8-7-1统计与概率.题库学生版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8-7概率与统计
教学目标
1. 能准确判断事件发生的等可能性以及游戏规则的公平性问
题.
2. 运用排列组合知识和枚举等计数方法求解概率问题.
3. 理解和运用概率性质进行概率的运算
知识点拨
知识点说明
在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的一半左右.这里的“大量重复”是指多少次呢?
历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,随着试验次数的增加,出现正面的频率波动越来越小,频率在这
个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,恰恰就是刻画出现正面可能性大小的数值,就是抛掷硬币时出现正面的概率.这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值.
在统计里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体。
从总体中所抽取的一部分个体叫做总体的一个样本。样本中个体的数目叫做样本的容量。
总体中所有个体的平均数叫做总体平均数,把样本中所有个体的平均数叫做样本平均数。
概率的古典定义:
如果一个试验满足两条:
⑴试验只有有限个基本结果:
⑵试验的每个基本结果出现的可能性是一样的.
这样的试验,称为古典试验.
对于古典试验中的事件,它的概率定义为:
,表示该试验中所有可能出现的基本结果的总数目,表示事件包含的试验基本结果数.小学奥数中,所涉及的问题都属于古典概率.其中的和需要我们用枚举、加乘原理、排列组合等方法求出.
相互独立事件:
事件是否发生对事件发生的概率没有影响,这样的两个事件叫做相互独立事件.
公式含义:如果事件和为独立事件,那么和都发生的概率等于事件发生的概率与事件发生的概率之积.
举例:
⑴明天是否晴天与明天晚餐是否有煎鸡蛋相互没有影响,因此两个事件为相互独立事件.所以明天天晴,并且晚餐有煎鸡蛋的概率等于明天天晴的概率乘以明天晚餐有煎鸡蛋的概率.
⑵第一次抛硬币掉下来是正面向上与第二次抛硬币是正面向上是两个相互独立事件.所以第一次、第二次抛硬币掉下来后都是正面向上的概率等于两次分别抛硬币掉下来后是正面向上的概率之积,即.
⑶掷骰子,骰子是否掉在桌上和骰子的某个数字向上是两个相互独立的事件,如果骰子掉在桌上的概率为,那么骰子掉在桌上且数
字“”向上的概率为.
例题精讲
【例1】 (2007年“希望杯”二试六年级)气象台预报“本市明天降雨概率是”.对此信息,下列说法中正确的是 .
①本市明天将有的地区降水. ②本市明天将有的时间降水.
③明天肯定下雨. ④明天降水的可能性比较大.
【巩固】 一个小方木块的六个面上分别写有数字、、、、、,小光、小亮两人随意往桌面上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得分.当小亮扔时,如果朝上的一面写的是奇数,得分.每人扔次,______得分高的可能性比较大.
【例2】 在多家商店中调查某商品的价格,所得的数据如下(单位:元)
25 21 23 25 27 29 25 28 30 29
26 24 25 27 26 22 24 25 26 28请填写下表
【例3】 在某个池塘中随机捕捞条鱼,并给鱼作上标记后放回池塘中,过一段时间后又再次随机捕捞尾,发现其中有条鱼是被作过标记的,如果两次捕捞之间鱼的数量没有增加或减少,那么请你估计这个池塘中一共有鱼多少尾?
【例4】 有黑桃、红桃、方块、草花这4种花色的扑克牌各2张,从这8张牌中任意取出2张。请问:这2张扑克牌花色相同的概率是多少?
【巩固】 小悦从1、2、3、4、5这5个自然数中任选一个数,冬冬从2、3、4、5、6、7这6个自然数中任选一个数。选出的两个数中,恰好有一个数是另一个数的倍数的概率是多少
【例5】 妈妈去家乐福购物,正好碰上了橘子、香蕉、葡萄和榴莲大降价。于是她决定从这4中水果中任选一种买回家。爸爸下班时路过集贸市场,发现有苹果、橘子、香蕉、葡萄和梨出售。他也决定任选一种买回家。请问:他们买了不同的水果的概率是多少?
【巩固】 在标准英文字典中,由2个不同字母组成的单词一共有55个.如果从26个字母中任取2个不同的排列起来,那么恰好能拍成一个单词的概率是多少?
【巩口袋里装有100张卡片,分别写着1,2,3, (100)
固】 从中任意抽出一张。请问:
(1)抽出的卡片上的数正好是37的概率是多少?
(2)抽出的卡片上的数是偶数的概率是多少?
(3)抽出的卡片上的数是质数的概率是多少?
(4)抽出的卡片上的数是101的概率是多少?
(5)抽出的卡片上的数小于200的概率是多少?
【例6】 在一只口袋里装着2个红球,3个荒丘和4个黑球。从口袋中任取一个球,请问:
(1)这个球是红球的概率有多少?
(2)这个球是黄球或者是黑球的概率有多少?
(3)这个是绿球的概率有多少?不是绿球的概率又有多少?
【巩固】 一只口袋里装有5个黑球和3个白球,另一只口袋里装有4个黑球和4个白球。从两只口袋里各取出一个球。请问:取出的两个球颜色相同的概率是多少?
【巩固】 一只普通的骰子有6个面,分别写有1、2、3、4、5、6。掷出这个骰子,它的任何一面朝上的概率都是1/6.假设你将某一个骰子连续投掷了9次,每次的结果都是1点朝上。那么第十次投掷后,朝上的面上的点数恰好是奇数的概率是多少?
【例7】 甲、乙两个学生各从这个数字中随机挑选了两个数字(可能相同),求:⑴这两个数字的差不超过的概率,⑵两个数字的差不超过的概率.