u2183818某121的特征方程:388某0,得特征向量u2213Y188113某13某2,Y13某13某2……………5分由28,得:R8123231,9-1-学号班级姓名装订装线订线内不要答题2特征方程|ER|130,得特征根:51211,3323 23某1115233的特征方程:2323某0,得特征向量u21212113232322323某12的特征方程:某0,得特征向量u2212Y112某11112某2,Y22某12某2…………10分005个样品两两之间的距离矩阵:42、设690,试用最长距离法作1710063580系统聚类,并画出谱系聚类图。

多元统计分析试卷(a)答案

多元统计分析试卷(a)答案

1. 设随机向量 X = ( X , X , X )' ,且其协方差阵为 ∑ = -49 -2 ⎪ ,则它的相关 3 -2 16⎪⎭ 1 - 2 矩阵 R = - 1 - 1 ⎪ 。

1 ⎪  3(α) ~ N ( μ, ∑),( α = 1,2, n) 且相互独立,样本均值向量为 X ,样本离差阵为n - 1 B ⎢11 0⎥ 22 0⎥ D = C D ⎢13 24 19 0⎥- X )' , 则 X ~N (μ , 1 ∑) , L ~ W (n - 1,∑) 。

L =∑( X- X )( X5. 设三维随机向量 X ~ N (μ , ∑) ,其中 ∑ = 1 3 0 ⎪ ,则 X 与 X 不独立 ; 0 0 2 ⎪⎢ A 0⎥ 11 0⎥ 12 22 0 ⎥C (0) =⎢解:样品与样品之间的明氏距离为: D ⎢ E 10 23 5 6 0 ⎥ ⎭n⎣ ⎦学 号精品文档东 北 大 学 秦 皇 岛 分 校课程名称: 多元统计分析 试卷类型: A 答案 考试形式:闭卷授课专业: 信科、应数、统计 考试日期: 2013 年 7 月 9 日 试卷:共 3 页( X , X )' 和 X 独立(填独立或不独立)。

1 2 36. 变量的类型按尺度划分有间隔尺度 、有序尺度 、名义尺度 。

二、判断题(每小题 3 分,共 15 分) 1. [×] 因子载荷矩阵 A 是对称阵。

2. [×] 方差分析是检验多个正态总体的方差或协方差阵是否相等的统计分析方法。

班 级题号得分阅卷人一 二 三 四 总分3. [√] 聚类分析中快速聚类法指的就是 k -均值法。

4. [√] 判别分析中,“留一个观测在外”的原则是指在交叉验证时,某个观测不参与估计判别函数,但要根据除这个观测以外的其他观测估计的判别函数来预测该观测的所属类,从而使这个 观测得到验证。

姓 名装订线内不要答题装订线一、填空题:(每空 2 分,共 32 分)⎛ 4 -4 3 ⎫ ⎪ 1 2 3 ⎝⎛ 3 ⎫3 8 ⎪2 3 6 ⎪⎝ 8 - 61 ⎪⎪2. 系统聚类分析的方法很多,其中的五种分别为最长距离法、最短距离法、重心法、类 平均法、离差平方和法。

多元统计分析试题及答案

多元统计分析试题及答案

多元统计分析试题及答案华南农业⼤学期末试卷(A 卷)2006学年第2学期考试科⽬:多元统计分析考试类型:(闭卷)考试时间:120 分钟⼀、填空题(5×6=30)22121212121~(,),(,),(,),,1X N X x x x x x x ρµµµµσρ∑==∑=+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________iiii XN i W XXµµµ='∑=--∑ 、设则=服从。

()1234433,492,3216___________________X x x x R -?? ?'==-- ? ?-?=∑、设随机向量且协⽅差矩阵则它的相关矩阵________________。

(),123设X=xx x 的相关系数矩阵通过因⼦分析分解为211X h =的共性⽅差111X σ=的⽅差21X g =1公因⼦f 对的贡献121330.9340.1280.9340.4170.8351100.4170.8940.027 0.8940.44730.8350.4470.1032013R ?-?-=-=-+5,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N TX A X µµµµ-=∑∑'=-- 、设是来⾃多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

⼆、计算题(5×11=50)12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x µµ-??'=∑=-∑=-- --??+、设其中试判断与是否独⽴?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.62103.17237.14.5X S µ--'=-?? ?==-- ? 0、对某地区农村的名周岁男婴的⾝⾼、胸围、上半臂围进⾏测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

应用多元统计分析试题及答案

应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。

通常聚类分析分为 Q型聚类和 R型聚类。

4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。

5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。

6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。

二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

2、简述相应分析的基本思想。

相应分析,是指对两个定性变量的多种水平进行分析。

设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。

对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。

要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。

相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。

把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。

3、简述费希尔判别法的基本思想。

从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。

将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。

研究生多元统计分析试题(A卷)(答案)

研究生多元统计分析试题(A卷)(答案)

内蒙古农业大学2009—2010学年第一学期一、判断题(每小题2分,共10分) 1.多元正态分布的任何边缘分布为正态分布; ( 对 ) 2.正态总体),(∑μp N 的样本均值X 是μ的无偏,有效,一致估计; ( 对 ) 3.Wilks 统计量可以化成2T 统计量但是化不成F 统计量; ( 错 ) 4.Fisher 判别法对总体的分布有特定的要求; ( 错 )5.. ( 对 )二、填空题(每小题3分,共15分)1. 设X 和S 分别是正态总体),(∑μp N 的样本均值和离差阵,则X 和S 的关系为相互独立;2.若X ~),0(∑p N ,S ~),(∑n W p 且X 与S 相互独立,则X S X pp n 1'1-+-~(,1)F p n p -+;3.若1A ~),(1∑n W p ,p n ≥1,2A ~),(2∑n W p ,∑>0,且1A 和2A 相互独立, 则211A A A +~12(,,)p n n ∧;4.设资料阵X=()pn ijx ⨯,则样品()i X 与()j X 的切比雪夫距离)(∞ij d =1max ||i j px x ααα≤≤-;5.设S 是正态总体),(∑μp N 的离差阵,则∑的相合估计为11()1s s n n - . 三、选择题(每小题3分,共15分)1.设S 是正态总体),(∑μp N 的离差阵,样本容量为n ,则S 为正定矩阵的充要..条件..是(A ) A .n >p B. n <p C. n ≥p D. n ≤p2.下列不.是.系统聚类法是( ) A. 对应分析法 B.重心法 C. 可变法 D. 类平均法3. 以下关于聚类分析的说法不正确...的是(A ) A.聚类分析与群分析是不同的统计分析方法 B. 聚类分析属于多元统计分析方法 C. 系统聚类法是一种常用的聚类分析法 D. 模糊聚类法是一种常用的聚类分析法4. 判别分析是种常用的商情分析工具,下列关于判别分析的说法正确的是( D ) A. 判别分析是属于一元统计方法 B. 判别函数只有线性判别一种类型C. 无论判别标准是否相同,所得到的结论是相同的D. 判别分析是判别样本所属类型的统计方法5.“用一条直线代表散点图上的分布趋势,使各点与该纵向距离的平方和最小”是( A )方法B. 判别分析C. 聚类分析D. 相关分析四、计算题(每小题10分,共 30分)1.设抽取五个样品,每个样品只测一个指标,它们是2,3,4.5,8,10,试用最短距离法对五个样品进行分类. (请用绝对距离)解: 设样品为: x1,x2,x3,x4,x5 则他们的距离(绝对值距离)为(0)D =12345123450102.5 1.5065 3.5087 5.520x x x x x x x x x x ⎛⎫ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭ (1)D =1234512345,,01.505 3.507 5.52x x x x x x x x x x ⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭(2)D =1234512345,,,,03.505.520x x x x x x x x x x ⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭ (3)D =1234512345,,,,,0, 3.50x x x x x x x x x x ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭2.设三元总体X 的协方差阵为200050009⎛⎫ ⎪∑= ⎪ ⎪⎝⎭,从∑出发,求总体主成分123,,F F F ,并求前两个主成分的累积贡献率。

多元统计分析期末试题与答案解析

多元统计分析期末试题与答案解析

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑L 、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

(),123设X=x xx 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计分析期末试题(卷)与答案解析

多元统计分析期末试题(卷)与答案解析

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

(),123设X=x xx 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计学多元统计分析试题(A卷)(答案)

多元统计学多元统计分析试题(A卷)(答案)

《多元统计分析》试卷1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X 服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_.3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。

4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。

5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。

7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。

8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。

9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。

一、填空题(每空2分,共40分)二、计算题(每小题10分,共40分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫ ⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。

把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《多
元统

分析
》试

1、若),2,1(),,(~)(n N X p 且相互独立,则样本均值向量X 服从的分布为
_间隔尺度_、_有序尺度_、名义尺度_。

3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_
、Fisher 判别法、Bayes 判别法、逐步判别法。

4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。

5、设样品),2,1(,),,('
21n i X X X X ip i i i ,总体),
(~ p N X ,对样品进行分类
常用的距离有:明氏距离,马氏距离
2
()ij
d M )()(1
j i j i x x x x ,兰氏距离()ij d L
6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。

7、一元回归的数学模型是: x y 10,多元回归的
数学模型是:
p p x x x y 22110。

8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。

9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。

一、填空题(每空2分,共40分)
1、设三维随机向量),(~3
N X ,其中
200031014,问1X 与2X 是否独立?),(21 X X 和3X 是否独立?为什么?
解: 因为1),cov(21 X X ,所以1X 与2X 不独立。

把协差矩阵写成分块矩阵
22211211
,),(21 X X 的协差矩阵为11 因为12321),),cov(( X X X ,而012 ,所以),(21 X X 和3X 是不相关的,而正态分布不
相关与相互独立是等价的,所以),(21 X X 和3X 是独立的。

2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4.5 ,6 ,8。

若样
本间采用明氏距离,试用最长距离法对其进行分类,要求给出聚类图。

解:样品与样品之间的明氏距离为:
02
5
.367
05.14505
.25.30
105
432154
3
2
1)
0(x x x x x x x x x x D 样品最短距离是1,故把21X X 与合并为一类,计算类与类之间距离(最长距离法)
二、计算题(每小题10分,共40分)
得距离阵
025.3705.1505.30}
,{},{54
32154321)
1(x x x x x x x x x x D 类与类的最短距离是1.5,故把43X X 与合并为一类,计算类与类之间距离(最长距离
法)得距离阵
05.3705),{0}
,{},{},{5
432154321)
2(x x x x x x x x x x D 类与类的最短距离是3.5,故把543},{X X X 与合并为一类,计算类与类之间距离(最
长距离法)得距离阵
07},,{0},{},,{},{5432154321)
3(x x x x x x x x x x D 分类与聚类图(略)(请你们自己做)
3、设变量123,,X X X 的相关阵为 1.000.630.450.63 1.000.35,0.450.35 1.00R R
的特征值和单位化特征向量
分别为
111.96,0.63,0.59,0.51;T
l 20.68, 20.22,0.49,0.84;T
l
30.37, 30.75,0.64,0.18T
l
(1) 取公共因子个数为2,求因子载荷阵A 。

(2) 计算变量共同度2
i h 及公共因子j F 的方差贡献,并说明其统计意义。

解:因子载荷阵
68.084.096.151.068
.049.096.159.068
.022.096.163.0A
变量共同度:2
221)68.022.0()96.163.0( h =
2222)68.049.0()96.159.0( h =
2223)68.084.0()96.151.0( h =
公共因子j F 的方差贡献:
2221)96.151.0()96.159.0()96.163.0( S 2222)68.084.0()68.049.0()68.022.0( S
统计意义(省略)(学生自己做)
4、设三元总体X 的协方差阵为
600030001,从 出发,求总体主成分123,,F F F ,并
求前两个主成分的累积贡献率。

解:
特征方程0|| E ,得特征根:1,3,6321
61 的特征方程:0000030005321 x x x ,得特征向量
1001u
31 的特征方程:0300000002321 x x x ,得特征向量
0102u
11 的特征方程:0500020000321 x x x ,得特征向量
0013u
31x F 22x F 13x F
前两个主成分的累积贡献率
9.010
9
简述多元统计的主要内容,结合你本专业谈谈能用到那些统计方法。

(省略)(学生自己做)
三、简述题(20分)。

相关文档
最新文档