人教版初二数学上册同底数幂的乘法课后练习_

合集下载

最新人教版初中八年级上册数学同底数幂的乘法同步练习含答案

最新人教版初中八年级上册数学同底数幂的乘法同步练习含答案

第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法课前预习要点感知a m·a n=________(m,n都是正整数).即同底数幂相乘,底数________,指数________.预习练习1-1下列各项中,两个幂是同底数幂的是( )A.x2与a2B.(-a)5与a3C.(x-y)2与(y-x)2D.-x2与x1-2(黔西南中考)计算:a2·a3=________.当堂训练知识点1直接运用法则计算1.计算:(1)a·a9; (2)x3n·x2n-2;(3)(-12)2×(-12)3; (4)(x-y)3·(x-y)2.知识点2灵活运用法则计算2.已知a m=2,a n=5,求a m+n的值.课后作业3.下列计算错误的是( )A.(-a)·(-a)2=a3B.(-a)2·(-a)2=a4C.(-a)3·(-a)2=-a5D.(-a)3·(-a)3=a64.式子a2m+3不能写成( )A.a2m·a3B.a m·a m+3C.a2m+3 D.a m+1·a m+25.若8×23×32×(-2)8=2x,则x=________.6.计算:(1)-x2·(-x)4·(-x)3;(2)(m-n)·(n-m)3·(n-m)4;(3)3x3·x9+x2·x10-2x·x3·x8.挑战自我7.已知(a+b)a·(b+a)b=(a+b)5,且(a-b)a+4·(a-b)4-b=(a-b)7,求a a b b的值.参考答案 要点感知 a m +n 不变 相加 预习练习1-1 D 1-2 a 5当堂训练1.(1)原式=a 1+9=a 10. (2)原式=x 3n+2n -2=x 5n -2. (3)原式=(-12)2+3=(-12)5=-125. (4)原式=(x -y)3+2=(x -y)5.2.a m +n =a m ·a n =2×5=10.课后作业3.A 4.C 5.19 6.(1)原式=-x 2·x 4·(-x 3)=x 2·x 4·x 3=x 9. (2)原式=-(n -m)·(n -m)3·(n -m)4=-(n -m)1+3+4=-(n -m)8. (3)原式=3x 12+x 12-2x 12=2x 12. 挑战自我7.∵(a +b)a ·(b +a)b =(a +b)5,(a -b)a +4·(a -b)4-b =(a -b)7,∴⎩⎪⎨⎪⎧a +b =5,a +4+4-b =7.解得⎩⎪⎨⎪⎧a =2,b =3.∴a a b b =22×33=108.作者留言:非常感谢!您浏览到此文档。

初中数学《同底数幂的乘法》专项习题(含答案)

初中数学《同底数幂的乘法》专项习题(含答案)

同底数幂的乘法姓名:__________班级:__________考号:__________一 、选择题1.如果把()2x y -看作一个整体,下列计算正确的是( )A .()()()235222x y y x x y -⋅-=-B .()()()224222x y y x x y -⋅-=--C .()()()()23272222x y y x x y x y -⋅--=-D .()()()235222x y y x x y -⋅-=--二 、填空题 2.若3m a =,4n a =,求32m n a +的值为多少?3.计算:()()132()()n n y x x y x y y x +--+--= 4.已知:240x y +-=,那么1233x y -⋅的值为5.已知32131a a x x x x +⋅⋅=,则a 的值为6.在()222m m y y y -+⋅⋅=中,括号中应填的代数式是7.已知,3n a =,3m b =,则13m n ++的结果是8.已知:240x y +-=,则1233x y -的值为9.计算:()()2008200922-+-=10.已知:2n a =,3m a =,4k a =,则22n m k a +-的值为 .三 、解答题11.下列计算是否正确?错误的指出错误的原因,并加以改正. ⑴339a a a ⋅=;⑵4482a a a ⋅=;⑶336x x x +=;⑷22y y y ⋅=;⑸34x x x ⋅=;⑹236x x x ⋅=12.已知155a b ==-,n 为正整数,你能求出2222n n a b b +的值吗? 13.计算:⑴231122⎛⎫⎛⎫-⋅- ⎪ ⎪⎝⎭⎝⎭;⑵102a a a ⋅⋅;⑶()()()854x y y x x y -⋅-⋅-14.已知m 、n 是正整数,且3381m n ⋅=,求m 、n 的正整数对同底数幂的乘法答案解析一 、选择题1.D二 、填空题2.()()323232m n m n m n a a a a a +=⋅=⋅,当3m a =,4n a =时,原式3234432=⨯=3.()()()()13332()()0n n n n y x x y x y y x x y x y +++--+--=--+-=4.1221333x y x y -+-⋅=,240x y +-=,24x y ∴+=,2133327x y +-∴==5.96.3m y +7.3ab8.279.20082-10.当2n a =,3m a =,4k a =时,22223()()4n m k n m k a a a a +-=⋅÷=三 、解答题 11.(1)不正确,指数应是相加而不是相乘,应改为336a a a ⋅=(2)不正确,错在将系数也相加了,应改为448a a a ⋅=(3)不正确,336x x x +=是整式的加法,应改为3332x x x +=(4)不正确,y 的指数是1而不是0,应改为23y y y ⋅=(5)正确(6)不正确,指数相加而不是相乘,应改为235x x x ⋅=12.()222222n n n a b b ab ++=,当()222222n n n a b b ab ++=时,原式221515n +⎡⎤⎛⎫=⨯-= ⎪⎢⎥⎝⎭⎣⎦13.⑴511232⎛⎫-=- ⎪⎝⎭;⑵13a ;⑶()17x y --14.∵3381m n ⋅= ∴433m n +=,∵m 、n 都是正整数∴13x n =⎧⎨=⎩或22m n =⎧⎨=⎩或31m n =⎧⎨=⎩。

同底数幂、幂的乘方、积的乘方知识点及习题

同底数幂、幂的乘方、积的乘方知识点及习题

幂的运算1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例1: 计算列下列各题 (1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅-练习:简单 一选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。

2、 b 2·b ·b 7=________。

3、103·_______=10104、(-a)2·(-a)3·a5=__________。

5、a5·a( )=a2·( ) 4=a186、(a+1)2·(1+a)·(a+1)5=__________。

同底数幂的乘法练习题及标准答案

同底数幂的乘法练习题及标准答案

同底数幂的乘法-练习一、填空题1.同底数幂相乘,底数 , 指数 。

2.A ( )·a 4=a 20.(在括号内填数)3.若102·10m =102003,则m= .4.23·83=2n ,则n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= .6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= .8. 111010m n +-⨯=__ _____,456(6)-⨯-= __.9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,则m=________;若416a x x x =,则a=__________;12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5=(6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5=14.a 4·_________=a 3·_________=a 9二、选择题1. 下面计算正确的是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可记为( )A.39 B.73 C.63 D.1233. 若x y≠,则下面多项式不成立的是( )A.22-= D.222()+=+()y yx y x y-=- C.22()x xy x x y()()-=- B.334.下列各式正确的是()A.3a2·5a3=15a64·(-2x2)=-6x6 C.3x3·2x4=6x12 D.(-b)3·(-b)5=b8 5.设a m=8,a n=16,则a n m+=()A.24 .32 C 6.若x2·x4·()=x16,则括号内应填x的代数式为()A.x10B. x8C. x4D. x2 7.若a m=2,a n=3,则a m+n=( ). .6 C8.下列计算题正确的是( )·a2=a2m·x2·x=5C·x4=2x4+1·y a-1=y2a9.在等式a3·a2( )=a11中,括号里面的代数式应当是( )8C3m可写成( ).+1 3m+3 C·x m+1 3m·x311:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正确的算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一块长方形草坪的长是x a+1米,宽是x b-1米(a、b为大于1的正整数),则此长方形草坪的面积是( )平方米. +b+b-1+213.计算a-2·a4的结果是( )A.a-2 B.a2 C.a-8 D.a814.若x≠y,则下面各式不能成立的是( )A.(x-y)2=(y-x)2 B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x) D.(x+y)2=(-x-y)215.a16可以写成( )A.a8+a8 B.a8·a2 C.a8·a8 D.a4·a416.下列计算中正确的是( )A.a2+a2=a4 B.x·x2=x3C.t3+t3=2t6 D.x3·x·x4=x717.下列题中不能用同底数幂的乘法法则化简的是( )A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 计算2009200822-等于( ) A 、20082 B 、 2 C 、1 D 、20092-19.用科学记数法表示(4×102)×(15×105)的计算结果应是( )A .60×107B .×107C .×108D .×1010三.判断下面的计算是否正确(正确打“√”,错误打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( )3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( )5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( )7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( )9.(-m )4·m 3=-m 7( )四、解答题1.计算(1)(-2)3·23·(-2) (2)81×3n(3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+12、计算题(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅-(3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。

人教版数学八年级上册:14.1--14.3练习题含答案)

人教版数学八年级上册:14.1--14.3练习题含答案)

人教版数学八年级上册:14.1--14.3练习题含答案)14.1整式的乘法14.1.1同底数幂的乘法1.下列各项中,两个幂是同底数幂的是( )A.x2与a2B.(-a)5与a3C.(x-y)2与(y-x)3 D.-x2与x2.计算x2·x3的结果是( )A.2x5B.x5C.x6D.x8 3.计算:103×104×10=.4.计算:(1)a·a9;(2)(-12)2×(-12)3;(3)(-a)·(-a)3(4)x3n·x2n-2;5.若27=24·2x,则x=.6.已知a m=2,a n=5,求a m+n的值.7.请分析以下解答是否正确,若不正确,请写出正确的解答.(1)计算:x5·x2=x5×2=x10;(2)若a m=3,a n=5,则a m+n=a m+a n=3+5=8.8.式子a2m+3不能写成( )A.a2m·a3B.a m·a m+3C.a2m+3D.a m+1·a m+29.若a+b-2=0,则3a·3b=.10.若8×23×32×(-2)8=2x,则x=.11.计算:(1)-x2·(-x)4·(-x)3;(2)(m-n)·(n-m)3·(n-m)4;12.已知4x=8,4y=32,求x+y的值.14.1.2幂的乘方1.计算(a4)2的结果是( )A.a6B.a8C.a16D.2a4 2.计算(-b2)3的结果正确的是( )A.-b6B.b6C.b5D.-b53.计算a3·(a3)2的结果是( )A.a8B.a9C.a11D.a184.下列运算正确的是( )A.3x+2y=5(x+y) B.x+x3=x4 C.x2·x3=x6D.(x2)3=x65.在下列各式的括号内,应填入b4的是( )A.b12=()8B.b12=()6 C.b12=()3 D.b12=()26.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.7.下列四个算式中正确的有( )①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(-x)3]2=(-x)6=x6;④(-y2)3=y6.A.0个B.1个C.2个D.3个8.计算(a2)3-5a3·a3的结果是( )A.a5-5a6B.a6-5a9C.-4a6D.4a69.如果(9n)2=312,那么n的值是( )A.4 B.3 C.2 D.1 10.若(a3)2·a x=a24,则x=.11.计算:(1)5(a3)4-13(a6)2;(2)x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x +y)3]6+[(x+y)9]2.12.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.14.1.3 积的乘方1.计算(ab 2)3的结果是( )A .3ab 2B .ab 6C .a 3b 5D .a 3b 6 2.计算(-2a 3)2的结果是( )A .-4a 5B .4a 5C .-4a 6D .4a 6 3.下列运算正确的是( )A .(-a 2)3=-a 5B .a 3·a 5=a 15C .(-a 2b 3)2=a 4b 6D .3a 2-2a 2=14.计算:(1)(3x)4; (2)-(12a 2b)3; (3)(x m y n )2; (4)(-3×102)4.5.已知|a -2|+(b +12)2=0,则a 2 018b 2 018的值为 .6.如果5n =a ,4n =b ,那么20n = .7.指出下列的计算哪些是对的,哪些是错的,并将错误的改正.(1)(ab 2)2=ab 4;(2)(3cd)3=9c 3d 3;(3)(-3a 3)2=-9a 6;(4)(-x 3y)3=-x 6y 3.8.如果(a m b n )3=a 9b 12,那么m ,n 的值分别为( )A .9,4B .3,4C .4,3D .9,69.若2x +1·3x +1=62x -1,则x 的值为 .10.计算:(1)(-32ab 2c 4)3; (2)(-2xy 2)6+(-3x 2y 4)3; (3)(-14)2 018×161 009.11.已知n 是正整数,且x 3n =2,求(3x 3n )3+(-2x 2n )3的值.参考答案:14.1 整式的乘法14.1.1 同底数幂的乘法1.D2.B3.108.4.(1)解:原式=a 1+9=a 10.(2)解:原式=(-12)2+3=(-12)5=-125.(3)解:原式=a 4.(4)解:原式=x 3n +2n -2=x 5n -2.5.3.6.解:a m +n =a m ·a n =2×5=10.7.解:(1)(2)解答均不正确,正确的解答如下:(1)x 5·x 2=x 5+2=x 7.(2)a m +n =a m ·a n =3×5=15.8.C9.9.10.19.11.(1)解:原式=-x2·x4·(-x3)=x2·x4·x3=x9.(2)解:原式=-(n-m)·(n-m)3·(n-m)4=-(n-m)1+3+4=-(n-m)8.12.解:4x·4y=8×32=256=44,而4x·4y=4x+y,∴x+y=4.14.1.2幂的乘方1.B2.A3.B4.D5.C6.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.解:(1)103m=(10m)3=33=27.(2)102n=(10n)2=22=4.(3)103m+2n=103m×102n=27×4=108.7.C8.C9.B10.18.11.(1)解:原式=5a12-13a12=-8a12.(2)解:原式=-x16+5x16-x16=3x16.(3)解:原式=(x+y)18+(x+y)18=2(x+y)18. 12.解:(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.14.1.3 积的乘方1.D2.D3.C4.(1)解:原式=34·x 4=81x 4.(2)解:原式=-18a 6b 3.(3)解:原式=(x m )2·(y n )2 =x 2m y 2n .(4)解:原式=(-3)4×(102)4 =81×108=8.1×109.5.1.6.ab .7.解:(1)(2)(3)(4)都是错的.改正如下:(1)(ab 2)2=a 2b 4;(2)(3cd)3=27c 3d 3;(3)(-3a 3)2=9a 6;(4)(-x 3y)3=-x 9y 3.8.B9.2.10.(1)解:原式=-278a 3b 6c 12.(2)解:原式=64x 6y 12-27x 6y 12=37x 6y 12.(3)解:原式=(-14)2 018×42 018=(-14×4)2 018=1.11.解:(3x 3n )3+(-2x 2n )3=33×(x 3n )3+(-2)3×(x 3n )2=27×8+(-8)×4=184.14.2 乘法公式一.选择题1.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或5 2.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1B.1C.1或﹣1D.1或﹣3 3.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数4.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.35.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.66.如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±208.已知x+y=﹣5,xy=3,则x2+y2=()A.25B.﹣25C.19D.﹣199.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.010.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.1611.如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)二.填空题12.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.13.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.14.若m为正实数,且m﹣=3,则m2﹣=.15.x2+kx+9是完全平方式,则k=.16.已知a+=3,则a2+的值是.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.已知x+=2,则=.19.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.20.已知:(a﹣b)2=4,ab=,则(a+b)2=.21.已知a+b=8,a2b2=4,则﹣ab=.三.解答题22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.(1)已知a+的值;(2)已知xy=9,x﹣y=3,求x2+3xy+y2的值.参考答案一.选择题1.解:∵x2+(m﹣1)x+9是一个完全平方式,∴(m﹣1)x=±2•x•3,∴m﹣1=±6,∴m=﹣5或7,故选:C.2.解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.3.解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2≥2,∴x2+y2+2x﹣4y+7≥2.故选:A.4.解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选:D.5.解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.6.解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.7.解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.8.解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.9.解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.10.解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.11.解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积=4个小图形的面积和=a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C.二.填空题12.解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.13.解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.14.解:法一:由得,得m2﹣3m﹣1=0,即=,∴m1=,m2=,因为m为正实数,∴m=,∴=()()=3×(),=3×,=;法二:由平方得:m2+﹣2=9,m2++2=13,即(m+)2=13,又m为正实数,∴m+=,则=(m+)(m﹣)=3.故答案为:.15.解:中间一项为加上或减去x和3的积的2倍,故k=±6.16.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.17.解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.18.解:∵x+=2,∴(x+)2=4,即x2+2+=4,解得x2+=2.故答案为:2.19.解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.20.解:∵(a﹣b)2=4,ab=,∴(a﹣b)2=a2+b2﹣2ab,=a2+b2﹣1=4,∴a2+b2=5,∴(a+b)2=a2+b2+2ab=5+1=6.21.解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.三.解答题22.解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.23.解:(1)将a+=3两边同时平方得:,∴=9.∴=7;(2)将x﹣y=3两边同时平方得:x2﹣2xy+y2=9,∴x2+y2=9+2xy=9+2×9=27.∴x2+3xy+y2=27+3×9=54.14.3因式分解一.选择题1.下列因式分解正确的是()A.x2﹣1=(x﹣1)2B.x2﹣9y2=(x﹣9y)(x+9y)C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1 2.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y23x2y B.=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)2 3.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()4.把多项式4x﹣4x3因式分解正确的是()A.﹣x(x+2)(x﹣2)B.x(x+2)(2﹣x)C.﹣4x(x+1)(1﹣x)D.4x(x+1)(1﹣x)5.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.66.把多项式a2﹣a分解因式,结果正确的是()A.a(a﹣1)B.C.a D.﹣a(a﹣1)7.下列从左到右的变形中是因式分解的有()①(p﹣2)(p+2)=p2﹣4,②4x2﹣4x+1=(2x﹣1)2,③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1).A.1个B.2个C.3个D.4个8.已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为()9.下列因式分解正确的是()A.m2﹣4n2=(m﹣2n)2B.﹣3x﹣6x2=﹣3x(1﹣2x)C.a2+2a+1=a(a+2)D.﹣2x2+2y2=﹣2(x+y)(x﹣y)10.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262二.填空题11.若m3+m﹣1=0,则m4+m3+m2﹣2=.12.若a+b=﹣1,ab=﹣6,则代数式a3b+2a2b2+ab3的值为.13.分解因式:(a+2b)2﹣8ab的结果是.14.分解因式4m3﹣mn2的结果是.15.因式分解:3a3b﹣12a2b2+12ab3的结果是.三.解答题16.分解因式:(1)(a﹣2b)2﹣3a+6b;(2)x2﹣4y(x﹣y).17.因式分解:(1)4x2y﹣2xy2;(2)x2(y﹣4)+9(4﹣y).18.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.19.【类比学习】小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x2+3x+2进行因式分解的方法:即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).【初步应用】小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:得出□=,☆=.【深入研究】小明用这种方法对多项式x3+2x2﹣x﹣2进行因式分解,进行到了:x3+2x2﹣x﹣2=(x+2)(*)(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2﹣x﹣2因式分解.参考答案与试题解析一.选择题1.【解答】解:A、x2﹣1=(x+1)(x﹣1),原题分解错误,故此选项不合题意;B、x2﹣9y2=(x﹣3y)(x+3y),原题分解错误,故此选项不合题意;C、a2﹣a=a(a﹣1),原题分解正确,故此选项符合题意;D、a2+2a+1=(a+1)2,原题分解错误,故此选项不合题意;故选:C.2.【解答】解:A、从左边到右边的变形不属于因式分解,故本选项不符合题意;B、从左边到右边的变形不属于因式分解,故本选项不符合题意;C、从左边到右边的变形不属于因式分解,故本选项不符合题意;D、从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.3.【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.4.【解答】解:原式=4x(1﹣x2)=4x(x+1)(1﹣x),故选:D.5.【解答】解:∵mn=﹣2,m﹣n=3,∴m2n﹣mn2=mn(m﹣n)=﹣2×3=﹣6.故选:A.6.【解答】解:原式=a(a﹣1),故选:A.7.【解答】解:①(p﹣2)(p+2)=p2﹣4,从左到右的变形是整式乘法,不合题意;②4x2﹣4x+1=(2x﹣1)2,从左到右的变形是因式分解,符合题意;③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),从左到右的变形不符合因式分解的定义,不合题意④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1),从左到右的变形是因式分解,符合题意;故选:B.8.【解答】解:根据题意得:x2+ax﹣6=(x+2)(x+b)=x2+(b+2)x+2b,∴a=b+2,2b=﹣6,解得:a=﹣1,b=﹣3,则a+b=﹣1﹣3=﹣4,故选:A.9.【解答】解:A、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;B、﹣3x﹣6x2=﹣3x(1+2x),故此选项错误;C、a2+2a+1=(a+1)2,故此选项错误;D、﹣2x2+2y2=﹣2(x2﹣y2)=﹣2(x+y)(x﹣y),正确.故选:D.10.【解答】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤9∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.二.填空题(共5小题)11.【解答】解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.12.【解答】解:∵a+b=﹣1,ab=﹣6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=(﹣6)×(﹣1)2=(﹣6)×1=﹣6,故答案为:﹣6.13.【解答】解:原式=a2+4ab+4b2﹣8ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.14.【解答】解:原式=m(4m2﹣n2)=m(2m+n)(2m﹣n).故答案为:m(2m+n)(2m﹣n).15.【解答】解:原式=3ab(a2﹣4ab+4b2)=3ab(a﹣2b)2.故答案为:3ab(a﹣2b)2.三.解答题(共4小题)16.【解答】解:(1)原式=(a﹣2b)2﹣3(a﹣2b)=(a﹣2b)(a﹣2b﹣3);(2)原式=x2﹣4xy+4y2=(x﹣2y)2.17.【解答】解:(1)原式=2xy(2x﹣y);(2)原式=x2(y﹣4)﹣9(y﹣4)=(y﹣4)(x2﹣9)=(y﹣4)(x﹣3)(x+3).18.【解答】解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.19.【解答】解:【初步应用】□=5,☆=3;故答案为5,3。

人教版数学八年级上册:14.1--14.3练习题含答案

人教版数学八年级上册:14.1--14.3练习题含答案

人教版数学八年级上册:14.1--14.3练习题含答案)14.1整式的乘法14.1.1同底数幂的乘法1.下列各项中,两个幂是同底数幂的是( )A.x2与a2B.(-a)5与a3C.(x-y)2与(y-x)3 D.-x2与x2.计算x2·x3的结果是( )A.2x5B.x5C.x6D.x8 3.计算:103×104×10=.4.计算:(1)a·a9;(2)(-12)2×(-12)3;(3)(-a)·(-a)3(4)x3n·x2n-2;5.若27=24·2x,则x=.6.已知a m=2,a n=5,求a m+n的值.7.请分析以下解答是否正确,若不正确,请写出正确的解答.(1)计算:x5·x2=x5×2=x10;(2)若a m=3,a n=5,则a m+n=a m+a n=3+5=8.8.式子a2m+3不能写成( )A.a2m·a3B.a m·a m+3C.a2m+3D.a m+1·a m+29.若a+b-2=0,则3a·3b=.10.若8×23×32×(-2)8=2x,则x=.11.计算:(1)-x2·(-x)4·(-x)3;(2)(m-n)·(n-m)3·(n-m)4;12.已知4x=8,4y=32,求x+y的值.14.1.2幂的乘方1.计算(a4)2的结果是( )A.a6B.a8C.a16D.2a4 2.计算(-b2)3的结果正确的是( )A.-b6B.b6C.b5D.-b53.计算a3·(a3)2的结果是( )A.a8B.a9C.a11D.a184.下列运算正确的是( )A.3x+2y=5(x+y) B.x+x3=x4 C.x2·x3=x6D.(x2)3=x65.在下列各式的括号内,应填入b4的是( )A.b12=()8B.b12=()6 C.b12=()3 D.b12=()26.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.7.下列四个算式中正确的有( )①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(-x)3]2=(-x)6=x6;④(-y2)3=y6.A.0个B.1个C.2个D.3个8.计算(a2)3-5a3·a3的结果是( )A.a5-5a6B.a6-5a9C.-4a6D.4a69.如果(9n)2=312,那么n的值是( )A.4 B.3 C.2 D.1 10.若(a3)2·a x=a24,则x=.11.计算:(1)5(a3)4-13(a6)2;(2)x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x +y)3]6+[(x+y)9]2.12.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.14.1.3 积的乘方1.计算(ab 2)3的结果是( )A .3ab 2B .ab 6C .a 3b 5D .a 3b 6 2.计算(-2a 3)2的结果是( )A .-4a 5B .4a 5C .-4a 6D .4a 6 3.下列运算正确的是( )A .(-a 2)3=-a 5B .a 3·a 5=a 15C .(-a 2b 3)2=a 4b 6D .3a 2-2a 2=14.计算:(1)(3x)4; (2)-(12a 2b)3; (3)(x m y n )2; (4)(-3×102)4.5.已知|a -2|+(b +12)2=0,则a 2 018b 2 018的值为 .6.如果5n =a ,4n =b ,那么20n = .7.指出下列的计算哪些是对的,哪些是错的,并将错误的改正.(1)(ab 2)2=ab 4;(2)(3cd)3=9c 3d 3;(3)(-3a 3)2=-9a 6;(4)(-x 3y)3=-x 6y 3.8.如果(a m b n )3=a 9b 12,那么m ,n 的值分别为( )A .9,4B .3,4C .4,3D .9,69.若2x +1·3x +1=62x -1,则x 的值为 .10.计算:(1)(-32ab 2c 4)3; (2)(-2xy 2)6+(-3x 2y 4)3; (3)(-14)2 018×161 009.11.已知n 是正整数,且x 3n =2,求(3x 3n )3+(-2x 2n )3的值.参考答案:14.1 整式的乘法14.1.1 同底数幂的乘法1.D2.B3.108.4.(1)解:原式=a 1+9=a 10.(2)解:原式=(-12)2+3=(-12)5=-125.(3)解:原式=a 4.(4)解:原式=x 3n +2n -2=x 5n -2.5.3.6.解:a m +n =a m ·a n =2×5=10.7.解:(1)(2)解答均不正确,正确的解答如下:(1)x 5·x 2=x 5+2=x 7.(2)a m +n =a m ·a n =3×5=15.8.C9.9.10.19.11.(1)解:原式=-x2·x4·(-x3)=x2·x4·x3=x9.(2)解:原式=-(n-m)·(n-m)3·(n-m)4=-(n-m)1+3+4=-(n-m)8.12.解:4x·4y=8×32=256=44,而4x·4y=4x+y,∴x+y=4.14.1.2幂的乘方1.B2.A3.B4.D5.C6.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.解:(1)103m=(10m)3=33=27.(2)102n=(10n)2=22=4.(3)103m+2n=103m×102n=27×4=108.7.C8.C9.B10.18.11.(1)解:原式=5a12-13a12=-8a12.(2)解:原式=-x16+5x16-x16=3x16.(3)解:原式=(x+y)18+(x+y)18=2(x+y)18. 12.解:(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.14.1.3 积的乘方1.D2.D3.C4.(1)解:原式=34·x 4=81x 4.(2)解:原式=-18a 6b 3.(3)解:原式=(x m )2·(y n )2=x 2m y 2n .(4)解:原式=(-3)4×(102)4=81×108=8.1×109.5.1.6.ab .7.解:(1)(2)(3)(4)都是错的.改正如下:(1)(ab 2)2=a 2b 4;(2)(3cd)3=27c 3d 3;(3)(-3a 3)2=9a 6;(4)(-x 3y)3=-x 9y 3. 8.B 9.2.10.(1)解:原式=-278a 3b 6c 12.(2)解:原式=64x 6y 12-27x 6y 12 =37x 6y 12.(3)解:原式=(-14)2 018×42 018 =(-14×4)2 018 =1.11.解:(3x 3n )3+(-2x 2n )3=33×(x 3n )3+(-2)3×(x 3n )2 =27×8+(-8)×4 =184.14.2 乘法公式一.选择题1.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或5 2.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1B.1C.1或﹣1D.1或﹣3 3.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数4.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.35.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.66.如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±208.已知x+y=﹣5,xy=3,则x2+y2=()A.25B.﹣25C.19D.﹣199.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.010.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.1611.如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)二.填空题12.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.13.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.14.若m为正实数,且m﹣=3,则m2﹣=.15.x2+kx+9是完全平方式,则k=.16.已知a+=3,则a2+的值是.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.已知x+=2,则=.19.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.20.已知:(a﹣b)2=4,ab=,则(a+b)2=.21.已知a+b=8,a2b2=4,则﹣ab=.三.解答题22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.(1)已知a+的值;(2)已知xy=9,x﹣y=3,求x2+3xy+y2的值.参考答案一.选择题1.解:∵x2+(m﹣1)x+9是一个完全平方式,∴(m﹣1)x=±2•x•3,∴m﹣1=±6,∴m=﹣5或7,故选:C.2.解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.3.解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2≥2,∴x2+y2+2x﹣4y+7≥2.故选:A.4.解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选:D.5.解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.6.解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.7.解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.8.解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.9.解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.10.解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.11.解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积=4个小图形的面积和=a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C.二.填空题12.解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.13.解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.14.解:法一:由得,得m2﹣3m﹣1=0,即=,∴m1=,m2=,因为m为正实数,∴m=,∴=()()=3×(),=3×,=;法二:由平方得:m2+﹣2=9,m2++2=13,即(m+)2=13,又m为正实数,∴m+=,则=(m+)(m﹣)=3.故答案为:.15.解:中间一项为加上或减去x和3的积的2倍,故k=±6.16.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.17.解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.18.解:∵x+=2,∴(x+)2=4,即x2+2+=4,解得x2+=2.故答案为:2.19.解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.20.解:∵(a﹣b)2=4,ab=,∴(a﹣b)2=a2+b2﹣2ab,=a2+b2﹣1=4,∴a2+b2=5,∴(a+b)2=a2+b2+2ab=5+1=6.21.解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.三.解答题22.解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.23.解:(1)将a+=3两边同时平方得:,∴=9.∴=7;(2)将x﹣y=3两边同时平方得:x2﹣2xy+y2=9,∴x2+y2=9+2xy=9+2×9=27.∴x2+3xy+y2=27+3×9=54.14.3因式分解一.选择题1.下列因式分解正确的是()A.x2﹣1=(x﹣1)2B.x2﹣9y2=(x﹣9y)(x+9y)C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1 2.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y23x2y B.=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)2 3.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()4.把多项式4x﹣4x3因式分解正确的是()A.﹣x(x+2)(x﹣2)B.x(x+2)(2﹣x)C.﹣4x(x+1)(1﹣x)D.4x(x+1)(1﹣x)5.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.66.把多项式a2﹣a分解因式,结果正确的是()A.a(a﹣1)B.C.a D.﹣a(a﹣1)7.下列从左到右的变形中是因式分解的有()①(p﹣2)(p+2)=p2﹣4,②4x2﹣4x+1=(2x﹣1)2,③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1).A.1个B.2个C.3个D.4个8.已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为()9.下列因式分解正确的是()A.m2﹣4n2=(m﹣2n)2B.﹣3x﹣6x2=﹣3x(1﹣2x)C.a2+2a+1=a(a+2)D.﹣2x2+2y2=﹣2(x+y)(x﹣y)10.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262二.填空题11.若m3+m﹣1=0,则m4+m3+m2﹣2=.12.若a+b=﹣1,ab=﹣6,则代数式a3b+2a2b2+ab3的值为.13.分解因式:(a+2b)2﹣8ab的结果是.14.分解因式4m3﹣mn2的结果是.15.因式分解:3a3b﹣12a2b2+12ab3的结果是.三.解答题16.分解因式:(1)(a﹣2b)2﹣3a+6b;(2)x2﹣4y(x﹣y).17.因式分解:(1)4x2y﹣2xy2;(2)x2(y﹣4)+9(4﹣y).18.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.19.【类比学习】小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x2+3x+2进行因式分解的方法:即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).【初步应用】小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:得出□=,☆=.【深入研究】小明用这种方法对多项式x3+2x2﹣x﹣2进行因式分解,进行到了:x3+2x2﹣x﹣2=(x+2)(*)(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2﹣x﹣2因式分解.参考答案与试题解析一.选择题1.【解答】解:A、x2﹣1=(x+1)(x﹣1),原题分解错误,故此选项不合题意;B、x2﹣9y2=(x﹣3y)(x+3y),原题分解错误,故此选项不合题意;C、a2﹣a=a(a﹣1),原题分解正确,故此选项符合题意;D、a2+2a+1=(a+1)2,原题分解错误,故此选项不合题意;故选:C.2.【解答】解:A、从左边到右边的变形不属于因式分解,故本选项不符合题意;B、从左边到右边的变形不属于因式分解,故本选项不符合题意;C、从左边到右边的变形不属于因式分解,故本选项不符合题意;D、从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.3.【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.4.【解答】解:原式=4x(1﹣x2)=4x(x+1)(1﹣x),故选:D.5.【解答】解:∵mn=﹣2,m﹣n=3,∴m2n﹣mn2=mn(m﹣n)=﹣2×3=﹣6.故选:A.6.【解答】解:原式=a(a﹣1),故选:A.7.【解答】解:①(p﹣2)(p+2)=p2﹣4,从左到右的变形是整式乘法,不合题意;②4x2﹣4x+1=(2x﹣1)2,从左到右的变形是因式分解,符合题意;③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),从左到右的变形不符合因式分解的定义,不合题意④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1),从左到右的变形是因式分解,符合题意;故选:B.8.【解答】解:根据题意得:x2+ax﹣6=(x+2)(x+b)=x2+(b+2)x+2b,∴a=b+2,2b=﹣6,解得:a=﹣1,b=﹣3,则a+b=﹣1﹣3=﹣4,故选:A.9.【解答】解:A、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;B、﹣3x﹣6x2=﹣3x(1+2x),故此选项错误;C、a2+2a+1=(a+1)2,故此选项错误;D、﹣2x2+2y2=﹣2(x2﹣y2)=﹣2(x+y)(x﹣y),正确.故选:D.10.【解答】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤9∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.二.填空题(共5小题)11.【解答】解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.12.【解答】解:∵a+b=﹣1,ab=﹣6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=(﹣6)×(﹣1)2=(﹣6)×1=﹣6,故答案为:﹣6.13.【解答】解:原式=a2+4ab+4b2﹣8ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.14.【解答】解:原式=m(4m2﹣n2)=m(2m+n)(2m﹣n).故答案为:m(2m+n)(2m﹣n).15.【解答】解:原式=3ab(a2﹣4ab+4b2)=3ab(a﹣2b)2.故答案为:3ab(a﹣2b)2.三.解答题(共4小题)16.【解答】解:(1)原式=(a﹣2b)2﹣3(a﹣2b)=(a﹣2b)(a﹣2b﹣3);(2)原式=x2﹣4xy+4y2=(x﹣2y)2.17.【解答】解:(1)原式=2xy(2x﹣y);(2)原式=x2(y﹣4)﹣9(y﹣4)=(y﹣4)(x2﹣9)=(y﹣4)(x﹣3)(x+3).18.【解答】解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.19.【解答】解:【初步应用】□=5,☆=3;故答案为5,3。

八年级数学-同底数幂的乘法习题

八年级数学-同底数幂的乘法习题

同底数幂的乘法习题1.(易错题)(m-n)2·(n-m)3·(n-m)4=________.2.a2m+1=a2m·a( )=a m·a( )3.若2m=16,2n=8,则2m+n=______.4.在下列式子中,正确的是()A.-a6·(-a)2=a8 B.(-2)5=-10C.m2+m2=2m4 D.(-a-b)2=(a+b)25.下列计算错误的是()A.x4·x3=x7 B.(-c)3·(-c)5=c8C.-32×(-3)4=(-3)6 D.2×210=2116.当n为偶数时,(x-y)m·(y-x)n与(x-y)m+n的关系是()A.相等 B.互为相反数 C.不相等 D.以上说法都不对7.计算:(1)x7·x5;(2)x m-1·x m+1;(3)(x+y)3·(-x-y)2·(x+y)4;(4)-13·(-1)2·(-1)3·(-1)4.8.已知2m=3,2n=5,求下列各式的值:(1)2m+1;(2)23+n;(3)22+n+m.9.求下列各式中的x.(1)24×32=23x;(2)32x-1=27×81;(3)23x-1=162×8.10.已知a,b为正整数,a>b,2a·2b=32,求a b的值.11.已知22x+3-22x+1=192,求x的值.12.在天文学中通常以光年为单位表示距离,1光年就是指光在1年内通过的距离,已知光的速度是3×105km/s,1年约为3.2×107s,某星球到地球的距离是20光年,你能算出它到地球的距离吗?若2a·27b·37c=1998(其中a,b,c为自然数),你能求出(a-b-c)2007的值吗?试一试.答案:1.(n-m)9 2.1 m+1 3.128 4.D5.C(点拨:选项左边是负数,而右边是正数)6.A7.(1)x7·x5=x12(2)x m-1·x m+1=x2m(3)(x+y)9(点拨:把(x+y)看作一个整体)(4)-13·(-1)2·(-1)3·(-1)4=18.(1)2m+1=2m·2=6(2)23+n=23·2n=8×5=40(3)22+n+m=22·2n·2m=4×5×3=60.9.(1)24×32=23x,所以24·25=23x.所以9=3x,所以x=3.(2)因为32x-1=27×81,所以32x-1=33·34=37.所以2x-1=7,x=4.(3)23x-1=28·23=211.所以3x-1=11,所以3x=12,所以x=4.10.因为2a·2b=2a+b=32=25,所以a+b=5,又a>b,且为正整数.所以a=4,b=1或a=3,b=2,故a b的值为4或9.11.因为22x+3-22x+1=192,所以22x·23-22x·2=192.所以8·22x-2·22x=192.所以6·22x=192,22x=32=25.所以2x=5,所以x=52.12.解:3×105×3.2×107×20=1.92×1014(km).拓展创新2a·2b·37c=1998=2×33×37,所以a=1,b=1,c=1.所以(a-b-c)2007=-1.。

八年级数学人教版上册同步练习同底数幂的乘法(解析版)

八年级数学人教版上册同步练习同底数幂的乘法(解析版)

14.1.1同底数幂的乘法一、单选题1.已知32,33x y ==,则3x y +的值为( )A .6B .5C .36D .3【答案】A【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【详解】∵32,33x y ==,∴3=33236x y x y +⋅=⨯=,故选:A【点评】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键,2.已知2,3m n a a ==,则m n a +的值为( )A .6B .5C .3D .1 【答案】A【分析】根据同底数幂的乘法的逆用可直接进行求解.【详解】∵2,3m n a a ==,∴236m n m n a a a +=⋅=⨯=;故选A .【点评】本题主要考查同底数幂的乘法的逆用,熟练掌握同底数幂的乘法的逆用是解题的关键.3.计算(-2)99+(-2)100结果等于 ( )A .(-2)199B .-2199C .299D .-299 【答案】C【分析】原式利用乘方的意义计算即可得到结果.【详解】原式=(-2)99+(-2)99×(-2)=(-2)99×(1-2)=299,故选:C .【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.若23a =,25b =,215c =,则( )A .a b c +=B .1a b c ++=C .2a b c +=D .22a b c +=【分析】根据同底数幂乘法的逆运算进行计算即可【详解】∵23a =,25b =,215c =,∵21535222+==⨯=⨯=a b c a b∴a b c +=故选:A【点评】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键5.计算()()9910022-+-的结果为( ) A .992-B .992C .2-D .2 【答案】B【分析】根据同底数幂的乘法法则运算即可.【详解】()()9910022-+- =9100922-=9999222-⨯=()99212-⨯ =992故选B .【点评】本题考查了有理数的混合运算,解题的关键是合理利用同底数幂的乘法法则进行简便运算. 6.计算23a a ⋅的结果是( )A .6aB .5aC .4aD .3a【答案】B【分析】根据同底数幂相乘的法则进行计算,然后判断即可.【详解】23235a a a a +⋅==,故选:B .【点评】本题考查了同底数幂相乘,按照法则—同底数幂相乘,底数不变,指数相加进行计算是关键,属于基础题型.7.若3x =10,3y =5,则3x +y 的值是( )A .15B .50C .0.5D .2【分析】直接逆用同底数幂的乘法法则计算得出答案.【详解】∵3x =10,3y =5,∴3x +y =3x •3y =10×5=50.故选:B .【点评】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.8.10102(2)+-所得的结果是( )A .0B .102C .112D .202【答案】C【分析】先把10(2)-化为102,合并后再根据同底数幂的运算法则计算即可.【详解】10102(2)+-=1010101122222=⋅=+.故选:C .【点评】本题考查了同底数幂的运算和合并同类项,属于常考题型,明确求解的方法是解题关键.二、填空题目9.如果23x =,27y =,则2x y +=_____________.【答案】21【分析】根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x =, 27y =,∴2223721x y x y +=⋅=⨯=,故答案为:21.【点评】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算. 10.已知5122120m m ++-=,则m 的值是_________________.【答案】2【分析】根据同底数幂的乘法法则将原式变形可得52222120m m ⨯-⨯=,再利用乘法分配律合并计算,得到m 值.【详解】∵5122120m m ++-=,∴52222120m m ⨯-⨯=,∴()2322120m ⨯-=,∴24m =,∴m=2,故答案为:2.【点评】本题考查了同底数幂的乘法,解题的关键是灵活运用运算法则.11.我们规定一个新数“i ”,使其满足i 1=i ,i 2=﹣1,并且进一步规定:一切有理数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1.那么i 6=____,i 1+i 2+i 3+…+i 2022+i 2023=____.【答案】-1 -1【分析】各式利用题中的新定义计算即可求出值.【详解】i 6=i 5•i =-1,由题意得,i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,i 5=i 4•i =i ,i 6=i 5•i =-1,故可发现4次一循环,一个循环内的和为0,2023÷4=505 (3)i 1+i 2+i 3+…+i 2022+i 2023=505×0+(i -1-i )=-1.故答案为:-1,-1.【点评】本题考查了同底数幂的乘法运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.12.已知4222112x x +-⋅=,则x =________【答案】3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点评】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键.13.已知8m x =,6n x =,则2m n x +的值为______.【答案】384【分析】利用同底数幂相乘的逆运算得到2m n m m n x x x x +⋅⋅=,将数值代入计算即可.【详解】∵8m x =,6n x =,∴2886m n m m n x x x x +⋅⋅==⨯⨯=384,故答案为:384.【点评】此题考查同底数幂相乘的逆运算,正确将多项式变形为2m n m m n x x x x +⋅⋅=是解题的关键. 14.已知25,23a b ==,求2a b +的值为________.【答案】15.【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点评】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.三、解答题15.光的速度约为3×105千米/秒,太阳光射到地球需要时间约是5×102秒,地球与太阳的距离约是多少千米?【答案】81.510⨯【分析】根据路程=速度×时间,先列式表示地球到太阳的距离,再用科学记数法表示.【详解】3×105×5×102=15×107=1.5×108千米.故地球与太阳的距离约是1.5×108千米.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.表示时关键要正确确定a 的值以及n 的值.同时考查了同底数幂的乘法.16.判断23221()()()()n m a m a b b a a b a b -++-⋅-⋅-=-是否正确,并说明理由.【答案】不正确,理由见解析【分析】根据题意,要进行幂的乘法运算,先把每一项写成同底数的形式,所以把()3b a -转换成()3a b --,然后进行同底数幂的乘法运算,底数不变指数相加.【详解】不正确.理由如下:232()()()n m a b b a a b --⋅-⋅-232()[()]()n m a b a b a b -=-⋅--⋅-232()()()n m a b a b a b -=--⋅-⋅-21()n m a b ++=--.【点评】本题考查了同底数幂的乘法,需要注意的是当指数是奇数的时候,底数变为原来的相反数,幂的前面要加上负号.17.计算:2726733333(3)⨯-⨯+⨯-.【答案】83【分析】由题意先根据同底数幂相乘指数相加进行运算,再进行同类项合并即可求值.【详解】2726733333(3)⨯-⨯+⨯-272617333+++=--883323=⨯-⨯83=.【点评】本题考查整式乘法,熟练掌握同底数幂的乘法运算法则以及合并同类项原则是解题的关键. 18.若3a =5,3b =10,则3a+b 的值.【答案】50【分析】根据同底数幂乘法的逆运算即可得出答案【详解】3a+b =3a ⨯3b =5⨯10=50【点评】此题考查了同底数幂乘法的逆运算,熟练掌握运算法则是解题的关键19.如果c a b =,那么我们规定()a b c =,.例如:因为328=,所以(2,8)3=.(1)根据上述规定,填空:(4,16)= ,(2,32)= .(2)记(3,5)a =,(3,6)b =,(3,30)c =.求证:a b c +=.【答案】(1)2,5;(2)证明见解析.【分析】(1)由新定义设()4,16,x =可得416,x = 从而可得答案,同理可得()2,32的结果;(2)由新定义可得:35a =,36b =,330c =,从而可得:333=30,a b a b += 从而可得33a b c +=,从而可得结论.【详解】(1)()a b c =,,,c a b ∴=设()4,16,x =24164,x ∴==2,x ∴=()4,16=2∴,设()2,32,y =52322,y ∴==5,y ∴=()2,32 5.∴=故答案为:2,5.(2)证明:根据题意得:35a =,36b =,330c =∵5630⨯=∴333a b c ⋅= 则33a b c +=∴a b c +=.【点评】本题考查的新定义情境下幂的运算,弄懂新定义的含义,掌握同底数幂的乘法,幂的含义是解题的关键.20.规定两正数a ,b 之同的一种运算,记作:E(a ,b),如果a c =b ,那么E(a ,b)=c .例如23=8,所以E(2,8)=3(1)填空:E(3,27)= ,E 11,216⎛⎫ ⎪⎝⎭= (2)小明在研究这和运算时发现一个现象:E(3n ,4n )=E(3,4)小明给出了如下的证明:设E(3n ,4n )=x ,即(3n )x =4n ,即(3n ,4n )=4n ,所以3x =4,E(3,4)=x ,所以E(3n ,4n )=E(3,4),请你尝试运用这种方法说明下面这个等式成立:E(3,4)+E(3,5)=E(3,20)【答案】(1)3;4;(2)证明见解析.【分析】(1)根据规定的两数之间的运算法则:知4311327,,216⎛⎫== ⎪⎝⎭ 从而可得答案; (2)设E (3,4)=x ,E (3,5)=y ,根据定义得:34,35,x y ==利用同底数幂的乘法可得答案.【详解】(1)∵3327,=∴E (3,27)=3; ∵411,216⎛⎫= ⎪⎝⎭ ∴11,4,216E ⎛⎫= ⎪⎝⎭故答案为:3;4;(2)设E (3,4)=x ,E (3,5)=y ,则34,35,x y ==∴3334520,x y x y +=•=⨯=∴E (3,20)=x+y ,∴E (3,4)+E (3,5)=E (3,20).【点评】本题是利用新定义考查幂的运算的逆运算,掌握幂的运算,同底数幂的乘法运算是解题的关键. 21.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.【答案】(1)23;(2)10121-. 【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)∵2x a =,3y a =, ∴23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,∴S=2S-S=10121-.【点评】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键.22.已知a x=5,a x+y=30,求a x+a y的值.【答案】11.【详解】分析:首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出y a的值是多少;然后把x a、y a的值相加,求出x a+y a的值是多少即可.本题解析:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.祝福语祝你考试成功!。

《同底数幂的乘法、积的乘方、幂的乘方》专项练习

《同底数幂的乘法、积的乘方、幂的乘方》专项练习

同底数幂的乘除法、积的乘方、幂的乘方专项练习一、同底数幂的乘法:n m a a a n m n m ,(+=⋅是正整数)1.公式及其推广:m n p m n p a a a a++=p n m ,,(是正整数) 2.公式顺用:例1、计算(1) 21n n n a a a ++ (2)232)()(x x x -⋅⋅- (3)432111()()()101010-- (4)34(2)(2)(2)x y x y y x --- (5)2132()()()n n a a a ++--- 练习(1)若,1032x x x m m =-则整式=+-1322m m (2)若,1282)8(22-=⋅-⋅+n n 则=n(3)n 为正整数=-+-+n n 212)2(2)2(, 3.公式的逆用例2.若,64412=+a 解关于x 的方程)1(532-=+x x a 二、幂的乘方:p n m a aa p n m mn n m ,,(])[(,)(=是正整数)1.公式的应用 例3.计算:(1)34()x - (2)34[()]x -练习:计算下列各题 253(1)()x x - 2844(2)()()x x 2332222(3)()()(2)y y y y +-2.公式的逆用例4.(1)已知,3,2==n n y x 求n n y x )()(23的值;(2)已知,310,210==ba 求b a 3210+的值; (3)若,0352=-+y x 求yx 324⋅的值; (4)若,)()(963131y x y x n m =⋅+-求n m +的值. 三、积的乘方:n c b a abc b a ab n n n n n n n ()(,)(==是正整数)1.公式的顺用例5.计算:(1)52)(b x - 322(2)(2)()ab ab 23(3)3()x x --练习:计算2233(1)()()(5)ab a b ab -- 122(2)()()n n n c dc d - 2.公式的逆用例6.计算:10010223(1)()()32- (2) 200320011(0.75)(1)3-练习:(1)已知,3,2==nn y x 求n y x 22)(的值;(2)已知,034=-+y x 求y x 162⋅的值. 四、同底数幂的除法:n m a a a a n m nm ,,0(≠=÷-是正整数,且)n m > 例7.计算:(1)3227)(m m m ÷⋅; (2)])()[()()(233234x x x x -÷-⋅-÷-练习:(1)2242)()(xy xy -÷-;(2)347)23()23()23(-÷÷-;(3)已知,52,32==yx 求y x 22-的值. 一、选择题1.下列计算正确的是( )A.532a a a =+B. 532a a a =⋅C.m m m 523=+D.4222aa a =+ 2.下列四个算式中①5552a a a =⋅; ②655x x x =+;③523b b b b =⋅⋅;④22223p p p p =++ 正确的有( )A.1个B.2个C.3个D.4个3.下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=1044.a 与b 互为相反数且都不为n ,0为正整数,则下列两数互为相反数的是( )A.12-n a 与12--n bB. 12-n a与12-n b C. n a 2-与n b 2- D. n a 2与n b 2 5.计算1)()(--⋅-n n a b b a 等于( ) A.12)(--n b a B. 12)(--n a b C. 12)(--±n b a D.非以上答案 6.若,8)2(1593b a b a n m m =+成立,则( )A .2,3==n mB .3==n mC .2,6==n mD .5,3==n m7.当m 是正整数时,下列等式成立的有( )(1)22)(m m a a =;(2) m m a a )(22=;(3) 22)(m m a a -=;(4) m m a a )(22-=.A .4个B .3个C .2个D .1个8.下列等式中正确的个数是( ) ①1055a a a =+;②1036)()(a a a a =⋅-⋅-;③2054)(a a a =-⋅-;④655222=+.A 、0个B 、1个C 、2个D 、3个9.下列计算错误的个数是( )①()23636x x =;②()2551010525a b a b -=-;③332833x x ⎛⎫-=- ⎪⎝⎭;④()42367381x y x y = A .2个 B .3个 C .4个 D .5个二、填空题1.若215x x a a a +⋅=,那么=x ___________2.已知,)(151553b a x =则=x _______3.=-⋅19991999)8()125.0( _______ 4.化简32212)2()(a a a n m -⋅⋅=所得的结果为 .5.( )5=(8×8×8×8×8))(a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅6.如果,b a ≠且595()p p q ab a b +⋅=成立,则=p ___ _,=q . 7.若,)2(1593b ka b a n m m =⋅-+则=++n m k .8.若,0)1(|12|2=++++x y x 则=⋅+x y y y x 2)( . 9.已知,3,9==n m x x 则=-n m x 3 .三、解答题1.计算(1)()23531410102⎛⎫⨯⨯-⨯ ⎪⎝⎭; (2))()()(322a a a -⋅⋅-; (3)2332])()[(x x -⋅; (4)2332)][()(x x -+; (5) 201420151001004)41()211()32(⨯⨯⨯;(6)263432(2)()()a b a b -+--;(7)24422(2)[()]a b a b ---- (8)65)()(b a b a +--; (9))()())()((32b a a b b a b a b a +--+-; (10)323633])8([])2([--+--2.用简便方法计算: (1)224)412(⨯ (2)12124)25.0(⨯- (3)125.025.032⨯⨯ (4)3332)2(])21[(⨯. 3.(1)已知,911,999909999==y x 比较x 与y 的大小;(2) 比较下列一组数的大小:61413192781,, 4.(1)已知2340x y +-=,求48x y ⨯的值;(2)已知213,n a +=求84n a + 的值. 5.(1)已知322,3m n a b ==,求263232()()m n m n a b a b -+⋅的值;(2)若21327,x +=求2014(2)x x +- 的值.6.(1)已知453)5(31+=++n n x x x ,求x 的值;(2) 已知,251022547⋅=⋅⋅n m 求n m ,.7.(1)已知,0352=-+y x 求y x 324⋅的值; (2)若n m n n m x x x++==求,2,162的值. 7.已知,16,64==n m a a 求n m a 43-的值.(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。

651.八年级新人教版数学上册14.1.1 同底数幂的乘法2(同步练习)

651.八年级新人教版数学上册14.1.1 同底数幂的乘法2(同步练习)

14.1 整式的乘法14.1.1 同底数幂的乘法1、计算:(1)x10· x=(2)10×102×104 =(3)x5·x ·x3=(4)y4·y3·y2·y =2、下面的计算对不对?如果不对,怎样改正?(1)b5· b5= 2b5()(2)b5 + b5 = b10()(3)x5·x5 = x25()(4)y5· y5 = 2y10()(5)c · c3 = c3()(6)m + m3 = m4()3、填空:(1)x5·()= x 8(2)a ·()= a6(3)x · x3()= x7(4)x m·()=x3m4、计算:(1) x n · x n+1 (2) (x+y)3· (x+y)45、填空:(1) 8 = 2x,则 x = ;(2) 8 × 4 = 2x,则 x = ;(3)3×27×9 = 3x,则 x = 。

6、计算(1)35(—3)3(—3)2 ( 2)—a(—a)4(—a)3(3 ) x p (—x)2p (—x)2p+1 (p 为正整数) (4)32×2(2)n-(—2)(n 为正整数)7、计算 (1)3421(2)(2)(2)m n a b a b a b -++++(2)(x —y)2(y —x)58、填空 (1)3n+1=81若a =________ (2))(11a a n n ----•=________ (3)若28233n =•,则n=_____ (4)3100. (-3)101 =_________ 9.计算: (1)a a a a x x 4213--+• (2))(341x x x n n -••+-(3))()()(432m n m n n m ---• (4))(344y y y n n -••+- 初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。

人教版八年级上册数学同底数幂的乘法同步练习

人教版八年级上册数学同底数幂的乘法同步练习

人教版八年级上册数学14.1.1同底数幂的乘法同步练习一、单选题1.计算2a a ⋅的正确结果是( )A .22aB .3aC .2aD .3a 2.若25a=,23b =,则2a b +=( ) A .8 B .2 C .15 D .1 3.计算32x x ⋅的结果是( )A .5x -B .5xC .66x -D .6x 4.计算234a a a ⋅⋅的结果是( ).A .9aB . a 10C .20aD .24a 5.计算:()()2x x -⋅-等于( )A .2x -B .3x -C .2xD .3x 6.1.已知59⋅=x a a a ,则2x =( )A .4B .8C .16D .32 7.在等式x 2•(﹣x )•( )=x 11中,括号内的代数式为( ) A .x 8 B .(﹣x )8 C .﹣x 9 D .﹣x 8 8.a 2019可以写成( )A .a 2010+a 9B .a 2010·a 9C .a 2010·aD .a 2010·a 2009二、填空题9.己知:5,2,m n m n x x x +==的值为_____________.10.计算()32x x ⋅-的结果是______.11.一台计算机每秒可做5×1010次运算,某次计算用了4×102秒,它的计算次数用科学记数法表示为________.12.若2x +y +2=0,则255x y ⋅= .13.若2×22×2n =29,则n 等于______.14.规定a *b =2a ×2b ,若2*(x +1)=16,则x =_____.15.若3m n a -=,27m n a +=,2m a =______.16.已知240x y +-=,则42x y ⋅的值是______.三、解答题17.若2764222m m +=⨯,求m .18.规定a *b =3a ×3b ,求:(1)求1*2;(2)若2*(x +1)=81,求x 的值.19.光的速度约为3×105千米/秒,太阳光射到地球需要时间约是5×102秒,地球与太阳的距离约是多少千米?20.若(am +1bn +2)(a 2n ﹣1b 2n )=a 5b 3,则求m +n 的值.参考答案:1.D2.C3.B4.A5.B6.C7.D8.B9.1010.5x-11.2×101312.1 2513.6 14.1 15.81 16.1617.12 m=18.(1)27 (2)x=1 19.81.510⨯20.143.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档