人教版九年级数学上册教案:24.1 圆(3)
人教版九上数学第24章 圆 24.1.3 弧 弦 圆心角教案+学案
人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.3 弧、弦、圆心角教案【教材内容】1.圆心角的概念;2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等;3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】1.了解圆心角的概念;2.掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.【教学重点】通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【教学难点】弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段相等的主要依据.【教学过程设计】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究知识点一:圆心角 【类型一】圆心角的识别例1 如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB 解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.知识点二:圆心角的性质 【类型一】利用圆心角的性质求角例2 如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角例3 如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明例4 如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.知识点四:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 例5 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?解析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到AB =CD 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=12AB ,CF=12CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,AB =CD ,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD方法归纳:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.三、教学小结师生一起总结本节学习知识要点:1.圆心角的概念;2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.【板书设计】24.1 圆的有关性质24.1.3 弧、弦、圆心角1.圆心角的识别2.圆心角的性质3.弧、弦、圆心角之间的关系4.运用弧、弦、圆心角的关系进行证明与计算【课堂检测】1.(1)在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的弦也.(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的也相等.2. 如图,在⊙O中,AB=AC∠ACB=60 °,求证:∠AOB=∠BOC=∠AOC3. 如图,AB,CD是⊙O的两条弦。
人教版数学九年级上册24.1.1圆教学设计
(三)学生小组讨论
1.教师将学生分成小组,每组发放一张圆形纸片和一把剪刀,让同学们动手操作,测量圆的周长和面积。
2.学生在小组内讨论如何计算圆的周长和面积,分享自己的计算方法和心得。
3.教师巡回指导,解答学生在讨论过程中遇到的问题,引导学生运用所学知识解决问题。
6.注重评价与反馈,及时发现学生在学习过程中存在的问题,给予针对性的指导,提高学生的学习效果。
在教学过程中,教师应注意以下几点:
1.关注学生的个体差异,因材施教,给予每个学生个性化的指导。
2.创设轻松愉快的学习氛围,鼓励学生积极参与,勇于提出疑问和见解。
3.注重培养学生的几何直观和逻辑思维能力,提高学生解决实际问题的能力。
(1)设计丰富的例题,让学生在实际操作中掌握圆周角定理、圆内接四边形性质等难点知识。
(2)布置具有挑战性的任务,如设计圆形花园、计算圆形跑道长度等,让学生运用所学知识解决实际问题。
4.强化练习,针对圆的周长和面积计算,设计不同难度的题目,帮助学生巩固知识,提高计算能力。
5.结合实际生活,让学生认识到圆的知识在实际生活中的重要性,增强学生的学以致用意识。
5.教师在批改作业时,关注学生的解答过程和思路,发现学生存在的问题,给予针对性的指导和反馈,提高学生的学习效果。
作业布置要求:
1.请同学们认真完成作业,字迹清晰,书写规范。
2.遇到问题要积极思考,可以与同学讨论,也可以请教老师。
3.观察报告要注重思考和分析,力求深入浅出,体现出圆的相关知识在实际生活中的应用。
人教版数学九年级上册24.1.1圆教学设计
一、教学目标
(一)知识与技能
九年级数学上册(人教版)24.1.1圆教学设计
(二)讲授新知
1.圆的定义:讲解圆的基本概念,强调圆是由一条曲线组成,所有点到圆心的距离相等。
2.圆的性质:讲解圆的半径、直径、周长、面积等基本性质,以及圆的对称性、轴对称性等。
3.圆的周长和面积计算:介绍圆周长和面积的公式,并结合实例进行讲解。
九年级数学上册(人教版)24.1.1圆教学设计
一、教学目标
(一)知识与技能
1.理解圆的定义,掌握圆的基本性质,如半径相等、直径是半径的2倍等。
2.学会使用圆规画圆,掌握圆的对称性质,并能运用到实际中。
3.掌握圆的周长和面积的计算公式,并能灵活运用解决相关问题。
4.了解圆的位置关系,如相离、相切、相交等,并能判断圆与圆、圆与直线之间的位置关系。
3.教学评价:
a.采用形成性评价和终结性评价相结合的方式,全面了解学生的学习过程和结果。
b.重视学生在课堂上的表现,如发言、讨论、练习等,及时给予鼓励和指导。
c.定期进行单元测试,检测学生对圆的知识掌握程度,为下一步教学提供依据。
4.教学拓展:
a.介绍圆在生活中的应用,如建筑、艺术、科技等领域,激发学生的学习兴趣。
b.计算给定圆的周长和面积,要求使用两种不同的方法计算,并比较结果。
c.画出两个相交、相切和相离的圆,并简要说明判断依据。
2.实践应用题:
a.利用圆的性质,设计一个圆形花园,要求给出花园的半径和面积。
b.在一张白纸上画出一个圆,然后剪下这个圆,测量并计算它的周长和面积。
c.结合生活实例,说明圆在实际应用中的优势。
c.如果一个圆的半径增加了两倍,那么它的周长和面积会发生怎样的变化?
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。
本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。
教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。
教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。
但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。
三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。
2.教学难点:圆心角、弧、弦之间的数量关系。
五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。
六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。
2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。
3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。
4.课堂练习:布置针对性的练习题,巩固所学知识。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)24.1.2 垂直于弦的直径教案
24.1圆的有关性质24.1.2垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦,直径CD⊥AB,垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE,AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O 的弦AB=8cm,直径CE⊥AB 于D,DC=2cm,求半径OC 的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB 于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x 2=42+(x-2)2,∴8AE ===cm.1184(cm)22AD AB ==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.∴AD=12AB=18.5m,OD=OC-CD=R-7.23.OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为cm,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r,弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222a r d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm,∠BAC=30°则弦AC=.4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.1034.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥ 11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,O C C F O F =+()22230090.R R =+-解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。
人教版数学九年级上册第24章圆24.1.1圆教学设计
5.拓展提高题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。这类题目旨在激发学生的学习兴趣,提高他们的数学思维。
作业布置要求:
1.学生需独立完成作业,确保作业质量。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础巩固题:针对圆的基本概念和性质,设计一些选择题、填空题,让学生巩固所学知识。
2.应用提高题:设计一些与生活实际相关的题目,如计算圆形花坛的面积、圆桌的周长等,让学生学会将所学知识应用于实际问题。
3.拓展挑战题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。
2.创设问题情境,引导学生通过探究、讨论的方式,发现和掌握圆的相关性质。
-设计一系列由浅入深的问题,如圆中任意两点到圆心的距离是否相等,引导学生自主探索和发现圆的性质。
-组织小组合作学习,鼓励学生之间交流想法,共同解决难题。
3.将理论知识与生活实际相结合,设计实际应用题,提高学生解决问题的能力。
-通过设计如操场跑道周长、圆形花园面积等实际问题,让学生在实际情境中应用所学的圆的周长和面积知识。
5.教学评价多元化,不仅关注学生的知识掌握,也注重学习过程中的思维方法和情感态度。
-通过课堂提问、小组讨论、课后作业、小测验等多种方式,全面评估学生的学习成效。
-鼓励学生自我评价和同伴评价,培养他们的自我反思和批判性思维能力。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用学生对日常生活的经验,激发他们对圆的好奇心和探究欲。首先,我会向学生展示一系列包含圆的图片,如车轮、硬币、圆桌等,让学生观察并思考这些图片中的共同特征。通过这种方式,引导学生发现圆在生活中的普遍存在。接着,我会提出问题:“为什么这些图形都是圆的?圆有什么特别之处?”从而引出本节课的主题——圆。
人教版数学九年级上册《24.1.1圆》说课稿3
人教版数学九年级上册《24.1.1圆》说课稿3一. 教材分析人教版数学九年级上册《24.1.1圆》这一节的内容,主要介绍了圆的定义、圆心、半径等基本概念,以及圆的性质。
这是学生学习圆相关知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的基础。
但是,对于圆这一概念,学生可能在生活中有所接触,但对其精确的数学定义和性质可能还不够清晰。
因此,在教学过程中,需要引导学生从生活实例中抽象出圆的数学定义,进一步理解和掌握圆的性质。
三. 说教学目标1.知识与技能目标:使学生了解圆的定义、圆心、半径等基本概念,掌握圆的性质,能够运用圆的知识解决一些简单的问题。
2.过程与方法目标:通过观察、实验、推理等方法,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.重点:圆的定义、圆心、半径等基本概念,圆的性质。
2.难点:圆的性质的证明和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组讨论法等,引导学生主动探究,合作学习。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高学生的空间想象能力和理解能力。
六. 说教学过程1.导入:通过展示生活中常见的圆的实例,引导学生思考圆的数学定义,激发学生的学习兴趣。
2.新课导入:介绍圆的定义、圆心、半径等基本概念,引导学生理解圆的性质。
3.实例分析:通过几何画板展示圆的性质,引导学生观察、实验、推理,加深对圆的理解。
4.小组讨论:让学生分组讨论圆的性质,培养学生的团队合作意识和解决问题的能力。
5.总结提升:对圆的性质进行总结,引导学生掌握圆的知识。
6.课堂练习:布置一些相关的练习题,让学生巩固所学知识。
7.课堂小结:对本节课的内容进行总结,引导学生反思学习过程。
人教版数学九年级上册24.1.1《圆》教学设计
人教版数学九年级上册24.1.1《圆》教学设计一. 教材分析人教版数学九年级上册第24.1.1节《圆》是本册教材中的重要内容,主要介绍了圆的概念、特征以及圆的直径、半径等基本概念。
本节内容为学生提供了丰富的探究活动,让学生在探究圆的性质过程中,进一步理解圆的相关概念,提高空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的认识和理解有一定的深度。
但圆作为一个特殊的几何图形,其性质和特点与其他图形有很大的不同,学生需要通过实例和探究活动,来理解和掌握圆的相关概念。
三. 教学目标1.知识与技能:使学生了解圆的概念,掌握圆的特征,理解圆的直径、半径等基本概念。
2.过程与方法:培养学生通过实例探究圆的性质,提高空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:圆的概念、特征,圆的直径、半径等基本概念。
2.难点:圆的性质的探究和理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例和探究活动,理解和掌握圆的相关概念。
2.利用多媒体课件,直观展示圆的性质和特点,提高学生的空间想象能力。
3.分组讨论,培养学生的团队协作能力和自主学习能力。
六. 教学准备1.多媒体课件2.圆的相关实例和图片3.分组讨论的素材七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的圆形物体,如硬币、地球等,引导学生关注圆形的特征,激发学生对圆的学习兴趣。
2.呈现(10分钟)介绍圆的概念和特征,讲解圆的直径、半径等基本概念,让学生初步理解圆的相关知识。
3.操练(10分钟)学生分组讨论,每组选取一个圆形物体,观察和测量其直径、半径等,总结圆的性质。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师及时批改和反馈,巩固学生对圆的概念和性质的理解。
5.拓展(10分钟)引导学生思考:圆还有哪些其他的性质和特点?如何应用圆的性质解决实际问题?教师与学生互动,共同探讨。
人教版九年级数学上册教学设计:24.1.3弧、弦、圆心角
总字数:1012字。
二、学情分析
在九年级的学生中,大部分学生已经具备了一定的几何知识基础,对圆的基本概念和性质有了初步的了解。在此基础上,他们对弧、弦、圆心角等概念的学习将更加深入。然而,由于几何知识抽象性较强,学生在理解上可能会存在一定困难。因此,在教学过程中,教师需要关注以下几个方面:
-适当引入竞赛题目,激发学生的学习兴趣,提高他们的挑战性。
6.反思与评价,促进自我成长:
-鼓励学生在课后进行反思,总结自己在学习过程中的优点和不足,形成个性化的学习策略;
-教师对学生的学习过程和成果进行评价,给予积极的反馈,帮助学生建立自信心。
四、教学内容与过程
(一)导入新课
1.利用生活实例:在课堂上展示一个圆形的时钟,引导学生观察时钟上的时针和分针。提问:“你们注意到时钟上的时针和分针在运动过程中形成了什么形状吗?”通过这个问题,让学生发现弧和圆心角的存在。
3.学生在合作学习中的参与度。在教学过程中,教师应鼓励学生积极参与小组讨论和合作学习,培养学生的团队协作能力。同时,关注学生在合作学习中的角色扮演,引导他们学会倾听、表达和沟通,提高学习效果。
4.学生在解决实际问题中的运用能力。将所学知识应用于解决实际问题,是检验学生掌握程度的重要方式。教师应设计贴近生活的实例,引导学生运用所学知识解决问题,提高学生的知识运用能力。
(五)总结归纳
1.教师引导学生总结本节课所学的内容,包括弧、弦、圆心角的概念、性质和关系。
2.学生分享自己的学习心得,交流在解决问题过程中遇到的困难和解决办法。
3.教师总结:强调本节课的重点知识,指出学生在学习过程中容易出现的问题,提醒学生注意。
人教版数学九年级上册《24.1.1圆》教学设计3
人教版数学九年级上册《24.1.1圆》教学设计3一. 教材分析《24.1.1圆》是人教版数学九年级上册的教学内容,这部分内容主要介绍了圆的定义、圆心和半径的概念,以及圆的性质。
本节课的重点是让学生理解并掌握圆的基本概念和性质,难点是圆的性质的理解和应用。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识有一定的基础。
但是,对于圆的概念和性质,学生可能还比较陌生,需要通过具体的实例和操作来理解和掌握。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆心和半径的概念,了解圆的性质。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:圆的定义,圆心和半径的概念,圆的性质。
2.难点:圆的性质的理解和应用。
五. 教学方法1.情境教学法:通过具体的生活实例,让学生理解圆的概念和性质。
2.问题驱动法:通过提出问题,引导学生思考和探索,从而加深对圆的理解。
3.合作学习法:通过小组讨论和合作,培养学生的团队合作精神。
六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解圆的概念和性质。
2.教学素材:准备一些实际的圆形物体,如硬币、圆桌等,以便让学生直观地感受圆的特点。
3.练习题:准备一些有关圆的练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)利用课件展示一些实际的圆形物体,如硬币、圆桌等,引导学生观察并思考:这些物体有什么共同的特点?从而引出圆的概念。
2.呈现(10分钟)讲解圆的定义,圆心和半径的概念,以及圆的性质。
通过课件和实物展示,让学生直观地理解圆的特点。
3.操练(10分钟)让学生分组讨论,每组找出一件物品,尝试用圆的性质来描述这件物品。
然后,各组汇报讨论结果,大家共同评价哪些描述是正确的。
4.巩固(10分钟)出示一些有关圆的练习题,让学生独立完成。
人教数学九年级上册第二十四章24.1.1圆教学设计
三、教学重难点和教学设想
(一)教学重点
1.圆的基本概念和性质,如半径、直径、圆周率等。
2.圆的方程,包括标准方程和一般方程的求解和应用。
3.圆的周长和面积的计算方法,以及在实际问题中的应用。
4.圆与直线、圆与圆之间的位置关系,以及这些关系在几何问题中的应用。
(二)教学难点
1.圆的方程的求解,特别是含有多个未知数的方程组的求解。
2.圆与直线、圆与圆位置关系的判断,以及这些关系在复杂几何图形中的应用。
3.在实际问题中,如何将问题抽象为几何模型,并运用圆的相关知识进行解决。
教学设想:
1.对于教学重点的突破,我设想采用以下策略:
-利用直观教具和几何画板,让学生通过观察和操作,直观感受圆的性质。
1.基础知识掌握情况:了解学生对圆的基本概念、性质、周长和面积公式的掌握程度,以便进行有针对性的教学。
2.思维能力:关注学生的逻辑思维和空间想象力,引导他们运用圆的性质和位置关系解决几何问题。
3.学习方法:培养学生主动探究、合作交流的学习习惯,提高学生分析问题和解决问题的能力。
4.情感态度:关注学生的学习兴趣和积极性,激发他们对数学学科的热情,培养严谨、求实的科学态度。
-定期进行课堂小结,帮助学生巩固所学知识,形成系统化的知识网络。
4.教学评价方面,我将:
-采用多元化的评价方式,包括课堂问答、小组讨论、作业、小测验等,全面评估学生的学习效果。
-注重过程性评价,关注学生在学习过程中的态度、方法、合作精神等非智力因素。
-及时给予反馈,指导学生进行自我反思和调整学习策略,促进学生的持续发展。
人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿
人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿一. 教材分析人教版九年级数学上册第二十四章《圆的有关性质》是整个初中数学的重要内容,也是九年级数学的重点和难点。
这一章节主要介绍了圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。
这些内容不仅是进一步学习圆的计算和应用的基础,而且对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有了基本的掌握。
但是,对于圆的性质和概念的理解还需要进一步的引导和培养。
此外,由于圆的概念较为抽象,学生可能存在一定的理解难度,因此需要教师在教学中注重启发和引导,帮助学生建立清晰的概念。
三. 说教学目标1.知识与技能目标:通过本节课的学习,学生能够理解和掌握圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。
2.过程与方法目标:通过观察、思考和交流,学生能够培养空间想象能力和逻辑思维能力,能够运用圆的性质解决实际问题。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生浓厚的兴趣,培养自主学习和合作学习的能力。
四. 说教学重难点1.教学重点:圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等基本性质的理解和掌握。
2.教学难点:圆的性质的推导和证明,以及运用圆的性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。
通过提出问题,引导学生思考和探索,激发学生的学习兴趣和动力。
2.教学手段:利用多媒体课件和教具进行教学,通过展示图形和动画,帮助学生直观地理解和掌握圆的性质。
六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引起学生的兴趣和思考,从而引入圆的基本性质的学习。
2.知识讲解:引导学生通过观察和思考,发现圆的性质,并进行证明和推导。
通过示例和练习,帮助学生理解和掌握圆的性质。
人教版九年级数学上册24.1.1《圆》教学设计
人教版九年级数学上册24.1.1《圆》教学设计一. 教材分析人教版九年级数学上册24.1.1《圆》是学生在学习了直线、射线、平面图形等知识的基础上,进一步学习圆的相关概念、性质和运算。
本节课的内容包括圆的定义、圆心和半径、圆的直径、弧、弦等概念,以及圆的周长和面积的计算。
这些知识是学生今后学习圆的进一步应用和解决实际问题的重要基础。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于平面图形的性质和运算有一定的了解。
但是,对于圆的相关概念和性质,学生可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对于圆的周长和面积的计算公式记忆不牢,需要在课堂上进行强化训练。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆心和半径、圆的直径、弧、弦等概念,学会计算圆的周长和面积。
2.过程与方法:通过观察、操作、讨论等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:圆的定义,圆心和半径、圆的直径、弧、弦等概念,圆的周长和面积的计算。
2.难点:圆的周长和面积的计算公式的记忆和应用。
五. 教学方法1.情境教学法:通过实物和图形的观察,引导学生发现圆的性质和特点。
2.问题驱动法:通过提问和讨论,激发学生的思考,引导学生自主探究。
3.合作学习法:分组进行讨论和实践,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.教具:圆规、直尺、圆形的实物和图片。
2.课件:圆的相关概念和性质的图片,圆的周长和面积的计算公式的动画演示。
七. 教学过程1.导入(5分钟)教师通过展示圆形的实物和图片,引导学生观察和描述圆的特点,从而引出圆的定义。
2.呈现(10分钟)教师通过课件展示圆心和半径、圆的直径、弧、弦等概念的图片,引导学生理解和记忆这些概念。
3.操练(10分钟)教师提出问题,引导学生用圆规和直尺进行实际的操作,如画圆、测量圆的直径和半径等,巩固对圆的概念的理解。
人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计
人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册第24章《圆》的第三节“弧、弦、圆心角”是本章的重要内容。
本节主要介绍了弧、弦、圆心角的定义及它们之间的关系。
通过本节课的学习,学生能够理解弧、弦、圆心角的含义,掌握它们之间的联系,并为后续学习圆的性质和圆的证明打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和公理有一定的了解。
但是,对于弧、弦、圆心角这些概念,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、操作、思考、讨论等方式,逐步理解和掌握这些概念及它们之间的关系。
三. 教学目标1.知识与技能:理解弧、弦、圆心角的定义,掌握它们之间的关系。
2.过程与方法:通过观察、操作、思考、讨论等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:弧、弦、圆心角的定义及其关系。
2.难点:理解弧、弦、圆心角之间的联系,以及如何在具体问题中应用。
五. 教学方法1.情境教学法:通过生活实例引入弧、弦、圆心角的概念,激发学生的学习兴趣。
2.小组讨论法:引导学生分组讨论,发现弧、弦、圆心角之间的关系。
3.案例教学法:分析具体案例,让学生在实践中掌握弧、弦、圆心角的应用。
4.引导发现法:教师引导学生发现问题,分析问题,解决问题。
六. 教学准备1.教学课件:制作课件,展示弧、弦、圆心角的相关图片和动画。
2.教学道具:准备一些实际的弧、弦、圆心角的模型,以便学生直观地感受。
3.练习题:挑选一些有关弧、弦、圆心角的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如月亮的形状、吊扇的旋转等,引导学生思考:这些现象与数学中的哪些概念有关?进而引入弧、弦、圆心角的概念。
2.呈现(10分钟)展示课件,呈现弧、弦、圆心角的定义及它们之间的关系。
人教版九年级数学上册教案_24.1圆的基本性质
(5)弧的性质:等弧对等弦,等弦对等弧;
3.圆与三角形的关系:圆的半径、直径与三角形的三边关系;
4.圆的周长与面积公式及其应用。
二、核心素养目标
1.培养学生的空间观念与几何直观:通过学习圆的基本性质,使学生能够理解圆的几何特征,建立清晰的圆的概念,提高对平面图形的认识和理解;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆的基本概念。圆是平面上所有与一个固定点(圆心)距离相等的点的集合。圆是几何图形中最特殊的图形之一,它在日常生活和科学技术中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了圆在实际中的应用,比如圆轮的平稳滚动,以及它如何帮助我们解决问题。
五、教学反思
在今天的教学中,我发现学生们对圆的基本性质有了初步的认识,但确实存在一些理解和掌握上的难点。在导入新课的时候,通过日常生活中的圆形物体为例,成功引起了学生们的兴趣,这是一个不错的开始。
课堂上,当我解释圆的对称性和圆周角定理时,我发现部分学生看起来有些困惑。我意识到,仅仅通过理论讲解可能还不够,下次我可以尝试使用更多的教具或实物来直观展示,比如通过折叠圆纸片来让学生更直观地感受圆的轴对称和中心对称。
在新课讲授的过程中,我尽量用简单明了的语言解释概念,并通过案例分析让学生们看到圆在实际中的应用。但在讲解重点难点时,我觉得还可以做得更好。可能需要设计一些更有针对性的问题,引导学生逐步思考,帮助他们更好地理解和消化这些知识点。
2022年人教版九年级数学上册第二十四章 圆教案 圆
24.1 圆的有关性质24.1.1 圆一、教学目标【知识与技能】1.通过观察实验操作,使学生理解圆的定义.2.结合图形理解弧、等弧、弦、等圆、半圆、直径等有关概念.【过程与方法】通过举出生活中常见圆的例子,经历观察画圆的过程多角度体会和认识圆.【情感态度与价值观】结合本课教学特点,向学生进行爱国主义教育和美育渗透.激发学生观察、探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】圆、等圆、弧、等弧、弦、半圆、直径等有关概念的理解.【教学难点】圆、等圆、弧、等弧、弦、半圆、直径等有关概念的区别与联系.五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课圆是生活中常见的图形,许多物体都给我们以圆的形象.观察下列生活中的图片,找一找你所熟悉的图形.(出示课件2)观察漫画《骑车运动》,思考:车轮为什么做成圆形?做成三角形、正方形可以吗?(出示课件3)(二)探索新知探究一圆的定义教师问:一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?(出示课件5)学生答:为了使游戏公平,在目标周围围成一个圆排队.因为圆上各点到圆心的距离都等于半径.(出示课件6)教师演示画圆,学生观察画圆的过程,尝试说出圆是如何画出来的.(出示课件7)教师加以规范:圆的旋转定义(描述性定义)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.有关概念:固定的端点O叫做圆心,线段OA叫做半径,一般用r表示.教师强调:确定一个圆的要素(出示课件8)一是圆心,圆心确定其位置;二是半径,半径确定其大小.教师出示同心圆等圆的定义:同心圆:圆心相同,半径不同;等圆:半径相同,圆心不同.出示课件9,10:师生共同探究深化认知:1.圆可以看成到定点距离等于定长的所有点组成的.2.(1)圆上各点到定点(圆心O)的距离都等于定长r.(2)到定点的距离等于定长的点都在同一个圆上.3.圆的集合定义圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.出示课件11:教师通过课件演示,得到圆的基本性质:同圆半径相等.教师问:圆是一条曲线,还是一个曲面?(出示课件12)学生交流后回答:圆是一条封闭的曲线,它是由到圆心的距离等于半径的点组成的曲线,而不是曲面.出示课件13:例矩形ABCD的对角线AC,BD相交于点O.求证:A,B,C,D四个点在以点O为圆心的同一个圆上.学生独立思考后,师生共同解答如下:证明:∵四边形ABCD是矩形,∴AO=OC,OB=OD.又∵AC=BD,∴OA=OB=OC=OD.∴A,B,C,D四个点在以点O为圆心,OA为半径的圆上.巩固练习:(出示课件14)如图,☉O的半径OA,OB分别交弦CD于点E,F,且CE=DF.求证:△OEF是等腰三角形.教师分析:作辅助线构造△OCE和△ODF,然后证明两三角形全等,最后根据全等的性质得出结论.学生解答:连接OC,OD,∵OC=OD,∴∠C=∠D,∵CE=DF.∴△OCE≌△ODF(SAS),∴OE=OF,∴△OEF是等腰三角形.探究二圆的有关概念弦(出示课件15)连接圆上任意两点的线段(如图中的AC)叫做弦.经过圆心的弦(如图中的AB)叫做直径.教师强调:1.弦和直径都是线段.2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.出示课件16:通过课件演示,得出:直径是最长的弦.弧(出示课件17)圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.劣弧:小于半圆的弧叫做劣弧.如图中的.优弧:大于半圆的弧叫做优弧.如图中的教师强调:劣弧用两个字母表示,优弧用三个字母表示.等圆:能够重合的两个圆叫做等圆.(出示课件18)教师强调:等圆是两个半径相等的圆.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.教师问:长度相等的弧是等弧吗?(出示课件19)教师举例:如图,如果和的拉直长度都是10cm,平移并调整小圆的位置,是否能使这两条弧完全重合?教师演示课件后强调:两条弧不可能完全重合,实际上这两条弧弯曲程度不同,“等弧”要区别于“长度相等的弧”.师生共同深化认知:等弧仅仅存在于同圆或者等圆中.出示课件20:例1 如图.(1)请写出以点A为端点的优弧及劣弧;劣弧:优弧:(2)请写出以点A为端点的弦及直径;弦AF,AB,AC.其中弦AB又是直径.(3)请任选一条弦,写出这条弦所对的弧.答案不唯一,如:弦AF,它所对的弧是和.巩固练习:(出示课件21) 在以下所给的命题中:①半圆是弧;②弦是直径;③如图所围成的图形是半圆. 其中正确的命题有 .学生思考后独立解答:弧不但包括半圆,还包括优弧、劣弧,所以①正确,③不正确;弦包括经过圆心的弦(即直径)与不经过圆心的弦所以②不正确.出示课件22:例2 如图,MN 是半圆O 的直径,正方形ABCD 的顶点A 、D 在半圆上,顶点B 、C 在直径MN 上.(1)求证:OB=OC.(2)设⊙O 的半径为10,则正方形ABCD 的边长为 .学生独立思考后,师生共同解答如下:解:(1)连接OA,OD,证明Rt ∆ABO ≌Rt ∆DCO.(2)设OB=x,则AB=2x,在Rt △ABO 中,222AB BO AO ,22210x x +=(2)即 解得:25x .巩固练习:(出示课件23)CD 为⊙O 的直径,∠EOD=72°,AE 交⊙O 于B,且AB=OC,则∠A=_______.图4D B ON M A C学生自主解决:∵OB=OC,AB=CO,∴AB=OB,∴∠A=∠BOA.又∵OB=OE,∴∠E=∠EBO,∵∠EBO=2∠A,∴∠E=2∠A,又∵∠EOD=∠E+∠A,∴3∠A=∠EOD,∵∠EOD=72°,∴∠A=24°.(三)课堂练习(出示课件24-30)1.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理2.如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.0.5πC.0.25πD.2π3.填空:(1)______是圆中最长的弦,它是______的2倍.(2)图中有______条直径,______条非直径的弦,圆中以A为一个端点的优弧有______条,劣弧有______条.4.一点和⊙O上的最近点距离为4cm,最远的距离为10cm,则这个圆的半径是______.5.判断下列说法的正误,并说明理由或举反例.(1)弦是直径;(2)半圆是弧;(3)过圆心的线段是直径;(4)过圆心的直线是直径;(5)半圆是最长的弧;(6)直径是最长的弦;(7)长度相等的弧是等弧.6.一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.7.求证:直径是圆中最长的弦.参考答案:1.B2.B3.⑴直径;半径⑵一;二;四;四4.7cm或3cm5.⑴×⑵√⑶×⑷×⑸×⑹√⑺×6.解:如图所示:7.证明:如图,在⊙O中,AB是⊙O的直径,半径是r. CD是不同于AB的任意一条弦.连接OC、OD,则OA+OB=OC+OD=2r,即AB=OC+OD.在△OCD中,OC+OD>CD,∴AB>CD.即直径是圆中最长的弦.(四)课堂小结1.师生共同回顾圆的两种定义,弦(直径),弧(半圆、优弧、劣弧、等弧),等圆等知识点.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.(五)课前预习预习下节课(24.1.2)的相关内容.七、课后作业1.教材81页练习1,2,3.2.配套练习册内容八、板书设计:九、教学反思:本节课是从学生感受生活中圆的应用开始,到通过学生动手画圆,培养学生动手、动脑习惯,在操作过程中观察圆的特点,加深对所学知识的认识,并运用所学知识解决实际问题,体验应用知识的成就感,激发他们学习的兴趣.。
人教版九年级数学上册24.1.1《圆》优秀教学案例
1.理解并掌握圆的基本概念,包括圆心、半径、直径等,以及它们之间的关系。
2.学会使用圆规画圆,并掌握圆的对称性质,能运用到实际问题的解决中。
3.掌握圆周长的计算公式,能准确计算圆的周长,并能应用于实际问题。
4.理解并掌握圆面积的计算公式,能够解决与圆面积相关的实际问题。
5.通过对圆的性质和计算方法的学习,培养学生的逻辑思维能力和空间想象能力。
(二)讲授新知
1.圆的基本概念:介绍圆心、半径、直径等基本概念,并通过实际操作,让学生直观地理解这些概念。
2.圆的性质:引导学生通过观察和动手操作,发现圆的对称性质、半径相等性质等,并运用这些性质解决实际问题。
3.圆周长的计算:讲解圆周长的计算公式,并结合实际例子,让学生掌握如何运用公式计算圆的周长。
(二)过程与方法
1.通过观察、实践和探究,引导学生主动发现圆的性质,提高他们自主探究和解决问题的能力。
2.采用小组合作、讨论交流等形式,培养学生团队合作精神和交流表达能力。
3.运用比较、归纳、推理等思维方法,帮助学生建立圆的相关知识体系,提高他们的思维品质。
4.创设生活情境,让学生在实际问题中运用圆的知识,培养他们将理论知识应用于实际的能力。
(二)问题导向
在教学过程中,我将采用问题导向的教学方法,引导学生主动思考和探究。设计具有启发性的问题,如“为什么圆的周长与直径的比值是一个常数?”“如何计算圆的面积?”等,让学生在解决问题的过程中,逐步掌握圆的性质和计算方法。同时,鼓励学生提出自己的疑问,培养他们敢于质疑、勇于探索的精神。
(三)小组合作
5.设计多样化的练习题,针对不同层次的学生,提高他们的解题能力和应变能力。
(三)情感态度与价值观
1.激发学生对圆的美感认识,培养他们发现美、欣赏美、创造美的能力。
人教版九年级数学教案-圆
24.1 圓(3)教學內容1.圓周角的概念.2.圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,•都等於這條弦所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑及其它們的應用.教學目標1.瞭解圓周角的概念.2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,•都等於這條弧所對的圓心角的一半.3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90•°的圓周角所對的弦是直徑.4.熟練掌握圓周角的定理及其推理的靈活運用.設置情景,給出圓周角概念,探究這些圓周角與圓心角的關係,運用數學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最後運用定理及其推導解決一些實際問題.重難點重點:圓周角的定理、圓周角的定理的推導及運用它們解題.難點:運用數學分類思想證明圓周角的定理.教學過程一、復習引入(學生活動)請同學們口答下麵兩個問題.1.什麼叫圓心角?2.圓心角、弦、弧之間有什麼內在聯繫呢?老師點評:(1)我們把頂點在圓心的角叫圓心角.(2)在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,•那麼它們所對的其餘各組量都分別相等.剛才講的,頂點在圓心上的角,有一組等量的關係,如果頂點不在圓心上,它在其他的位置上?如在圓周上,是否還存在一些等量關係呢?這就是我們今天要探討,要研究,要解決的問題.二、探索新知問題:如圖所示的⊙O,我們在射門遊戲中,設E、F是球門,•設球員們只能在EF所在的⊙O其他位置射門,如圖所示的A、B、C點.通過觀察,我們可以發現像∠EAF、∠EBF、∠ECF這樣的角,它們的頂點在圓上,•並且兩邊都與圓相交的角叫做圓周角.現在通過圓周角的概念和度量的方法回答下麵的問題.1.一個弧上所對的圓周角的個數有多少個?2.同弧所對的圓周角的度數是否發生變化?3.同弧上的圓周角與圓心角有什麼關係?(學生分組討論)提問二、三位同學代表發言.老師點評:1.一個弧上所對的圓周角的個數有無數多個.2.通過度量,我們可以發現,同弧所對的圓周角是沒有變化的.3.通過度量,我們可以得出,同弧上的圓周角是圓心角的一半.下麵,我們通過邏輯證明來說明“同弧所對的圓周角的度數沒有變化,•並且它的度數恰好等於這條弧所對的圓心角的度數的一半.”(1)設圓周角∠ABC的一邊BC是⊙O的直徑,如圖所示∵∠AOC是△ABO的外角∴∠AOC=∠ABO+∠BAO∵OA=OB∴∠ABO=∠BAO∴∠AOC=∠ABO∴∠ABC=1∠AOC2O B A C (2)如圖,圓周角∠ABC 的兩邊AB 、AC 在一條直徑OD 的兩側,那麼∠ABC=12∠AOC 嗎?請同學們獨立完成這道題的說明過程.OB AC D老師點評:連結BO 交⊙O 於D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那麼就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .(3)如圖,圓周角∠ABC 的兩邊AB 、AC 在一條直徑OD 的同側,那麼∠ABC=12∠AOC 嗎?請同學們獨立完成證明.老師點評:連結OA 、OC ,連結BO 並延長交⊙O 於D ,那麼∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC 現在,我如果在畫一個任意的圓周角∠AB ′C ,•同樣可證得它等於同弧上圓心角一半,因此,同弧上的圓周角是相等的.從(1)、(2)、(3),我們可以總結歸納出圓周角定理:在同圓或等圓中,同弧等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半. 進一步,我們還可以得到下麵的推導:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.下麵,我們通過這個定理和推論來解一些題目.例1 如圖,AB 是⊙O 的直徑,BD 是⊙O 的弦,延長BD 到C ,使AC=AB ,BD 與CD的大小有什麼關係?為什麼?分析:BD=CD ,因為AB=AC ,所以這個△ABC 是等腰,要證明D 是BC 的中點,•只要連結AD 證明AD 是高或是∠BAC 的平分線即可.解:BD=CD理由是:如圖24-30,連接AD∵AB 是⊙O 的直徑∴∠ADB=90°即AD ⊥BC又∵AC=AB∴BD=CD三、應用拓展例2 如圖,已知△ABC 內接於⊙O ,∠A 、∠B 、∠C 的對邊分別設為a ,b ,c ,⊙O 半徑為R ,求證:sin a A =sin b B =sin c C=2R . 分析:要證明sin a A =sin b B =sin c C =2R ,只要證明sin a A =2R ,sin b B =2R ,sin c C=2R ,即sinA=2a R ,sinB=2b R ,sinC=2c R ,因此,十分明顯要在直角三角形中進行.證明:連接CO 並延長交⊙O 於D ,連接DB∵CD 是直徑∴∠DBC=90°又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin a A同理可證:sin b B =2R ,sin c C=2R ∴sin a A =sin b B =sin c C =2R 四、歸納小結本節課應掌握: 1.圓周角的概念;2.圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,•都相等這條弧所對的圓心角的一半;3.半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.4.應用圓周角的定理及其推導解決一些具體問題.五、作業習題一、選擇題1.如圖1,A 、B 、C 三點在⊙O 上,∠AOC=100°,則∠ABC 等於( ).A .140°B .110°C .120°D .130°2143 OB(1) (2) (3)2.如圖2,∠1、∠2、∠3、∠4的大小關係是( )A .∠4<∠1<∠2<∠3B .∠4<∠1=∠3<∠2C .∠4<∠1<∠3∠2D .∠4<∠1<∠3=∠23.如圖3,AD 是⊙O 的直徑,AC 是弦,OB ⊥AD ,若OB=5,且∠CAD=30°,則BC等於().A.3 B.3+3C.5-123D.5二、填空題1.半徑為2a的⊙O中,弦AB的長為23a,則弦AB所對的圓周角的度數是________.2.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則∠1+∠2=_______.•O BAC 21ED(4) (5)3.如圖5,已知△ABC為⊙O內接三角形,BC=•1,•∠A=•60•°,•則⊙O•半徑為_______.三、綜合提高題1.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.OBA2.如圖,已知AB=AC,∠APC=60°(1)求證:△ABC是等邊三角形.(2)若BC=4cm,求⊙O的面積.O B AP3.如圖,⊙C經過座標原點,且與兩坐標軸分別交於點A與點B,點A的座標為(0,4),M是圓上一點,∠BMO=120°.(1)求證:AB為⊙C直徑.(2)求⊙C的半徑及圓心C的座標.答案:一、1.D 2.B 3.D二、1.120°或60°2.90°3.3三、12.(1)證明:∵∠ABC=∠APC=60°,又AB AC,∴∠ACB=∠ABC=60°,∴△ABC為等邊三角形.(2)解:連結OC,過點O作OD⊥BC,垂足為D,在Rt△ODC中,DC=2,∠OCD=30°,設OD=x,則OC=2x,∴4x2-x2=4,∴OC=433.(1)略(2)4,(2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.一个弧上所对的圆周角的个数有多少个?
2.同弧所对的圆周角的度数是否发生变化?
3.同弧上的圆周角与圆心角有什么关系?
(学生分组讨论)提问二、三位同学代表发言.
老师点评:
1.一个弧上所对的圆周角的个数有无数多个.
2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.
3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.
a
b
c
即 sinA= ,sinB= ,sinC= ,因此,十分明显要在直角三角形中进行.
2R
2R
2R
证明:连接 CO 并延长交⊙O 于 D,连接 DB
∵CD 是直径
∴∠DBC=90°
又∵∠A=∠D
BC
a
在 Rt△DBC 中,sinD= ,即 2R=
DC
sin A
b
c
同理可证:
=2R,
=2R
sin B sin C
2
2
2
现在,我如果在画一个任意的圆周角∠AB′C,同样可证得它等于同弧上圆心角一半,
因此,同弧上的圆周角是相等的.
从(1)、(2)、(3),我们可以总结归纳出圆周角定理:
2
在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导: 半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目. 例 1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长 BD 到 C,使 AC=AB,BD 与 CD 的大 小有什么关系?为什么?
分析:BD=CD,因为 AB=AC,所以这个△ABC 是等腰,要证明 D
是 BC 的中点,只要连结 AD 证明 AD 是高或是∠BAC 的平分线即可.
解:BD=CD
理由是:如图 24-30,连接 AD
∵AB 是⊙O 的直径
∴∠ADB=90°即 AD⊥BC
又∵AC=AB
∴BD=CD
三、巩固练习
1.教材 思考题.
2.教材 练习.
四、应用拓展
例 2.如图,已知△ABC 内接于⊙O,∠A、∠B、∠C 的对边分别设为 a,b,c,⊙O 半
abc
径为 R,求证:
=
=
=2R.
sin A sin B sin C
abc
a
b
c
分析:要证明
=
=
=2R,只要证明
=2R,
=2R,
=2R,
sin A sin B sin C
sin A sin B sin C
O
ABC.
Bห้องสมุดไป่ตู้
C
(3)如图,圆周角∠ABC 的两边 AB、AC 在一条直
1
径 OD 的同侧,那么∠ABC= ∠AOC 吗?请同学们独立完成证明.
2
老师点评:连结 OA、OC,连结 BO 并延长交⊙O 于 D,那么∠AOD=2∠ABD,∠COD=2∠
1
1
1
CBO,而∠ABC=∠ABD-∠CBO= ∠AOD- ∠COD= ∠AOC
六、布置作业
1.教材 综合运用 9、10、11 拓广探索 12、13.
2.选用课时作业设计.
第三课时作业设计
一、选择题 1.如图 1,A、B、C 三点在⊙O 上,∠AOC=100°,则∠ABC 等于( ).
A.140° B.110° C.120° D.130°
24.1 圆(第 3 课时)
教学内容 1.圆周角的概念. 2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弦所对 的圆心角的一半. 推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的 应用. 教学目标 1.了解圆周角的概念. 2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条 弧所对的圆心角的一半. 3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对 的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用. 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予 逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决 一些实际问题. 重难点、关键 1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在. 教学过程 一、复习引入 (学生活动)请同学们口答下面两个问题. 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:(1)我们把顶点在圆心的角叫圆心角. (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们 所对的其余各组量都分别相等. 刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的 位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解 决的问题. 二、探索新知
1
∴∠ABC= ∠AOC
B
2
(2)如图,圆周角∠ABC 的两边 AB、AC 在一条直径 OD 的两侧,那
1
么∠ABC= ∠AOC 吗?请同学们独立完成这道题的说明过程.
2
A D
老师点评:连结 BO 交⊙O 于 D 同理∠AOD 是△ABO 的外角,∠COD 是
△BOC 的外角,那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠
3
abc
∴
=
=
=2R
sin A sin B sin C
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.圆周角的概念;
2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都相等这条弧所
对的圆心角的一半;
3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4.应用圆周角的定理及其推导解决一些具体问题.
下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,并且它的度数
恰好等于这条弧所对的圆心角的度数的一半.”
(1)设圆周角∠ABC 的一边 BC 是⊙O 的直径,如图所示
∵∠AOC 是△ABO 的外角
∴∠AOC=∠ABO+∠BAO ∵OA=OB
A
C
∴∠ABO=∠BAO
∴∠AOC=∠ABO
O
问题:如图所示的⊙O,我们在射门游戏中,设 E、F 是球门,设球员们只能在 E»F 所
在的⊙O 其它位置射门,如图所示的 A、B、C 点.通过观察,我们可以发现像∠EAF、∠ EBF、∠ECF 这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.
1
现在通过圆周角的概念和度量的方法回答下面的问题.