高中数学模型解题法
高中数学解题方法
高中数学解题方法高中数学是一门关于数学的高级学科,其内容包含了现代数学的基本知识和理论。
在学习高中数学时,掌握一些解题方法对于提高数学水平非常重要。
本文将介绍一些常用的高中数学解题方法。
一、代数解题方法代数是高中数学的基础,也是解题过程中经常使用的数学工具之一。
在代数解题中,我们常常使用的方法有:1. 方程法:将问题转化为一个或多个方程,通过解方程来求解问题。
例如,已知一个几何图形的面积和周长,可以通过列方程解方程的方法来求解图形的尺寸。
2. 几何解法:有时候在解代数问题时,我们可以绘制几何图形,通过几何图形的性质和关系来解决问题。
例如,通过几何图形的相似性和比例关系来求解两个量之间的比值。
3. 因式分解法:将一个多项式进行因式分解,可以简化问题的计算。
因式分解法在解决方程和不等式问题时特别有用。
4. 递推法:递推法是一种迭代求解的方法,通过逐步推导得到结果。
递推法在解决数列和函数问题时经常使用。
例如,递推求和法可以用于求解等差数列的前n项和。
二、几何解题方法几何是高中数学的另一个重要内容,解题时也常常使用一些几何解题方法。
1. 利用图形的性质:几何图形有许多性质和定理,通过利用这些性质和定理可以解决一些几何问题。
例如,利用三角形的面积公式和相似性定理可以计算三角形的面积。
2. 几何运算:几何运算是指通过计算几何图形的面积、周长、体积等来解决问题。
例如,计算一个多边形的面积可以通过将其分解为若干个简单图形来进行计算。
3. 三角法:三角法是一种运用三角学思想解决几何问题的方法。
例如,可以通过正弦定理和余弦定理来解决三角形的边长和角度问题。
三、概率与统计解题方法概率与统计是数学的一个分支,研究随机现象和数据分析的方法。
在解决概率与统计问题时,我们可以使用以下方法:1. 概率模型:建立一个合适的概率模型,通过计算概率来求解问题。
例如,通过建立一个事件空间模型,可以计算某个事件发生的概率。
2. 统计分析:通过对收集到的数据进行统计分析,可以得到一些有关该数据的特征和规律。
高中数学19种答题方法+6种解题思想
高中数学19种答题方法 6种解题思想1.函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用三合一定理。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高中数学抛物线的一个重要模型(模型解题法)
DO yAFBClx【模型解题法】高中数学抛物线焦点弦模型【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。
过抛物线)0(22>=p px y 的焦点弦AB 的端点,A B 分别抛物线准线l 的垂线,交l 于D C 、,构成直角梯形ABCD (图1).这个图形是抛物线 问题中极为重要的一个模型,围绕它可以生出许 多重要的问题,抓住并用好这个模型,可以帮助 我们学好抛物线的基本知识与基本方法,同时, 它又体现了解析几何的重要思想方法。
在图1中, 有哪些重要的几何量可以算出来?又可以获得哪 些重要结论呢?【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ∆的面积.例4. 连,(2)CF DF CF DF ⊥,求证图.例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项,即 2FE CE DE =⋅.例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为2sin pθ. 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2NFAF BF =⋅.例12. 已知抛物线y x 42=的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M.(I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →·AB →为定值; FBAy图1【模型解析】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
高中数学解题方法技巧3排列与组合混合模型
法二
下面再看另一种构造方法:先将3个人与2张空椅子排成
一排,从5个位置中选出3个位置排人,另2个位置排空椅子,
3 2 有A 5 C 2 种排法,再将4张空椅子中的每两张插入每两人之间, 3 2 只有1种插法,所以所求的坐法数为A5 · C2=60.故填60.
答案
60
方法运用训练3 1.地面上有A,B,C,D四个科研机构在接收嫦娥卫星发回 的某类信息,它们两两之间可以互相接发信息,由于功率限 制,卫星只能随机地向其中一个科研机构发送信息,每个科研 机构都不能同时向两个或两个以上的科研机构发送信息,某日 四个机构之间发送了三次信息后,都获得了卫星发回的同一条 信息,那么A接收到该信息后互相联系的方式共有( A.16种 B.17种 C.34种 D.48种 ).
所以共有1+6+9=16种不同的方式,故选A. 答案 A
2.某城市在中心广场建造一个花圃,花圃分为6个部分(如下 图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分 不能栽种同样颜色的花,问不同的栽种方法有多少种?
解析
由于6部分种4种颜色的花,故必有两部分或两部分以上
的区域种同种颜色的花,从而从同颜色的花进行分类.另外, 本题也可以用“树支结构”解答. 法一 从题意来看6部分种4种颜色的花,又从图形看知必有2
3 3
种,共有C
3 6
×A
3 3
×3=
方法2:元素(位置)优先法 ①特殊元素优先排,一般元素后排; ②特殊位置优先排,其余位置后排. 对于有特殊位置或特殊元素的问题可以采用 此法.
解题步骤
适用情况
【例2】►用0,1,2,„,9这十个数字组成无重复数字的四位 数,若千位数字与个位数字之差的绝对值是2,则这样的四位 数的个数为________. 解析 若个位数字为0,则千位数字为2,这样的四位数有A
高中数学通用模型解题方法及技巧
高中数学通用模型解题方法及技巧一、选择题解答模型策略近几年来,陕西高考数学试题中选择题为10道,分值50分,占总分的33.3%。
注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。
准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间,获取高分的秘诀。
高考中考生“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
一般地,选择题解答的策略是:①熟练掌握各种基本题型的一般解法。
②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。
③挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。
二、填空题解答模型策略填空题是一种传统的题型,也是高考试卷中又一常见题型。
陕西高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。
根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求学生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。
由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。
二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。
在解答填空题时,基本要求就是:正确、迅速、合理、简捷。
一般来讲,每道题都应力争在1~3分钟内完成。
填空题只要求填写结果,每道题填对了得满分,填错了得零分,所以,考生在填空题上失分一般比选择题和解答题严重。
高中数学解题思路方法与技巧分析
高中数学解题思路方法与技巧分析高中数学是学生们学习过程中的一门重要学科,数学不仅是一门学科,更是一种思维方式和解决问题的方法。
掌握高中数学解题的思路、方法和技巧对学生们来说至关重要。
本文将从解题的一般思路入手,分析高中数学解题的方法与技巧,希望能为学生们提供一些解题的帮助。
一、数学解题的一般思路1. 理清题意。
在解题之前,首先要仔细阅读题目,理解题目所描述的情境或问题,找出题目中涉及的数学概念和知识点。
只有理清题意,才能正确地解答问题。
2. 探索问题,分析问题。
在理清题意的基础上,要对问题进行分析,弄清问题所涉及的数学原理和解决方法。
这个阶段通常需要考虑问题的各种可能性,进一步理解问题。
要灵活地运用各种数学思维方法,进行深入探讨,挖掘问题的本质。
3. 创立解决问题的数学模型。
在理解和分析问题后,要根据题目中的信息,建立问题的数学模型,将问题转化为数学形式,从而更好地解决问题。
4. 运用数学工具解决问题。
在建立了数学模型之后,就可以运用相应的数学原理、定理和方法,来解决问题。
这一步可能涉及到代数运算、几何推理、函数分析等等,需要根据具体情况进行灵活运用。
5. 检验与分析解答结果。
在解答问题之后,要对解答结果进行检验和分析,确认解答是否符合题目的要求,是否存在逻辑和数学上的错误,并且可以从解答结果中得出一些结论或启示。
二、高中数学解题的方法与技巧1. 掌握基本概念和定理。
在解题过程中,必须熟练掌握基本的数学概念和定理,比如三角函数、数列、导数积分等等,只有掌握了这些基本知识,才能更好地解决问题。
2. 善于画图。
在解决几何题目时,可以通过画图的方式,更好地理解题目并得出解答,画图是解决几何问题的有效方法,可以帮助我们看清问题的本质。
3. 灵活运用公式和定理。
在解题过程中,灵活运用各种数学公式和定理,可以帮助我们更快地解决问题,但也要注意不要机械应用,要结合具体情况适当变形或组合使用。
4. 善于进行逻辑推理。
高中数学二轮复习关于三角函数解题中常用数学模型构造
二轮复习关于三角函数解题中常用数学模型构造构造数学模型是一种比较重要、灵活的思维方式,它没有固定的模式。
在解题中要想用好它,需要有敏锐的观察、丰富的联想、灵活的构思、创造性的思维等能力。
应用好构造思想解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是弄清条件的本质特点和背景,以便重新进行逻辑组合。
常用的有构造命题、构造表达式、构造几何体等,本文拟就通过介绍几种解三角函数的具体问题,对构造的各种思维方式作一些探讨。
1 构造直角三角形例1 设x ∈[4π,2π],求证:cscx -ctgx ≥2-1 思路分析:由2、1联想等腰直角三角形,不仿构造一个等腰直角三角形来研究。
作Rt ⊿ABC ,令∠C=900,AC=1,在AC上取一点D ,记∠CDB=x ,则BD=cscx ,CD=ctgx ,AD=1-ctgx ,利用AD+DB≥AB=2,可得cscx -ctgx ≥2-1,等号仅在x =4π时成立。
2 构造单位圆例 2若0<β<α<2π,求证:α-β<tg α-tg β 思路分析:构造单位圆,借助三角函数线与三角函数式的关系,把数的比较转化为几何图形面积的比较。
作单位圆O ,AP 1=β,AP 2=α,∴ P 1P 2=α-β,AT 1=tg β,AT 2=tg α,S ⊿AT O =21tg α,S ⊿AP O =21tg β,由于S 扇形OAP=21α,S 扇形OAP =21β。
∴S 扇形OP P =21(α-β),S ⊿OT T=21tg α-21tg β。
则S ⊿OT T>S 扇形OP P即 21(α-β)<21(tg α-tg β) 所以 α-β<tg α-tg β3 构造函数表达式例3已知x 、y ∈[-4π,4π],a ∈R ,且⎩⎨⎧=++=-+0cos sin 402sin 33a y y y a x x ,求cos (x+2y )思路分析:由x 3+sinx 与2(4y 3+sinycosy ),这两部分形式完全类似,由此可构造函数形式。
高中数学解题模型有哪些
高中数学解题模型有哪些?
1.数量关系模型:单价X数量=总价速度X时间=路程
2.方程——等量关系模型包括正反比例
3.运算定律:运算定律成为简便运算的模型
模型1:元素与集合模型
模型2:函数性质模型
模型3:分式函数模型
模型4:抽象函数模型
模型5:函数应用模型
模型6:等面积变换模型
模型7:等体积变换模型
模型8:线面平行转化模型
模型9:垂直转化模型
模型10:法向量与对称模型
模型11:阿圆与米勒问题模型
模型12:条件结构模型
模型13:循环结构模型
模型14:古典概型与几何概型
模型15:角模型
模型16:三角函数模型
模型17:向量模型
模型18:边角互化解三角形模型
模型19:化归为等差等比数列解决递推数列的问题模型模型20:构造函数模型解决不等式问题
模型21:解析几何中的最值模型。
高中数学解题方法-----导数大题的常用找点技巧和常见模型
x
min
当 时, , 0 < a <1
( ) f
( −1)
=
a e2
+
a
− e
2
+1=
a
+
ea
+ e2
e2
−
2
>0
, f
ln
3
− a
a
=
a
3 a
2 −1
+
(a
−
2)
3 a
−1
−
ln
3 a
−1
=
3 a
−1−
ln
3 a
−1
>
0
其中 , ,所以 在 和 上各有一个零点 1 −1 < ln
(2)若 f (x) 有两个零点,求a 的取值范围.
解析:( ) ( )( ) 1 f '( x) = 2ae2x + (a − 2) ex −1 = 2ex +1 aex −1
若 a ≤ 0 ,则 f '(x) < 0 恒成立,所以 f ( x) 在 R 上递减;
若 ,令 ,得 a > 0
f '( x) = 0 ex = 1 , x = ln 1 .
f (x) < 0 a > 0 min
f
(x) min
=
f
ln
1 1 a = 1− a
− ln
1 a
<0.
构造函数 g ( x) =1− x − ln x , x > 0 . 易得 g '( x) = −1− 1 < 0 ,所以 g ( x) =1− x − ln x 单调递减. x
143个高中高频数学解题模型
143个高中高频数学解题模型一、一元一次方程与一元一次方程组1. 一元一次方程的定义一元一次方程指的是只含有一个变量,并且最高次数为一的方程,通常表示为ax+b=0。
解一元一次方程的方法主要有求解法和图解法。
2. 一元一次方程组的概念一元一次方程组指的是由若干个一元一次方程组成的方程组,通常表示为a1x+b1y=c1a2x+b2y=c2解一元一次方程组的方法主要有代入法、加减法和等系数消去法。
二、一元二次方程与一元二次不等式1. 一元二次方程的特点一元二次方程指的是最高次数为二的方程,通常表示为ax^2+bx+c=0。
解一元二次方程的方法主要有配方法和求根公式。
2. 一元二次不等式的解法一元二次不等式指的是最高次数为二的不等式,通常表示为ax^2+bx+c>0或ax^2+bx+c<0。
解一元二次不等式的方法主要有因式分解法和图像法。
三、二元二次方程与二元二次不等式1. 二元二次方程的定义二元二次方程指的是含有两个变量且最高次数为二的方程,通常表示为ax^2+by^2+cxy+dx+ey+f=0。
解二元二次方程的方法主要有配方法和消元法。
2. 二元二次不等式的概念二元二次不等式指的是含有两个变量且最高次数为二的不等式。
解二元二次不等式的方法主要有图解法和代数法。
四、指数与对数1. 指数的基本性质指数是幂运算的一种表示方式,有基本性质包括乘法法则、除法法则和零指数法则。
2. 对数的基本概念对数是幂运算的逆运算,有基本性质包括对数的乘除法则和对数的换底公式。
五、三角函数与解三角形1. 三角函数的基本性质三角函数包括正弦函数、余弦函数和正切函数,有基本性质包括奇偶性、周期性和对称性。
2. 解三角形的基本方法解三角形主要包括利用三角函数和利用三角恒等式两种方法,主要应用于解直角三角形和不定角三角形。
六、平面向量的运算1. 平面向量的基本定义平面向量是具有大小和方向的量,有基本运算包括数乘、加法和减法。
模型解题法 高中数学 模型十五 角模型
模型十五角模型(一)单角模型我们在解决三角函数问题的时候经常遇到这样一类题目:题目只涉及一个未知角或者已知非特殊角,通过二倍或者与已知特殊角的组合,加上各种三角函数的综合使用,使得题目形式变化多各类,丰富多彩,那么在相关的题目中是如何体现这种角的组合,以及三角函数的综合使用的呢?例1 化简y=).A.−sin2−cos2B.sin2+cos2C.sin2−cos2D.−sin2+cos2例2 已知1+tanα1−tanα=3+22,求:(1)sinα+2cosα2sinα−cosα;(2)3cos2π−α+sin(π+α)⋅cosπ−α+2sin2(α−π)的值.例3(1)设cos(−x)=cos x,则x的取值范围是____;(2)设cos(−x)=cos x,则x的取值范围是____;(3)设sin(−x)=sin x,则x的取值范围是____;(4)设sin(−x)=sin x,则x的取值范围是____.例4已知sinθ+cosθ=15,θ∈0,π,则tanθ=____.例5已知关于x的方程2x2−3+1 x+m=0的两根为sinθ和cosθ,θ∈(0,2π),求:(1)sin2θsinθ−cosθ+cosθ1−tanθ的值;(2)m的值;(3)方程的两根及θ的值.模型归纳有关三角函数的运算,当只出现一个未知角,但伴随与特殊角的组合或多种三角函数综合使用使三角运算丰富多样,要解决这些问题,我们需要掌握一个基本原则,那就是“化简”,使用的公式包括同角三角函数基本关系式和诱导公式.同角三角函数基本关系式有两个:sin2α+cos2α=1,tanα=sinαcosα.在使用同角三角函数基本关系式的时候需要注意:(1)多种函数同时出现时,要正切化弦;(2)正余弦互求时,通过角的范围确定正负.诱导公式比较多,总的口诀是:“奇变偶不变,符号看象限”,其中“奇偶”是指在未知角上附加的角是π2的多少倍,如果是奇数倍,名称需要改变,如果是偶数倍,名称不改变;“符号看象限”是指借助当未知角为锐角时,组合角所在象限所决定的三角函数的正负,来确定是否添加负号.例如sin(π2+α)中,未知角α上附加的角符号看象限是π2的一倍(奇数倍),因此名称改变,另外当α为锐角时,π2+α为第二象限角,sin(π2+α)>0,因此sin(π2+α)=cos α.这类题目的解题模型是:用诱导公式将角统一,排除特殊附加角的干扰→使用同角三角基本关系式,尽量做到:函数种类、项数减少,次数降低,分式化为整式,无理式化为有理式→保留结果:数字或者最简的三角函数式模型演练1.已知cos(π+α)=−35,α为第四象限角,则sin(−2π+α)=( ).A.35B.−45C.±45 D .35 2.已知tan x =13,求(1)2sin x−cos x sin x +cos x ;(2)2sin 2x +sin x cos x .(二)多角模型我们解决完一个角的三角函数问题之后,开始研究多个角的和或差的三角函数,这种问题不仅在题设和问题构造上变化多样,而且综合使用正弦、余弦和正切函数的和角或差角公式,使问题难度加大,能够发现和研究多个角之间的关系,以及研究不同角三角函数值之间的关系是解决多角问题的关键,那么在具体的题目当中,是如何构建多角问题,以及如何考查和、差角公式呢?例1 求cos 10°sin 50° tan 10°− 3 的值.例2 已知tan α+β =7,tan α⋅tan β=35, 求sin α的值.例3 若α∈ 0,π ,cos α+π6 =35,求sin α的值.例4 已知π2<β<α<3π4,cos α−β =1213,sin(α+β)=−35,求sin α的值. 例5 已知sin(x +y )=13,sin x −y =15, 求tan x tan y 的值.例6 已知sin α=55,sin β= 1010, 且α,β都是锐角,求α+β的值.例7 已知tan(α−β)=12,tan β=−17, 且α,β∈ 0,π , 求2α−β的值.模型归纳对于角之间的关系,我们应该辩证地来看,比如当把α+β看成α与β的和不方便解决问题时,也可以把α看成α+β与β的差,再如2α−β可以看成α乘以2再与β作差,也可以看成α与α−β的和,或者看成α−β的2倍与β的和等等.对于多角三角函数的关系问题,主要是对和差角公式的结构的研究,比如,sinα−β=sinαcosβ−cosαsinβ中共涉及到三个角α−β、α和β,五个三角函数sinα−β、sinα、cosβ和sinβ,没有涉及α−β的余弦,针对这一特点,我们将未知(待求)于等式左侧,两个已知(条件)于等式右侧.对于弦函数和切函数同时出现的时候,除非出现弦函数齐次式,一般都需要将切函数化为弦函数.对于给值求角的题目,通常是借助角的某一个三角函数来求,需要注意两点:(1)三角函数种类的选用,以不造成多解可能为宜,比如当角的范围为0,π时,尽量不选用正弦,因为正弦值求完之后如果不等于,确定它是锐角或钝角比较麻烦,可以考虑使用余弦;(3)三角函数值算完以后,尽量确定该角尽量小的一个范围,以确定该角的具体取值.对于同一个角的正弦和余弦的组合,我们通常是逆向使用和差角的正余弦公式,以达到化简的目的,比如sinα+3cosα=2sin α+π3等.这类题目的解题模型是:分析各个角之间的和或者差的关系,注意辩证使用→根据题目条件和特点,结合角之间的关系选用恰当的和差角公式→根据选用公式的结构特点,使用恰当的运算技巧,进行相关运算模型演练1.锐角α,β满足cosα=45,cos(α+β)=35,则sinβ=().A.1725B.35C.725D.152.已知cosα−cosβ=12,sinα−sinβ=−13, 则cosα−β=().A.5972B.5173C.1336D.12133.已知sinα+sinβ+sinγ=0, 则cos(β−γ)=().A.−1B.−12C.12D. 1(三)倍角模型二倍关系是两个角之间一种非常特殊的关系,二倍角公式是三角函数的一种重要变形,其表现形式多样,有时比较直接,有时不是特别明显,二倍角公式及其变形公式是解决三角函数问题的一种重要手段,也是考查的一个重要内容.那么二倍关系在题目当中如何体现,二倍角公式又是如何考查的呢?精选例题例1求值:cosπ5cos2π5.例2已知α为锐角,且tan12,求sin2αcosα−sinαsin2αcos2α的值.例3化简:1+cosθ−sinθ1−sinθ−cosθ+1−cosθ−sinθ1−sinθ+cosθ.例4 求函数sin2x+2sin x cos x+3cos2x的最大值,及相应x的值.例5 己知sin2θ=a,θ∈π2,3π4,那么sinθ+cosθ=____.模型归纳对于二倍角的余弦公式,我们需要记住几个重要变形:1+cos2α=2cos2α,1−cos2α=2sin2α,cos2α=1+cos2α2,sin2α=1−cos2α2等,另外我们需要了解二倍角公式及其变形公式的结构特点是:协调角的倍数和三角函数的次数的关系,如cos2α=2cos2α−1等号左边角2倍,三角发次数1次,等号右边角1倍,三角函数次数2次.了解这一特点,我们可以权据题目的要求,在倍数与次数之间进行转化,比如例4,减小次数,增大倍数.对于二倍角的正弦公式sin22α=2sinαcosα,我们关注角倍数与三角函数次数情报同时,我们还应关另一个细节,就是关于三角函数的名称,等号左侧只有一个正弦,等号右侧一个正弦,一个余弦,这就意味着:正向使用公式,派生出一个余弦;逆向使用公式,隐藏掉一个余弦.比如例1,题目所涉及两个角有2倍关系,可以考虑使用二倍角公式,另外以余弦形式出现,可以考虑逆向使用二倍角正弦公式,以求将余弦逐个隐藏.我们还应记住几个和1有关的二倍角公式变形:1+sin2α=sinα+cosα2,1−sin2α=sinα−cosα2这类题目的解题模型是:根据题目的结构特点,确定已知与待求之间角的关系:倍角关系选择适当的二倍角公式或变形公式先利用公式进行变形转化,再将复杂式子化简或求值模型演练1.若25π≤α<3π,则2+2cosα+1−sinα−sinα2+cosα2可化简为A.0B.2cosα2−sinα2C.−2cosα2−sinα2D.2cosα22.已知f x=1+x,当π≤θ<54π时,f sin2θ−f−sin2θ为A. 2sinθ B.−2sinθ C.−2cosθD. 2cosθ3.cos2π15cos4π15cos8π15cos16π15的值为____.(四)三角函数线模型模型思考三角函数线是借助有向线段来表示三角函数的方法,是三角函数的图形表示,但是我们在做题的时候,单纯使用三角函数线有时并不是十分快捷,为了快捷有效地解决问题,我们可以考虑将三角函数线进行改造,得到改良后的三角函数线即我们所说的“大风车”模型,那么什么是“大风车”,“大风车”又该如使使用以及解决什么问题呢?精选例题例1 求满足sinα>12的角α的取值范围.例2 若A是△ABC的内角,则sin A+cos A的取值范围是____.例3 由不等式组sinα−cosα<0cosα+sinα>0,所确定的角的α取值范围是____.例4 如果α是第三象限角,且满足1+sinα=cosα2+sinα2,那么α2是A.第四象限角B.第三象限角C.第二象限角D.第一象限角例5 设0≤α<π2,比较sinα与cosα的大小关系.例6 设α,β是第二象限角,那么下列结论正确的是()A.tanα>tanβB.tanα<tanβC.cosα>sinαD.cosα<sinα例7 已知sinα>cosβ,那么下列结论成立的是()A.若α,β是第一象限角,cosα>cosβB.若α,β是第二象限角,tanα>tanβC.若α,β是第三象限角,cosα>cosβD.若α,β是第四象限角,tanα>tanβ例8 若α,β为锐角,且cosα>sinβ,则()A.α+β<π2B. α+β>π2C. α+β=π2D. α<β模型归纳通过分析,我们可以发现借助“大风车”图示,可以快捷有效地进行同角不同函数或不同角同一三角函数的大小比较或解决取值范围的问题.我们将各种“大风车”总结如下:(1)正弦特点是:左右对称,向上集中.(2)余弦特点是:上下对称,向右集中.(3)正切特点是:单向旋转,上下无穷(4)sinα+cosα特点是:左下最小,右上集中(5)sinα−cosα特点是:右下最小,左上集中这类题目的解题模型是:确定比较项:同角不同函数或同函数不同角通过选定的比较项,确定适归的“大风车”模型通过模型比较不同角或不同函数值的大小确定角或三角函数值的取值范围(五)和“1”有关的三角函数模型模型思考数字1作为数字的基本单位,在三角函数的运算中却有着广泛的应用,无论是特殊角三角函数值还是三角公式,无处不有1的影子,发现它,利用它,可以快速有效地解决在关三角函数的问题.那么,1是如何在题目中藏身,又是如何发挥它的作用的呢?精选例题例1 已知sin4α+cos4α=1,那么sinα+cosα=____.例2 已知sinα+cosβ=1,cosα+cosβ=1,则sinα+cosα=____.例3 已知sinθ+sin2θ=1,则cos2θ+cos4θ+cos6θ=____.例4 表达式1+sin2θ−cos2θ1+sin2θ+cos2θ可以化简为()A.tanθB.1tanθC.sinθD.2sinθ例5 化简:1+tan15°1−tan15°.例6 如果a sin x+cos x=1,b sin x−cos x=1,且x≠kπ (k为整数)那么ab等于A.−1B.0C.0.5D.1例7 已知sinαsinβ=1,则cosα+β=()A.−1B.0C.1D.±1例8 已知sinα+sinβ=2,求sin(α−β)的值.模型归纳对和“1”有关的公式与性质作一梳理:(1)特殊角sinπ2=1,cos0=1,tanπ4=1等等;(2)一般规律sin2α+cos2α=1,sinα≤1,cosα≤1等等;(3)公式变形1+sin2α=sinα+cosα2,1−sin2α=sinα−cosα2,1+cos2α=2cos2α,1−cos2α=2sin2α等等.这类题目的解题模型是分析题目:抓住特殊角或特殊值根据特殊角或特值的特点,选择适归的三角公式将特殊角或特殊值代入相关表达式计算模型演练=____.1.已知sin x+cos x=1,则sin x−cos x1+sin x cos x2.在△ABC中,若tan A⋅tan B>1,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定。
(完整版)高中数学通用模型解题方法技巧总结
高中数学通用模型解题方法1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
显然,这里很容易解出A={—1,3}.而B最多只有一个元素.故B只能是-1或者3。
根据条件,可以得到a=-1,a=1/3。
但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。
3。
注意下列性质:要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在).同样,对于元素a2, a3,……a n,都有2种选择,所以,总共有种选择,即集合A有个子集.当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为(3)德摩根定律:有些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数f(x)=ax2+bx+c(a〉0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1。
或者,我说在上 ,也应该马上可以想到m,n实际上就是方程的2个根5、熟悉命题的几种形式、∨∧⌝可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”()()().命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
6、熟悉充要条件的性质(高考经常考)满足条件,满足条件,若;则是的充分非必要条件;若;则是的必要非充分条件;若;则是的充要条件;若;则是的既非充分又非必要条件;7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象.)注意映射个数的求法。
高中数学丨外接球与内切球解题方法,8大模型
高中数学I夕卜接球与内切球解题方法,8大模型空间几何体的外接球与内切球-、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球。
2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。
二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正弦定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直。
高中数学中常见的数学建模题分析
高中数学中常见的数学建模题分析在高中数学教学中,数学建模题是一种常见的题型,旨在让学生通过抽象建模,求解实际问题。
数学建模题通常涉及到数学知识、逻辑推理、数学模型的建立与优化等方面,对学生的综合能力提出了较高的要求。
本文将分析高中数学中常见的数学建模题,探讨解题方法及相关技巧。
1. 地面坡度问题地面坡度问题是高中数学建模中的常见题型,通常涉及到直角三角形、三角函数的知识。
这类问题常常以“某一杆塔吊挂重物”,“某座桥梁建设”等为背景,要求学生根据给定条件,计算坡度、高度、距离等。
解题时,可以通过绘制坡度示意图,使用三角函数公式,建立三角形关系等方法,辅助求解。
2. 最优生产方案问题最优生产方案问题是数学建模中的经典题型,要求学生根据生产成本、需求量、利润等条件,确定最优的生产方案。
这类问题常常涉及到线性规划、最值、函数优化等知识。
解题时,可以通过建立数学模型,使用线性规划方法,求解导数等方式,寻找最优生产方案。
3. 人口增长问题人口增长问题是数学建模中的典型题型,要求学生根据给定的人口增长率、初期人口数量等条件,预测未来人口数量。
这类问题常常涉及到指数函数、常微分方程等知识。
解题时,可以通过建立微分方程模型,使用指数函数性质,求解微分方程的通解等方法,完成人口增长问题的分析和预测。
4. 购物策略问题购物策略问题是数学建模中常见的实际问题,要求学生根据购物节省、优惠券折扣等条件,确定最佳购物策略。
这类问题通常涉及到百分数、比例、折扣计算等知识。
解题时,可以通过建立优惠券折扣函数,利用比例关系,计算购物节省金额等方式,找到最佳购物策略。
通过以上对高中数学中常见的数学建模题的分析,我们可以看到数学建模题在数学教学中的重要性和广泛性。
通过解答这些建模题,学生不仅可以提升数学能力,还可以锻炼主动解决实际问题的能力。
希望学生在学习数学建模的过程中,能够灵活运用数学知识,提高解决问题的能力,为将来的学习和工作打下坚实的基础。
高中数学解题模型和解法
高中数学解题模型和解法高中数学学习现状一、不会解:想不到、分不清、思维定势据调查显示:半数中学生成绩被数学、物理拖后提,原因并不是智力问题,也不是懒惰,而是方法的问题。
这些学生做题就像在荒原上开汽车,很容易迷路,绕弯路。
二、解题慢:速度慢、不熟练、记忆模糊80%的考生感叹:考试时间段,题目做不完。
其实,这隐含着一个人们最容易忽视的问题:那就是没有在解题时建立正确的方法。
公式、定理背的的滚瓜烂熟,但一到做题的时候就卡壳。
尤其在考试的时候,时间又紧,做题卡壳,做小题的时间都不后用,最后几道大题直接就放弃了。
三、老出错:不细心、踩陷阱、毫厘之差很多学生会说:这个题我做错,不是我不会,是因为粗心做错了。
其实这个观点是大错特错。
出题人会在出提时故意设置陷阱,就算你再细心,也还是很容易犯错,也就是说,罪魁祸首根部不是你粗心、细心的问题,而是解题方法的问题。
其实,将这些总结为一句话:成绩差,归根到底,没方法,缺少正确的引导!针对这个令广大莘莘学子头疼的问题,我们提出模型解题法。
只要在科学方法的引导下,成绩一定会得到最大程度的提高。
模型三大步:看题型、套模型、出结果。
第一步:熟悉模型,不会的题有清晰的思路第二步:掌握模型,总做错的题不会错了第三步:活用模型,大题小题都能轻松化解一、选择题解答模型策略注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。
准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间,获取高分的秘诀。
高考中考生“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
一般地,选择题解答的策略是:① 熟练掌握各种基本题型的一般解法。
高中数学解题大招,解题模型,提分秘籍,高中家长都在看
高中数学解题大招,解题模型,提分秘籍,高中家长都在看高中数学是一个相对较难的学科,不少学生在学习时遇到了许多困难。
针对这个问题,以下是一些解题大招、解题模型和提分秘籍。
一、解题大招。
1.理清思路:在做数学题时,必须先理清思路,理清每一道题目的解题步骤,避免盲目求解。
2.画图分析:很多数学题都需要画图来解决问题。
画图有助于更好地理解问题、准确表达思维和从容解题。
3.建立数学模型:数学建模是一种数学智慧的应用,必须对不同题型建立相应的数学模型,可以把复杂的问题简单化,最终解决问题。
4.积极研究:积极研究教师发布的每道题目,分析题干和答案,多按照一定套路思考解题思路,提高解题技巧。
将解题困难部分列于数学笔记本上,应该随时找老师、同学讨论。
5.自己解题:在课后自主解题,通过不断练习、反复推敲巩固知识点和掌握解题思路。
二、解题模型。
1.构建二元一次方程组、求方程组解。
2.利用函数与导数的关系求最值。
3.数学归纳法证明等。
三、提分秘籍。
1.攻克数学基础知识,巩固基础。
初中时期数学基础的掌握对高中数学的学习至关重要。
2.模拟考情较真实,切莫错过学习机会。
不轻视同学的考试成绩,多看一些模拟题,研究常考题型。
3.课上积极思考,用课下时间练习巩固。
每节课的时间都应该充分利用,积极思考问题,利用下课时间教师留下的作业练习巩固。
4.勤加思考,多思多练可提高升学率。
应该不断思考问题,拓宽思维,多练习提高对数学的认识和掌握程度。
总之,高中数学的学习离不开大量的实践和练习,并且需要建立自己的解题模型,理清思路,注重基础知识的掌握和复习。
只要坚持不懈,就可以取得良好的成绩。
高中数学解题八个思维模式和十个思维策略【精选文档】
高中数学解题八种思维模式和十种思维策略引言“数学是思维的体操”“数学教学是数学(思维)活动的教学。
”学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。
作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。
高中数学思维中的重要向题它可以包括:高中数学思维的基本形式高中数学思维的一般方法高中数学中的重要思维模式高中数学解题常用的数学思维策略高中数学非逻辑思维(包括形象思维、直觉思维)问题研究;高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究;高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性高中数学思维的基本形式从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a 同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式. 3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。
二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。
3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。
4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。
5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感.6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学模型解题法
高中数学模型解题理念
数学模型解题首先需要明确以下六大理念(原则):
理念之一——理论化原则。
解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有价
值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的!
理论之二——个性化原则。
倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性——通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。
因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。
理论之三——能力化原则。
只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则无力
聚合!因此,充分训练我们的发散思维能力,尽情地展开我们联想与想象的翅膀,才能在创新的天空自由地翱翔!
理论之四——示范化原则。
任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。
关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。
理论之五——形式化原则。
哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。
理论之六——习惯性原则。
关于数学的解题,有三个层次:第一个层次,正常的解题,就是按照已知、求解、作答等等。
这是我们大多数同学的解题情况,解出来,高兴得不得了,也不再做深层次的追求与思考,解不出来,就一头露水,而且很郁闷,不知其所以然。
第二个层次,有思考的解题,主要就是发散和聚合,简单点说就是一题多解和对于解题“统一”模型的思考。
第三个层次,主动的解题,就是对题
目的设计进行思考,如何通过增删条件,改变提问等方法确立结论成立的最少条件、获得最深结论,即如何以本题目为原型进行变式训练,或进行引申、演变、拓展、推广等等。
高中数学模型解策略设计
具体解释:关于解题策略:实质上就是通过审题来构思、探究解题思路的思维过程。
解题必须充分运用条件和尽可能满足结论的需要,因而,通过审题全面掌握题意了解题的基础与首要任务。
那么,审题要从哪些方面进行呢?这里有五点建议:
(1)初步地全面理解题意(理解它的每一个字、词、每一句话),能清楚地理解全部条件和结论;
(2)准确地作出必要的图形,包括示意图;
(3)必要时,要把语言和不宜于直接计算的算式化为能直接计算的算式,把不便于进行数学处理的语言化为便于进行数学处理的语言;
(4)发现比较隐蔽的条件;
(5)根据题目的特征提供的启示(信息)预见主要步骤或主要原则。
这五项要求,前三项式基本的,后两项是较高的。
“数学模型解题法”解释
对于此“数学模型解题法”,需要明确其具体含义,主要有二:
一、“正向发散”:即分析解决问题的思维策略模型的探究与构建,是直接的、正向的、尽情地发散的,而且往往是针对一个具体问题的;
二、“逆向聚合”:将一些“相似”“甚至看似”“联系不大”的大同小异甚至“小学科”(如几何、代数、向量等不同范围与形式)的题目进行简化、抽象,并对其分析解决方法进行系统的归纳,概括,从中抽出具有共性即共同的解题规律性的东西。
“数学模型解题法”模型的程序设计及其操作要义
第一步:审题、识模
观察题设条件与所求结论的结构特征,这主要从代数结构与几何结构两个方面进行,对此结构特征进行广泛地联想与想象,与头脑中已有的认知结构中相关或相似特征相联系,用所寻求的认知结构“相似性”来演绎、指导对于现有知识结构的调动与激活,旨在对题目的类型与模型进行探索与识别。
第二步:简化、建模
通过分析,舍弃繁杂与次要因素,抓住主要矛盾及主要因素建立数学模型,将原问题转化为规范的、可实际操作的数学问题。
第三步:解模、引申
①制订解题策略,并实施解题计划;
②可从不同角度进行一题多解训练,以便于充分地发散;
③引申推广,扩大战果,并作变式训练,以从广、深两个维度认识问题的本质和规律。
第四步:释模、还原
将数学问题结果进行解释还原、检验、反证,以回归原问题,并总结出分析问题、解决问题的统一思维模型。
高中数学模型解题法案例分析
教育家钱仲寒说,每节课都是给学生自学的示范。
例题教学也不例外,它是通过引导学生挖掘典型题目的潜在教育教学价值,从不同方面不同层次锻炼思维品质,培养思维能力,以此培养自主学习能力,其作用直接表现为:
①对新授课中的定义、定理、公式的内涵与外延进行深化,连点成线,线组成面,由面成体,构建立体认知结构网络;
②丰富应用含义,增加应用层次;
③概括提炼数学方法,进而形成数学思想,增强数学应用意识。