三角形基本概念与性质
三角形的概念与性质
![三角形的概念与性质](https://img.taocdn.com/s3/m/edae9881f021dd36a32d7375a417866fb84ac099.png)
三角形的概念与性质三角形是几何学中重要的概念,它具有独特的性质和特点。
在本文中,我们将探讨三角形的定义、分类以及一些基本性质。
一、三角形的定义三角形是由三个线段组成的图形,这三个线段称为它的边。
三个边的交点称为三角形的顶点。
三角形的边可以是任意长度,但需要满足以下条件:1. 任意两边之和大于第三边;2. 任意两边之差小于第三边。
二、三角形的分类根据三角形的边长和角度,我们可以将三角形分为以下几类:1. 等边三角形等边三角形的三条边均相等,三个内角也均相等,每个角度都为60度。
2. 等腰三角形等腰三角形有两条边相等,两个对应角度也相等。
等腰三角形的顶角是两个底角的对边,两个底角的度数相等。
3. 直角三角形直角三角形有一个内角为90度,我们将斜边定义为最长的一条边,而与直角相邻的两边称为直角腿。
直角三角形的两个直角腿的长度可以相等,也可以不等。
4. 锐角三角形锐角三角形的三个内角均小于90度。
5. 钝角三角形钝角三角形有一个内角大于90度。
三、三角形的性质三角形具有多种性质,下面我们将介绍其中一些重要的性质。
1. 内角和性质三角形的三个内角的和为180度。
无论三角形的形状如何,无论是锐角、直角还是钝角三角形,它们的内角和都是固定的。
2. 外角性质以三角形的一个顶点为中心,作另外两边所在直线的延长线,与该顶点不相邻的两个外角的和等于第三个外角。
3. 边与角的关系三角形的任意两边之间的夹角大小与它们的边长有关,可以通过三角函数进行计算。
三角函数有正弦、余弦和正切等。
4. 相似三角形性质如果两个三角形的对应角相等,那么它们被称为相似三角形。
相似三角形的对应边的长度比例相等。
5. 三角形的面积三角形的面积可以通过海伦公式或底边高公式来计算,其中海伦公式适用于已知三边长的情况,而底边高公式适用于已知底边及高的情况。
结论三角形作为几何学中的基本图形之一,具有丰富的性质和特点。
通过理解三角形的概念和性质,我们可以更好地应用几何学知识解决实际问题。
三角形的基本概念和性质
![三角形的基本概念和性质](https://img.taocdn.com/s3/m/5fdee4848ad63186bceb19e8b8f67c1cfad6ee0c.png)
三角形的基本概念和性质三角形是几何学中最基本的图形之一,它由三条线段相连而成。
本文将介绍三角形的基本概念和性质,帮助读者更好地理解和应用三角形。
一、基本概念1. 三角形定义:三角形是由三条线段组成的图形,三条线段分别称为三角形的边。
三个顶点将边相连,形成三个内角和三个外角。
2. 顶点:三角形的顶点是三个不共线的点,它们确定了三角形的形状和大小。
3. 边:三角形的边是连接顶点的线段,它们是三角形的基本构成元素。
4. 内角:三角形的内角是由两条边相交所形成的角,共有三个内角。
5. 外角:三角形的外角是由一条边和延长线所形成的角,共有三个外角。
二、性质1. 内角和:三角形的内角和等于180度,即∠A + ∠B + ∠C = 180°。
2. 外角和:三角形的外角和等于360度,即∠D + ∠E + ∠F = 360°。
3. 两边之和大于第三边:三角形的任意两边之和大于第三边,即AB + BC > AC,AC + BC > AB,AB + AC > BC。
4. 等边三角形:如果一个三角形的三条边长度相等,则该三角形是等边三角形。
等边三角形的三个内角也相等,都是60度。
5. 等腰三角形:如果一个三角形的两条边长度相等,则该三角形是等腰三角形。
等腰三角形的两个底角也相等。
6. 直角三角形:如果一个三角形拥有一个直角(90度),则该三角形是直角三角形。
直角三角形的两条边平方和等于斜边平方,即a² + b² = c²。
7. 锐角三角形:如果一个三角形的三个内角都小于90度,则该三角形是锐角三角形。
8. 钝角三角形:如果一个三角形中有一个内角大于90度,则该三角形是钝角三角形。
三、应用三角形的基本概念和性质在几何学和实际生活中有广泛的应用。
1. 测量:三角形的性质使得它成为测量地理距离、高度以及倾斜角度的重要工具。
2. 工程设计:在建筑和工程设计中,三角形的性质用于计算角度、边长和面积,保证结构的稳定和准确。
八年级三角形性质
![八年级三角形性质](https://img.taocdn.com/s3/m/6116b96102d8ce2f0066f5335a8102d277a26152.png)
八年级三角形性质一、三角形的基本概念。
1. 定义。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 三角形有三个顶点、三条边和三个角。
例如,三角形ABC,顶点为A、B、C,边为AB、BC、AC,角为∠A、∠B、∠C。
2. 三角形的表示方法。
- 用符号“△”表示三角形。
如上述三角形可表示为△ABC。
二、三角形的分类。
1. 按角分类。
- 锐角三角形:三个角都是锐角(即小于90°)的三角形。
- 直角三角形:有一个角是直角(等于90°)的三角形。
直角三角形中,夹直角的两条边叫做直角边,直角所对的边叫做斜边。
- 钝角三角形:有一个角是钝角(大于90°小于180°)的三角形。
2. 按边分类。
- 不等边三角形:三条边都不相等的三角形。
- 等腰三角形:有两条边相等的三角形。
相等的两条边叫做腰,另一条边叫做底边;两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
- 等边三角形:三条边都相等的三角形。
等边三角形是特殊的等腰三角形,它的三个角都相等,且每个角都是60°。
三、三角形的性质。
1. 三角形三边关系。
- 三角形两边之和大于第三边。
例如,在△ABC中,AB + BC>AC,AB+AC > BC,BC + AC>AB。
- 三角形两边之差小于第三边。
如在△ABC中,AB - BC<AC,AB - AC<BC,BC - AC<AB。
2. 三角形的内角和定理。
- 三角形的内角和等于180°。
即∠A+∠B +∠C = 180°。
- 直角三角形的两个锐角互余。
在Rt△ABC(∠C = 90°)中,∠A+∠B=90°。
3. 三角形的外角性质。
- 三角形的一个外角等于与它不相邻的两个内角之和。
例如在△ABC中,∠ACD是∠ACB的外角,则∠ACD =∠A+∠B。
- 三角形的一个外角大于任何一个与它不相邻的内角。
简单介绍三角形的基本概念与性质
![简单介绍三角形的基本概念与性质](https://img.taocdn.com/s3/m/0ca38042bfd5b9f3f90f76c66137ee06eff94eaa.png)
简单介绍三角形的基本概念与性质三角形是几何学中的基本图形之一,具有丰富的概念和性质。
本文将简单介绍三角形的基本概念和性质。
1. 三角形的定义三角形是由三条线段组成的闭合图形,其中每两条线段相交于一个顶点,并且不共线。
它是平面上最简单的多边形之一。
2. 三角形的分类根据边长的不同,三角形可以分为以下三种类型:(1) 等边三角形:三条边的长度相等。
(2) 等腰三角形:两条边的长度相等。
(3) 普通三角形:三条边的长度各不相等。
根据角度的不同,三角形可以分为以下三种类型:(1) 直角三角形:其中一个角是直角(90度)。
(2) 钝角三角形:其中一个角大于90度。
(3) 锐角三角形:其中三个角都小于90度。
3. 三角形的性质(1) 三角形的内角和等于180度:三角形的三个内角相加等于180度。
即∠A + ∠B + ∠C = 180°。
(2) 三角形的外角和等于360度:三角形的每个外角都等于其对应内角的补角。
即∠D = 180° - ∠A。
(3) 三角形的两边之和大于第三边:对于任意一个三角形ABC,有AB + BC > AC,AC + BC > AB,AB + AC > BC。
(4) 等边三角形的性质:等边三角形的三个内角均为60度,且三条边互相相等。
(5) 等腰三角形的性质:等腰三角形的两个底角相等。
(6) 直角三角形的性质:直角三角形的两个锐角之和为90度。
(7) 锐角三角形的性质:锐角三角形的三个内角都小于90度。
4. 三角形的重要定理(1) 余弦定理:对于任意一个三角形ABC,设边长分别为a、b、c,对应的内角分别为∠A、∠B、∠C,则有c^2 = a^2 + b^2 - 2ab·cos∠C。
(2) 正弦定理:对于任意一个三角形ABC,设边长分别为a、b、c,对应的内角分别为∠A、∠B、∠C,则有a/sin∠A = b/sin∠B =c/sin∠C = 2R(其中R为三角形外接圆半径)。
三角形的定义及性质
![三角形的定义及性质](https://img.taocdn.com/s3/m/4fd5134c53ea551810a6f524ccbff121dc36c55f.png)
三角形的定义及性质三角形是几何学中最基本的图形之一,它由三条线段组成,每两条线段之间的交点称为顶点,两条线段之间的边称为边。
本文将探讨三角形的定义以及其常见的性质。
一、三角形的定义在几何学中,三角形可以定义为一个有三条边的图形。
每一条边都连接两个顶点,而每两条边之间的交点也是一个顶点。
三角形的三个顶点分别用A、B、C表示,三条边分别用a、b、c表示。
根据边长的关系,三角形可以分为以下三种类型:1. 等边三角形:如果三条边的长度都相等,即a=b=c,那么这个三角形就是等边三角形。
2. 等腰三角形:如果两条边的长度相等,即a=b或b=c或a=c,那么这个三角形就是等腰三角形。
3. 不等边三角形:如果三条边的长度都不相等,即a≠b≠c,那么这个三角形就是不等边三角形。
二、三角形的性质三角形有许多有趣的性质,下面将介绍其中一些常见的性质:1. 三角形的内角和为180度:对于任意三角形ABC,其内角A、B、C的度数之和等于180度。
这是因为在平面几何中,三角形的内角和总是固定的。
2. 外角等于两个不相邻内角之和:三角形的每个内角都有一个对应的外角,它是与内角不相邻的另外一条边所在的角。
对于三角形ABC来说,外角A等于内角B和C的度数之和,外角B等于内角A和C的度数之和,外角C等于内角A和B的度数之和。
3. 三边关系:在三角形ABC中,两边之和大于第三边,任意两边之差小于第三边。
换句话说,对于三角形ABC来说,a+b>c,a+c>b,b+c>a。
这个性质被成为三边关系定理,它是判断三条线段能否组成三角形的重要条件。
4. 直角三角形:如果三角形中有一个内角等于90度,那么这个三角形就是直角三角形。
根据勾股定理,直角三角形的两条直角边的平方之和等于斜边的平方,即a²+b²=c²。
5. 等腰三角形的性质:对于等腰三角形ABC来说,它有以下一些独特的性质:- 两个底角(即底边对应的内角)是相等的;- 等腰三角形的高(即从顶点到底边的垂直距离)是中线、中位线、角平分线和高线;- 等腰三角形可以划分为两个全等的直角三角形。
三角形的基本概念与性质
![三角形的基本概念与性质](https://img.taocdn.com/s3/m/aaa506b7f71fb7360b4c2e3f5727a5e9856a27f5.png)
三角形的基本概念与性质三角形是平面几何中最基本的图形之一,它由三条边和三个角组成。
本文将介绍三角形的基本概念和性质,包括三角形的定义、分类、元素、角度关系以及三角形的定理等。
一、三角形的定义三角形是由三条线段连接起来的图形,其中每个线段都被称为一个边,而连接两个边的点则被称为顶点。
三角形的三个顶点围成一个封闭的区域。
二、三角形的分类根据三角形的边长以及角度大小,可以将三角形分为以下几类:1. 根据边长分类(1) 等边三角形:三条边的长度均相等。
(2) 等腰三角形:两条边的长度相等。
(3) 普通三角形:三条边的长度都不相等。
2. 根据角度大小分类(1) 钝角三角形:一个角大于90°。
(2) 直角三角形:唯一一个角等于90°。
(3) 锐角三角形:三个角均小于90°。
3. 根据边长和角度大小综合分类(1) 正三角形:既是等边三角形,又是等腰三角形。
(2) 等腰直角三角形:既是等腰三角形,又是直角三角形。
三、三角形的元素三角形除了边和角之外,还有一些重要的元素:1. 顶点角:三角形的三个顶点所对应的角。
2. 底边:连接两个顶点的边。
3. 高:从底边到顶点所做的垂直线段。
四、三角形的角度关系1. 内角和定理:三角形内角的和等于180°。
2. 外角和定理:三角形的外角的和等于360°。
五、三角形的性质与定理1. 等腰三角形的性质:(1) 等腰三角形的两底角相等。
(2) 等腰三角形的高、中线、角平分线和垂心都是重合的。
2. 直角三角形的性质(勾股定理):(1) 直角三角形的两条直角边的平方和等于斜边的平方。
(2) 根据勾股定理可以判断一个三角形是否为直角三角形。
3. 三角形的面积公式(海伦公式):三角形的面积可以用海伦公式进行计算,公式如下:面积= √[s(s-a)(s-b)(s-c)]其中,s为三角形的半周长,a、b、c为三角形的三条边的长度。
通过了解三角形的基本概念与性质,我们可以更好地理解和分析三角形相关的问题。
三角形的基本概念与性质
![三角形的基本概念与性质](https://img.taocdn.com/s3/m/74f18b368f9951e79b89680203d8ce2f00666593.png)
三角形的基本概念与性质三角形是几何学中的基本图形之一,它由三条边和三个角组成。
在三角形中,有许多重要的概念和性质,本文将详细介绍这些内容。
一、概念1. 边:三角形有三条边,分别连接三个顶点。
2. 顶点:三角形有三个顶点,每个顶点是两条边的交点。
3. 角:三角形有三个角,分别由两条边组成,角的大小可以通过度数或弧度来表示。
4. 顶角:三角形的顶点所对应的角叫做顶角。
5. 底边:底边是三角形的一个边,另外两边的起点和终点都在底边上。
二、性质1. 内角和:三角形的内角和等于180度。
即三个内角的度数之和等于180度。
2. 外角和:三角形的外角和等于360度。
即三个外角的度数之和等于360度。
3. 等边三角形:如果一个三角形的三条边长度相等,则这个三角形是等边三角形。
等边三角形的三个内角都是60度。
4. 等腰三角形:如果一个三角形的两条边的长度相等,则这个三角形是等腰三角形。
等腰三角形的两个底角相等。
5. 直角三角形:如果一个三角形的一个角是90度,则这个三角形是直角三角形。
直角三角形中一边的长度可以通过勾股定理计算。
6. 锐角三角形:如果一个三角形的三个内角都小于90度,则这个三角形是锐角三角形。
7. 钝角三角形:如果一个三角形的一个内角大于90度,则这个三角形是钝角三角形。
8. 等腰直角三角形:如果一个三角形的一个角是90度,并且另外两条边的长度相等,则这个三角形是等腰直角三角形。
9. 角平分线:三角形的内角平分线将一个角分为两个相等的角。
每个内角都有一个对应的内角平分线。
10. 中线:三角形的三条中线将三角形分为三个相等的小三角形。
每条中线都通过三角形的一个顶点和对边的中点。
11. 高线:三角形的三条高线分别从一个顶点垂直向对边,与对边相交于一个点。
三角形的三条高线交于一点,这个点叫做三角形的垂心。
12. 外心:外接圆是一个三角形的三条边的延长线所确定的唯一圆。
这个圆的圆心叫做三角形的外心。
13. 内心:内切圆是一个三角形的三条边的内部所确定的唯一圆。
与三角形有关的定理和公式
![与三角形有关的定理和公式](https://img.taocdn.com/s3/m/a464d26fb5daa58da0116c175f0e7cd1842518d6.png)
与三角形有关的定理和公式一、三角形的基本概念和性质三角形是平面几何学中最基本的图形之一,由三条边和三个角组成。
以下是三角形的一些基本概念和性质:1.三角形的内角和定理:三角形的三个内角的和等于180度。
2.三边关系:-三边相等的三角形是等边三角形。
-两边之和大于第三边,两边之差小于第三边。
3.三角形的外角和定理:三角形的一个外角等于其余两个内角之和。
4.三角形的角平分线:三角形的内角的平分线相交于三角形的内心,也就是内心到三边的距离之和最短。
5.三角形的垂心和垂线:三角形的三条高线交于一点,称为垂心;垂直于三边的线称为垂线。
6.三角形的重心和重心线:三角形的三条重心线交于一点,称为重心;重心线由顶点与对边中点连接而成。
7.三角形的内切圆和外接圆:能够切于三角形三边的圆叫做内切圆;能够通过三角形三个顶点的圆叫做外接圆。
二、三角形的面积公式1.三角形的面积公式:-三角形面积=底边长×高/2-三角形面积=三边长度之积×正弦该三角形夹角的一半2.三角形的海伦公式:设三角形的三条边长度分别为a,b,c,半周长为s,三角形的面积可以用海伦公式表示:-三角形面积=√(s×(s-a)×(s-b)×(s-c))三、三角形的相似定理和比例定理1.AAA相似定理(对应角相等定理):两个三角形的对应角全等,则这两个三角形相似。
2.AA相似定理(角相似定理):两个三角形的两个角分别相等,则这两个三角形相似。
3.SSS相似定理(对应边成比例定理):两个三角形的三对应边分别成比例,则这两个三角形相似。
4.直角三角形的勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
5.正弦定理:在任意三角形ABC中,设a、b、c分别为三角形的边长,A、B、C分别为三角形的对应角,则正弦定理可以表示为:- sinA / a = sinB / b = sinC / c6.余弦定理:在任意三角形ABC中,设a、b、c分别为三角形的边长,A、B、C分别为三角形的对应角,则余弦定理可以表示为:- c² = a² + b² - 2ab × cosC7.正切定理:在任意三角形ABC中,设A、B、C分别为三角形的对应角,则正切定理可以表示为:- tanA = a / hA (hA为A的对边高)以上是与三角形有关的一些定理和公式,它们在几何学和三角学中有着重要的应用,可以帮助我们计算三角形的各种属性和问题。
三角形概念大全
![三角形概念大全](https://img.taocdn.com/s3/m/e5085835773231126edb6f1aff00bed5b8f37352.png)
三角形概念大全三角形是几何学中最基本的形状之一,由三条边和三个顶点组成。
在这篇文章中,我们将详细介绍三角形的概念、性质、分类以及一些与三角形相关的重要定理和公式。
1. 三角形的基本概念三角形是由三条线段(边)和三个点(顶点)组成的多边形。
其中,边是连接两个顶点的线段,而顶点是多边形的拐角处。
三角形中的三个顶点用大写字母A、B、C表示,对应的边用小写字母a、b、c表示。
2. 三角形的性质(1)内角和定理:三角形的三个内角之和等于180度。
即∠A +∠B + ∠C = 180°。
(2)外角和定理:三角形的一个内角和其相邻的两个外角之和等于360度。
即∠A + ∠D + ∠E = 360°。
(3)角平分线定理:三角形的内角平分线相交于三角形的内心,且内心到三角形的各边的距离相等。
(4)中线定理:三角形的三条中线交于一点,这个点被称为三角形的重心,重心到三角形的各顶点的距离相等。
3. 三角形的分类根据边长和角度的不同,三角形可以分为以下几种类型:(1)按边长分类:a. 等边三角形:三条边的长度都相等。
b. 等腰三角形:至少有两条边的长度相等。
c. 普通三角形:三条边的长度都不相等。
(2)按角度分类:a. 锐角三角形:三个内角都小于90度。
b. 直角三角形:一个内角为90度。
c. 钝角三角形:其中一个内角大于90度。
(3)综合分类:a. 等腰直角三角形:一条等边与一个直角。
b. 等边锐角三角形:三个等边均为锐角。
c. 正三角形:既是等边三角形又是等腰三角形同时也是锐角三角形。
4. 三角形的重要定理和公式(1)勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。
a² + b² = c²(c为斜边)(2)正弦定理:三角形中,边与其对应的正弦值成比例。
a/sinA = b/sinB = c/sinC(3)余弦定理:三角形中,边与其余弦值成反比。
a² = b² + c² - 2bc*cosA (a为边A对应的边长,A为角A对应的内角,b和c同理)(4)海伦公式:已知三角形的三边长度,可以求出三角形的面积。
三角形的基本概念与性质
![三角形的基本概念与性质](https://img.taocdn.com/s3/m/ab07f7e15122aaea998fcc22bcd126fff7055da5.png)
三角形的基本概念与性质三角形是几何学中最基本的图形之一,具有广泛的应用和重要的性质。
在本文中,我们将探讨三角形的基本概念和一些常见的性质,以加深我们对三角形的理解。
一、基本概念三角形是由三条边和三个角组成的图形。
根据边的长度,我们可以将三角形分为三类:等边三角形、等腰三角形和一般三角形。
1.等边三角形:假设三条边的长度都相等,那么这个三角形就是等边三角形。
等边三角形的三个角都是60度。
2.等腰三角形:假设三角形的两条边的长度相等,那么这个三角形就是等腰三角形。
等腰三角形的两个角也是相等的。
3.一般三角形:如果三角形的三条边的长度都不相等,那么这个三角形就是一般三角形。
除了边的长度外,三角形还可以根据角的大小来进行分类。
根据角的大小,我们可以将三角形分为三类:锐角三角形、直角三角形和钝角三角形。
1.锐角三角形:三个角都是锐角的三角形称为锐角三角形。
2.直角三角形:拥有一个90度角的三角形称为直角三角形。
直角三角形的两边相互垂直。
3.钝角三角形:拥有一个大于90度角的三角形称为钝角三角形。
二、性质除了基本的分类外,三角形还具有一些重要的性质。
1.三角形的内角和性质:三角形的三个内角的和总是等于180度。
这个性质被称为三角形的内角和定理。
2.直角三角形的性质:直角三角形是三角形中最特殊的一种。
如果一个三角形有一个90度角,那么它的另外两个角的和总是等于90度。
此外,直角三角形的两条直角边的平方和等于斜边的平方。
这个性质被称为毕达哥拉斯定理。
3.等腰三角形的性质:等腰三角形的两边相等,并且其底边的中线也是高和中线。
此外,等腰三角形的顶角的平分线也是高和中线。
4.等边三角形的性质:等边三角形的三边都相等,三个角也都是60度。
此外,等边三角形的高、中线、中位线、角平分线和垂直平分线都是同一条线。
5.海伦公式:对于一般的三角形,我们可以使用海伦公式来计算其面积。
海伦公式如下:设三角形的三边长度分别为a、b、c,半周长为s,则三角形的面积S可以计算如下:S = √(s(s-a)(s-b)(s-c))。
有关三角形的所有定理
![有关三角形的所有定理](https://img.taocdn.com/s3/m/3948656fb5daa58da0116c175f0e7cd1842518fa.png)
有关三角形的所有定理三角形作为几何中最基本的形状之一,在数学领域有许多重要的定理与特性与之相关。
本文将为您详细介绍有关三角形的所有定理,以帮助您更好地理解和应用于相关问题。
一、三角形的基本概念与性质1. 定义:三角形是由三条线段所组成的多边形,其中任意两条线段之和大于第三条线段。
2. 内角和定理:三角形内角和等于180度。
3. 外角和定理:三角形的任意一个外角等于其余两个内角的和。
4. 等边三角形:三边长度均相等的三角形。
5. 等腰三角形:两边长度相等的三角形。
6. 直角三角形:其中一个内角为直角(90度)的三角形。
二、三角形的边与角的关系1. 三角不等式定理:设a、b、c为三角形的三边长度,其中a < b + c, b < a + c, c < a + b。
2. 外接圆定理:三角形的外接圆半径等于三边长度的乘积除以4倍该三角形面积。
3. 内切圆定理:三角形的内切圆半径等于该三角形面积除以半周长。
4. 正弦定理:在任意三角形ABC中,边长a、b、c与其对应的角A、B、C之间有以下关系:a/sinA = b/sinB = c/sinC。
5. 余弦定理:在任意三角形ABC中,边长a、b、c与其对应的角A、B、C之间有以下关系:c^2 = a^2 + b^2 - 2abcosC。
6. 正切定理:在任意三角形ABC中,夹角A、B、C的正切值与边长a、b、c之间有以下关系:tanA = a/b,tanB = b/a,tanC = (a + b)/c。
三、特殊三角形及其定理1. 直角三角形定理:在直角三角形ABC中,设一直角为角A,则满足勾股定理a^2 = b^2 + c^2。
2. 等边三角形定理:在等边三角形ABC中,其三个内角均为60度,三边长度均相等。
3. 等腰三角形定理:在等腰三角形ABC中,两个底角相等,且底边长度相等。
4. 30-60-90度三角形定理:在三角形ABC中,角A为30度,角B为60度,则满足边长关系式b = a√3,c = 2a。
初中数学知识归纳三角形的性质与判定
![初中数学知识归纳三角形的性质与判定](https://img.taocdn.com/s3/m/dbf095e6b1717fd5360cba1aa8114431b90d8e07.png)
初中数学知识归纳三角形的性质与判定三角形是初中数学中的基本图形之一,它具有许多特性和性质。
掌握三角形的性质和判定方法对于解题和证明来说是至关重要的。
本文将对初中数学中常见的三角形性质和判定方法进行归纳总结。
一、三角形的基本概念在深入探讨三角形的性质之前,我们首先需要了解三角形的基本概念。
1. 定义:三角形是由三条线段组成的图形,其中每两条线段之间的组合被称为三角形的边,而相交的端点称为三角形的顶点。
2. 分类:根据三角形的边长关系,三角形可以分为等边三角形、等腰三角形和一般三角形。
二、三角形的性质1. 三角形的内角和性质:三角形的内角和等于180度。
即∠A + ∠B + ∠C = 180°,其中∠A、∠B和∠C分别表示三角形的三个内角。
2. 三角形的外角性质:三角形的一个内角的补角,就是其对应的外角。
即∠D = 180° - ∠A,∠E = 180° - ∠B,∠F = 180° - ∠C。
3. 三角形的两边之和大于第三边:设三角形的三边长分别为a、b和c,则a + b > c,a + c > b,b + c > a。
如果三条边长中有任意一组边长不满足这个条件,则无法构成三角形。
4. 三角形的两角之和大于第三角:设三角形的三个内角的度数分别为∠A、∠B和∠C,则∠A + ∠B > ∠C,∠A + ∠C > ∠B,∠B + ∠C > ∠A。
如果三个内角的度数中有任意一组不满足这个条件,则无法构成三角形。
5. 等边三角形的性质:等边三角形是指三条边的边长相等的三角形。
在等边三角形中,三个内角的度数都是60°,且三条高度、角平分线和中线的长度都相等。
6. 等腰三角形的性质:等腰三角形是指两条边的边长相等的三角形。
在等腰三角形中,两个底角的角度相等,而顶角的角度则小于两个底角。
另外,等腰三角形的高度、角平分线、中线都有一些特殊性质。
三角形的概念与性质
![三角形的概念与性质](https://img.taocdn.com/s3/m/bcdc8ac4fbb069dc5022aaea998fcc22bcd143a1.png)
三角形的概念与性质三角形是平面几何中最基本的图形之一,它由三条线段组成,这三条线段相互相交于端点,形成三个顶点。
本文将介绍三角形的概念和一些重要性质。
概念三角形是由三条线段组成的简单几何图形,每条线段被称为三角形的边,相邻两边的端点被称为三角形的顶点。
根据边的长度,我们可以将三角形分为等边三角形、等腰三角形和普通三角形。
等边三角形的三条边长度相等,等腰三角形的两条边长度相等,而普通三角形的三条边长度都不相等。
性质一:内角和定理一个三角形有三个内角,它的内角和等于180度。
这是三角形的一个基本性质,也被称为内角和定理。
例如,在一个普通三角形中,三个内角的和是180度。
如果一个三角形中的一个内角是90度,那么我们称这个三角形为直角三角形。
性质二:外角和定理三角形的每个内角都有一个对应的外角。
对于任意一个三角形,它的外角和等于360度。
这是三角形的另一个重要性质,也被称为外角和定理。
在一个普通三角形中,三个外角的和是360度。
性质三:等腰三角形的性质等腰三角形是一种特殊的三角形,它具有一些独特的性质。
首先,等腰三角形的两个底角(顶点所对的角)是相等的。
其次,等腰三角形的两条边是相等的。
这些性质使得等腰三角形在解决一些几何问题中非常有用。
性质四:直角三角形的性质直角三角形是一种特殊的三角形,其中一个内角是90度。
直角三角形有一些独特的性质。
首先,直角三角形的两个直角边(与直角相邻的两条边)满足勾股定理。
即直角三角形的两个直角边的平方和等于斜边的平方。
其次,直角三角形可以由一个45度的等腰直角三角形与一个角是30度的等腰直角三角形组成。
性质五:三角形的三边关系三角形的三边之间有一些关系。
其中之一是三角不等式定理,它表明任意两边之和大于第三边。
另一个是海伦公式,它用于计算三角形的面积。
根据海伦公式,已知三角形的三边长度时,可以计算出三角形的面积。
总结三角形是平面几何中基本的图形之一,它的概念和性质对于理解和解决几何问题非常重要。
初中数学知识归纳三角形的性质与定理
![初中数学知识归纳三角形的性质与定理](https://img.taocdn.com/s3/m/472ad1497dd184254b35eefdc8d376eeaeaa17d5.png)
初中数学知识归纳三角形的性质与定理三角形是初中数学中非常重要的一个概念,它具有丰富的性质与定理。
在本文中,我们将对初中数学中与三角形有关的性质与定理进行归纳总结。
一、三角形的基本性质1. 三角形的定义:一个平面内由三条不在同一直线上的线段所组成的图形叫做三角形。
2. 三角形的元素:三角形有三个顶点、三条边和三个内角。
3. 三角形的两个重要角度和角度和:三角形的角度和等于180度,即∠A + ∠B + ∠C = 180°。
4. 三角形的边对应角:三角形的边与其对应角有对应关系,即边a对应∠A,边b对应∠B,边c对应∠C。
二、三角形的分类1. 三角形的按边长分类:a. 等边三角形:三条边的长度相等,如三边长都是5cm的三角形。
b. 等腰三角形:两条边的长度相等,如底边长度为4cm,两腰边长度都是3cm的三角形。
c. 普通三角形:三条边的长度都不相等。
2. 三角形的按角度分类:b. 直角三角形:一个内角是90度的三角形。
c. 钝角三角形:一个内角是钝角的三角形。
三、三角形的诱导性质与定理1. 等腰三角形的性质与定理:a. 等腰三角形的底边上的两个角相等。
b. 等腰三角形的两条腰相等。
c. 等腰三角形的两条腰上的两个角相等。
d. 等腰三角形的底角和顶角互补,即底角 + 顶角 = 180°。
2. 直角三角形的性质与定理:a. 直角三角形中,直角的两条直角边相等。
b. 直角三角形中,斜边的平方等于两直角边平方和,即c² = a² + b²。
c. 两个边长相等的直角三角形,两个锐角也相等。
3. 等边三角形的性质与定理:a. 等边三角形的三个角都是60度。
b. 等边三角形的三条边都相等。
4. 锐角三角形的性质与定理:b. 锐角三角形中,最长的一边是斜边,最长的一边的对角是最大的角。
5. 外角定理:三角形的一个外角等于其它两个内角的和。
6. 三角形内角和定理:三角形的内角和等于180度。
三角形的基本概念和性质
![三角形的基本概念和性质](https://img.taocdn.com/s3/m/28051f43cd1755270722192e453610661fd95a11.png)
三角形的基本概念和性质三角形是几何学中最基本的形状之一,它由三条线段组成,这三条线段称为三角形的边。
在本文中,我们将探讨三角形的基本概念和性质。
一、三角形的定义三角形是由三条线段组成的多边形,其中任意两条线段的长度之和大于第三条线段的长度。
二、三角形的分类三角形根据边长和角度可以分为不同的类型,下面介绍几种常见的三角形。
1. 等边三角形等边三角形是指三条边的长度相等的三角形。
在等边三角形中,三个内角也是相等的,每个角都是60度。
2. 等腰三角形等腰三角形是指两条边的长度相等的三角形。
在等腰三角形中,两个底角是相等的,而顶角通常不等于底角。
3. 直角三角形直角三角形是指其中一个角为90度的三角形。
直角三角形的边可以按照长短关系分为斜边、直角边和另外一条边。
4. 钝角三角形钝角三角形是指其中一个角大于90度的三角形。
在钝角三角形中,两个较短的边的平方之和小于最长边的平方。
5. 锐角三角形锐角三角形是指所有角都小于90度的三角形。
在锐角三角形中,三个角都是锐角。
三、三角形的性质三角形有许多有趣的性质,下面我们来介绍一些常见的性质。
1. 内角和三角形的三个内角的和始终为180度。
这意味着,无论是怎样的三角形,三个内角的度数之和都是相等的。
2. 外角和三角形的三个外角的和始终为360度。
外角是指与某一内角形成的补角。
3. 中线中线是连接三角形的两个顶点和中点的线段。
对于任意三角形而言,三条中线会相交于同一个点,该点被称为三角形的重心。
4. 高线高线是从三角形的一个顶点到相对边的垂直距离。
三角形的三条高线可以相交于同一个点,该点被称为三角形的垂心。
5. 角平分线角平分线是从一个角的顶点到对边上某一点的线段。
三角形的三条角平分线可以相交于同一个点,该点被称为三角形的内心。
6. 边平分线边平分线是从一个顶点到对边上某一点的线段。
对于等边三角形而言,三条边平分线可以相交于同一个点,该点被称为三角形的外心。
以上介绍了三角形的基本概念和性质,三角形作为几何学中最基本的形状之一,有许多有趣的特点和定理。
三角形有关概念及性质
![三角形有关概念及性质](https://img.taocdn.com/s3/m/6733cc69da38376baf1faefd.png)
21D CB AD CBA三角形有关概念及性质⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接; (2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义. ⒉ 三角形的分类:(1)按边分类: (2)按角分类:⒊ 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线.2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形等边三角形 三角形直角三象形 斜三角形 锐角三角形 钝角三角形 _C _B _AD CB A(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°. 注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③三角形三条高所在直线交于一点.⒋ 三角形的主要线段的表示法: 三角形的角平分线的表示法:如图1,根据具体情况使用以下任意一种方式表示:① AD 是∆ABC 的角平分线; ② AD 平分∠BAC ,交BC 于D ;③ 如果AD 是∆ABC 的角平分线,那么∠BAD=∠DAC=21∠BAC.(2)三角形的中线表示法:如图1,根据具体情况使用以下任意一种方式表示: ①AE 是∆ABC 的中线;②AE 是∆ABC 中BC 边上的中线;③如果AE 是∆ABC 的中线,那么BE=EC=21BC. (3)三角线的高的表示法:如图2,根据具体情况,使用以下任意一种方式表示: ① AM 是∆ABC 的高;② AM 是∆ABC 中BC 边上的高;③ 如果AM 是∆ABC 中BC 边上高,那么AM ⊥BC ,垂足是E ; ④ 如果AM 是∆ABC 中BC 边上的高,那么∠AMB=∠AMC=90︒.⒌ 在画三角形的三条角平分线,三条中线,三条高时应注意:(1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交点一点,交点都在三角形内部.图3图4ABCD E 图1图2如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形直角顶上.图5图6图7⒍三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.⒎三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
三角形的基本概念
![三角形的基本概念](https://img.taocdn.com/s3/m/ac8a8241b42acfc789eb172ded630b1c59ee9bdf.png)
三角形的基本概念三角形是几何学中最基本的图形之一,由三条边和三个顶点组成。
它是平面上的一个闭合图形,具有许多独特的性质和特征。
在本文中,我们将讨论三角形的基本概念,包括三角形的定义、分类、性质以及相关定理。
一、三角形的定义三角形是由三条线段所组成的图形,这三条线段相互连接并形成一个封闭的图形。
其中,每个线段被称为三角形的边,而线段之间的交点被称为三角形的顶点。
二、三角形的分类根据三角形的边的长短和角的大小,三角形可以分为以下几类:1.等边三角形:三条边的长度相等。
2.等腰三角形:两条边的长度相等。
3.直角三角形:其中一个角度为直角(90度)。
4.锐角三角形:三个角度都小于90度。
5.钝角三角形:其中一个角度大于90度。
三、三角形的性质三角形具有以下基本性质:1.三角形的内角和等于180度。
2.任意两边之和大于第三边,即边长满足三角不等式。
3.等边三角形的三个角度均为60度,等腰直角三角形的两个角度为45度。
4.直角三角形的两条直角边的平方和等于斜边的平方,这是著名的勾股定理。
四、三角形的相关定理三角形有许多重要的定理与之相关,这些定理帮助我们理解三角形的性质和关系:1.角平分线定理:如果一条线段从一个角的顶点出发并平分该角,那么该线段将把对边分成两个相等的线段部分。
2.三角形中位线定理:三角形中位线的长度等于一半的底边的长度。
3.角邻接定理:在一个三角形中,两个角邻接对边的边长之比等于这两个角的正弦值或余弦值之比。
综上所述,三角形是一个基本的几何图形,具有丰富的性质和特点。
我们可以通过对三角形的定义、分类、性质以及相关定理的学习来更好地理解和应用几何学中的概念。
通过深入掌握三角形的基本概念,我们可以进一步探索三角形形成的原理,并应用到实际生活和其他几何学问题中。
三角形的知识
![三角形的知识](https://img.taocdn.com/s3/m/8e7c96ee77eeaeaad1f34693daef5ef7ba0d12ef.png)
三角形的知识三角形是几何学中最基本的图形之一,它具有许多重要的性质和定理。
本文将介绍三角形的基本定义、分类、性质以及一些重要的定理,以帮助读者更好地理解和掌握三角形的知识。
一、三角形的定义和分类三角形是由三条线段组成的闭合图形,其中每条线段称为三角形的边,而连接边的端点称为三角形的顶点。
根据三角形的边长关系,可以将三角形分为三类:1. 等边三角形:三条边的长度相等。
2. 等腰三角形:两条边的长度相等。
3. 普通三角形:三条边的长度各不相等。
二、三角形的性质三角形具有许多重要的性质,包括角度性质和边长性质。
1. 角度性质:(1)三角形的内角和等于180度。
即三个内角的度数之和为180度。
(2)等腰三角形的两个底角(两边相等的角)相等。
(3)直角三角形的两个锐角(小于90度的角)互补,即它们的和等于90度。
2. 边长性质:(1)任意两边之和大于第三边。
即对于三角形的任意两边,其长度之和大于第三边的长度。
(2)等边三角形的三条边长相等。
(3)等腰三角形的两条腰长相等。
三、三角形的重要定理三角形的知识中涉及一些重要的定理,它们对于解决与三角形相关的问题非常有用。
下面介绍其中几个常见的定理:1. 角平分线定理:三角形内一条角的平分线将对边分成两个比例相等的线段。
2. 直角三角形定理:(1)勾股定理:直角三角形斜边的平方等于两个直角边的平方和。
(2)正弦定理:三角形中,任意一条边的长度与它对应的角的正弦比例相等。
(3)余弦定理:三角形中,任意一条边的平方等于另外两条边的平方和减去这两条边之间夹角的正弦的两倍乘积。
以上只是三角形知识中的一部分,还有许多其他定理和性质,它们在不同的几何问题中起到重要的作用。
掌握三角形的知识,可以帮助我们解决很多与三角形相关的几何问题,例如计算三角形的面积、判断三角形的形状等。
总结:三角形是几何学中最基本的图形之一,它具有许多重要的性质和定理。
本文介绍了三角形的基本定义、分类、性质以及一些重要的定理。
三角形的概念
![三角形的概念](https://img.taocdn.com/s3/m/8c43360866ec102de2bd960590c69ec3d5bbdb0d.png)
三角形的概念三角形是几何学中最基本的图形之一,它由三条线段组成,每两条线段的两个端点相连形成三个角。
在本文中,将介绍三角形的定义、性质以及一些相关的概念。
一、三角形的定义在几何学中,三角形定义为由三条线段组成,并且每两条线段的两个端点相连形成三个角。
这意味着三角形可以用三个点或者三个直线段来描述,并且它是一个闭合的图形。
二、三角形的性质1. 三角形的角度和为180度:三角形的内角和等于180度。
这是因为对于任意一个三角形,三个角的和等于一个平角,而平角的度数是180度。
2. 三角形的边长关系:在一个三角形中,两边之和大于第三边。
这被称为三角形的三边不等式。
例如,如果一个三角形的两边长分别为a 和b,那么它们之和大于第三边c,即a + b > c。
3. 三角形的分类:三角形可以根据其边长和角度分类。
根据边长可以分为等边三角形、等腰三角形和普通三角形;根据角度可以分为直角三角形、锐角三角形和钝角三角形。
4. 三角形的面积:三角形的面积可以通过海伦公式或者高度乘底边长的一半来计算。
海伦公式是一种计算任意三角形面积的公式,它用到了三角形的三边长。
5. 相似三角形:如果两个三角形的对应角度相等,并且对应边的比例相等,那么这两个三角形是相似的。
相似三角形有相似比例和面积比关系,可以用于解决一些几何问题。
三、相关概念1. 直角三角形:直角三角形是其中一个角为90度的三角形。
直角三角形的两条边相互垂直,并且满足勾股定理的关系,即a^2 + b^2 =c^2。
2. 锐角三角形:锐角三角形是其中所有角度都小于90度的三角形。
它的三个角都是锐角。
3. 钝角三角形:钝角三角形是其中有一个角大于90度的三角形。
它的一个角是钝角。
4. 等边三角形:等边三角形是所有边长相等的三角形。
它的三个角度也相等,每个角度都是60度。
5. 等腰三角形:等腰三角形是其中两边的边长相等的三角形。
一个等腰三角形至少有两个角度相等。
总结:三角形是几何学中最基本的图形之一,由三条线段组成,并且每两条线段的两个端点相连形成三个角。
中考复习三角形的基本概念与性质
![中考复习三角形的基本概念与性质](https://img.taocdn.com/s3/m/d873920268eae009581b6bd97f1922791688be94.png)
中考复习三角形的基本概念与性质三角形是初中数学中的重要概念,它涉及到边、角、面积等基本要素。
掌握三角形的基本概念与性质对于中考数学的学习至关重要。
本文将从三角形的定义、分类以及常用的性质等方面进行讲解,帮助同学们在中考复习中更好地理解和掌握三角形。
一、三角形的定义与分类1. 三角形的定义三角形是由三条线段组成的多边形,它的特点是有三个顶点和三条边。
三角形的三个顶点可以不在同一条直线上,但是三条边必须相互连接才能构成三角形。
2. 三角形的分类根据三角形的边长和角度的关系,三角形可分为以下几类:(1) 等边三角形:三条边的长度相等;(2) 等腰三角形:两条边的长度相等;(3) 直角三角形:有一个角为直角(90度);(4) 钝角三角形:有一个角大于90度;(5) 锐角三角形:三个角都小于90度。
二、三角形的性质1. 三角形内角和性质对于任意一个三角形,其内角和恒为180度。
即三个角的度数之和等于180度。
2. 三边关系性质(1) 三角形两边之和大于第三边:若三边长分别为a、b、c,则满足a +b > c、b +c > a、a + c > b。
只有满足这个条件,这三条边才能构成一个三角形。
(2) 两边之差小于第三边:若三边长分别为a、b、c,则满足|a - b| <c、|a - c| < b、|b - c| < a。
3. 等腰三角形的性质(1) 等腰三角形的底角(两边相等的角)相等;(2) 等腰三角形的高线(从底边的中点垂直于顶点的线段)相等。
4. 直角三角形的性质(1) 直角三角形的斜边是最长的边;(2) 直角三角形的两个锐角互余,也就是说,两个锐角之和等于90度。
5. 等边三角形的性质(1) 等边三角形的三个内角都等于60度;(2) 等边三角形的高线、中线、角平分线以及垂心、重心、外心、内心都重合于一个点。
6. 三角形的面积公式三角形的面积公式为:面积 = 底边长度 ×高 / 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形基本概念与性质
一、考点梳理
1、 三角形的边、角关系
(1)三角形任意两边之和大于第三边,任意两边之差小于第三边.
(2)三角形的内角和等于180°,外角和等于360°.
(3)三角形的任一个外角等于和它不相邻的两个内角之和.
2、三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.
(1)内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.
(2)外心: 三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离
相等.
(3)三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半.
3、等腰三角形
性质:(1)两底角相等(等边对等角).
(2)顶角的平分线,底边上的中线,底边上的高互相重合(三线合一)
(2)等边三角形的各角都相等,且都等于60°.
判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).
(2)三个角都相等的三角形是等边三角形.
(3)有一个角为60°的等腰三角形是等边三角形.
4、多边形的内角和等于()0
1802⋅-n ,多边形的外角和等于360° 二、课堂精讲
5、(2012广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ).
A . 5
B . 6
C .11
D . 16
6、(2012湖南郴州)以下列各组线段为边,能组成三角形的是( ).
A .1cm ,2cm ,4cm
B .4cm ,6cm ,8cm
C .5cm ,6cm ,12cm
D .2cm ,3cm ,5cm
7、(2012滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ).
A .等腰三角形
B .直角三角形
C .锐角三角形
D .钝角三角形
8、(2007广东)到三角形三条边的距离都相等的点是这个三角形的( ).
A 、三条中线的交点
B 、三条高的交点
C 、三条边的垂直平分线的交点
D 、三条角平分线的交点 9、(2008广东)如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,
且∠A +∠B=120°,则∠AN M= ° 10、(2008广东)已知等边三角形ABC 的边长为33+,则ΔABC 的周长是___________
11、(2010广东)正八边形的每个内角为( )
A .120º
B .135º
C .140º
D .144º
12、(2012肇庆)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )
A .16
B .18
C .20
D .16或20
A M
N
B
C 图1
_ D _ C
_ B _ A 13、例题:(2012广西玉林)已知等腰△ABC 的顶角∠A=36°(如图).
(1)作底角∠ABC 的平分线BD,交AC 于点D (用尺规作图,不写作法,但保留作图痕迹)
(2)通过计算说明△ABD 和△BDC 都是等腰三角形.
解:(1)如图所示:BD 即为所求;
(2)∵∠A=36°,
∴∠ABC=∠C=(180°-36°)÷2=72°,
∵BD 平分∠ABC,
∴∠ABD=∠DBC=72°÷2=36°,
∴∠CDB=180°-36°-72°=72°,
∵∠A=∠ABD=36°,∠C=∠CDB=72°,
∴AD=DB,BD=BC ,
∴△ABD 和△BDC 都是等腰三角形.
三、巩固训练
14、现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组
成的三角形的个数是( ).
A . 1个
B . 2个
C . 3个
D . 4个
15、如图,在△ABC 中,∠A=45°,∠B=60°,则外角∠ACD= 度.
16、一个三角形的周长是36,则以这个三角形各边中点为顶点的三角形的
周长是 .
17、一个多边形的内角和与外角和相等,则这个多边形是 ( )
A .四边形
B .五边形
C .六边形
D .八边形
18、如图,在△ABC 中,AB=AD=DC ,∠BAD=20°,则∠C= °
19、如图,在△ABC 中,AB=AC ,∠A=400,BD 是∠ABC 的平分线.
求∠BDC 的度数.
20、如图所示,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE=CD .
(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M (不写作法,保留作图痕迹);
(2)求证:BM EM .
A B C
E D
课 时 作 业
一、选择题
1、如果三角形的一个内角等于其他两个内角的和,这个三角形是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.不能确定
2、若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( )
A. 50°
B. 80°
C. 65°或50°
D. 50°或80°
3、三角形的三边分别为3,1-2a ,8,则a 的取值范围是( )
A .-6<a <-3
B .-5<a <-2
C .2<a <5
D .a <-5或a >-2
4、正六边形的每个内角都是( )
A. 60°
B. 80°
C. 100°
D.120°
5、如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论不正确的是( )
A .BC=2DE
B .△ADE∽△ABC
C .AC AB AE A
D = D .S △ABC =3S △AD
E 二、填空题
6、等腰三角形中两条边长分别为3、4,
则三角形的周长是_________
7、如图在△ABC 中,∠ABC=90°,∠A=50°,BD ∥AC ,则∠CBD 的度数是______.
8、在△ABC 中,若∠A、∠B 满足02221cos 2
=⎪⎪⎭
⎫ ⎝⎛-+-siinB A ,则∠C= . 9、三角形的每条边的长都是方程
的根,则三角形的周长是__ __ 10、边长为a 的正三角形的面积等于______.
三、解答题
11、已知等腰△ABC 中,∠ABC=∠ACB=2∠A ,且BD ⊥AC ,垂足为D ,求∠DBC 的度数.
12、如图5,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,
点E 是AB 的中点,连结EF.
(1)求证:EF ∥BC.
(2)若四边形BDFE 的面积为6,求△ABD 的面积.
四、拓展
13、我等们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角形的中位线平行于三角形的第三边,且于第三边的一半”.类似的,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线.通过观察、测量,猜想EF和AD、BC有怎样的位置和数量关系?并证明你的结论.。