编程模拟生产者和消费者问题(附代码程序)
生产者和消费者模式-代码
⽣产者和消费者模式-代码函数:⽣产者和消费者import randomfrom queue import Queuefrom threading import Thread, current_threadimport time# 实例化⼀个队列myq = Queue()# 定义⽣产者def producer():while True:tmp = random.randint(1,100)myq.put(tmp)print("%s⽣产了%s,⽣产后,现在产品总量:%s" % (current_thread().name, tmp, myq.qsize()))time.sleep(0.5)# 定义消费者def consumer():while True:print("%s消费了%s,剩余产品%s" % (current_thread().name, myq.get(), myq.qsize()))time.sleep(1.1)# 启动⽣产者和消费者# 启动⽣产者tp = Thread(target=producer)tp.start()# 启动消费者for i in range(2):tc = Thread(target=consumer)tc.start()函数2:# 编写⼀个基于tcp的echo服务器(回响服务器,即将客户端发送的信息返回给客户端),# 要求使⽤线程和⽣产者消费者模型(提⽰:⼀个线程accept--⽣产者;两个线程⽤于接收和发送--消费者)。
import socketfrom threading import Thread, current_threadfrom queue import Queue# ⽣产者def accept_t(queue):print("当前线程",current_thread().name)# client_info = server.accept()# queue.put(client_info)# 消费者recvdef recv_t(queue, queue_data):client_info = queue.get()client_sock = client_info[0]data = client_sock.recv(1024)queue_data.put(data)passtry:print(data.decode())except:print(data.decode('gbk'))# 消费者senddef send_t(queue_data):data = queue_data.get()client_sock = client_info[0]client_sock.send(data)client_sock.close()passif __name__ == "__main__":client_info = Noneserver = None# 创建服务器的套接字(监听套接字)server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)# 设置地址复⽤属性server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # 绑定IP和端⼝server_address = ("", 7972)server.bind(server_address)# 监听server.listen(128)queue = Queue()queue_data = Queue()t1 = Thread(target=accept_t, args=(queue))t1.start()t2 = Thread(target=recv_t, args=(queue, queue_data))t2.start()t3 = Thread(target=send_t, args=(queue_data,))t3.start()t1.join()t2.join()t3.join()类:⽣产者和消费者import socketfrom queue import Queuefrom threading import Threadimport timeimport chardetclient_queue = Queue()# ⽣产者class Producer(Thread):def __init__(self, tcp_server):super().__init__()self.tcp_server = tcp_serverdef run(self):client_info = self.tcp_server.accept()client_queue.put(client_info)# 消费者class Consumer(Thread):def __init__(self):super().__init__()def run(self):client_info = client_queue.get()client_sock = client_info[0]client_addr = client_info[1]msg = client_sock.recv(1024)print("原始字节流:",msg)a = 'abcd'.encode("UTF-8")print('a:', a)# a = msg.decode()code = chardet.detect(a)print('获取到a的编码是',code['encoding'])print("%s说:%s" % (client_addr, msg.decode()))client_sock.send(msg.decode().encode('gbk'))client_sock.close()print('consumer is over')# 主函数def main():tcp_server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)tcp_server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) tcp_server.bind(("", 7892))tcp_server.listen(128)p = Producer(tcp_server)c1 = Consumer()# c2 = Consumer()p.start()c1.start()# c2.start()# time.sleep(2)p.join()c1.join()# c2.join()tcp_server.close()if __name__ == '__main__':main()。
【8A版】C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1)PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begins:=s-1;ifs<0thenW(s)end{p}procedurev(vars:semaphore);egins:=s+1;ifs 0thenR(s)end{v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2)生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)(2)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语一一同步原语一一所组成。
本实习要求学生模拟PV 操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0 专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者一一消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begi ns:=s-1;ifs<Othe nW(s)en d{p}procedurev(vars:semaphore);egin s:=s+1;ifs -0thenR(s)en d{v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore 直接改成integer 。
(2) 生产者一一消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
操作系统实验生产者与消费者问题代码
操作系统实验生产者与消费者问题代码#include "stdafx.h"#include "windows.h"#include "fstream.h"#include "string"#include "conio.h"#define MAX_BUFFER_NUM 10#define INTE_PER_SEC 1000#define MAX_THREAD_NUM 64struct ThreadInfo{int serial;char entity;double delay;int thread_request[MAX_THREAD_NUM];int n_request;};CRITICAL_SECTION PC_Critical[MAX_BUFFER_NUM]; int Buffer_Critical[MAX_BUFFER_NUM];ThreadInforThread_Info[MAX_BUFFER_NUM]; HANDLE empty_semaphore;HANDLE h_mutex;DWORD n_Thread = 0;DWORD n_Buffer_or_Critical;HANDLE h_Semaphore[MAX_THREAD_NUM];void Produce (void *p);void Consume (void *p);bool IfInOtherRequest(int);int FindProducePosition();int FindBufferPosition(int);int main(void){DWORD wait_for_all;ifstream inFile;for (int i=0;i<max_buffer_num;i++)< p="">Buffer_Critical[i] = -1;for (int j=0;j<max_thread_num;j++)< p="">for (int k=0;k<max_thread_num;k++)< p=""> Thread?_Info[j].thread_request[k] = -1;Thread_Info[j].n_request = 0;}for (i=0;i<="" p="">inFile.open("test.txt")inFile>>n_Buffer_or_Critial;inFile.get();printf("输入文件是:\n")'printf ("%d\n",(int )n_Buffer_or_Critial);while(inFile){inFile >> Thread_Info[n_Thread].serial;inFile >> Thread_Info[n_Thread].entity;inFile >> Thread_Info[n_Thread].delay;char C ;inFile.get(C);while (C!'\n'&&!inFile.eof()){inFile>>Thread_Info[n_Thread].thread_request [Thread_Info[n_Thread].n_request++];inFile.get(C);}n_Thread++;}for (j=0;j<(int)n_Thread;j++){int Temp_serial = Thread__Info[j].serial;char Temp_ entity= Thread__Info[j].entity;double Temp_delay = Thread__Info[j].delay;printf ("\n thread%2d%c%f",T emp_serial,Temp_entity,T emp_delay);int Temp_request = Thread_Info[j].n_request;for (int k=0;k<temp_request;k++)< p="">printf("%d ",Thread_Info[j].thread_request[k]);cout<<end1;< p="">}printf("\n\n");empty_semaphore=CreateSemaphore(NULL,n_Buffer_or_Cri tical,n_Buffer_or_Critical,"semaphor e_for_empty");h_mutex = CreateMutex(NULL,FALSE,"mutex_for_update");for (j=0;j<(int)n_Thread;j++){std::string lp = "semaphore_for_produce _";int temp = j;while(temp){char c = (char)(temp%10);lp+=c;temp/=10;}h_Semaphore[j+1]=CreateSemaphore(NULL,0,n_Thread,lp.c_str());for (i=0;i<(int)n_Thread;i++){if(Thread_Info[i].entity == 'p')h_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Produce),&(Thread_Info[i]),0,NULL);elseh_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUT INE))(Consume),&(Thread_Info[i]),0,NULL);}wait_for_all = WaitForMultipleObjects(n_Thread,h_Thread,TRUE,-1);printf("\n\nALL producer and consumer have finished their work.\n");printf ("Press any key to quit!\n");_getch();return 0;}bool IfInOtherRequest(int req){for (int i=0;i<n_thread;i++)< p="">for (int j=0;j<thread_info[i].n_request;j++)< p="">if(Thread_Info[i].thread_request[j] == req)return TRUE;}int FindProducePosition(){int EmptyPosition;for(int i=0;i<n_buffer_or_critical;i++)< p="">if(Buffer_Critical[i] == -1){EmptyPosition = i;Buffer_Critical[i] == -2;break;}return EmptyPosition;}int FindBufferPosition(int propos){int Temppos;for (int i=0;i<n_buffer_or_critical;i++)< p="">Temppos = i;break;}return Temppos;}void produce(void*){DWORD wait_for_semaphore,wait_for_mutex,m_delay;int m_serial;m_serial = ((ThreadInfo*)(p))-serial;m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC);Sleep(m_delay);printf ("producer %2d sends the produce require.\n",m_serial);wait_for_semaphore=WaitForSingleObject(enpty_semaphore,-1);wait_for_mutex = WaitForSingleObject(h_mutex,-1);int producepos = FindProducePosition();ReleaseMutex(h_mutex);prientf("producer %2d begin to produce at position %2d.\n",m_serial,producepos);Buffer_Critical[producepos]=m_serial;printf("producer %2d finish producing :\n ",m_serial);printf("position[%2d]:%3d \n",producepos,Buffer_Clitical [produce-pos]);ReleaseSemaphore(h_Semaphore[m_serial],n_Thread,NULL);}void Consum(void*p){DWORD wait_for_semaphore.m_delay;int m_serial,m_requestNUM;int m_thread_request[MAX_THREAD_NUM];m_serial = ((ThreadInfo*)(p))->serial;m_delay = (DWORD)(((ThreadInfo*)(p))->delay*INTE_PER_SEC);m_requestNum=((ThreadInfo*)(p))->n_request;for (int i=0;ithread_request[i]);sleep(m_delay);for(i=0;i<m_requestnum;i++){< p="">printf("Consumer %2d request to consume %2d product\n",m_serial,m_thread_request[i]);wait_for_semaphore=WaitForSingleObject(h_Semaphore[m_thread_request[i]],-1;int Bufferpos= FindBufferPosition(m_thread_request[i]);EnterCriticalSection(&PC_Critical[Bufferpos]);printf "Consumer%2d begin to consum %2d product \n",m_serial,m_thread_request[i]);((ThreadInfo*)(p))->thread_request[i]=-1;if(!IfInOtherRequest(m_thread_request[i])){Buffer_Critical[Bufferpos]= -1;printf("Consumer%2d finish consuming %2d:\n",m_serial,m_thread_request[i]);rtintf(" position [%2d]:%3d.\n",Bufferpos,Buffer_Critical[Buffer-pos]);ReleaseSemaphore(empty_semaphore,1,NULL);}else{printf ("Consumer %2d finish consuming product %2d\n",m_serial,m_thread_request[i]);}LeaveCriticalSection(&PC_Critical[Bufferpos]);}}</m_requestnum;i++){<></n_buffer_or_critical;i++)<></n_buffer_or_critical;i++)<></thread_info[i].n_request;j++)<></n_thread;i++)<></end1;<></temp_request;k++)<></max_thread_num;k++)<></max_thread_num;j++)<></max_buffer_num;i++)<>。
C语言编程模拟生产者与消费者问题附代码程序
添加标题 添加标题
性能优化总结:在实现过程中,我们采用了多线程和并发等机制,提高了程序的运行效率和响 应速度,同时也考虑了程序的稳定性和可靠性。
展望未来:在未来的工作中,我们可以进一步探索和研究生产者与消费者问题及其解决方案, 例如使用更高级的并发和分布式技术,提高程序的性能和可扩展性。同时,也可以将该问题 及其解决方案应用于其他领域,例如操作系统、网络通信和数据库等。
消费者从共享缓冲区取出数 据的代码示例
消费者从共享缓冲区取出数 据的过程分析
消费者从共享缓冲区取出数 据需要注意的问题
添加同步机制(互斥锁、条件变量)
互斥锁的使用:通过互斥锁可以保证同一时间只有一个线程可以访问 共享资源,避免数据冲突。
条件变量的使用:条件变量可以用于实现线程间的同步,一个线程可 以在条件变量上等待,直到另一个线程发出通知。
代码程序运行结果展 示
第五章
程序运行截图
生产者程序运行截图
消费者程序运行截图
生产者与消费者程序运行截 图
程序运行结果展示
程序运行结果描述
生产者与消费者问题的模拟过程 代码程序的运行结果展示 生产者与消费者问题的解决效果 代码程序的运行效率和性能评估
结果分析
展示代码程序运行结果 分析代码程序的执行过程 解释代码程序对生产者与消费者问题的解决过程 总结代码程序的优缺点及改进方向
创建生产者线程
生产者线程执行逻辑
生产者线程与消费者 线程交互
生产者线程结束
消费者线程代码实现
创建消费者线程
消费者线程调用 生产者线程
消费者线程接收 生产者线程发送 的消息
消费者线程处理 接收到的消息
共享资源代码实现
共享资源定义:共享资源是生产者和消费者共同使用的资源,需要保证 在任何时刻都不会被多个生产者或消费者同时访问
C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
[实用参考]C语言编程模拟生产者和消费者问题(附代码程序).doc
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV 操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1)PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begins:=s-1;ifs<0thenW(s)end{p}procedurev(vars:semaphore);egins:=s+1;ifs 0thenR(s)end{v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2)生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)
C语言编程模拟生产者和消费者问题(附代码程序)实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语一一同步原语一一所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者一一消费者问题。
[提示]:⑴PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begi ns:=s-1;ifs<0the nW(s)en d{p}procedurev(vars:semaphore);egin s:=s+1;ifs _Othe nR(s)en d{v}其中W (s)表示将调用过程的进程置为等待信号量s的状态;R (s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者一一消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)(2)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语一一同步原语一一所组成。
本实习要求学生模拟PV 操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0 专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者一一消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begi ns:=s-1;ifs<Othe nW(s)en d{p}procedurev(vars:semaphore);egin s:=s+1;ifs -0thenR(s)en d{v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore 直接改成integer 。
(2) 生产者一一消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
[实用参考]C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1)PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begins:=s-1;ifs<0thenW(s)end{p}procedurev(vars:semaphore);egins:=s+1;ifs 0thenR(s)end{v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2)生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
操作系统实验 生产者与消费者问题
实验一生产者和消费者问题1、程序流程图2、源代码#include <windows.h>#include <iostream>const unsigned short SIZE_OF_BUFFER = 10;unsigned short ProductID = 0;unsigned short ConsumeID = 0;unsigned short in = 0;unsigned short out = 0;int g_buffer[SIZE_OF_BUFFER];bool g_continue = true;HANDLE g_hMutex;HANDLE g_hFullSemaphore;HANDLE g_hEmptySemaphore;DWORD WINAPI Producer(LPVOID);DWORD WINAPI Consumer(LPVOID);int main(){ g_hMutex = CreateMutex(NULL,FALSE,NULL);g_hFullSemaphore = CreateSemaphore(NULL,SIZE_OF_BUFFER-1,SIZE_OF_BUFFER-1,NULL);g_hEmptySemaphore = CreateSemaphore(NULL,0,SIZE_OF_BUFFER-1,NULL);const unsigned short PRODUCERS_COUNT = 3;const unsigned short CONSUMERS_COUNT = 1;const unsigned short THREADS_COUNT = PRODUCERS_COUNT+CONSUMERS_COUNT;HANDLE hThreads[PRODUCERS_COUNT];DWORD producerID[CONSUMERS_COUNT];DWORD consumerID[THREADS_COUNT];for (int i=0;i<PRODUCERS_COUNT;++i){hThreads[i]=CreateThread(NULL,0,Producer,NULL,0,&producerID[i]);if (hThreads[i]==NULL) return -1;}for ( i=0;i<CONSUMERS_COUNT;++i){hThreads[PRODUCERS_COUNT+i]=CreateThread(NULL,0,Consumer,NULL,0,&consumerID[i]);if (hThreads[i]==NULL) return -1;}while(g_continue){if(getchar()){ //按回车后终止程序运行g_continue = false;}}return 0;}void Produce(){ std::cerr << "Producing " << ++ProductID << " ... ";std::cerr << "Succeed" << std::endl;}void Append(){ std::cerr << "Appending a product ... ";g_buffer[in] = ProductID;in = (in+1)%SIZE_OF_BUFFER;std::cerr << "Succeed" << std::endl;for (int i=0;i<SIZE_OF_BUFFER;++i){std::cout << i <<": " << g_buffer[i];if (i==in) std::cout << " <-- 生产";if (i==out) std::cout << " <-- 消费";std::cout << std::endl;}}void Take(){ std::cerr << "Taking a product ... ";ConsumeID = g_buffer[out];out = (out+1)%SIZE_OF_BUFFER;std::cerr << "Succeed" << std::endl;for (int i=0;i<SIZE_OF_BUFFER;++i){std::cout << i <<": " << g_buffer[i];if (i==in) std::cout << " <-- 生产";if (i==out) std::cout << " <-- 消费";std::cout << std::endl; }}void Consume(){ std::cerr << "Consuming " << ConsumeID << " ... ";std::cerr << "Succeed" << std::endl;}DWORD WINAPI Producer(LPVOID lpPara){ while(g_continue){WaitForSingleObject(g_hFullSemaphore,INFINITE);WaitForSingleObject(g_hMutex,INFINITE);Produce();Append();Sleep(1500);ReleaseMutex(g_hMutex);ReleaseSemaphore(g_hEmptySemaphore,1,NULL);}return 0;}DWORD WINAPI Consumer(LPVOID lpPara){ while(g_continue){WaitForSingleObject(g_hEmptySemaphore,INFINITE);WaitForSingleObject(g_hMutex,INFINITE);Take();Consume();Sleep(1500);ReleaseMutex(g_hMutex);ReleaseSemaphore(g_hFullSemaphore,1,NULL);}return 0;}3、实验结果3、实验心得通过做生产者消费者问题这个实验,让我更加明确了两者之间的联系和基本的同步互斥算法,了解多线程并发执行机制是怎样的,线程间的同步和互斥又是怎样的,还有缓冲区的在其中作用是什么。
C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Window s操作系统和Visu al C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:proced ure p (var s: semaph ore);begins: = s-1;if s<0 then W (s)end {p}proced ure v (var s: semaph ore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
C语言编程模拟生产者和消费者问题(附代码程序)电子教案
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
操作系统生产者消费者问题代码
操作系统生产者消费者问题代码#include <windows.h>#include <fstream.h>#include <iostream.h>#include <string>#include <conio.h>//声明所需变量int in=0;int out=0;HANDLE h_Thread[20]; //线程数组HANDLE empty_Semaphore; //表示空缓冲区的信号量 HANDLE full_Semaphore; //表示空缓冲区的信号量HANDLE mutex;struct data{int ID;//序号char type;//类型,是生产者还是消费者,p or cdouble delay;//线程延迟的时间,对应生产者生产产品的时间或消费者消费产品的时间};data ThreadInfo[20]; //线程信息数组int length; //线程信息数组中实际的线程个数void Produce(void *p);//生产者进程void Consume(void *p);//消费者进程void input(void);int main(void){input();//初始化临界区对象//InitializeCriticalSection(&PC_Critical);empty_Semaphore=CreateSemaphore(NULL,10,10,NULL);full_Semaphore=CreateSemaphore(NULL,0,10,NULL);mutex = ::CreateMutex(NULL,FALSE,NULL);cout<<"下面生产者和消费者开始工作!!"<<endl;cout<<endl;//创建生产者和消费者线程for(int i=0;i<length;i++){if(ThreadInfo[i].type=='p')h_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Produce),&( ThreadInfo[i]),0,NULL);elseh_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Consume),&( ThreadInfo[i]),0,NULL);}//主程序等待各个线程的动作结束WaitForMultipleObjects(length,h_Thread,TRUE,-1);cout<<endl;::Sleep(1000000);cout<<"所有的生产者和消费者都完成了它们的工作!!"<<endl<<endl;return 0;}//****************************************************************** ***********************//生产者进程//****************************************************************** ************************void Produce(void *p){}//****************************************************************** ***********************//消费者进程//****************************************************************** ************************void Consume(void *p){//局部变量声明int my_id;double my_delay;//从线程信息数组中获得信息my_id =((data*)(p))->ID;my_delay=((data*)(p))->delay;//开始请求xiaofeicout<<"消费者"<<my_id<<"发出消费请求。
【名师精品】C语言编程模拟生产者和消费者问题(附代码程序).doc
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1)PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:pYoceduYep(vaYs:semaphoYe);begins:=s-1;ifs<0thenW(s)end{p}pYoceduYev(vaYs:semaphoYe);egins:=s+1;ifs 0thenY(s)end{v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;Y(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphoYe定义为某个类型,为简单起见,在模拟实习中可把上述的semaphoYe直接改成integeY。
(2)生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题(附代码程序)(2)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语一一同步原语一一所组成。
本实习要求学生模拟PV 操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0 专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者一一消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begi ns:=s-1;ifs<Othe nW(s)en d{p}procedurev(vars:semaphore);egin s:=s+1;ifs -0thenR(s)en d{v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore 直接改成integer 。
(2) 生产者一一消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
【8A版】C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1)PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begins:=s-1;ifs<0thenW(s)end{p}procedurev(vars:semaphore);egins:=s+1;ifs 0thenR(s)end{v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2)生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
C语言编程模拟生产者和消费者问题 附代码程序
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s£0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
【8A版】C语言编程模拟生产者和消费者问题(附代码程序)
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和VisualC++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1)PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P(s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V(s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedurep(vars:semaphore);begins:=s-1;ifs<0thenW(s)end{p}procedurev(vars:semaphore);egins:=s+1;ifs 0thenR(s)end{v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2)生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三编程模拟生产者和消费者问题一、实验目的和要求模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
二、实验环境Windows操作系统和Visual C++6.0专业版或企业版三、实验步骤模拟PV操作同步机构,且用PV操作解决生产者——消费者问题。
[提示]:(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
V操作原语V (s):将信号量s加1,若结果不大于0,则释放一个等待信号量s的进程。
这两条原语是如下的两个过程:procedure p (var s: semaphore);begin s: = s-1;if s<0 then W (s)end {p}procedure v (var s: semaphore);egin s: = s+1;if s 0 then R (s)end {v}其中W(s)表示将调用过程的进程置为等待信号量s的状态;R(s)表示释放一个等待信号量s的进程。
在系统初始化时应把semaphore定义为某个类型,为简单起见,在模拟实习中可把上述的semaphore直接改成integer。
(2) 生产者——消费者问题。
假定有一个生产者和一个消费者,生产者每次生产一件产品,并把生产的产品存入共享缓冲器以供消费者取走使用。
消费者每次从缓冲器内取出一件产品去消费。
禁止生产者将产品放入已满的缓冲器内,禁止消费者从空缓冲器内以产品。
假定缓冲器内可同时存放10件产品。
那么,用PV操作来实现生产者和消费者之间的同步,生产者和消费者两个进程的程序如下:B: array [0..9] of products;s1, s2; semaphore;s1: =10, s2: =0;IN, out: integer;IN: =0; out: =0;cobeginprocedure producer;c: products;beginL1:Produce (c);P (s1);B[IN]: =C;IN: =(IN+1)mod 10;V (s2);goto L1end;procedure consumer;x: products;beginL2: p (s2);x: =B[out];out: =(out+1) mod10;v (s1);consume (x);goto L2end;coend.其中的semaphore和products是预先定义的两个类型,在模拟实现中semaphore用integer代替,products可用integer或char等代替。
(3) 进程控制块PCB。
为了记录进程执行时的情况,以及进程让出处理器后的状态,断点等信息,每个进程都有一个进程控制块PCB。
在模拟实习中,假设进程控制块的结构如图3-1。
其中进程的状态有:运行态、就绪态、等待态和完成态。
当进程处于等待态时,在进程控制块PCB中要说明进程等待原因(在模拟实习中进程等待原因是为等待信号量s1或s2);当进程处于等待态或就绪态时,PCB中保留了断点信息,一旦进程再度占有处理器则就从断点位置继续运行;当进程处于完成状态,表示进程执行结束。
进程名状态等待原因断点图3-1 进程控制块结构(4) 处理器的模拟。
计算机硬件提供了一组机器指令,处理器的主要职责是解释执行机器指令。
为了模拟生产者和消费者进程的并发执行,我们必须模拟一组指令和处理职能。
模拟的一组指令见图3-2,其中每条指令的功能由一个过程来实现。
用变量PC来模拟“指令计数器”,假设模拟的指令长度为1,每执行一条模拟指令后,PC加1,提出下一条指令地址。
使用模拟的指令,可把生产者和消费者进程的程序表示为图3-3的形式。
定义两个一维数组PA[0..4]和SA[0..4],每一个PA[i]存放生产者程序中的一条模拟指令执行的入口地址;每个SA[i]存放消费者程序中的一条模拟指令执行的入口地址。
于是模拟处理器执行一条指令的过程为:取出PC之值,按PA[PC]或SA[PC]得模拟指令执行的入口地址,将PC之值加1,转向由入口地址确定的相应的过程执行。
模拟的指令功能p (s) 执行P操作原语v (s) 执行V操作原语put B[IN]: =product; IN: = (IN+1) mod 10GET x: =B[out]; out: =(out+1) mod 10produce 输入一个字符放入C中consume 打印或显示x中的字符GOTO L PC: =LNOP 空操作图3-2 模拟的处理器指令序号生产者程序消费者程序0 produce p (s2)1 p (s1) GET2 PUT v (s1)3 v (s2) consume4 goto 0 goto 0图3-3 生产者和消费者程序(5) 程序设计本实习中的程序由三部分组成:初始化程序、处理器调度程序、模拟处理器指令执行程序。
各部分程序的功能及相互间的关系由图3-4至图3-7指出。
图3-4 初始化流程图3-5 模拟处理器调度·初始化程序:模拟实习的程序从初始化程序入口启动,初始化工作包括对信号量s1、s2赋初值,对生产者、消费者进程的PCB初始化。
初始化后转向处理调度程序,其流程如图3-4。
·处理器调度程序:在计算机系统中,进程并发执行时,任一进程占用处理器执行完一条指令后就有可能被打断而让出处理器由其它进程运行。
故在模拟系统中也类似处理,每当执行一条模拟的指令后,保护当前进程的现场,让它成为非运行态,由处理器调度程序按随机数再选择一个就绪进程占用处理器运行。
处理器调度程序流程见图3-5。
图3-6 模拟处理器指令执行(a) 模拟P (s) (b) 模拟V (s)图3-7 模拟PV操作的执行·模拟处理器指令执行程序:按“指令计数器”PC之值执行指定的指令,且PC加1指向下一条指令。
模拟处理器指令执行程序的流程图见图3-6和图3-7。
另外,为了使得模拟程序有一个结束条件,在图3-6中附加了“生产者运行结束”的条件判断,模拟时可以采用人工选择的方法实现。
图3-7给出了P(s)和V(s)模拟指令执行过程的流程。
其它模拟指令的执行过程已在图3-2中指出。
附录:代码#include <stdio.h>#include <stdlib.h>#include <conio.h>#include <windows.h>#define NULL 0struct spcb{char name;char state;char why;int dd ;};typedef struct spcb pcb;pcb producter,consumer,*process,*process1; int s1,s2,i,j,in,out,pc,m;char array[10];char c,x;int pa[6],sa[6];int p(int s) /* p操作原语*/{s=s-1;if(s<0){process->state='B'; /* B表示阻塞*/process->why='s';}else{process->state='W'; /* W表示就绪*/ }return(s);}int v(int s) /*v操作原语*/{s=s+1;if(s<=0){process1->state='W';}process->state='W';return(s);}char RanChar(){char arr[10]={'a','b','c','d','e','f','g','h','i','j'};return arr[abs(rand()%10)];}void put(){// printf("\n please product anychar!");// scanf("\n%c",&c);Sleep(1000);array[in]=RanChar();in=(in+1)%10;printf(" product a char is %c!\n ",array[in-1]);int k = 0;for(m=0;m<10;m++){if (array[m]!=' ') {printf("%c",array[m]);k = k+1;}}printf("缓冲池中有%d个产品\n",k);}void get(){Sleep(1000);x=array[out];printf("\n%c get a char fron buffer",x);printf("\n");array[out]=' ';out=(out+1)%10;int k = 0;for(m=0;m<10;m++){if (array[m]!=' ') {printf("%c",array[m]);k = k+1;}}printf("缓冲池中有%d个产品\n",k);}void gotol(){pc=0;}void nop(){;}void disp() /*建立进程显示函数,用于显示当前进程*/ {printf("\n name \t state \t why \t dd \n");printf("|%c\t",process->name);printf("|%c\t",process->state);printf("|%c\t",process->why);printf("|%d\t",process->dd);printf("\n");}void init()/*初始化程序*/{s1=10;/*s1表示空缓冲区的数量*/s2=0; /*s2表示满缓冲区的数量*/='p';/*对生产者进程初始化*/producter.state='W';producter.why=' ';producter.dd=0;='c';/*对消费者进程初始化*/consumer.state='W';consumer.why=' ';consumer.dd=0;for(int k=0;k<10;k++){array[k] = ' ';}}void bornpa() /*将生产者程序装入pa[]中*/{for(i=0;i<=3;i++){pa[i]=i;}}void bornsa()/*将消费者程序装入sa[]中*/{for(i=0;i<=3;i++){sa[i]=i;}}void diaodu()/*处理器调度程序*/{while((producter.state=='W')||(consumer.state=='W')){x=rand();/*x随机获得一个数*/x=x%2;/*对X取于*/if(x==0)/*若X等于零,则执行生产者进程,反之执行消费者进程*/{process=&producter;/*process表示现行进程,将现行进程置为生产者进程*/process1=&consumer;}else{process=&consumer;process1=&producter;}pc=process->dd;i=pc;/*此时把PC的值付给I*/if((process->name=='p')&&(process->state=='W')){j=pa[i];pc=i+1;switch(j){case 0: s1=p(s1);process->dd=pc;break;case 1: put();process->state='W';process->dd=pc;break;case 2: s2=v(s2);process->dd=pc;break;case 3: gotol();process->state='W';process->dd=pc;}}else if((process->name=='c')&&(process->state=='W'))/*执行消费者进程且该进程处于就绪状态*/{process->state='W';j=sa[i];pc=i+1;switch(j){case 0: s2=p(s2);process->dd=pc;break;/*申请资源,若没有申请到则跳转*/case 1: get();process->dd=pc;break;case 2: s1=v(s1);process->dd=pc;break;case 3: gotol();process->state='W';process->dd=pc;}} /*end else*/}/*end while*/printf("\nThe program is over!\n");}void main(){init();bornpa();bornsa();diaodu();}。