高考中常见数学模型归类分析
高中数学模型汇总
![高中数学模型汇总](https://img.taocdn.com/s3/m/0b226673effdc8d376eeaeaad1f34693daef101c.png)
高中数学模型汇总
数学模型是数学知识在实际问题中的应用,旨在解决实际问题并做出预测。
以下是对一些常见数学模型的简单概述:
1. 线性规划模型:线性规划是在约束条件下,将线性函数优化到最大或最小值的方法。
它在工程、经济和管理等领域中得到广泛应用。
2. 概率模型:概率模型可用于预测未来事件的发生概率。
它包括抛硬币、掷骰子等离散事件,以及连续事件,如测量误差等。
概率模型在风险管理和统计等领域中得到广泛应用。
3. 微积分模型:微积分模型对变化率的研究对于数学知识在经济和物理领域的应用至关重要。
微积分的主要应用场景包括边际成本和收益、曲线图形和函数最大值和最小值等。
4. 差分方程模型:差分方程模型是一种递归函数,通常用于描述指令系统的运行、人口增长、经济增长等过程。
通过分析差分方程模型的行为可以预测未来情况。
5. 统计模型:统计模型通常用于将概率结合起来,以得到更准确的结果预测。
一个著名的统计模型是回归分析,它用于分析自变量和因变量之间的关系。
总的来说,数学模型为实际问题提供了一种有力的工具,以寻找最优解并提供未来预测。
在各个领域的应用都十分广泛。
高考中常用函数模型归纳及应用
![高考中常用函数模型归纳及应用](https://img.taocdn.com/s3/m/2de5463ca32d7375a41780ca.png)
高考中常用函数模型....归纳及应用 一. 常数函数y=a判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。
关于方程解的个数问题时常用。
例1.已知x ∈(0, π],关于方程2sin(x+3π)=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[3,2] C.( 3,2] D.( 3,2)解析;令y=2sin(x+3π), y=a 画出函数y=2sin(x+3π),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点,由图象知( 3,2),选D二. 一次函数y=kx+b (k ≠0)函数图象是一条直线,易画易分析性质变化。
常用于数形结合解决问题,及利用“变元”或“换元”化归为一次函数问题。
有定义域限制时,要考虑区间的端点值。
例2.不等式2x 2+1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( )A .-2≤x ≤2 B.431- ≤x ≤0 C.0≤x ≤471+ D.471-≤x ≤413- 解析:不等式可化为m(x-1)- 2x 2+1≥0 设f(m)= m(x-1)- 2x 2+1若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需⎩⎨⎧≥-≥0)2(0)2(f f ,解之可得答案D三. 二次函数y=ax 2+bx+c (a ≠0)二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。
很多问题都可以化归和转化成二次函数问题。
比如有关三次函数的最值问题,因其导数是二次函数,最后的落脚点仍是二次函数问题。
例3.(1).若关于x 的方程x 2+ax+a 2-1=0有一个正根和一个负根,则a 的取值范围是( ) 解析:令f(x)= x 2+ax+a 2-1由题意得f(0)= a 2-1 <0,即-1<a <1即可。
高中数学模型总结归纳
![高中数学模型总结归纳](https://img.taocdn.com/s3/m/eae10fec48649b6648d7c1c708a1284ac85005f1.png)
高中数学模型总结归纳数学模型是数学在实际问题中的应用,通过建立数学模型,我们可以对实际问题进行定量分析和预测。
在高中数学学习中,数学模型是一个重要的学习内容,它能够培养学生的数学思维和解决实际问题的能力。
下面将从线性规划、概率统计和微分方程三个方面总结归纳高中数学模型的相关知识。
一、线性规划模型线性规划模型是数学建模中常用的一种模型。
它通过建立一组线性方程和一个线性目标函数来描述实际问题,并求解最优解。
线性规划模型在经济、管理、交通等领域有广泛的应用。
例如,在生产计划中,可以通过线性规划模型来确定最佳的生产数量,以最大化利润或最小化成本。
在运输问题中,可以利用线性规划模型来确定最佳的物流路径,以最大化运输效益或最小化运输成本。
二、概率统计模型概率统计模型是研究随机现象的数学模型。
它通过建立概率分布函数和统计模型来描述实际问题,并对随机变量进行分析和推断。
概率统计模型在风险评估、市场调查、医学研究等领域具有重要的应用价值。
例如,在风险评估中,可以利用概率统计模型来评估不同投资组合的风险和收益,以帮助投资者做出合理的决策。
在市场调查中,可以通过概率统计模型来分析市场需求和消费者行为,以指导企业的营销策略。
三、微分方程模型微分方程模型是描述变化过程的数学模型。
它通过建立微分方程和初始条件来描述实际问题,并求解方程得到解析解或数值解。
微分方程模型在物理、生物、环境等领域有广泛的应用。
例如,在物理学中,可以利用微分方程模型来描述物体的运动规律,求解方程可以得到物体的位置、速度和加速度等信息。
在生物学中,可以通过微分方程模型来描述生物种群的增长和衰退过程,以了解生态系统的变化和稳定性。
高中数学模型是数学在实际问题中的应用,通过建立数学模型,可以对实际问题进行定量分析和预测。
线性规划模型、概率统计模型和微分方程模型是数学建模中常用的三种模型。
通过学习和应用这些模型,可以培养学生的数学思维和解决实际问题的能力,提高数学学科的学习效果和实际应用能力。
高三数学模型知识点概括
![高三数学模型知识点概括](https://img.taocdn.com/s3/m/769d1624f4335a8102d276a20029bd64783e62a5.png)
高三数学模型知识点概括数学模型是一种抽象的数学工具,用来描述和解决各种实际问题。
在高中数学课程中,数学模型是一个重要的内容,而高三数学模型知识点则是指在高三阶段需要掌握和应用的数学模型相关的知识。
本文将概括高三数学模型的主要知识点,帮助同学们更好地理解和应用数学模型。
一、线性规划模型线性规划是一类常见的最优化问题,主要用于解决线性目标函数和线性约束条件下的最大值或最小值问题。
在高三数学中,我们需要掌握线性规划模型的建立和求解方法。
其中包括目标函数的确定、约束条件的建立、可行域的确定以及最优解的求解等。
二、函数模型函数模型是数学模型中常见的一种形式,用于描述输入和输出之间的关系。
在高三数学中,我们需要熟悉各种常见的函数模型,如线性函数、二次函数、指数函数、对数函数等。
掌握函数模型的特点和性质,能够帮助我们更好地分析和解决实际问题。
三、微分方程模型微分方程模型是描述变化率与变量之间关系的数学模型。
在高三数学中,我们需要了解常见的微分方程模型及其求解方法。
例如,一阶线性微分方程、一阶非线性微分方程、二阶线性齐次微分方程等。
通过掌握微分方程模型的建立和求解,我们能够解决各种实际问题,如变化率、增长与衰减等问题。
四、概率模型概率模型是用来描述随机事件发生的可能性的数学模型。
在高三数学中,我们需要掌握常见的概率模型及其应用。
例如,我们需要了解概率的基本概念、概率的性质、条件概率、独立事件等。
同时,我们还需要了解概率计算的方法,如加法原理、乘法原理、全概率公式、贝叶斯公式等。
五、统计模型统计模型是用来描述数据分布和数据关系的数学模型。
在高三数学中,我们需要学习和应用常见的统计模型。
例如,我们需要了解描述数据分布的概念和方法,如频率分布、累积分布、均值、方差等。
同时,我们还需要了解描述数据关系的概念和方法,如相关系数、回归分析等。
六、图论模型图论模型是研究图结构及其特性的数学模型。
在高三数学中,我们需要学习和应用常见的图论模型。
高考中高频的108个模型总结
![高考中高频的108个模型总结](https://img.taocdn.com/s3/m/80c11da3846a561252d380eb6294dd88d1d23d60.png)
高考中高频的108个模型总结高考中的数学题型有很多种,按照题目的性质和解题方法可以分为不同的模型。
经过总结,我们可以将高考中的数学题型归纳为108个模型,这些模型涵盖了从初中到高中数学的各个知识点,并且在高考中出现的频率较高。
这些模型不仅可以帮助我们系统地复习数学知识,还可以帮助我们有效地解决高考中的数学题目。
首先,我们来看一些常见的基础模型。
例如,解形如ax+b=cx+d的一元一次方程,解形如a/x+b/y=c的一元一次方程组,以及解形如ax^2+bx+c=0的一元二次方程等等。
这些基础模型在高考中出现的频率很高,掌握好这些基础模型可以为我们解决其他更加复杂的问题打下基础。
其次,高考中还经常出现几何模型。
比如,通过已知条件求证两条直线平行或垂直,通过已知条件求证三角形全等或相似,通过平移、旋转、翻折等方法求解几何题目等等。
几何模型不仅需要我们熟练掌握基本的几何知识,还需要我们发挥想象力和逻辑推理能力来解决问题。
另外,在高考中还经常出现函数模型。
比如,通过函数的定义域、值域、奇偶性等性质求解函数的图像,通过函数的导数或积分求解函数的极值、拐点等问题,通过函数的周期性、对称性等性质求解函数的周期、对称轴等问题等等。
函数模型是高等数学的重要内容,也是高考中的一个重点。
此外,高考中还可能出现概率与统计模型。
比如,通过条件概率、全概率公式、贝叶斯公式等方法求解概率问题,通过频率分布、均值、方差等统计量求解统计问题,通过正态分布、卡方分布等概率分布求解相关问题等等。
概率与统计模型需要我们灵活运用各种概率统计方法来解决实际问题。
总的来说,高考中的数学题型有很多种,但是它们都可以归纳为一些基础的模型。
通过系统地掌握这些模型,我们可以更加高效地解决高考中的数学问题。
在复习阶段,我们可以按照模型分类进行复习,先复习基础模型,再复习几何模型、函数模型、概率与统计模型等,以此来提高解题效率。
希望我们每一个高考数学的考生都能够顺利地应对高考挑战,取得优异的成绩。
高考题中的常见数学建模方法
![高考题中的常见数学建模方法](https://img.taocdn.com/s3/m/19d6a4be964bcf84b8d57b44.png)
高考题中的常见数学建模方法“数学建模”是指通过对实际问题的抽象、简化,确定变量和参数,是一种创造性活动,也是一种解决现实问题的量化手段,根据创造性人才成长和发展的规律以及现代社会对人才素质的要求,寓创新能力培养于数学建模之中,是培养学生创新能力的一条有效途径。
解答数学应用问题的核心是建立数学模型。
这就要求:认真分析题意,准确理解题意,寻找已知量与未知量之间的内在联系,然后将这些内在联系与数学知识联想、转化、抽象,建立数学模型。
中学数学建模的基本类型有:一、函数最值模型有关涉及用料最省、成本最低、利润最大等应用问题,可考虑建立目标函数,转化为函数最值问题结合导数来解决。
例1:某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=a/(x-3)+10(x-6)~(2),其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
(I)求a的值(II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。
分析:本题是2011年福建高考题,是以函数最值为模型的一个实际问题。
考查运算求解能力、应用意识,函数建模的能力,关键是列出利润的目标函数,第(I)题,代入x=5,y=11,得a=2(II)由(I)可知,该商品每日的销售量y=2/(x-3)+10(x-6)~(2),所以商场每日销售该商品所获得的利润的目标函数为f(x)=(x-3)[2/(x-3)+10(x-6)~(2)]=2+10(x-3)(x-6)~(2),3<x<6再利用导数求得三次函数的最大值。
二、不等式模型有关设计求最大、最小值问题的应用题时,考虑转化为不等式,应用不等式的性质及基本不等式来解。
例2;某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z=______A.4650元B.4700元C.4900元D.5000元分析:这是2011年四川高考题,是一道以不等式为模型的应用题,关键是列出线性约束条件及目标函数。
高考中常用函数模型归纳及应用
![高考中常用函数模型归纳及应用](https://img.taocdn.com/s3/m/8275ec43a216147917112898.png)
高考中常用函数模型....归纳及应用 一. 常数函数y=a判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。
关于方程解的个数问题时常用。
例1.已知x ∈(0, π],关于方程2sin(x+3π)=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[3,2] C.( 3,2] D.( 3,2)解析;令y=2sin(x+3π), y=a 画出函数y=2sin(x+3π),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点,由图象知( 3,2),选D二. 一次函数y=kx+b (k ≠0)函数图象是一条直线,易画易分析性质变化。
常用于数形结合解决问题,及利用“变元”或“换元”化归为一次函数问题。
有定义域限制时,要考虑区间的端点值。
例2.不等式2x 2+1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( )A .-2≤x ≤2 B.431- ≤x ≤0 C.0≤x ≤471+ D.471-≤x ≤413- 解析:不等式可化为m(x-1)- 2x 2+1≥0 设f(m)= m(x-1)- 2x 2+1若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需⎩⎨⎧≥-≥0)2(0)2(f f ,解之可得答案D三. 二次函数y=ax 2+bx+c (a ≠0)二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。
很多问题都可以化归和转化成二次函数问题。
比如有关三次函数的最值问题,因其导数是二次函数,最后的落脚点仍是二次函数问题。
例3.(1).若关于x 的方程x 2+ax+a 2-1=0有一个正根和一个负根,则a 的取值范围是( ) 解析:令f(x)= x 2+ax+a 2-1由题意得f(0)= a 2-1 <0,即-1<a <1即可。
高中数学解题模型有哪些
![高中数学解题模型有哪些](https://img.taocdn.com/s3/m/1e972900f78a6529647d5372.png)
高中数学解题模型有哪些?
1.数量关系模型:单价X数量=总价速度X时间=路程
2.方程——等量关系模型包括正反比例
3.运算定律:运算定律成为简便运算的模型
模型1:元素与集合模型
模型2:函数性质模型
模型3:分式函数模型
模型4:抽象函数模型
模型5:函数应用模型
模型6:等面积变换模型
模型7:等体积变换模型
模型8:线面平行转化模型
模型9:垂直转化模型
模型10:法向量与对称模型
模型11:阿圆与米勒问题模型
模型12:条件结构模型
模型13:循环结构模型
模型14:古典概型与几何概型
模型15:角模型
模型16:三角函数模型
模型17:向量模型
模型18:边角互化解三角形模型
模型19:化归为等差等比数列解决递推数列的问题模型模型20:构造函数模型解决不等式问题
模型21:解析几何中的最值模型。
高中数学解题大模型
![高中数学解题大模型](https://img.taocdn.com/s3/m/4f9e4c460640be1e650e52ea551810a6f524c8b2.png)
高中数学解题大模型随着高中数学的不断发展,解题技巧也在不断的深入探索。
高中数学的解题是一门系统性的研究,解题模型也是一个重要的组成部分。
解题模型是指用某种格式或形式,把问题解决的方法表达出来,且表达形式应当比较完整,从而使问题得到解决。
在解题模型的研究中,有一系列常用的、核心的解题模型,这些模型在高中数学解题中都有其重要的作用。
下面将介绍几种最常用的解题模型。
1、概率解题模型。
概率解题模型用来解决概率的计算问题,其基本形式为:某事件的概率=此事件的发生的次数/可能发生的所有事件的次数。
概率解题模型在高中数学中有着广泛的应用。
2、数列解题模型。
数列解题模型是高中数学解题中最重要的一种模型,用来解决数列的求和、求平均数等问题。
这种模型一般采用数列通项公式的形式,通过构造数列公式,对一定规律的数列求出其求和、求平均数等关键数据。
3、二次函数解题模型。
二次函数解题模型是高中数学中常见的一种解题模型,指的是将二次函数的图像、周长、最大值、最小值、极值点、凹凸性等问题,用二次函数的函数表达式或变量关系来解决。
4、排列组合计算模型。
排列组合计算模型是指从所有可能的排列组合中选出满足某一要求的排列组合的个数,此类问题通常采用“排列组合数公式”的形式进行求解。
5、几何解题模型。
几何解题模型是指用直线、圆、三角形、椭圆等图形的性质来解决几何问题的模型,其中最重要的两个性质是“相似性”和“平行性”。
通过这两个性质,一些复杂的几何问题可以被轻松解决。
6、比例解题模型。
比例解题模型是指用比例关系解决问题的模型,它是高中数学中最常用的解题模型之一,它可以用来解决比例关系问题,如比例结合题、比例平分题、比例比较题等。
7、函数解题模型。
函数解题模型是指用函数的单调性和凹凸性来解决函数的一类问题,它是高中数学解题中常用的一种模型,有着广泛的应用。
以上就是高中数学解题模型大全,在高中数学解题中,这些模型都有重要的作用,对于学生们,要掌握这些模型,把它们正确的应用到解题中,以便解决问题。
143个高中高频数学解题模型
![143个高中高频数学解题模型](https://img.taocdn.com/s3/m/af8e63c4e43a580216fc700abb68a98271feac88.png)
143个高中高频数学解题模型一、一元一次方程与一元一次方程组1. 一元一次方程的定义一元一次方程指的是只含有一个变量,并且最高次数为一的方程,通常表示为ax+b=0。
解一元一次方程的方法主要有求解法和图解法。
2. 一元一次方程组的概念一元一次方程组指的是由若干个一元一次方程组成的方程组,通常表示为a1x+b1y=c1a2x+b2y=c2解一元一次方程组的方法主要有代入法、加减法和等系数消去法。
二、一元二次方程与一元二次不等式1. 一元二次方程的特点一元二次方程指的是最高次数为二的方程,通常表示为ax^2+bx+c=0。
解一元二次方程的方法主要有配方法和求根公式。
2. 一元二次不等式的解法一元二次不等式指的是最高次数为二的不等式,通常表示为ax^2+bx+c>0或ax^2+bx+c<0。
解一元二次不等式的方法主要有因式分解法和图像法。
三、二元二次方程与二元二次不等式1. 二元二次方程的定义二元二次方程指的是含有两个变量且最高次数为二的方程,通常表示为ax^2+by^2+cxy+dx+ey+f=0。
解二元二次方程的方法主要有配方法和消元法。
2. 二元二次不等式的概念二元二次不等式指的是含有两个变量且最高次数为二的不等式。
解二元二次不等式的方法主要有图解法和代数法。
四、指数与对数1. 指数的基本性质指数是幂运算的一种表示方式,有基本性质包括乘法法则、除法法则和零指数法则。
2. 对数的基本概念对数是幂运算的逆运算,有基本性质包括对数的乘除法则和对数的换底公式。
五、三角函数与解三角形1. 三角函数的基本性质三角函数包括正弦函数、余弦函数和正切函数,有基本性质包括奇偶性、周期性和对称性。
2. 解三角形的基本方法解三角形主要包括利用三角函数和利用三角恒等式两种方法,主要应用于解直角三角形和不定角三角形。
六、平面向量的运算1. 平面向量的基本定义平面向量是具有大小和方向的量,有基本运算包括数乘、加法和减法。
高考数学模型归类:数形结合求函数值域
![高考数学模型归类:数形结合求函数值域](https://img.taocdn.com/s3/m/4830f58288eb172ded630b1c59eef8c75fbf9531.png)
高考数学一直是考生们备战的重点科目,而数学模型题更是考查学生综合运用各种数学知识解决实际问题的重要题型。
在数学模型题中,数形结合求函数值域是一个常见而又具有一定难度的类型。
接下来,本文将从数学模型的概念入手,结合具体例题进行详细的解析,帮助读者全面了解和掌握数形结合求函数值域的方法和技巧。
一、数学模型的概念数学模型是指用数学方法对实际问题进行抽象和描述,利用数学工具进行分析、推断和预测的过程。
在高考数学中,数学模型题往往涉及到函数、方程、不等式等知识,考查学生运用数学知识解决实际问题的能力。
二、数形结合求函数值域的基本思路数形结合求函数值域是一种通过数学模型解决实际问题的方法,其基本思路是将函数的图像和实际情况相结合,通过分析函数图像的性质,确定函数的值域。
在进行数形结合求函数值域时,有几个基本的步骤和技巧需要掌握:1. 分析函数的定义域和图像特征;2. 结合实际问题,确定函数的约束条件;3. 利用函数的性质和图像特征,求出函数的值域;4. 验证求得的函数值域是否符合实际问题的要求。
三、具体例题解析为了帮助读者更好地理解数形结合求函数值域的方法和技巧,接下来将通过具体的例题进行详细的解析。
例题:已知函数y=x^2在区间[-2,3]上的图像,并且y≥-1,求函数y=x^2的值域。
解析:1. 首先分析函数y=x^2的图像特征,函数y=x^2是一个开口向上的抛物线,对称轴为y轴,顶点为原点。
2. 结合实际问题的约束条件y≥-1,在图像上标出y=-1的水平线,由于y=x^2的图像是开口向上的抛物线,所以函数的值域应为[-1,+∞)。
3. 最后验证求得的函数值域是否符合实际问题的要求,即验证函数的图像是否位于y≥-1的范围内,通过对函数图像的观察可以得出结论,函数的值域为[-1,+∞),符合实际问题的要求。
通过以上例题的解析,相信读者对数形结合求函数值域的方法和技巧有了更清晰的认识和理解。
在解决这类问题时,关键是要充分理解函数的图像特征和实际问题的约束条件,灵活运用数学知识进行分析,得出准确的结论。
三种数学模型进行总结归纳
![三种数学模型进行总结归纳](https://img.taocdn.com/s3/m/7ad1ea07bf1e650e52ea551810a6f524cdbfcb4a.png)
三种数学模型进行总结归纳数学模型是现代科学研究和实践中的重要工具,它们能够对真实世界中的问题进行抽象和数学描述,帮助我们理解和解决复杂的问题。
在本文中,我将对三种常见的数学模型进行总结归纳,分别是线性模型、非线性模型和概率模型。
一、线性模型线性模型是数学中最基本也是最简单的模型之一。
在线性模型中,变量之间的关系是线性的,可以用一条直线或者一个超平面来刻画。
线性模型的基本形式可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn其中,Y表示因变量,X1、X2、...,Xn表示自变量,β0、β1、β2、...,βn表示系数。
线性模型的关键是确定合适的系数,可以通过最小二乘法等统计方法进行估计。
线性模型在很多领域都有广泛的应用,例如线性回归模型可以用来建立变量之间的关系模型,在市场营销中可以用来预测销售量与广告费用之间的关系;线性分类模型可以用来进行二分类或多分类,广泛应用于图像识别、信用评估等领域。
二、非线性模型与线性模型相对应的是非线性模型,非线性模型是一类不能用线性关系表示的模型。
在非线性模型中,变量之间的关系是非线性的,可能呈现出曲线、二次曲线、指数函数等形态。
非线性模型的基本形式可以表示为:Y = f(X, β)其中,Y表示因变量,X表示自变量,β表示参数,f(·)表示一个非线性的函数。
非线性模型在很多实际问题中有重要的应用,例如生物学中的生长模型、物理学中的运动模型等。
非线性模型的参数估计通常需要通过数值方法或者迭代算法来进行求解。
三、概率模型概率模型是一种利用概率理论描述随机现象的数学模型。
概率模型通过引入随机变量和概率分布来描述不确定性和随机性。
概率模型可以分为两类:参数模型和非参数模型。
参数模型是一类具有固定参数的概率模型,可以用有限个参数来刻画变量之间的关系。
参数模型的应用非常广泛,例如正态分布模型、泊松分布模型等。
参数模型的参数通常可以通过最大似然估计等方法进行估计。
高考模型知识点总结
![高考模型知识点总结](https://img.taocdn.com/s3/m/4fe59f4802d8ce2f0066f5335a8102d276a261e6.png)
高考模型知识点总结一、数学1. 线性方程组- 一元一次方程- 二元一次方程组- 三元一次方程组2. 函数与方程- 函数的定义与性质- 一次函数与二次函数- 指数函数与对数函数- 三角函数3. 空间几何与向量- 空间直线与平面的方程- 空间几何体的体积与表面积- 向量及其运算- 空间向量的共线与垂直4. 概率与统计- 随机事件- 概率的计算- 期望与方差- 统计图表的制作与分析二、物理1. 力学- 运动学- 牛顿定律与动力学- 力的合成与分解- 万有引力与行星运动2. 热学- 温度与热量- 热力学定律- 热传导、辐射与对流 - 热力学循环与功率3. 光学- 光的反射与折射- 光的成像- 光的干涉与衍射- 光的波粒二象性与光子4. 物质结构与电磁学- 原子结构与周期表- 电场与电势- 电流与电路- 电磁感应与电磁波三、化学1. 元素与化合物- 常见元素的性质与周期表 - 各类化合物的命名与性质2. 化学反应- 化学方程式与化学计量 - 反应类型与速率- 酸碱中和与氧化还原反应 - 化学平衡与化学能3. 物质的组成与结构- 原子结构与元素周期律- 分子与化合物的组成- 离子键与共价键- 功能性有机物的结构与应用4. 化学实验与评价- 基本实验操作与技巧- 实验数据的处理与分析- 化学实验安全与环境保护 - 化学反应的评价与应用四、生物1. 生物基础知识- 细胞与细胞器- 生物进化与分类- 遗传与变异- 生物的组织与器官2. 生命体内环境调节- 植物的光合作用- 呼吸与循环系统- 动植物的排泄与调节 - 免疫与抗体3. 生态系统与生物多样性 - 生物圈与生态位- 生物群落与生物密度 - 生物的竞争与互惠共生 - 环境保护与可持续发展4. 生物实验与技术- 基础实验操作与技巧 - 生物数据的处理与分析 - 人类疾病与基因工程 - 生物技术的探索与应用五、英语1. 语法与词汇- 时态与语态- 名词与代词- 形容词与副词- 动词与语态2. 阅读理解与写作- 不同题型的解题技巧- 阅读文章的理解与分析 - 写作结构与表达技巧- 高分范文赏析与练习3. 听力与口语- 听力技巧与常见题型- 口语表达与交流技巧- 日常对话与实际情景模拟 - 音标与发音练习4. 文化与翻译- 英美文化与习俗- 文化差异与沟通技巧- 翻译理论与实践- 文化碰撞与跨文化交流以上是高考涉及的主要模型知识点的总结,希望能给考生们一个指导方向,更好地备战高考。
立体几何解答题常考模型归纳总结(九大题型)(原卷版)-高中数学
![立体几何解答题常考模型归纳总结(九大题型)(原卷版)-高中数学](https://img.taocdn.com/s3/m/f3cc504e3069a45177232f60ddccda38376be1a8.png)
立体几何解答题常考模型归纳总结 高考立体几何解答题常考模型主要包括柱体、锥体、球体、旋转体、多面体等。
这些模型常涉及体积、表面积的计算,截面问题,以及与其他几何体的组合或相交问题。
此外,空间位置关系,如平行、垂直的判断与证明,也是常考内容。
空间角的计算,包括异面直线所成的角、直线与平面所成的角、二面角等,同样是高考立体几何的重要考点。
最后,空间距离的计算,如点到平面的距离、两平行平面间的距离等,也是解答题中常见的考查点。
掌握这些模型的基本性质和解题方法,对于提高高考立体几何的解题能力至关重要。
题型一:非常规空间几何体为载体【典例1-1】(2024·河南濮阳·模拟预测)如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==(1)求证:1AA ^平面11BCC B ;(2)求直线AB 和平面1ACB 所成角的正弦值.【典例1-2】(2024·云南昆明·三模)如图,在三棱台111ABC A B C -中,上、下底面是边长分别为2和4的正三角形,1AA ^平面ABC ,设平面11AB C I 平面=ABC l ,点,E F 分别在直线l 和直线1BB 上,且满足EF l ^,1EF BB ^.(1)证明:^EF 平面11BCC B ;(2)若直线EF 和平面ABC 【变式1-1】(2024·天津和平·二模)如图,三棱台111ABC A B C -中,ABC V 为等边三角形,1124AB A B ==,1AA ^平面ABC ,点M ,N ,D 分别为AB ,AC ,BC 的中点,11A B AC ^.(1)证明:1CC ∥平面1A MN ;(2)求直线1A D 与平面1A MN 所成角的正弦值;(3)求点D 到平面1A MN 的距离.【变式1-2】(2024·河南周口·模拟预测)如图,平行六面体1111ABCD A B C D -中,底面ABCD 与平面11ABC D 都是边长为2的菱形,11120BCD BC D °Ð=Ð=,侧面11BCC B(1)求平行六面体1111ABCD A B C D -的体积;(2)求平面11BCC B 与平面11CDD C 的夹角的余弦值.题型二:立体几何存在与探索性问题【典例2-1】如图1,ABC V 是边长为3的等边三角形,点,D E 分别在线段,AC AB 上,且1,2AE AD ==,沿DE 将ADE V 翻折到PDE △的位置,使得PB 2.(1)求证:平面PDE ^平面BCDE ;(2)在线段PB 上是否存在点M ,使得//EM 平面PCD ,若存在,求出PM MB的值;若不存在,请说明理由.【典例2-2】(2024·广东·一模)如图所示,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,608AB AD BAD AC Ð===o ,,.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为 2V ,求 12V V ;(2)设点F 在线段AP 上,且存在一个正整数k ,使得PA kPF PC kCE ==,,若已知平面FCD 与平面PCDk 的值.【变式2-1】在ABC V 中,90ABC Ð=°,6AB BC ==,D 为边AB 上一点,2AD =,E 为AC 上一点,//DE BC ,将ADE V 沿DE 翻折,使A 到A ¢处,90DA B ¢Ð=°.(1)证明:A B ¢^平面A DE ¢;(2)若射线DE 上存在点M ,使l =uuuu r uuu r DM DE ,且MC 与平面A EC ¢所成角的正弦值为15,求λ.【变式2-2】(2024·甘肃张掖·模拟预测)如图,在四棱锥P ABCD -中,底面四边形ABCD为菱形,且60,DAB PAD Ð=o V 是边长为2的等边三角形,且平面PAD ^平面,ABCD O 为AD 中点.(1)求证:OB ^平面PAD ;(2)在线段PC 上是否存在点M ,使二面角M BO C --的大小为60o ,若存在,求PM PC的值,若不存在,请说明理由.题型三:立体几何折叠问题【典例3-1】(2024·湖北武汉·模拟预测)如图1,在矩形ABCD 中,2AB =,BC =ABD △沿矩形的对角线BD 进行翻折,得到如图2所示的三棱锥A BCD -,且AB CD ^.(1)求翻折后线段AC 的长;(2)点M 满足2AM MD =uuuu r uuuu r ,求CM 与平面ABD 所成角的正弦值.【典例3-2】(2024·山东·模拟预测)如图,在菱形ABCD 中,60BAD Ð=°,E 是AD 的中点,将ABE V沿直线BE 翻折使点A 到达点1A 的位置,F 为线段1AC 的中点.(1)求证:DF ∥平面1A BE ;(2)若平面1A BE ^平面BCDE ,求直线1A E 与平面1A BC 所成角的大小.【变式3-1】(2024·河南驻马店·二模)在如图①所示的平面图形中,四边形ACDE 为菱形,现沿AC 进行翻折,使得AB ^平面ACDE ,过点E 作//EF AB ,且12EF AB =,连接,,FD FB BD ,所得图形如图②所示,其中G 为线段BD 的中点,连接FG .(1)求证:FG ^平面ABD ;(2)若2AC AD ==,直线FG 与平面BCD ,求AB 的值.【变式3-2】在等腰梯形ABCD 中,//AB CD ,2AB =,2AD BC ==,60DAB Ð=°,M 为AB 中点,将AMD V ,BMC △沿MD ,MC 翻折,使A ,B 重合于点E ,得到三棱锥M CDE -.(1)求ME 与平面CDE 所成角的大小;(2)求二面角M DE C --的余弦值.题型四:立体几何作图问题【典例4-1】(2024·河南信阳·模拟预测)长方体1111ABCD A B C D -中,123,2AB AA AD CE ED ===uuu r uuu r .(1)过E 、B 作一个截面,使得该截面平分长方体的表面积和体积.写出作图过程及其理由.(2)记(1)中截面为a ,若a 与(1)中过D 点的长方体的三个表面成二面角分别为,,q j w ,求222cos cos cos q j w ++的值.【典例4-2】(2024·高三·河北承德·期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,,,O E F 分别是,,BD PA BC 的中点.(1)证明://OE 平面PBC ;(2)若平面a 经过点,,F D E ,且与棱PB 交于点H .请作图画出H 在棱PB 上的位置,并求出PH HB的值.【变式4-1】(2024·辽宁大连·一模)如图多面体ABCDEF 中,面FAB ^面ABCD ,FAB V 为等边三角形,四边形ABCD 为正方形,EF BC ∥,且334EF BC ==,H ,G 分别为CE ,CD 的中点.(1)证明:BF AD ^;(2)求平面BCEF 与平面FGH 所成角的余弦值;(3)作平面FHG 与平面ABCD 的交线,记该交线与直线AD 交点为P ,写出AP AD的值(不需要说明理由,保留作图痕迹).【变式4-2】如图,已知底面为平行四边形的四棱锥P ABCD -中,平面MNGH 与直线PB 和直线AC 平行,点E 为PD 的中点,点F 在CD 上,且:1:2DF FC =.(1)求证:四边形MNGH 是平行四边形;(2)求作过EF 作四棱锥P ABCD -的截面,使PB 与截面平行(写出作图过程,不要求证明).截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.【变式4-3】(2024·北京·三模)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB p Ð=.AC BD O =I ,且^PO 平面ABCD ,PO =,点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅱ)求直线AB 与平面EFG 的成角的正弦值;(Ⅲ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.题型五:立体几何建系繁琐问题【典例5-1】(2024·山东淄博·二模)已知直角梯形ABCD ,90ADC Ð=°,//AB CD ,2AB CD AD ===M 为对角线AC 与BD 的交点.现以AC 为折痕把ADC V 折起,使点D 到达点P 的位置,点Q 为PB 的中点,如图所示:(1)证明:AC ^平面PBM ;(2)求三棱锥P ACQ -体积的最大值;(3)当三棱锥P ACQ -的体积最大时,求直线AB 与平面PBC 所成角的正弦值.【典例5-2】(2024·贵州黔东南·二模)如图,在四棱台1111ABCD A B C D -中,O 为AC 的中点,1111122AA A C C C AC ====.(1)证明:1//OC 平面11AA D D ;(2)若平面ABCD ^平面11ACC A ,AB BC ^,当四棱锥11B AA C C -的体积最大时,求1CC 与平面11AA B B 夹角的正弦值.【变式5-1】(2024·重庆·三模)如图所示的几何体是一个半圆柱和一个三棱锥的组合体.11,BB CC 是半圆柱的母线,1,O O 分别是底面直径BC 和11B C 的中点,11114,2,BC B C BB CC A ====是半圆O 上一动点,1A 是半圆1O 上的动点,1AA 是圆柱的母线,延长1A A 至P 点使得A 为1A P 的中点,连接PB ,PC 构成三棱锥P ABC -.(1)证明:1AC BA ^;(2)当三棱锥P ABC -的体积最大时,求平面1ABA 与平面1BA C 的夹角.【变式5-2】已知平面四边形ABCD ,2AB AD ==,60BAD Ð=°,30BCD Ð=°,现将ABD D 沿BD 边折起,使得平面ABD ^平面BCD ,此时AD CD ^,点P 为线段AD 的中点.(1)求证:BP ^平面ACD ;(2)若M 为CD 的中点①求MP 与平面BPC 所成角的正弦值;②求二面角P BM D --的平面角的余弦值.题型六:两角相等(构造全等)的立体几何问题【典例6-1】(2024·河南·模拟预测)如图,在三棱锥A BCD -中,ABC V 是等边三角形,90BAD BCD Ð=Ð=°,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ^平面BDP ;(2)若BD =,且二面角A BD C --为120°,求直线AD 与平面BCD 所成角的正弦值.【典例6-2】(2024·广西桂林·二模)如图,四棱锥F ABCD -中,底面ABCD 为边长是2的正方形,E ,G 分别是CD ,AF 的中点,4AF =,FAE BAE Ð=Ð,且二面角F AE B --的大小为90°.(1) 求证:AE BG ^;(2) 求二面角B AF E --的余弦值.【变式6-1】(2024·安徽合肥·模拟预测)如图,四棱锥E ABCD -中,四边形ABCD 是边长为2的菱形,45DAE BAE °Ð=Ð=,60DAB Ð=°.(1)证明:平面ADE ^平面ABE ;(2)当直线DE 与平面ABE 所成的角为30°时,求平面DCE 与平面ABE 所成锐二面角的余弦值.【变式6-2】(2024·辽宁沈阳·模拟预测)如图,四棱锥E ABCD -中,四边形ABCD 是边长为2的菱形45DAE BAE Ð=Ð=°,60DAB Ð=°(1)证明:平面ADE ^平面ABE ;(2)当平面DCE 与平面ABE DE 与平面ABE 所成角正弦值.题型七:利用传统方法找几何关系建系【典例7-1】(2024·江苏南京·二模)如图,//AD BC ,AD AB ^,点E 、F 在平面ABCD 的同侧,//CF AE ,1AD =,2AB BC ==,平面ACFE ^平面ABCD ,EA EC ==(1)求证://BF 平面ADE ;(2)若直线EC 与平面FBD ,求线段CF 的长.【典例7-2】斜三棱柱ABC -A 1B 1C 1上,侧面AA 1C 1C ⊥平面ABC ,侧面AA 1C 1C 是菱形,∠A 1AC =60°,A 1C =AC AB =2,为BB 1的中点.(1)求二面角C -A 1D -C 1的余弦值;(2)记△ABC 的外接圆上有一动点P ,若二面角P -AA 1-C 与二面角C -A 1D -C 1相等,求AP 的长.【变式7-1】如图,已知四棱锥P ABCE -中,PA ^平面ABCE ,平面PAB ^平面PBC ,且1AB =,2BC =,BE =,点A 在平面PCE 内的射影恰为PCE V 的重心G .(1)证明:BC AB ^;(2)求直线CG 与平面PBC 所成角的正弦值.【变式7-2】如图所示,圆锥的高2PO =,底面圆O 的半径为R ,延长直径AB 到点C ,使得BC R =,分别过点A ,C 作底面圆O 的切线,两切线相交于点E ,点D 是切线CE 与圆O 的切点.(1)证明:平面PDE ^平面POD ;(2)若直线PE 与平面PBD ,求点A 到平面PED 的距离.题型八:空间中的点不好求【典例8-1】(2024·山东日照·三模)在五面体ABCDEF 中,CD ADE ^平面,EF ADE ^平面.(1)求证:AB CD ∥;(2)若222AB AD EF ===,3CD =,90ADE Ð=°,点D 到平面ABFE A BC F --的余弦值.【典例8-2】(2024·全国·校联考模拟预测)已知三棱锥ABCD ,D 在面ABC 上的投影为O ,O 恰好为△ABC 的外心.4AC AB ==,2BC =.(1)证明:BC ⊥AD ;(2)E 为AD 上靠近A 的四等分点,若三棱锥A-BCD 的体积为1,求二面角E CO B --的余弦值.【变式8-1】(2024·河南·校联考模拟预测)如图,在四棱锥P ABCD -中,AB BC ==AD CD AC ===E ,F 分别为AC ,CD 的中点,点G 在PF 上,且G 为三角形PCD 的重心.(1)证明://GE 平面PBC ;(2)若PA PC =,PA CD ^,四棱锥P ABCD -的体积为GE 与平面PCD 所成角的正弦值.【变式8-2】(2024·湖北武汉·华中师大一附中校考模拟预测)如图,平行六面体1111ABCD A B C D -中,点P 在对角线1BD 上,AC BD O =I ,平面ACP ∥平面11AC D .(1)求证:O ,P ,1B 三点共线;(2)若四边形ABCD 是边长为2的菱形,11π3BAD BAA DAA =ÐÐ==Ð,13AA =,求二面角P AB C --大小的余弦值.【变式8-3】(2024·全国·模拟预测)已知菱形ABCD 中,1AB BD ==,四边形BDEF 为正方形,满足2π3ABF Ð=,连接AE ,AF ,CE ,CF .(1)证明:CF AE ^;(2)求直线AE 与平面BDEF 所成角的正弦值.题型九:数学文化与新定义问题【典例9-1】(2024·高三·山东青岛·期中)某校积极开展社团活动,在一次社团活动过程中,一个数学兴趣小组发现《九章算术》中提到了“刍薨”这个五面体,于是他们仿照该模型设计了一道数学探究题,如图1,E 、F 、G 分别是边长为4的正方形的三边AB CD AD 、、的中点,先沿着虚线段FG 将等腰直角三角形FDG 裁掉,再将剩下的五边形ABCFG 沿着线段EF 折起,连接AB CG 、就得到了一个“刍甍” (如图2)。
高考数学复习:抽象函数模型与双函数归类
![高考数学复习:抽象函数模型与双函数归类](https://img.taocdn.com/s3/m/8d4695910d22590102020740be1e650e52eacfc9.png)
高考数学复习:抽象函数模型与双函数归类题型一:抽象函数具体化模型1:过原点直线型抽象函数模型1()()()f x y f x f y +=+---过原点直线型()f x kx =有以下性质①()00f =②奇函数:y x =-,则()()()0f x x f x f x -=+-=③可能具有单调性(结合其他条件)相似的模型()()()2y ()()22f x y f x y f x x f x f y f ++-=+⎛⎫+= ⎪⎝⎭1.(多选题)定义在R 上的函数()f x 满足()()()f x y f x f y +=+,当0x <时,()0f x >,则下列说法正确的是()A.()f x 在R 上单调递减B.复合函数()sin f x 为偶函数C.复合函数()cos f x 为偶函数D.当[]0,2πx ∈,不等式()1sin 02f x f ⎛⎫+-< ⎪⎝⎭的解集为π5π,66⎛⎫ ⎪⎝⎭2.(多选题)定义在R 上的函数()f x 满足()()()f x f y f x y +=+,则下列说法正确的是()A.()00f =B.()()()f x f y f x y -=-C.()f x 为奇函数D.()f x 在区间[],m n 上有最大值()f n 3.(多选题)(23-24高一上·安徽淮南·阶段练习)已知函数()f x 满足()()(),,f x y f x f y x y +=+∈R ,则()A.(0)0f =B.()(1),f k kf k =∈ZC.(),(0)x f x kf k k ⎛⎫=≠ ⎪⎝⎭D.()()0f x f x -<题型二:抽象函数具体化模型2:不过原点的直线型抽象函数模型2证明如下:()()()f x y f x f y b +=++(b 带正负,即+b 或-b )()()()f x y f x f y b b b +=+↔+++()()()()()()()b“同构”:=------是过原点的直线h x f x h x y h x h y h x f x kx b+↔↔↔=++=-1.(多选)已知函数()f x 的定义域为R ,且()10f =,若()()()2f x y f x f y +=++,则下列说法正确的是()A.()14f -=-B.()f x 有最大值C.()20244046f =D.函数()2f x +是奇函数2.(多选题)已知定义在R 上的函数()f x ,满足对任意的实数x ,y ,均有()()()1f x y f x f y +=+-,且当0x >时,()1f x <,则()A.(0)1f =B.(1)(1)1f f +-=C.函数()f x 为减函数D.函数()y f x =的图象关于点()0,1对称3.(多选)已知函数()f x 的定义域为R ,对任意实数x ,y 满足()()()2f x y f x f y +=++,且(2)0f =,则下列结论正确的是()A.(0)2f =-B.(4)6f -=-C.()2f x +为奇函数D.()f x 为R 上的减函数题型三:抽象函数具体化模型3:tanx 型抽象函数模型3()()()()()()1()()1()()f x f y f αf βf x y f αβf x f y f αf β+++=Û+=--所以复合()tan f x kx =(k 根据其余条件待定系数)1.(多选题)已知函数()f x 满足(1)1f =,()()()1()()f x f y f x y f x f y ++=-,则()A.()00f =B.()()f x f x -=-C.()f x 的定义域为RD.()f x 的周期为42.(多选题)已知函数()f x 的定义域为{}42,x x k k ≠+∈Z ,且()()()()()1f x f y f x y f x f y ++=-,()11f =,则()A.()00f =B.()f x 为偶函数C.()f x 为周期函数,且2为()f x 的周期D.()20231f =-3.已知定义在()1,1-上的函数()f x 满足:当0x >时,()0f x >,且对任意的x,()1,1y ∈-,均有()()()()()1f x y f x f y f x f y ⎡⎤+-=+⎣⎦.若()1ln 2f x f ⎛⎫< ⎪⎝⎭,则x 的取值范围是(e 是自然对数的底数)()A.B.1e ⎛ ⎝C.)D.)e1e ⎛⋃ ⎝题型四:抽象函数具体化模型4:一元二次型抽象函数模型4()()()()()()()()()2222222.=++2=+++2=2则f x y f x f y axy c f x ax bx c f x y a x y b x y c ax bx ay by c axy ax bx c ay by c axy c f x f y axy c+=++-=+++=++++++++++-++-此模型,b 的值无法推导,多依赖其他条件来待定系数确认.1.(多选题)已知定义在实数集R 上的函数()f x ,其导函数为()f x ',且满足()()()f x y f x f y xy +=++,()()110,12f f '==,则()A.()00f =B.()f x 的图像关于点1,02⎛⎫⎪⎝⎭成中心对称C.()202410122023f =⨯D.20241()10122024k f k ='=⨯∑2.(多选题)已知函数()f x 对任意,x y ∈R 恒有()()()41f x y f x f y xy +=+++,且()11f =,则()A.()01f =-B.()f x 可能是偶函数C.()28f =D.()f x 可能是奇函数3.(多选题)已知函数()f x 的定义域为()()()(),2,12f x y xy f x f y f ++=+=R ,则()A.()00f =B.()210f -=-C.()2y f x x =+是奇函数D.()2y f x x =-是偶函数题型五:抽象函数具体化模型5:余弦函数型抽象函数模型5余弦函数型()()2()()()cos ()()cos()cos()cos cos sin sin cos cos sin sin =2cos cos 2()()证明:f x y f x y f x f y f x kxf x y f x y x y x y x y x y x y x y x y f x f y kx++-==++-=++-=-++=(也可以直接用和差化积公式推导)备注:这类函数,还有可能是双曲余弦函数型,不过较少出现1.(多选题)已知定义在R 上的函数()f x ,对任意的,x y ∈R ,都有()()2()()f x y f x y f x f y ++-=,且1(1)2f =,则()A.(0)1f =B.()f x 是偶函数C.(3)1f n =-,*n ∈ND.20241()0n f n ==∑,*n ∈N 2.(多选题)已知函数()f x 对任意实数x 、y 都满足()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪ ⎝⎭⎝+⎪⎭,且()11f =-,以下结论正确的有()A.102f ⎛⎫= ⎪⎝⎭B.()2f x +是偶函数C.()1f x +是奇函数D.()()()()12320251f f f f +++⋅⋅⋅+=-3.(多选题)已知定义在R 上的函数()f x ,满足()()()()222f x y f x y f x f y +-=+,且()11f =-,则下列说法正确的是()A.()01f =B.()f x 为偶函数C.()()2f x f x =D.2是函数()f x 的一个周期题型六:抽象函数具体化模型6:一元三次函数型抽象函数模型6()()()()3,f x y f x f y axy x y +=+++则()3f x ax bx =+(其中b 可以借助其他条件待定系数)1.(多选题)已知函数()f x 是定义域为R 的可导函数,若()()()()3f x y f x f y xy x y +=+++,且()03f '=-,则()A.()f x 是奇函数B.()f x 是减函数C.0f=D.1x =是()f x 的极小值点2.(多选题)已知定义域为R 的函数()f x 满足()()()()(),f x y f x f y xy x y f x +=++'+为()f x 的导函数,且()12f '=,则()A.()f x 为奇函数B.()f x 在2x =-处的切线斜率为7C.()312f =D.对()()()121212120,,22,,f x f x x x x x x x f ++⎛⎫∀∈+∞≠<⎪⎝⎭3.(多选题)已知定义在R 上的函数()f x 满足:()()()()3f x y f x f y xy x y +=+-+,则()A.()y f x =是奇函数B.若()11f =,则()24f -=C.若()11f =-,则()3y f x x =+为增函数D.若()30,0x f x x ∀>+>,则()3y f x x =+为增函数题型七:抽象函数具体化模型7:正弦函数型抽象函数模型7正弦函数型,或者正弦双曲函数型()()()()()()22x xe e sin 2则,或者是正弦双曲函数f x y f x y fx f y f x x f x -+-=--==1.已知函数()f x 的定义域为()()()()22R,f x y f x y f x f y +-=-,且当0x >时,()0f x >,则()A.()01f =B.()f x 是偶函数C.()f x 是增函数D.()f x 是周期函数2.(多选)已知函数()f x 的定义域为R,且()()()()()223,122fx y f x y f x f y f f x ⎛⎫+-=-+ ⎪⎝⎭为偶函数,则()A.(0)0f =B.()f x 为偶函数C.(3)(3)f x f x +=--D.20231()k f k ==∑3.(多选题)已知函数()f x 的定义域为R ,且()()()()22f x y f x y f x f y +-=-⎡⎤⎡⎤⎣⎦⎣⎦,()()11,21f f x =+为偶函数,则()A.()00f =B.()f x 为偶函数C.()()22f x f x +=--D.()202410k f k ==∑题型八:抽象函数具体化模型8:正余弦函数辅助角型抽象函数模型8正余弦函数辅助角型形如()()()2cos f x y f x y f x y++-=⋅()x sin x cos x a b 则,,值可以通过其他条件待定系数f a b =+1.已知函数()f x 的定义域为R ,且()π012f f ⎛⎫== ⎪⎝⎭,若()()()2cos f x y f x y f x y ++-=⋅,则函数()f x ()A.以π为周期B.最大值是1C.在区间ππ,44⎛⎫- ⎪⎝⎭上单调递减D.既不是奇函数也不是偶函数2.已知函数()f x 的定义域为()()()R,2cos f x y f x y f x y ++-=且()01f =,π2f ⎛⎫= ⎪⎝⎭那么()A.()f x 为偶函数B.()π1f =C.π2x =是函数的极大值点D.()f x 的最小值为2-3.(多选题)已知定义域为R 的函数()f x 对任意实数x 、y 满足()()()2cos f x y f x y f x y ++-=,且()00f =,π12f ⎛⎫= ⎪⎝⎭.其中正确的是()A.π142f ⎛⎫= ⎪⎝⎭B.()f x 为奇函数C.()f x 为周期函数D.()f x 在(0,π)内单调递减题型九:双函数:系数不是1型带系数:系数不为1,类比正弦余弦的带系数形式,提系数平移平移变换:左右或者上下()()()f x f x a ωϕωϕ+⇒++左加右减1.已知函数()f x 的定义域为R ,且112f x ⎛⎫+ ⎪⎝⎭是偶函数,()1f x -是奇函数,则()A.()00f =B.102f ⎛⎫= ⎪⎝⎭C.()10f =D.()30f =2.已知函数()21f x +是奇函数,()2f x +是偶函数,当[]2,3x ∈时,()3f x x =-,则下列选项不正确的是()A.()f x 在区间(2,0)-上单调递减B.()f x 的图象关于直线=1x -对称C.()f x 的最大值是1D.当(1,1)x ∈-时恒有()0f x <3.已知函数()f x 的定义域为R ,()22f x +为偶函数,()1f x +为奇函数,且当[]0,1x ∈时,()f x ax b =+.若()41f =,则35792222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.题型十:双函数:双函数综合常见结论:(1)关于对称:若函数()f x 关于直线x a =轴对称,则()(2)f x f a x =-,若函数()f x 关于点(,)a b 中心对称,则()2(2)f x b f a x =--,反之也成立;(2)关于周期:若()()f x a f x +=-,或1()()f x a f x +=,或1()()f x a f x +=-,可知函数()f x 的周期为2a .1.已知()4y f x =+是定义域为R 的奇函数,()2y g x =-是定义域为R 的偶函数,且()y f x =与()y g x =的图象关于y 轴对称,则()A.()y f x =是奇函数B.()y g x =是偶函数C.()y f x =关于点()2,0对称D.()y g x =关于直线4x =对称2.已知函数()(),f x g x 都是定义在R 上的函数,()12f x -+是奇函数,()2g x -是偶函数,且()()()23,21f x g x g --=-=,则()20231k f k ==∑()A.-4052B.-4050C.-1012D.-10103.已知函数()f x ,()g x 的定义域均为R ,(1)f x +是奇函数,()g x 是偶函数,()(2)f x g x =-,(2)1g =,则20231()k f k ==∑()A.2023-B.1-C.1D.20234(多选题)已知函数()(),f x g x 的定义域均为()(),111g x f x ++-=R ,()()121f x g x +-+=,且()y f x =的图像关于直线1x =对称,则以下说法正确的是()A.()f x 和()g x 均为奇函数B.()(),4x f x f x ∀∈=+R C.()(),2x g x g x ∀∈=+R D.302g ⎛⎫-= ⎪⎝⎭题型十一:双函数:导数型双函数性质原函数与导函数奇偶性的关系如下:原函数为奇函数,则其导数为偶函数。
高中数学中常见的数学建模题分析
![高中数学中常见的数学建模题分析](https://img.taocdn.com/s3/m/afc30dfa68dc5022aaea998fcc22bcd126ff42d5.png)
高中数学中常见的数学建模题分析在高中数学教学中,数学建模题是一种常见的题型,旨在让学生通过抽象建模,求解实际问题。
数学建模题通常涉及到数学知识、逻辑推理、数学模型的建立与优化等方面,对学生的综合能力提出了较高的要求。
本文将分析高中数学中常见的数学建模题,探讨解题方法及相关技巧。
1. 地面坡度问题地面坡度问题是高中数学建模中的常见题型,通常涉及到直角三角形、三角函数的知识。
这类问题常常以“某一杆塔吊挂重物”,“某座桥梁建设”等为背景,要求学生根据给定条件,计算坡度、高度、距离等。
解题时,可以通过绘制坡度示意图,使用三角函数公式,建立三角形关系等方法,辅助求解。
2. 最优生产方案问题最优生产方案问题是数学建模中的经典题型,要求学生根据生产成本、需求量、利润等条件,确定最优的生产方案。
这类问题常常涉及到线性规划、最值、函数优化等知识。
解题时,可以通过建立数学模型,使用线性规划方法,求解导数等方式,寻找最优生产方案。
3. 人口增长问题人口增长问题是数学建模中的典型题型,要求学生根据给定的人口增长率、初期人口数量等条件,预测未来人口数量。
这类问题常常涉及到指数函数、常微分方程等知识。
解题时,可以通过建立微分方程模型,使用指数函数性质,求解微分方程的通解等方法,完成人口增长问题的分析和预测。
4. 购物策略问题购物策略问题是数学建模中常见的实际问题,要求学生根据购物节省、优惠券折扣等条件,确定最佳购物策略。
这类问题通常涉及到百分数、比例、折扣计算等知识。
解题时,可以通过建立优惠券折扣函数,利用比例关系,计算购物节省金额等方式,找到最佳购物策略。
通过以上对高中数学中常见的数学建模题的分析,我们可以看到数学建模题在数学教学中的重要性和广泛性。
通过解答这些建模题,学生不仅可以提升数学能力,还可以锻炼主动解决实际问题的能力。
希望学生在学习数学建模的过程中,能够灵活运用数学知识,提高解决问题的能力,为将来的学习和工作打下坚实的基础。
高中数学中常见的数学建模题分析
![高中数学中常见的数学建模题分析](https://img.taocdn.com/s3/m/76fa90c470fe910ef12d2af90242a8956becaa88.png)
高中数学中常见的数学建模题分析一、引言数学建模题在高中数学学习中起到了非常重要的作用,它既锻炼了学生的数学思维能力,又培养了学生的实际问题解决能力。
本文将重点分析高中数学中常见的数学建模题,并探讨解决这些问题的方法和步骤。
二、数学建模题的分类1. 线性规划问题线性规划是数学建模中最基本的问题之一。
该问题通常涉及到在一定的约束条件下,求解一个线性方程组的最优解。
例如,某工厂在一定的资源限制下,如何安排生产,以使成本最小化或产量最大化。
2. 最优化问题最优化问题包括最大化问题和最小化问题。
这类问题的解决方法通常是通过求导数进行优化,找到使目标函数取得极值的点。
例如,在扔老师纳什扬尼的蛋问题中,要确定扔鸡蛋的起始楼层,以便在最坏情况下扔的次数最少。
3. 动态规划问题动态规划问题是将一个复杂的问题分解为多个重叠子问题,通过求解子问题的最优解来获取原问题的最优解。
例如,在路径规划问题中,我们可以使用动态规划来确定从起点到终点的最短路径。
4. 概率模型问题概率模型问题涉及到在给定的概率条件下,预测某个事件发生的概率。
例如,在赌博游戏中,我们可以使用概率模型来计算某个玩家获胜的概率。
5. 统计问题统计问题主要是研究如何通过样本数据来推断总体的某些特性。
通常通过收集样本数据,计算样本均值、标准差等统计量,然后通过统计推断方法来估计总体的参数。
三、数学建模题的解决方法和步骤1. 理解问题首先要对问题进行深入的理解,包括确定问题的背景、目标、约束条件等。
通过仔细阅读问题描述,了解问题所涉及的数学概念和模型。
2. 建立模型在理解问题的基础上,根据问题的特点建立适当的数学模型。
模型的建立应符合实际情况,并能够准确描述问题的要求。
3. 分析模型对建立的数学模型进行分析,包括模型的性质、特点和解的存在性及唯一性等。
通过分析模型的特点,可以更好地理解问题的本质,并为后续的解决方法提供指导。
4. 求解模型根据建立的数学模型,选择合适的求解方法进行求解。
高考数学复习考点题型归类解析13函数与数学模型(解析版)
![高考数学复习考点题型归类解析13函数与数学模型(解析版)](https://img.taocdn.com/s3/m/3b3ded36590216fc700abb68a98271fe910eaf98.png)
【答案】B
【思路导引】根据题意可得 ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为 天,根据 ,解得 即可得结果.
【解析】因为 , , ,所以 ,所以 ,
设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为 天,则 ,所以 ,所以 ,所以 天,故选:B.
对点训练2.已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是()
A.40万元B.60万元
C.120万元D.140万元
【答案】C
A.104倍B.105倍C.106倍D.107倍
【答案】C
【解析】
根据已知函数关系式,设出未知数,解方程即可求出对应声强,然后可直接得结果.
【详解】
设一般正常人听觉能忍受的最高声强为 ,平时常人交谈时声强为 ,
由题意得
解得
∴
故选:C
考点三、指数型函数
例3.(2020山东6)基本再生数 与世代间隔是新冠肺炎的 流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔是指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型: 描述累计感染病例数 随时间 (单位:天)的变化规律,指数增长率 与 , 近似满足 .有学者基于已有数据估计出 , .据此,在新冠肺炎疫情初始阶段,累计感染病例数增加 倍需要的时间约为( )()
化简可得, .
令 ,因为二次函数的开口向下,对称轴为 ,为满足题意所以,
,解得 .
故答案为:①1232;②5.
考点五、分式型函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考中常见数学模型归类分析一、新课标的要求新数学课程目标的一个重点是让学生全面了解数学背景、意义和价值,尤其是它的应用性与方法。
数学建模是达到此目标的一个极好途径。
在近几年的高考中,这方面题目的数量和分值逐渐增加,特别是应用题材更贴近实际生活,灵活性也大大提高,那就要求在教学中更应注重培养学生的数学素质。
因此,在高中阶段渗透建模思想是非常必要的。
数学应用题的教学重点在新课程中规定的应用:1、初步掌握建立函数模型解决问题的过程和方法;2、能运用三角函数知识分析处理实际问题, 掌握利用正弦定理、余弦定理解决实际应用;3、会从实际情境中抽象出一些简单的二元线性规划问题并加以解决;4、能用抽样方法解决简单的实际问题, 会用样本估计总体的思想解决一些简单的实际问题;5、能把一些实际问题抽象成两点分布或超几何分布的模型加以解决;6、能应用导数解决一些简单的实际问题。
这些应用问题会拓展到不等式(一元二次不等式)、数列、解析几何、统计与概率(总体特征数的估计、古典概型)中。
二、高考应用题分类解析本文从数学建模的角度,对高考应用题中常见类型进行归类分析。
根据数学模型的性质和建立数学模型方法的不同,可以对数学模型有各种不同的分类方法,本文按建立数学模型所使用的数学工具将数学模型分为:函数模型、数列模型、不等式(组)模型、三角模型、立体与平面解析几何模型、统计概率模型等。
1、函数模型高中常见的函数有:一次函数、二次函数、指数函数、对数函数、幂函数等。
函数模型经常涉及到成本投入、利润产出及关于效益、价格、流量、面积、体积等实际问题。
解答这类问题一般要利用数量关系,列出目标函数式,然后用函数有关知识和方法加以解决。
大量的实际问题隐含着量与量之间的关系,建立量与量的函数关系,就成为解题的关键,一旦函数关系建立即可用函数知识使问题解决。
例1 (2003北京春,理、文21)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为:5030003600- =12,所以这时租出了100-12=88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为: 30003000()(100)(150)505050x x f x x --=---⨯ 整理得:221()16221000(4050)3070505050x f x x x =-+-=--+. 所以,当4050x =时,()f x 最大,其最大值为(4050)307050f =.即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大收益为307050元.例2 (2007年高考试题·广东卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)分析:要刻画现实生活中的量与量的相关关系,可以先做出数据的散点图,再根据散点图呈现的规律性进行数据拟合。
回归分析中最重要的是线性回归,即求两个变量的近似函数关系,得到回归方程y bx a =+后,可以用它来预报和控制。
解:(1)略(2)根据数据计算可得:4166.5i i i x y ==∑,4222221345686i i x ==+++=∑,4.5x =, 3.5y =,4142221466.54 4.5 3.50.7864 4.54i ii i i x y x y b x x==-⋅-⨯⨯===-⨯-∑∑, 3.50.7 4.50.35a y bx =-=-⨯=,所求回归方程为0.70.35y x =+。
(3)当100x =时,0.71000.3570.35y =⨯+=,所以预测生产100吨甲产品的生产能耗比技术改造前降低9070.3519.65-=吨标准煤.例3 (2009年高考试题·湖南理科卷)某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为(2x 万元。
假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元。
(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?解:(1)设需要新建n 个桥墩,(1)n x m +=,即1m n x =-,所以256(1)(2256(1)(2m m y n n x x x x=++=-++2562256m m x=+- (2)由(1)知,1322222561()(512)22m m f x mx x x x-'=-+=- 令()0f x '=,得32512x =,所以64x =当064x <<时, ()0f x '<,()f x 在区间(0,64)内为减函数;当64640x <<时,()0f x '>,()f x 在区间(64,640)内为增函数,所以()f x 在64x =处取得最小值,此时,64011964m n x =-=-= 故需新建9个桥墩才能使y 最小。
2、数列模型这类实际问题的数学模型的建立,关键是通过观察、分析、归纳出问题成等差还是等比数列,然后再利用数列知识加以解决,常见问题有利率、产量、降价、繁殖、增长率等。
例4 (2002年高考试题·全国理科卷)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?分析:本题主要考查数列、数列的极限等基础知识。
设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则130b =,210.94+b b x ⨯=,130b =,21094+b b x ⨯=.。
对于1n >,有2+110.94+0.94+(1+0.94)n n n b b x b x ⨯⨯-==,……∴1+110.94+(1+0.94++0.94)n n n b b x ⨯-= 110.940.94(30)0.940.060.060.06n n n x x b x -⨯+=+-⨯=. 当3000.06x -≥,即 1.8x ≤时,+11=30n n b b b ≤≤≤. 当3000.06x -<,即 1.8x >时, 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-∞→∞→,并且数列{}n b 逐项增加,可以任意靠近06.0x . 因此,如果要求汽车保有量不超过60万辆,即60(1,2,3,)n b n ≤= 则600.06x ≤,即 3.6x ≤(万辆).综上,每年新增汽车不应超过3.6万辆.3、不等式(组)模型不等式(组)模型经常涉及到统筹安排、最佳决策、最优化、水土流失、安全责任等一些有关不等量或最值的实际问题。
解答这类问题一般是先列出不等式(组),然后解之即可,关键是找出各变量的关系。
例5 (2002年高考试题·上海卷)某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠。
例如,购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×0.2+30=110(元).设购买商品得到的优惠率=商品的标价购买商品获得的优惠额.试问: (1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在[500,800](元)内的商品,顾客购买标价为多少元的商品,可得到不小于31的优惠率? 解:(1)购买标价为1000元的商品得到的优惠率=10001302.01000+⨯=33%. (2)设商品的标价为x 元,则500800x ≤≤,消费额:4000.8640x ≤≤.由已知得①0.260134000.8500x x x +⎧≥⎪⎨⎪≤<⎩或②⎪⎩⎪⎨⎧≤≤≥+6408.0500311002.0x x x 不等式组①无解,不等式组②的解为625750x ≤≤.因此,当顾客购买标准在[625,750]元内的商品时,可得到不少于31的优惠率.例6 (2008年高考试题·广东文科卷)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为(10)x x ≥层,则每平方米的平均建筑费用为56048x +(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积) 分析:本小题主要考查建立函数关系式,求函数最小值的方法。
要求某变量的最值,需找出该变量的函数关系。
建立平均综合费的函数关系,设楼房每平方米的平均综合费为()f x 元,则()()2160100001080056048560482000f x x x x x⨯=++=++()10,x x Z +≥∈ 此处用基本不等式求函数最小值()10800108005604856024856027202000f x x x x x=++≥+=+⨯= 当且仅当1080048x x=时,等号成立,解得15x = 即为了楼房每平方米的平均综合费最少,该楼房应建为15层。
例7 (2010年高考试题·广东卷)某营养师要为某个儿童预定午餐和晚餐。
已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?解:设预订的午餐和晚餐分别为x个单位和y 个单位,所花的费用为z 元,依题意可得128646642610540,0,x y x y x y x x N y y N +≥⎧⎪+≥⎪⎪+≥⎨⎪>∈⎪>∈⎪⎩,即3216735270,0,x y x y x y x x N y y N+≥⎧⎪+≥⎪⎪+≥⎨⎪>∈⎪>∈⎪⎩ ①目标函数为 2.54z x y =+。