第八章生物化学
生物化学第八章糖代谢
§2 糖的分解代谢
主要有以下途径: (一)糖的无氧酵解 (二)糖的有氧氧化 (三)乙醛酸循环 (四)戊糖磷酸途径
途径具体过程
提示
反应实质 个酶作用 进程变化 学习途径时要重点注意噢!
温馨提示
加油!!!
• 酵解过程要学好
• 首条途径很重要 • 总结经验找规律 • 后边学习基础牢
• 举一反三相比较 • 触类旁通有参照 • 事半功倍学的巧 • 一路轻松兴趣高
甘油酸-3-磷酸
磷酸甘油8反酸应变图位酶
甘油酸-2-磷酸
9、2-磷酸甘油酸脱水烯醇化
甘油酸-2-磷酸
烯醇化9反酶应图
磷酸烯醇式丙酮酸
9、2-磷酸甘油酸的脱水生成磷酸烯醇式丙 酮酸
烯醇化酶(enolase) 这一步反应也可看作分子内氧化还原反应,分子 内能量重新分布,又一次产生了高能磷酯键。
反应可以被氟离子抑制,取代天然情况下酶分 子上镁离子的位置,使酶失活。
细胞核
内质网 溶酶体
细胞膜
动物细胞
植物细胞
细胞壁 叶绿体
有色体 白色体 液体 晶体
葡萄糖的主要代谢途径
糖异生
葡萄糖
6-磷酸葡萄糖 (有氧或无氧)
(无氧) 丙酮酸
糖酵解
(有氧)
乳酸 乙醇
乙酰 CoA
磷酸戊糖 途径
三羧酸 循环
第八章:糖代谢
§1 多糖和底聚糖的酶促降解 §2 糖的分解代谢 §3 糖的合成代谢
⑹氧化脱氢,产生 NADH+H+ (磷酸化,使用无机磷酸)
甘油醛-3-磷酸
无机磷酸
甘油醛-3-磷酸 脱氢酶
1,3-二磷酸甘油酸
产生 的 NADH+H+ 的氢,条件不同, H的去向不同,走进的途径不同。
第八章 生物化学-生物氧化
鱼藤酮、 安密妥、 杀粉蝶素
抗霉 素A
CN –、N3 – CO、H2S
第三节 氧化磷酸化
一、概念:通过生物氧化放能和ADP磷酸化生成ATP 相偶联的过程。
二、类型: 底物水平磷酸化:高能磷酸化合物在酶的 作用下将高能磷酸基团转移给ADP合成ATP的过程。
2019/10/22
COOH
C O~ P
CH2 PEP
该复合体又称为细胞色素氧化酶、 呼吸链末端氧化酶。
Cytc 2e-
2H+
2e-
a
a3
1/2O2 + H+
H2O
2019/10/22
17
三、工作机理:1. 呼吸链组分排列顺序及氧化还原电位:
NADH FMN CoQ b c1 c aa3 O2 -0.32 –0.30 0~0.1 +0.07 +0.22 +0.25 +0.385 +0.816
第八章 生物氧化与氧化磷酸化
内容提示: 1、弄清生物氧化的方式、特点、意义;CO2和H2O生成方式; 2、清楚高能键、高能化合物类型;ATP作为能流通货的原因; 3、线粒体呼吸链组成成分及工作机理:电子传递机理、能量计算; 4、生物体中ATP的生成方式:底物磷酸化、氧化磷酸化;偶连部位;
氧化磷酸化机理:化学渗透学说要点; 5、明确下列概念及其生物学意义;能荷磷氧比值(P/O);末端氧化
S
S
Fe
Fe
S
S
S
肽
S
Fe —S(半胱)
(半胱) S —Fe
S
(半胱) S —Fe
S
S
Fe — S(半胱)
Fe2+
《生物化学》-第八章
➢ 与前述操纵子的基本组成一样,乳糖操纵子也是由结构基因和调控区组成的 ➢ 乳糖操纵子包括Z、Y和A三个结构基因 ➢ Z结构基因编码β-半乳糖苷酶,催化乳糖转变为别乳糖 ➢ Y结构基因编码半乳糖透过酶,促使半乳糖透过酶进入细菌内 ➢ A结构基因编码乙酰转移酶,催化半乳糖形成乙酰半乳糖 ➢ 调控区包括调节基因(I)、启动子(P)、操纵基因(O)及启动子上游的一个CAP结合位点,
第一节 基因表达的调控
二、基因表达调控的概念和意义
(一)基因表达调控的概念
➢ 基因表达调控是指细胞或生物体在接收内外环境信号刺激 或适应环境变化的过程中,在基因表达水平上所做出的应 答,即基因组内的基因如何被表达、表达多少等
➢ 基因表达调控大致可以在5个层次上进行,即转录前、转 录、转录后、翻译和翻译后
➢ 基因表达是指在一定的调节机制的控制下,基因组DNA经 转录、翻译等一系列过程,合成具有特异生物学功能的蛋 白质的过程
➢ 并非所有基因表达过程都产生蛋白质,rRNA、tRNA编码 基因转录生成功能型RNA的过程也属于基因表达
第一节 基因表达的调控
一、基因表达的概念、特点及方式
(二)基因表达的特点--时间特异性
5′-侧上游,主要控制整个结构基因群的转录
第一节 基因表达的调控
三、原核生物基因表达的调控
(一)操纵子的基本组成
➢ 3.操纵基因 ➢ 操纵基因是指能被阻遏蛋白特异性识别并结合
的一段DNA序列,常与启动子邻近或与启动子 序列重叠 ➢ 当阻遏蛋白结合在操纵基因上,阻遏蛋白会阻 碍RNA聚合酶与启动子结合或使RNA聚合酶 不能沿DNA链向前移动,从而阻遏转录的进行
(一)操纵子的基本组成
➢ 1.结构基因 ➢ 操纵子中被调控的编码蛋白质的基因称为结构基因 ➢ 一个操纵子中含有2个以上的结构基因,多的可达20个以上 ➢ 各结构基因头尾衔接、串联排列,组成结构基因群
生物化学 第8章 生物氧化
天冬 氨酸
①苹果酸脱氢酶
②天冬氨酸氨基转移酶
存在部位:肝脏、心肌组织
两种穿梭系统的比较
α-磷酸甘油穿梭 穿梭 物质 进入线粒 体后转变 成的物质 进入 呼吸链 α-磷酸甘油 磷酸二羟丙酮 苹果酸-天冬氨酸穿梭 苹果酸、 谷氨酸 天冬aa、α-酮戊二酸
FADH2
琥珀酸 氧化呼吸链
NADH+ H+
NADH 氧化呼吸链
琥珀酸由琥珀酸脱氢酶催化脱下的2H经复合 体Ⅱ(FAD,Fe—S)使COQ形成COQH2, 再往下传递与NADH氧化呼吸链相同。(见 上图)
NADH氧化呼吸链和琥珀酸氧化呼 吸链总图
FADH2
NADH
FMN
CoQ
Cyt-b c1
c
aa3
O2 H2O
3、分别进入两条呼吸链的底物
苹果酸 异柠檬酸 β -羟丁酸 谷氨酸 NAD+ FMN 琥珀酸 FAD(Fe-S) CoQ b c1 c aa3 O2
10
血红素b、c1 Fe-S 血红素c 血红素a 血红素a3 Cu2+ O2
Q
Cytc
13
1
Cytc Cyta
Ⅳ
细胞色素C氧化酶
13
(一)尼克酰胺核苷酸类(NAD+)
NAD+ 和NADP+的结构
NAD+:R=H NADP+:R=PO32-
尼克酰胺核苷酸的作用原理
H
H H CONH 2
C CONH2 N R
AH2 2H(2H++2e)
吸 链
1 2 O2
H2O
氧化
A
ADP+Pi
能量 ATP 磷酸化
生物化学_08 蛋白质的酶促降解和氨基酸代谢
R1-C| H-COONH+3
α-氨基酸1
R2-C|| -COOO
α-酮酸2
R1-C|| -COOO
α-酮酸1
转氨酶
R2-C| H-COONH+3
α-氨基酸2
(辅酶:磷酸吡哆醛)
-氨基酸 磷酸吡哆醛
醛亚胺
互变异构
-酮酸
磷酸吡哆胺
酮亚胺
磷酸吡哆醛的作用机理
谷丙转氨酶和谷草转氨酶
谷丙转氨酶 (GPT)
蛋白质
动植物
动植物废物 死的有机体
硝酸盐还原 反硝化作用 氧化亚氮
NH3
亚硝酸
硝酸盐
入地下水
(1)意义:
不需高温高压,节约能源,不污染环境; 生物固氮可以为农作物提供氮肥 (2)固氮酶结构(多功能酶):
铁蛋白 + 钼铁蛋白 二者结合才有活性 (3)固氮酶催化的反应及反应条件
催化的反应:
N2 + 6H+ + 6e-
合成尿素并随尿排出体外。
2NH3 + CO2 + 3ATP + 3H2O
H2N C=O + 2ADP +
H2N
AMP + 4Pi
在植物体内也有尿素的生成,植物体中含有脲 酶,能将尿素水解:
H2N C=O + H2O
H2N
脲酶 2NH3 + CO2
生成的氨可再循环利用。
(二)α-酮酸的代谢转变
1、还原氨基化: 合成新AA。 2、转变为糖和脂肪。 生糖AA: 分解生成丙酮酸和TCA循环的有机酸, 通过 糖异生作用转化为糖。 ※ 生酮AA:代谢终产物为乙酰CoA或乙酰乙酰CoA的AA。 (只有Leu、Lys是纯粹的生酮AA)。 ※ 3、氧化为CO2和H2O。
生物化学第八章 核苷酸代谢
嘌呤碱从头合成的元素来源
Gly
CO2
Asp N 1
6
5
N 7
一碳单位 2
甲酰-FH4
3 N
4
9 N
8
一碳单位 甲炔-FH4
Gln
• 从头合成途径 (1)IMP(次黄嘌呤核苷酸)的合成 (2)AMP(腺苷酸)和GMP(鸟苷酸)的生成
(1)、IMP的生成
PRPP
AMP ATP
(5’-磷酸核糖-1’-焦磷酸)PRPP合成酶
小结
1、嘌呤核苷酸补救合成定义、发生组织。 2、补救合成的生理意义。 3、脱氧核苷酸是在核苷二磷酸水平上进行的。 4、嘌呤代谢的终产物是尿酸、痛风病的致病 原因、治疗机制。
第三节 嘧啶核苷酸的代谢
嘧啶核苷酸的结构
一、嘧啶核苷酸的从头合成 (一)嘧啶核苷酸的从头合成
• 定义
嘧啶核苷酸的从头合成是指利用磷酸核 糖、氨基酸、一碳单位及二氧化碳等简单物 质为原料,经过一系列酶促反应,合成嘧啶 核苷酸的途径。
很少能活至20岁,
补救合成的生理意义
补救合成节省从头合成时的能量和一些氨基 酸的消耗。
体内某些组织器官,如脑、骨髓等只能进行 补救合成。
HGPRT完全缺失的患儿,表现为自毁容貌综 合征。
(四)脱氧核苷酸的合成代谢
在核苷二磷酸水平上进行
(N代表A、G、U、C等碱基)
脱氧核苷酸的生成
核糖核苷酸还原酶,Mg2+
第八章
核苷酸代谢
Metabolism of Nucleotides
第一节、核苷酸的功能及消化与吸收 一、核苷酸的功能
是核酸的基本组成单位,合成核酸的原料 能量的利用形式,ATP是重要能量货币; 参与代谢和生理调节,cAMP是第二信使; 参与生物活性物质组成,NAD、 FAD、 CoA等; 其衍生物是许多生化反应的中间供体 ,如UDPG 、
生物化学——第八章 氨基酸代谢
氨基酸代谢概况
食物蛋白质
组织蛋白质
消化吸收
合成 分解
脱羧基作用
氨基酸代谢库
转变
(metabolic pool)
合成 脱氨基作用 其他含氮化合物
胺类 CO2 NH3
α- 酮酸
2021/1/8
尿素 糖
氧化供能 酮体
第二节 氨基酸的分解代谢
H R C COOH
NH2 氨基酸
O H R C COOH
主要是酸性pH下活化的小分子蛋白酶,水解长寿命蛋白质和 外来蛋白。 2、泛肽系统: 水解短寿命蛋白和反常蛋白
2021/1/8
(三)细胞内蛋白质降解的意义
1)及时降解清除反常蛋白的产生 有些可恢复为正常蛋白
2)短寿命的蛋白在生物体的特殊作用 经常是一些代谢限速酶,便于通过基因表达和降解对其含量 加以调控。
3)氨基甲酰磷酸经环化化→二氢乳清酸→尿苷酸→嘧啶 类化合物
2021/1/8
四、α-酮酸的代谢
1、合成氨基酸(合成代谢占优势时)
α-酮酸 + NH3
氨基化
α-氨基酸
氨基化
α-酮戊二酸 + NH3
谷氨酸
其余氨基酸是通过Glu与α-酮酸的转氨作用合成。 是合成非必需氨基酸的途径之一。
2021/1/8
2、进入三羧酸循环分解成CO2 + H2O 3、转变成糖及脂肪
特点:a. 可逆,受平衡影响 b. 氨基大多转给了α-酮戊二酸
2021/1/8
谷丙转氨酶和谷草转氨酶
谷丙转氨酶 (GPT)
谷草转氨酶 (GOT)
2021/1/8
2021/1/8
正常成人各组织中GOT和GPT活性
【生物化学】第八章 蛋白质的分离纯化
㈤、凝胶过滤层析技术
⒈ 基原理
概念(排阻层析,分子筛层析): 当生物大分子通过装有凝胶颗粒 的层析柱时,根据它们分子大小 不同而进行分离的技术。 原理:凝胶颗粒内部具有多孔网 状结构,被分离的混合物流过层 析柱时,比凝胶孔径大的分子不 能进入凝胶孔内,在凝胶颗粒之 间的空隙向下移动,并最先被洗 脱出来; 比网孔小的分子能不同程度的自 由出入凝胶孔内外,在柱内经过 的路程较长移动速度较慢,最后 被洗脱出来。
⒊ 分配纸层析
纤维素吸附的水是固定相,展层用的有 机溶剂是流动相
层析时混合氨基酸在这两相中不断分配, 使他们分布在滤纸的不同位置上。
此项技术可用于氨基酸成分的定量定性 测定。
⒊ 分配纸层析
操作:点样→展层→显 色用茚三酮显色时,得到 一个滤纸层析谱。 定义:原点到氨基酸停 留点的距离与原点至溶剂 前沿之比称为Rf值。 只要把溶剂系统、温度、 滤纸型号等条件确定,则 每一种氨基酸的Rf值是一 个确定值。
⒊ 分析型超速离心机
XL-A分析型超速离 心机 主要技术指标: 检测波长范围 200nm800nm 转子最大转速 40000RPM
什么是酶的活性中心? 三维结构上比较接近的少数特异的氨基酸残基参与底物的 结合与催化作用,这一与酶活力直接相关的区域称酶的活 性部位。 在很多酶的活性中心均有His残基参与,原因是什么? 酶蛋白分子中组氨酸侧链咪唑基pK值为6.0-7.0,在生理条 件下,一半解离,一半不解离,因此既可以做质子供体,也 可以做质子受体,可以作为广义酸碱共同催化反应。 胰凝乳蛋白酶活性中心的催化三联体是指哪三种氨基酸?
⑵ 按两相所处的状态分类 流动相有两种状态:
*液体作为流动相 *气体作为流动相 固定相也有两种状态: *固体吸附剂作为固定相 *以吸附在固体上的液体作为固定相
生物化学 第八章 生物氧化
第二节 线粒体氧化体系
一、呼吸链(respiratory chain) 二、呼吸链的组成成分和作用 三、呼吸链的蛋白质复合体 四、呼吸链中各组分的排列顺序
Go on~
一、呼吸链(respiratory chain)
• 呼吸链是代谢物上的氢原子被脱氢酶激活 脱落后,经过一系列的传递体,最后传递 给被激活的氧原子,而生成水的全部体系。 • 在真核生物细胞内,它位于线粒体内膜上, 原核生物中,它位于细胞膜上。
功能:将底物上的氢激活
并脱下。
辅酶:NAD+或NADP+
NAD+ 和NADP+的结构
OR
NAD+:R=H NADP+:R=PO32-
尼克酰胺核苷酸的作用原理:
H
H H CONH 2
C CONH2 N R
+
+ H + e + H+
N R
+ H+
H
2H
H
e
H+
NAD(P)+
+2H
-2H
NAD(P)H+H+
Cys Cys
S S
Fe3+
S S
Fe3+S S来自Cys Cys+e-
Cys Cys
S S Fe3+
S S Fe2+
S S
Cys Cys
(4)泛醌(CoQ)
一种脂溶性的醌类化合物,其分子中的苯醌 结构能进行可逆的加氢反应,是氢传递体。
CoQ + 2H
CoQH2
(5)细胞色素(cytochrome,Cyt)
生物化学第八章 生物氧化
1 O2 2
H2O
实测得FADH2呼吸链: P/O~ 2
FADH2
线粒体是真核细胞的一种细胞器,是生物氧化和能 量转换的主要场所。是组织细胞的“发电厂”。 线粒体内,外膜的化学组成有显著的区别; 外膜:磷脂,胆固醇含量高,蛋白质含量低 内外膜间隙:腺苷酸激酶,核苷酸激酶等 内膜:有些脱氢酶,氧化呼吸链有关的酶, ATP 合成酶 基质: 催化糖有氧分解,脂肪酸氧化,氨基酸分 解和蛋白质生物合成的酶
3
二、生物氧化的一般过程
主要解决三个问题:
1.代谢物中C如何在酶催化下生成CO2;
2.细胞如何利用O2将代谢物中的H氧化成H2O;
3.氧化产生的自由能怎样被收集、转换和储存。
4
生物氧化的三个阶段
脂肪 多糖 蛋白质
大分子降解 成基本结构 单位
脂肪酸、甘油
葡萄糖、 其它单糖
氨基酸
乙酰CoA
小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰 CoA等)
31
2. 高能化合物
生化反应中,在水解时或基团转移反应中可释
放出大量自由能( >20 千焦 / 摩尔)的化合物称为 高能化合物。
32
高 能 化 合 物 类 型
33
3. ATP的特点
在 pH=7 环 境 中 , ATP 分子中的三个磷 酸基团完全解离成带 4个负电荷的离子形 式 ( ATP4-), 具 有 较大势能,加之水解 产物稳定,因而水解 自由能很大( ΔG°′= -30.5千焦/摩尔)。
34
4.ATP的特殊作用
在机体的能量代谢中, ATP 就好像能量通币, 高能化合物虽有多种,只有 ATP 可为一切生 理机能与生物合成反应提供能量; ATP是细胞内磷酸基团转移的中间载体
2024版《生物化学》课件第八章核苷酸
《生物化学》课件第八章核苷酸目录•核苷酸概述与结构•核酸的理化性质与合成•DNA复制与修复机制•RNA转录后加工与修饰•核酸降解与代谢途径•核苷酸在生物技术应用中的研究进展01核苷酸概述与结构核苷酸定义及作用01核苷酸是核酸的基本组成单位,由磷酸、五碳糖和含氮碱基三部分组成。
02在生物体内,核苷酸具有多种生物学功能,如作为遗传信息的携带者、参与蛋白质合成、作为能量储存和转移分子等。
结构组成与分类核苷酸的结构包括磷酸基团、五碳糖和含氮碱基。
其中,五碳糖包括核糖和脱氧核糖两种,含氮碱基包括嘌呤和嘧啶两类。
根据五碳糖的不同,核苷酸可分为核糖核苷酸和脱氧核糖核苷酸两类。
根据含氮碱基的不同,核苷酸又可分为腺嘌呤核苷酸、鸟嘌呤核苷酸、胞嘧啶核苷酸和尿嘧啶核苷酸等。
核苷酸通过不同的排列组合方式,构成了生物体的遗传物质DNA 和RNA ,从而实现了遗传信息的传递和表达。
遗传信息的携带者在蛋白质合成过程中,mRNA 作为模板指导氨基酸的排列顺序,tRNA 则携带特定的氨基酸到核糖体上进行合成。
参与蛋白质合成ATP 是生物体内最重要的能量储存和转移分子,通过水解或合成反应释放或储存能量,从而维持生物体的正常生理功能。
能量储存和转移分子环核苷酸如cAMP 和cGMP 等作为第二信使参与细胞信号传导过程,调节细胞的代谢、生长和分化等。
细胞信号传导生物学意义及功能02核酸的理化性质与合成溶解性核酸可溶于水,微溶于乙醇,不溶于有机溶剂。
紫外吸收核酸在240-290nm波长范围内有强烈的紫外吸收,其最大吸收值在260nm附近。
变性、复性与杂交核酸在加热、极端pH、有机溶剂等条件下可发生变性,解离成单链;去除变性条件后,互补单链可重新结合,称为复性;不同来源的核酸单链只要序列互补也可复性,称为杂交。
酸碱性核酸在酸碱环境下可发生水解,生成磷酸、戊糖和含氮碱基。
核酸的理化性质核酸的合成途径DNA的生物合成包括DNA的复制和逆转录过程,其中DNA复制是以亲代DNA为模板合成子代DNA的过程,逆转录则是以RNA为模板合成cDNA的过程。
生物化学第八章氨基酸代谢
碱性氨基酸转运蛋白
七种转运蛋白 (transporter) 亚氨基酸转运蛋白 β氨基酸转运蛋白 二肽转运蛋白 三肽转运蛋白
目录
γ-谷氨酰基循环对氨基酸的转运作用 γ-谷氨酰基循环(γ-glutamyl cycle) : • 谷胱甘肽对氨基酸的转运 • 谷胱甘肽再合成
目录
细胞外
细胞膜
细胞液
COOH CHNH2 CH2 CH2 C NH
依赖ATP和泛素; 降解异常蛋白和短寿蛋白质。
目录
泛素(Ub)
76个氨基酸组成的多肽(8.5kD)
普遍存在于真核生物而得名
一级结构高度保守
目录
泛素介导的蛋白质降解过程
靶蛋白的泛素化:泛素与选择性被降解蛋白质 形成共价连接,并使其激活,包括三种酶参与 的3步反应,并消耗ATP。 泛素化蛋白质在蛋白酶体(proteasome)中降解。
要途径。
通过此种方式并未产生游离的氨。
目录
(二)氧化脱氨基作用
• 氧化脱氨基包括脱氢和水解两步反应。其 中,脱氢反应需酶催化,而水解反应则不 需酶的催化。
2H H2O R-C-COOH NH R-C-COOH + NH3 O
酶
R-CH-COOH NH2
目录
催化氧化脱氨基的酶
1. L-氨基酸氧化酶:
目录
2.氨的生成 未被吸收的氨基酸
脱氨基作用
氨
渗入肠道的尿素
尿素酶
目录
临床上用酸性灌肠降低肠道pH,NH3 转 变为NH4+以铵盐形式排出,可减少氨的吸 收,防止血氨升高。
目录
3. 其它有害物质的生成
酪氨酸 半胱氨酸 苯酚 硫化氢 吲哚
生物化学-生化知识点_第八章 核酸的降解和核苷酸的代谢
第八章核酸的降解和核苷酸的代谢下册 P3878-1 核酸和核苷酸的分解代谢核酸在核酸酶(磷酸二酯酶)作用下降解成核苷酸,核苷酸在核苷酸酶(磷酸单酯酶)作用下分解成核苷与磷酸,然后再在核苷磷酸化酶作用下可逆生成碱基(嘌呤和嘧啶)和戊糖-1-磷酸。
一一一嘌呤碱的分解代谢: P390 图33-2首先在各种脱氨酶作用下水解脱去氨基(脱氨也可以在核苷或核苷酸的水平上进行),腺嘌呤脱氨生成次黄嘌呤(I),鸟嘌呤脱氨生成黄嘌呤(X),I和X在黄嘌呤氧化酶作用下氧化生成尿酸。
人和猿及鸟类等为排尿酸动物,以尿酸作为嘌呤碱代谢最终产物;其他生物还能进一步分解尿酸形成尿囊素、尿囊酸、尿素及氨等不同代谢产物。
尿酸过多是痛风病起因,病人血尿酸 > 7mg%,为嘌呤代谢紊乱引起的疾病。
可服用别嘌呤醇,结构见P389,与次黄嘌呤相似。
别嘌呤醇在体内先被黄嘌呤氧化酶氧化成别黄嘌呤,别黄嘌呤与酶活性中心的Mo(Ⅳ)牢固结合,使Mo(Ⅳ)不易转变成Mo(Ⅵ),黄嘌呤氧化酶失活,使I和X不能生成尿酸,血尿酸含量下降。
一一一嘧啶碱的分解代谢:见P391 图33-3C:胞嘧啶先脱氨成尿嘧啶U,U再还原成二氢尿嘧啶后水解成β-丙氨酸。
T:胸腺嘧啶还原成二氢胸腺嘧啶后水解成β-氨基异丁酸。
8-2 核苷酸的生物合成一一一核糖核苷酸的生物合成一1一从头合成:从一些简单的非碱基前体物质合成核苷酸。
1.嘌呤核苷酸:从5-磷酸核糖焦磷酸(5-PRPP)开始在一系列酶催化下先合成五元环,后合成六元环,共十步生成次黄嘌呤核苷酸。
然后再生成A、G等嘌呤核苷酸。
2.嘧啶核苷酸:先合成嘧啶环(乳清酸),再与5-PRPP(含核糖、磷酸部分)反应生成乳清苷酸,失羧生成尿嘧啶核苷酸(UMP),再转变成其他嘧啶核苷酸。
一2一补救途径:利用已有的碱基、核苷合成核苷酸,更经济,可利用已有成分。
特别在从头合成受阻时(遗传缺陷或药物中毒)更为重要。
外源或降解产生的碱基和核苷可通过补救途径被生物体重新利用。
生物化学第8章 酶促反应动力学
10.2 酶的抑制作用
酶的失活与抑制的区别
酶抑制程度的表示方法
酶抑制作用的类型
可逆与不可逆抑制作用的鉴别
可逆抑制作用动力学
一些重要的抑制剂
10.2 酶的抑制作用
10.2.1 酶的失活与抑制的区别
凡是使酶蛋白质变性而引起酶活力 丧失的作用称为失活作用;由于酶 必需基团化学性质的改变,但酶未 变性,而引起酶活力的降低或丧失 而称为抑制作用。
酶与底物的亲和力。
10.1.3 Km的意义
酶 底物 Km/moLL-1 1.2 2.0 2.5 1.8 10-4 10-3 10-5 10-5
谷氨酸脱氢酶 谷氨酸 -酮戊二酸 NAD+ NADH
丙酮酸羧化酶 丙酮酸 HCO3ATP
4.0 10-4 1.0 10-3 6.0 10-5
酶的非竞争性抑制作用
酶的反竞争性抑制作用
酶只有与底物结合后才能与抑制剂结
合。L-Phe,L-Arg等对碱性磷酸酶的
作用是反竞争性抑制,肼类化合物抑 制胃蛋白酶、氰化物抑制芳香硫酸酯 酶的作用也属此类。
10.2.4 可逆与不可逆抑制的鉴别
Shi, G., et al. Environ Health Perspect, 2009. 117(3): p. 379-86
最适温度 受诸多因 素影响
温度系数Q10:2左右 温度升高反应速率加快,但过高酶蛋白变性
10.3 温度对酶反应的影响
rate of reaction (µmol /min)
1 min incubation
10 min incubation
0 20 40 60 80 100
temperature (° C)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章核苷酸代谢[教材精要与重点提示]核苷酸是核酸的基本结构单位。
核苷酸除了作为合成核酸的原料外,还具有多种生物学功能。
如体内能量的利用形式(如A TP);参与代谢与生理功能的调节(如cAMP、cGMP);组成辅酶;作为活化中间代谢物(如UDP-葡萄糖)等。
人体内的核苷酸主要由机体细胞自身合成。
食物来源的嘌呤和嘧啶极少被机体利用,因此核苷酸不属于营养必需物质。
体内嘌呤苷酸合成有两条途径;从头合成和补救合成。
从头合成是主要途径。
天冬氨酸、谷氨酰胺、甘氨酸、一碳单位和CO2是嘌呤碱合成的元素来源。
从头合成过程分两个阶段:首先合成次黄嘌呤核苷酸(1MP),然后分别转变成AMP和GMP。
反应从5磷酸核糖起始,经磷酸核糖焦磷酸(PRPP)、5磷酸核糖胺(PRA)等中间产物,生成IMP。
从头合成过程受着精确的反馈调节。
起始阶段的PRPP合成酶、PRPP酰胺转移酶可被产物IMP、AMP和GMP 等反馈抑制。
反之,PRPP的增加可促进酰胺转移酶活性,加速PRA生成。
利用现成的嘌呤碱或嘌呤核苷合成嘌呤核苷酸,称为补救合成或重新利用。
腺嘌呤磷酸核糖转移酶(APRT)和次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)分别催化AMP、IMP和GMP的补救合成,由PRPP提供磷酸核糖。
补救合成虽然量少,但也有重要生理意义。
体内的脱氧核苷酸包括嘌呤核苷酸和嘧啶核苷酸是在各自相应的二磷酸核苷(NDP)水平上直接还原而生成的(N代表A、G、U、C等碱基),由核糖核苷酸还原酶催化。
嘌呤核苷酸的抗代谢物是一些嘌呤、氨基酸和叶酸的类似物,它们主要以竞争性抑制或‘以假乱真’的方式干扰或阻断嘌呤核苷酸的合成代谢,进而阻止核酸及蛋白质的生物合成。
肿瘤细胞的核酸及蛋白质合成十分旺盛,因此这些抗代谢物具有抗肿瘤作用。
例如,6巯基嘌呤(6MP)是常用的嘌岭类似物,其结构与次黄嘌呤相似,在体内可转变成6MP核苷酸,抑制嘌呤核苷酸的从头合成和补救合成。
氮杂丝氨酸的结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷酸合成中的作用。
氨甲喋呤(MTX)是叶酸类似物,可抑制二氢叶酸还原酶活性,抑制四氢叶酸生成,从而阻断一碳单位在嘌呤核苷酸合成中的作用。
嘌呤在体内分解代谢的终产物是尿酸,黄嘌呤氧化酶是催化尿酸生成的重要酶。
嘌呤代谢异常,尿酸生成过多可导致高尿酸血症。
别嘌呤醇的结构与次黄嘌呤相似,可抑制黄嘌呤氧化酶,减少尿酸生成,治疗高尿酸血症。
嘧啶核苷酸从头合成的首步反应是CO2与谷氨酰胺在氨基甲酰磷酸合成酶II催化下生成氨基甲酰磷酸,后者经多步反应合成尿嘧啶核苷酸(UMP)。
然后,UMP再转变成CTP和dTMP。
四氢叶酸携带的一碳单位是合成胸苷酸的甲基来源。
嘧啶核苷酸从头合成的调节酶是氨基甲酰磷酸合成酶n和天冬氨酸转氨基甲酰酶,它们受UMP和CTP的反馈抑制。
此外,嘌呤核苷酸和嘧啶核苷酸均可抑制PRPP合成酶;当此二类核苷酸含量增加时,可使PRPP 合成减少,从而使二类核苷酸的合成均受到抑制。
与嘌呤核苷酸一样,嘧啶核苷酸的抗代谢物是一些嘧啶、氨基酸或叶酸类似物,它们对代谢的影响及抗肿瘤作用与嘌呤抗代谢物相似。
例如,5—氟尿嘧啶(5—FU)的结构与胸腺嘧啶相似,在体内转变成FdUMP,抑制dTMP合成,进而抑制DNA合成。
嘧啶核苷酸的分解代谢可产生p氨基酸。
[测试题]一、名词解释1.de novo synthesis of purine nucleotide2.嘧啶核苷酸的补救合成3.核苷酸合成的抗代谢物4.feed-back regulation of nucleotide synthesis二、填空题5.核苷酸抗代谢物中,常用嘌呤类似物是_______;常用嘧啶类似物是_______。
6.嘌呤核苷酸从头合成的调节酶是_______和_______。
7.在嘌呤核苷酸补救合成中HGPRT催化合成的核苷酸是_______和_______。
8.核苷酸抗代谢物中,叶酸类似物竞争性抑制_______酶,从而抑制了酶,从而抑制了的生成。
9.别嘌呤醇是_______的类似物,通过抑制_______酶,减少尿酸的生成。
10.由dUMP生成TMP时,其甲基来源于,催化脱氧胸苷转变成dTMP的酶是_______ ,此酶在肿瘤组织中活性增强。
11.体内常见的两种环核苷酸是_______和_______。
12.核苷酸合成代谢调节的主要方式是_______,其生理意义是_______。
13.体内脱氧核苷酸是由_______直接还原而生成,催化此反应的酶是_______酶。
14.氨基蝶呤(MTX)干扰核苷酸合成是因为其结构与_______相似,并抑制_______酶,进而影响一碳单位代谢。
三、选择题A型题15.下列关于嘌呤核苷酸从头合成的叙述哪些是正确的?A.嘌呤环的氮原子均来自氨基酸的。
氨基B.合成过程中不会产生自由嘌呤碱C.氨基甲酰磷酸为嘌呤环提供氨甲酰基D.由IMP合成AMP和GMP均由A TP供能E.次黄嘌呤鸟嘌呤磷酸核糖转移酶催化IMP转变成GMP16.体内进行嘌呤核苷酸从头合成最主要的组织A.胸腺B.小肠粘膜C.肝D.脾E.骨髓17.嘌呤核苷酸从头合成时首先生成的是A.GMP B.AMP C.IMP D.ATP E.GTP18.人体内嘌呤核苷酸分解代谢的主要终产物是A.尿素B.肌酸C.肌酸酐D.尿酸E.β丙氨酸19.胸腺嘧啶的甲基来自A.N10-CHOFH4B.N5,N10=CH-FH4C.N5,N10-CH2-FH4D.N5-CH3FH4E.N5-CH=NHFH420.嘧啶核苷酸生物合成途径的反馈抑制是由于控制了下列哪种酶的活性?A.二氢乳清酸酶B.乳清酸磷酸核糖转移酶C.二氢乳清酸脱氢酶D.天冬氨酸转氨甲酰酶E.胸苷酸合成酶21.5-氟尿嘧啶的抗癌作用机理是A.合成错误的DNA B.抑制尿嘧啶的合成C.抑制胞嘧啶的合成D.抑制胸苷酸的合成E.抑制二氢叫叶酸还原酶22.哺乳类动物体内直接催化尿酸生成的酶是A.尿酸氧化酶B.黄嘌呤氧化酶C,腺苷脱氨酸D.鸟嘌呤脱氨酶E.核苷酸酶23.最直接联系核苷酸合成与糖代谢的物质是A.葡萄糖B.6-磷酸葡萄糖C.1-磷酸葡萄糖D.1,6-二磷酸葡萄糖E.5-磷酸核糖24.HGPRT(次黄嘌呤鸟嘌呤磷酸核糖转移酶)参与下列哪种反应?A.嘌呤核苷酸从头合成B.嘧啶核苷酸从头合成C.嘌呤核苷酸补救合成D.嘧啶核苷酸补救合成E.嘌呤核苷酸分解代谢25.6-巯基嘌呤核苷酸不抑制A.IMP→AMP B.IMP→GMP C.PRPP酰胺转移酶D.嘌呤磷酸核糖转移酶E.嘧啶磷酸核糖转移酶26.下列哪种物质不是嘌呤核苷酸从头合成的直接原料?A.甘氨酸B.天冬氨酸C.谷氨酸D.C02E.一碳单位27.体内脱氧核苷酸是由下列哪种物质直接还原而成的?A.核糖B.核糖核苷C.一磷酸核苷D.二磷酸核苷E.三磷酸核苷28.嘧啶核苷酸合成中,生成氨基甲酰磷酸的部位是A.线粒体B.微粒体C.胞浆D.溶酶体E.细胞核29.下列哪种化合物对嘌呤核苷酸的生物合成不产生直接反馈抑制作用? A.TMP B.IMP C.AMP D.GMP E.ADP30.氮杂丝氨酸干扰核苷酸合成,因为它是下列哪种化合物的类似物?A.丝氨酸B.甘氨酸C.天冬氨酸D.谷氨酰胺E.天冬酰胺31.催化dUMP转变为dTMP的酶是A.核苷酸还原酶B.胸苷酸合成酶C.核苷酸激酶D.甲基转移酶E.脱氨胸苷激酶32.下列化合物中作为合成IMP和UMP的共同原料是A.天冬酰胺B.磷酸核糖C.甘氨酸D.甲硫氨酸E.一碳单位33.dTMP合成的直接前体是A.dUMP B.TMP C.TDP D.dUDP E.dCMP34.能在体内分解产生p氨基异丁酸的核苷酸是A.CMP B,AMP C.TMP D.UMP E.IMP35.阿糖胞苷作为抗肿瘤药物的机理是通过抑制下列哪种酶而干扰核苷酸代谢? A.二氢叶酸还原酶B.核糖核苷酸还原酶C.二氢乳清酸脱氢酶胸苷酸合成酶D.胸苷酸合成酶E.氨基甲酰基转移酶36.关于天冬氨酸氨基甲酰基转移酶的下列说法,哪一种是错误的?A.GTP是其反馈抑制剂B.是嘧啶核苷酸从头合成的调节酶C.是由多个亚基组成D.是变构酶E.服从米-曼氏方程37.PRPP酰胺转移酶活性过高可以导致痛风症,此酶催化A.从R-5-P生成PRPP B.从甘氨酸合成嘧啶环C.从PRPP生成磷酸核糖胺D.从IMP合成AMPE.从IMP生成GMP38.嘧啶核苷酸从头合成的特点是A.在5—磷酸核糖上合成碱基B.由FH:提供一碳单位C.先合成氨基甲酰磷酸D.甘氨酸完整地参人E.谷氨酸提供氮原子39.下列哪种物质的合成需要谷氨酰胺分子上的酰胺基?A.TMP上的两个氮原子B.嘌呤环上的两个氮原子C.UMP上的两个氮原子D.嘧啶环上的两个氮原子E.胸嘌呤上的氨基B型题(40~42)A.PRPP B.IMP C.XMP D.cGMP D.AMP40.黄嘌呤核苷酸的缩写符号41.次黄嘌呤核苷酸的缩写符号42.1焦磷酸5-磷酸核糖的缩写符号(43~45)A.参与DNA合成的原料B.参与RNA合成原料C.参与辅酶NAD+的组成D.参与供给能量E.参与细胞信息传递43.cGMP44.dGTP45.cAMP(46~48)A.参与嘌呤核苷酸从头合成B.参与嘌呤核苷酸补救合成C.参与嘧啶核苷酸从头合成D.参与嘌呤核苷酸分解E.参与嘧啶核苷酸分解46.一碳单位47.HGPRT48.黄嘌呤氧化酶(49~52)A.抑制嘌呤核苷酸从头合成B.抑制NDP→dNDPC.抑制UMP→UDP D.抑制尿酸生成E.抑制嘧啶核苷酸分解49.氮杂丝氨酸50.6-MP51.MTX52.别嘌呤醇(53~55)A.抑制PRPP酰胺转移酶B.抑制氨基甲酰磷酸合成酶ⅡC.抑制核苷酸还原酶D.促进PRPP合成酶E.抑制黄嘌呤氧化酶53.UMP54.IMP55.5-磷酸核糖(56~58)A.痛风症B.苯酮酸尿症C.乳清酸尿症D.Lesch-Nyhan综合征E.白化病56.嘌呤核苷酸分解加强57.HGPRT缺陷58.嘧啶核苷酸合成障碍(59~61)A.AMP类似物B.嘧啶类似物C.叶酸类似物D.谷氨酰胺类似物E.次黄嘌呤类似物59.5-Fu60.MTX61.别嘌呤醇X型题62.嘌呤核苷酸从头合成的原料包括A.磷酸核糖B.C02C.一碳单位D.谷氨酰胺和天冬氨酸63.PRPP参与的代谢途径有A.嘌呤核苷酸的从头合成B.嘧啶核苷酸的从头合成C.嘌呤核苷酸的补救合成D.NMP→NDP→NTP64.对嘌呤核苷酸合成产生反馈抑制作用的化合物有A.IMP B.AMP C.GMP D.尿酸65.尿酸是下列哪些化合物分解的终产物?A.AMP B.UMP C.IMP D.TMP66.下列关于由核糖核苷酸还原成脱氧核糖核苷酸的叙述,哪些是正确的?A.4种核苷酸都涉及到相同的还原酶体系B.多发生在二磷酸核苷水平上C.还原酶系包括氧化还原蛋白和硫氧化蛋白还原酶D.与NADPH+H+67.嘧啶核苷酸合成反馈抑制的酶是A.氨基甲酰磷酸合成酶ⅡB.二氢乳清酸酶C.天冬氨酸氨基甲酰转移酶D.乳清酸核苷酸脱羧酶68.叶酸类似物抑制的反应有A.嘌呤核苷酸的从头合成B.嘌呤核苷酸的补救合成C.胸腺嘧啶核苷酸的生成D.嘌呤核苷酸的补救合成69.嘧啶核苷酸分解代谢产物有A.NH3D.尿酸C.C02 D.β氨基酸四、问答题70.讨论核苷酸在体内的主要生理功能。