高中数学必修4复习课

合集下载

2024年度高中数学必修四三角函数PPT课件

2024年度高中数学必修四三角函数PPT课件

建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式

北师大版高中数学必修4第二章《平面向量》平面向量小结与复习

北师大版高中数学必修4第二章《平面向量》平面向量小结与复习
规定:零向量与任一向量的数量积为0
几何意义: 数量积 a · 等于 a 的长度 |a|与 b 在 b
a 的方向上的投影 |b| cosθ的乘积。
B b B b
B
b
O θ
a
B1 A B1
θ
O a
θ
A O (B1)
a
16
A
5、数量积的运算律: ⑴交换律: a b b a ⑵对数乘的结合律: ( a ) b ( a b ) a ( b ) ⑶分配律: ( a b ) c a c b c
= (λ x , λ y)
14
1、平面向量的数量积 (1)a与b的夹角:
a θ b
共同的起点
[00 ,1800] •(2)向量夹角的范围:
• (3)向量垂直:
B B A A O B A O A O B
15
B A
a O θ
O
b
(4)两个非零向量的数量积:
a · = |a| |b| cosθ b
3)向量的表示 4)向量的模(长度)
4
二、向量的运算
1)加法:①两个法则 ②坐标表示
减法: ①法则 ②坐标表示
运算律
注:
AB a , AD b





(1) a


b , 则四边形是什么图形

? ?
( 2) a b
a b , 则四边形是什么图形
5
2)实数λ与向量 a 的积
3)平面向量的数量积:
(1)两向量的交角定义 (2)平面向量数量积的定义 (3)a在b上的投影 (4)平面向量数量积的几何意义 (5)平面向量数量积的运算律

【高中数学必修四】复习讲义 专题1.5 函数y=Asin(ωx+φ)的图象

【高中数学必修四】复习讲义 专题1.5 函数y=Asin(ωx+φ)的图象

第一章 三角函数1.5 函数()sin y A x ωϕ=+的图象一、,,A ϕω对函数()sin y A x ωϕ=+的图象的影响 1.(0)ϕϕ≠对函数sin()y x ϕ=+的图象的影响()sin y x ϕ=+(其中φ≠0)的图象,可以看作是把正弦曲线上所有的点向 (当φ<0时)或向 (当φ>0时)平行移动ϕ个单位长度而得到的. 2.(0)ωω>对函数sin()y x ωϕ=+的图象的影响函数sin()y x ωϕ=+(其中ω>0)的图象,可以看作是把函数sin()y x ϕ=+的图象上所有点的横坐标伸长(当0<ω<1时)或 (当ω>1时)到原来的1ω倍(纵坐标不变)而得到的.3.(0)A A >对函数sin()y A x ωϕ=+的图象的影响函数sin()y A x ωϕ=+(其中A >0)的图象,可以看作是把函数sin()y x ωϕ=+的图象上所有点的纵坐标伸长(当A >1时)或缩短(当0<A <1时)到原来的 倍(横坐标不变)而得到的. 4.函数sin y x =到函数sin()y A x ωϕ=+(其中0,0A ω>>)的图象变换将函数sin y x =的图象变换得到函数sin()y A x ωϕ=+(其中0,0A ω>>)的图象的过程为: (1)作出函数sin y x =在长度为2π的某闭区间上的简图;(2)将图象沿x 轴向左或向右平移ϕ个单位长度,得到函数sin()y x ϕ=+的简图; (3)把曲线上各点的横坐标伸长或缩短到原来的1ω倍,得到函数sin()y x ωϕ=+的简图;(4)把曲线上各点的纵坐标伸长或缩短到原来的A 倍,得到函数sin()y A x ωϕ=+的简图; (5)沿x 轴扩展得到函数sin()y A x ωϕ=+,x ∈R 的简图. 由y =sin x 变换得到y =A sin(ωx +φ)(A >0,ω>0)的方法:(1)先平移后伸缩:(2)先伸缩后平移:二、函数(),[)sin 0,y A x x ωϕ∈++∞=(其中0,0A ω>>)中各量的物理意义物理中,描述简谐运动的物理量,如振幅、周期和频率等都与函数sin()y A x ωϕ=+中的常数有关: A :它表示做简谐运动的物体离开平衡位置的最大距离,称为 (amplitude of vibration ). T :2πT ω=,它表示做简谐运动的物体往复运动一次所需要的时间,称为 (period).f :12πf T ω==,它表示做简谐运动的物体在单位时间内往复运动的次数,称为 (frequency). x ωϕ+:称为 (phase).ϕ:x =0时的相位,称为 (initial phase).简记图象变换名称及步骤(1)函数y =sin x 到y =sin(x +φ)的图象变换称为相位变换; (2)函数y =sin x 到y =sin ωx 的图象变换称为周期变换; (3)函数y =sin x 到y =A sin x 的图象变换称为振幅变换.(4)函数y =sin x 到y =A sin(ωx +φ)的图象的变换途径为相位变换→周期变化→振幅变换或周期变换→相位变化→振幅变换.K 知识参考答案:一、1.右 左2.缩短3.A二、振幅 周期 频率 相位 初相K —重点 函数图象的变换以及由图象确定函数解析式 K —难点 函数()sin y A x ωϕ=+的性质的应用 K —易错不能正确理解三角函数图象的变换规律致错1.函数图象的变换函数图象的平移变换解题策略:(1)对函数sin y x =,(n )si y A x ωϕ=+或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|. (2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.(3)确定函数sin y x =的图象经过变换后所得图象对应的函数的解析式,关键是明确左右平移的方向和横纵坐标伸缩的量,确定出,,A ωϕ的值.(4)由(n )si y A x ωϕ=+的图象得到sin y x =的图象,可采用逆向思维,将原变换反过来逆推得到. 【例1】要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象 A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位【答案】B【解析】因为y =sin(4x -π3)=sin[4(x -π12)],所以要得到y =sin[4(x -π12)]的图象,只需将函数y =sin 4x的图象向右平移π12个单位.故选B .【例2】将函数sin y x =的图象沿x 轴向右平移10π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),所得图象的函数解析式是A .sin(2)10y x π=- B .sin(2)5y x π=-C .1sin()210y x π=-D .1sin()220y x π=-【答案】C【解析】将函数sin y x =的图象沿x 轴向右平移10π个单位长度,得sin()10y x π=-的图象,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得1sin()210y x π=-.故选C .【名师点睛】三角函数图象的平移变换要注意平移方向与φ的符号之间的对应,横坐标的变化与ω的关系,此类问题很容易混淆规律导致错误. 2.由函数图象确定函数解析式结合图象及性质求解析式y =A sin(ωx +φ)+B (A >0,ω>0)的方法: (1)求A ,B ,已知函数的最大值M 和最小值m ,则,22M m M mA B -+==. (2)求ω,已知函数的周期T ,则2πTω=. (3)求φ,常用方法有:【例3】如图是函数y =A sin(ωx +φ)A >0,ω>0,|φ|<π2的图象的一部分,求此函数的解析式.【解析】(逐一定参法)由图象知A =3,T =5π6-⎝⎛⎭⎫-π6=π,∴ω=2πT =2, ∴y =3sin(2x +φ).∵点⎝⎛⎭⎫-π6,0在函数图象上,∴0=3sin ⎝⎛⎭⎫-π6×2+φ, ∴-π6×2+φ=k π,得φ=π3+k π(k ∈Z).∵|φ|<π2,∴φ=π3,∴y =3sin ⎝⎛⎭⎫2x +π3. 【名师点睛】给出y =A sin(ωx +φ)的图象的一部分,确定A ,ω,φ的方法:(1)第一零点法:如果从图象可直接确定A 和ω,则选取“第一零点”(即“五点法”作图中的第一个点)的数据代入“ωx +φ=0”(要注意正确判断哪一点是“第一零点”)求得φ.(2)特殊值法:通过若干特殊点代入函数式,可以求得相关待定系数A ,ω,φ.这里需要注意的是,要认清所选择的点属于五个点中的哪一点,并能正确代入列式.(3)图象变换法:运用逆向思维的方法,先确定函数的基本解析式y =A sin ωx ,再根据图象平移规律确定相关的参数.【例4】已知函数f (x )=A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【答案】62【解析】由图可知:A =2,T 4=7π12-π3=π4,所以T =π,ω=2πT =2.又函数图象经过点(π3,0),所以2×π3+φ=π,则φ=π3,故函数的解析式为f (x )=2sin(2x +π3),所以f (0)=2sin π3=62.【名师点睛】根据函数图象确定函数解析式,关键是准确把握解析式中的各个参数在图象中的特征体现. 确定φ一般采用函数图象上的最值点的坐标来处理,也可用五点作图法中的五点来解决,这样避免产生增解.3.函数()sin y A x ωϕ=+的性质的应用 函数sin()y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ时,函数sin()y A x ωϕ=+为奇函数;=2k ϕππ+时,函数sin()y A x ωϕ=+为偶函数.(2)周期性:sin()y A x ωϕ=+存在周期性,其最小正周期为T =2ωπ.(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k ωϕππ-π≤+≤+π∈Z 得单调增区间;由+22,22k x k k ωϕπ3ππ≤+≤+π∈Z 得单调减区间. (4)对称性: ①对称轴与正弦曲线、余弦曲线一样,函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的图象的对称轴通过函数图象的最值点且垂直于x 轴.函数y =A sin(ωx +φ)对称轴方程的求法:令sin(ωx +φ)=±1,得ωx +φ=k π+π2(k ∈Z),则x =(2k +1)π-2φ2ω(k ∈Z ),所以函数y =A sin(ωx +φ)的图象的对称轴方程为x =(2k +1)π-2φ2ω(k ∈Z ).函数y =A cos(ωx +φ)对称轴方程的求法:令cos(ωx +φ)=±1,得ωx +φ=k π(k ∈Z ),则x =k π-φω(k ∈Z ),所以函数y =A cos(ωx +φ)的图象的对称轴方程为x =k π-φω(k ∈Z ).②对称中心与正弦曲线、余弦曲线一样,函数y =A sin(ωx +φ)和y =A cos(ωx +φ)图象的对称中心即函数图象与x 轴的交点.函数y =A sin(ωx +φ)对称中心的求法:令sin(ωx +φ)=0,得ωx +φ=k π(k ∈Z),则x =k π-φω(k ∈Z ),所以函数y =A sin(ωx +φ)的图象关于点⎝⎛⎭⎫k π-φω,0(k ∈Z )成中心对称.函数y =A cos(ωx +φ)对称中心的求法:令cos(ωx +φ)=0,得ωx +φ=k π+π2(k ∈Z ),则x =(2k +1)π-2φ2ω(k ∈Z ),所以函数y =A cos(ωx +φ)的图象关于点⎝⎛⎭⎫(2k +1)π-2φ2ω,0(k ∈Z )成中心对称.【例5】已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,图象关于直线x =π3对称.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间;(3)在给定的坐标系中画出函数y =f (x )在区间[0,π]上的图象.(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z .∴函数f (x )的单调递增区间为[k π-π6,k π+π3],k ∈Z .(3)列表如下:x 0 π12 π3 7π12 5π6 π y-121-1-12描点、作图.【例6】已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π2]上是单调函数,求φ和ω的值.【解析】由f (x )是偶函数,得f (-x )=f (x ),即函数f (x )的图象关于y 轴对称, ∴当x =0时f (x )取得最值,即sin φ=1或-1. 依题设0≤φ≤π,解得φ=π2.由f (x )的图象关于点M 对称,可知sin(3π4ω+π2)=0,解得ω=4k 3-23,k ∈Z .又f (x )在[0,π2]上是单调函数,∴T ≥π,即2πω≥π,∴ω≤2.又ω>0,∴当k =1时,ω=23;当k =2时,ω=2.故φ=π2,ω=2或23.【名师点睛】此类题目是函数y =A sin(ωx +φ)的性质的综合应用,往往涉及单调性、奇偶性、对称性、最值等.求解时要充分结合函数的性质,把性质转化为参数的方程或不等式. 4.不能正确理解三角函数图象变换规律【例7】为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象 A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位【错解】选B .y =cos(2x +π3)=sin(2x +π3+π2)=sin2(x +5π12),因此向右平移5π12个长度单位,故选B .【错因分析】没有注意到变换方向导致了错解,目标是y =cos(2x +π3)的图象.【答案】A【试题解析】y =cos(2x +π3)=sin(2x +π3+π2)=sin(2x +5π6)=sin2(x +5π12),因此将函数y =sin2x 的图象向左平移5π12个长度单位即可.故选A .1.要得到y =sin2x 的图象,只需将y =cos2x 的图象A .向左平移π4个单位 B .向右平移π4个单位 C .向左平移π8个单位D .向右平移π8个单位 2.将函数y =2sin (ωx +π6)(ω>0)的图象向右移2π3个单位后,所得图象关于y 轴对称,则ω的最小值为 A .2B .1C .12D .143.已知函数f (x )=sin (2x +φ)(–π<φ<0),将函数f (x )图象向左平移π3个单位长度后所得的函数图象过点P (0,1),则函数f (x )=sin (2x +φ) A .在区间[–ππ63,]上单调递减B .在区间[–ππ63,]上单调递增C .在区间[ππ36-,]上单调递减D .在区间[ππ36-,]上单调递增4.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的图象如图所示,则函数f (x )的解析式是A .f (x )=2sin(1011x +π6)B .f (x )=2sin(1011x -π6)C .f (x )=2sin(2x +π6)D .f (x )=2sin(2x -π6)5.将函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π3个长度单位,所得函数图象的一个对称中心为 A .()0,0B .π,04⎛⎫⎪⎝⎭C .π,02⎛⎫⎪⎝⎭D .(π,0)6.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=________.7.已知函数f (x )=3sin(3x +π3)表示一个振动.(1)求这个振动的振幅、周期、初相;(2)说明函数y =sin x 的图象经过怎样的变换可得到函数f (x )的图象.8.若函数y =A sin(ωx +φ)+b (其中A >0,ω>0,|φ|<π2)在其一个周期内的图象上有一个最高点(π12,3)和一个最低点(7π12,-5),求这个函数的解析式.9.函数f (x )=3sin(2x +π6)的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0、y 0的值; (2)求f (x )在区间[-π2,-π12]上的最大值和最小值.10.要得到函数π2sin(2)4y x =+的图象,只需将函数2sin y x =的图象上所有点A .向左平移π8个单位长度,再把横坐标缩短为原来的12倍(纵坐标不变) B .向左平移π4个单位长度,再把横坐标缩短为原来的12倍(纵坐标不变)C .向左平移π8个单位长度,再把横坐标伸长为原来的2倍(纵坐标不变)D .向左平移π4个单位长度,再把横坐标伸长为原来的2倍(纵坐标不变)11.函数()f x 的图象如图所示,为了得到函数2sin y x =的图象,可以把函数()f x 的图象A .每个点的横坐标缩短到原来的12(纵坐标不变),再向左平移π3个单位长度 B .每个点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位长度C .先向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)D .先向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12(纵坐标不变)12.先把函数()πsin 23f x x ⎛⎫=-⎪⎝⎭的图象上各点的横坐标变为原来的2倍(纵坐标不变),再把新得到的图象向左平移π6个单位长度,得到y =g (x )的图象,当π5π,66x ⎛⎫∈- ⎪⎝⎭时,函数g (x )的值域为A .3⎛⎤⎥ ⎝⎦B .1,12⎛⎤-⎥⎝⎦C .33⎛ ⎝⎭D .[)1,0-13.已知函数()()()sin 0,0πf x x ωϕωϕ=+>≤≤是R 上的偶函数,其图象关于点3π,04M ⎛⎫⎪⎝⎭对称,且在区间[]0,π上是单调函数,则ωϕ+=A .π223+ B .π22+ C .π322+D .π1023+14.已知函数()π2sin 26f x x ⎛⎫=+⎪⎝⎭的图象为M ,则下列结论中正确的是 A .图象M 关于直线π12x =-对称 B .将2sin2y x =的图象向左平移π6个单位长度得到MC .图象M 关于点π,012⎛⎫-⎪⎝⎭对称D .()f x 在区间π5π,1212⎛⎫-⎪⎝⎭上单调递增 15.已知函数()()sin f x A x ωϕ=+(0ω>,π2ϕ<)的部分图象如图所示,将函数()f x 的图象向右平移7π24个单位长度后得到函数()g x 的图象,若函数()g x 在区间π,3θ⎡⎤-⎢⎥⎣⎦(π3θ>-)上的值域为[]1,2-,则θ等于A .π6 B .π4 C .2π3D .7π1216.已知函数()()sin (0,0π)f x A x A ϕϕ=+><<的最大值是1,其图象经过点π1,32M ⎛⎫⎪⎝⎭,则3π4f ⎛⎫= ⎪⎝⎭__________. 17.已知把函数x x g 2sin 2)(=的图象向右平移π6个单位,再向上平移一个单位得到函数)(x f 的图象. (1)求)(x f 的最小值及取最小值时x 的集合; (2)求)(x f 在π[0,]2x ∈时的值域;(3)若)()(x f x -=ϕ,求)(x ϕ的单调增区间.18.某同学用“五点法”画函数()()πsin (0,0,)2f x A x A ωϕωϕ=+>><在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,函数()f x 的解析式为()f x = (直接写出结果即可); (2)求函数()f x 的单调递增区间;(3)求函数()f x192y =的两相邻交点之间的距离为π,且(1)求()y f x =的解析式;(2)先将函数()f x 2倍,得到函数()g x 的图象.求()g x 的单调递增区间以及()g x ≥x 的取值范围.20.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的一段图象如图所示. (1)求f (x )的解析式;(2)把f (x )的图象向左至少平移多少个单位长度,才能使得到的图象对应的函数为偶函数?21.已知函数y =2cos ⎝⎛⎭⎫2x +2π3. (1)在该函数的图象的对称轴中,求离y 轴距离最近的那条对称轴的方程;(2)将该函数的图象向右平移φ个单位长度后,图象关于原点对称,求φ的最小正值.22.已知曲线y =A sin(ωx +φ)(A >0,ω>0)上的一个最高点的坐标为⎝⎛⎭⎫π2, 2,由此点到相邻最低点间的曲线与x 轴交于点⎝⎛⎭⎫3π2,0,若φ∈⎝⎛⎭⎫-π2,π2.(1)试求这条曲线的函数解析式;(2)写出函数的单调区间.23.已知函数f(x)=A sin(ωx+φ),(A>0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f(x)的解析式及f(x)图象的对称轴方程;(2)把函数y=f(x)图象上点的横坐标扩大到原来的2倍(纵坐标不变),再向左平移π6个单位,得到函数y=g(x)的图象,求关于x的方程g(x)=m(0<m<2)在x∈[π11π33,]时所有的实数根之和.24.已知函数f(x)=sin(ωx+φ)–b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2,若将f(x)的图象先向右平移π63g(x)为奇函数.(1)求f(x)的解析式;(2)求f(x)的对称轴及单调增区间;(3)若对任意x∈[0,π3],f 2(x)–(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.25.(2018•新课标Ⅱ)若f(x)=cos x–sin x在[0,a]是减函数,则a的最大值是A.π4B.π2C.3π4D.π26.(2017•新课标Ⅰ)已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C227.(新课标Ⅰ)已知函数ππ()sin()(0),24f x x+x,ωϕωϕ=>≤=-为()f x的零点,π4x=为()y f x=图象的对称轴,且()f x 在π5π()1836,单调,则ω的最大值为 A .11 B .9 C .7D .528.(新课标Ⅰ)将函数y =2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为 A .y =2sin(2x +π4) B .y =2sin(2x +π3)C .y =2sin(2x –π4)D .y =2sin(2x –π3)29.(新课标Ⅱ)函数y =A sin(ωx +φ)的部分图象如图所示,则A .y =2sin(2x -π6)B .y =2sin(2x -π3)C .y =2sin(x +π6)D .y =2sin(x +π3)30.(新课标Ⅱ)若将函数y =2sin 2x 的图象向左平移12π个单位长度,则平移后图象的对称轴为 A .x =26k ππ-(k ∈Z ) B .x =26k ππ+(k ∈Z )C .x =212k ππ-(k ∈Z )D .x =212k ππ+(k ∈Z )31.(2018•江苏)已知函数y =sin (2x +φ)(–π2<φ<π2)的图象关于直线x =π3对称,则φ的值为______.32.(2018•北京)设函数f (x )=cos (ωx –π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为_____________.1 2 3 4 5 10 11 12 13 14 15 26 27 28 29 30 BBBCABCAACBDBDAB1.【答案】B【解析】y =cos2x =sin (2x +π2)=sin2(x +π4).所以将函数y =cos2x 的图象向右平移π4个单位,可得函数y =sin[2(x –π4)+π2]=sin2x 的图象,故选B . 2.【答案】B【解析】将函数y =2sin (ωx +π6)(ω>0)的图象向右移2π3个单位后,可得y =2sin (ωx –2π3ω+π6)的 图象,再根据所得图象关于y 轴对称,∴–2π3ω+π6=k π+π2,k ∈Z ,即ω=–31–22k ,∴当k =–1时,ω取得最小值为1,故选B .4.【答案】C【解析】∵f (0)=1,∴2sin φ=1,∴sin φ=12,又∵|φ|<π2,∴φ=π6,又ω×11π12+π6=2π,∴ω=2,∴f (x )=2sin(2x +π6).5.【答案】A【解析】将函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到1πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,再向左平移π3个长度单位,得到1π1cos sin 222y x x ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭的图象.将选项代入验证可知A 选项符合.6.【答案】π4【解析】由题意可知,函数f (x )的最小周期T =2(5π4-π4)=2π,∴ω=1,∴f (x )=sin(x +φ).又∵x =π4是函数f (x )的图象的一条对称轴,∴π4+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z .∵0<φ<π,∴φ=π4.7.【解析】(1)振幅A =3,周期T =2π3,初相φ=π3.(2)先将函数y =sin x 的图象向左平移π3个单位,得到y =sin(x +π3)的图象;再将所得图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到y =sin(3x +π3)的图象;最后将所得图象上所有点的纵坐标扩大到原来的3倍(横坐标不变),即可得到f (x )=3sin(3x +π3)的图象.8.【解析】由一个周期内的图象上有一个最高点(π12,3)和一个最低点(7π12,-5),得A =12(y max -y min )=12×(3+5)=4,b =12(y max +y min )=12×(3-5)=-1,T 2=7π12-π12=π2,即T =π.由T =2πω,得ω=2. ∴y =4sin(2x +φ)-1. ∴2×π12+φ=π2+2kπ,k ∈Z ,又|φ|<π2,∴φ=π3,故所求函数的解析式为y =4sin(2x +π3)-1.【思路点拨】函数y =A sin(ωx +φ)+b (其中A >0,ω>0)的图象可看作把y =A sin(ωx +φ)(其中A >0,ω>0)的图象向上(b >0)或向下(b <0)平移|b |个长度单位得到的.由图象可知,取最大值与最小值时相应的x 值之差的绝对值只是半个周期,由此可得出A 、b ,进而再求ω、φ. 9.【解析】(1)f (x )的最小正周期为2π2=π.∵(x 0,y 0)是最大值点,令2x +π6=π2+2k π,k ∈Z ,结合图象得x 0=7π6,y 0=3.(2)因为x ∈[-π2,-π12],所以2x +π6∈[-5π6,0].于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.10.【答案】B【解析】由题可知,正弦型为sin()y A x ωϕ=+,其中,A 代表振幅,ω用来控制函数的横坐标变化,ϕ用来控制函数的左右移动,本题是先平移再伸缩,先向左平移π4个单位长度,得到π2sin()4y x =+的图象,再把横坐标缩短为原来的12倍,得到π2sin(2)4y x =+,故选B .【名师点睛】(1)进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身;要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;(2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向. 11.【答案】C【解析】根据函数(f 故可以把函数()f x 再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),即可得到2sin y x =函数的图象,故选C . 12.【答案】A【解析】依题意得()1πππsin 2sin 2636g x x x ⎡⎤⎛⎫⎛⎫=⨯+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当π5π,66x ⎛⎫∈- ⎪⎝⎭时,x -π6∈π2π()33-,,所以πsin 6x ⎛⎫- ⎪⎝⎭∈⎛⎤ ⎥ ⎝⎦,即函数g (x )的值域是.⎛⎤ ⎥ ⎝⎦ 【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos ,cos sin 22αααα⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论平移还是伸缩变换,总是对变量x 而言. 13.【答案】A【解析】由于()f x 是R 上的偶函数,且0πϕ≤≤()f x 在区间[]0,π上是单调函数,且0ω>A . 【方法点睛】本题主要通过求三角函数的解析式考查三角函数的性质,属于中档题.利用三角函数性质求解析式的方法: (1)利用最值求出A ; (2)利用周期公式求出ω; (3)利用特殊点或对称性求出ϕ.在求解每一个参数时,一定根据题设条件,考虑参数的范围,这样才能保证解析式的唯一性. 14.【答案】C【解析】将2sin 2y x =的图象向左平移,故B 错;()f x D 错;π12f ⎛⎫- ⎪⎝⎭M A 错误,C 正确, 故选C . 15.【答案】B【解析】由图象可知,π2,π,2,4A T ωϕ=-===, 所以()()()π7πππ2sin 22sin 2,2sin 242443f x x g x x g x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+=--+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,, 当π,3x θ⎡⎤∈-⎢⎥⎣⎦(π3θ>-)时,ππ2π,233x θ⎡⎤-∈--⎢⎥⎣⎦,因为值域里有12,所以ππ236θ-=,π4θ=,选B . 【名师点睛】本题学生容易经验性的认为2A =,但此时ϕ在π2ϕ<内无解,所以2A =-. 已知函数()sin (0,0)y A x B A ωϕω=++>>的图象求解析式:(1)max min maxmin,22y y y y A B -+==. (2)由函数的周期T 求2π,.T ωω=(3)利用“五点法”中相对应的特殊点求ϕ,一般用最高点或最低点求.16.【答案】2-【解析】由函数()()sin (0,0π)f x A x A ϕϕ=+><<,x ∈R 的最大值是1,得1A =; 又其图象经过点π1,32M ⎛⎫⎪⎝⎭,∴π1sin 32ϕ⎛⎫+= ⎪⎝⎭,∴ππ2π36k ϕ+=+或π5π2π36k ϕ+=+,k ∈Z ;∴π2π6k ϕ=-+或π2π2k ϕ=+,k ∈Z ,又0πϕ<<,∴π2ϕ=,∴()πsin cos 2f x x x ⎛⎫=+= ⎪⎝⎭.∴3π3πcos 442f ⎛⎫==-⎪⎝⎭.故答案为2-. 17.【解析】(1)由已知得π()2sin(2)13f x x =-+.当πsin(2)13x -=-时,()f x 取得最小值211-+=-,此时ππ22π,32x k k -=-+∈Z ,即ππ,12x k k =-∈Z , 故)(x f 取最小值时x 的集合为π{|π,}12x x k k =-∈Z .(2)当π[0,]2x ∈时,ππ2π2[,]333x -∈-,所以πsin(2)13x ≤-≤,从而π12sin(2)133x ≤-+≤,即)(x f 的值域为[1,3]. (3)()()ππ2sin 212sin 2133φxf x x x ⎛⎫=-=--+=-++ ⎪⎝⎭(),即求函数πy x =+2sin(2)3的单调递减区间. 令πππππk x k k +≤+≤+∈Z 3222,232,解得ππππk x k k +≤≤+∈Z 7,1212,故)(x ϕ的单调增区间为()ππππk k k ⎡⎤++∈⎢⎥⎣⎦Z 7,1212. 18.【解析】(1)故解析式为()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭. (2,k ∈Z , 所以函数()f x 的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(3)因为π02x -≤≤, 所以5πππ2666x -≤+≤,所以π11sin 262x ⎛⎫-≤+≤ ⎪⎝⎭.所以当ππ262x +=-,即π3x =-时,()f x 2-.当ππ266x +=,即0x =时,()f x 1. 【名师点睛】本题主要考查由函数sin y A x ωϕ=+()的部分图象求解析式,并研究函数的性质,属于基础题.(1)由函数的最值求出A ,由周期求出ω,由五点法作图求出ϕ的值,可得函数的解析式. (2)利用正弦函数的单调性,求得函数()f x 的单调递增区间.(3)利用正弦函数的定义域、值域,求得函数()f x 在区间π,02⎡⎤-⎢⎥⎣⎦上的最大值和最小值.(2)由(1)可得()π2sin 26f x x ⎛⎫=-⎪⎝⎭, ∴()π2sin 6g x x ⎛⎫=+ ⎪⎝⎭, 由πππ2π2π262k x k -≤+≤+,得2ππ2π2π33k x k -≤≤+,k ∈Z , ∴()g x 的单调递增区间为2ππ2π,2π33k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z , ∵π2sin 36x ⎛⎫+≥ ⎪⎝⎭, ∴π3sin 62x ⎛⎫+≥ ⎪⎝⎭, ∴ππ2π2π2π363k x k +≤+≤+,k ∈Z , ∴x 的取值范围为ππ|2π2π, 62x k x k k ⎧⎫+≤≤+∈⎨⎬⎩⎭Z . 【名师点睛】本题考查了函数的基本性质的综合应用问题,解答中涉及正弦型函数的单调性、周期和对称性的综合应用,试题有一定的综合性,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及推理、运算能力.其中熟记三角函数的图象与性质是解答的关键. (1)由已知可得πT =,进而求解ω值,再根据()f x 的图象关于π3x =对称,求解ϕ的值,即可求得函数()f x 的解析式;(2)由(1)可得()π2sin 6g x x ⎛⎫=+ ⎪⎝⎭,利用三角函数的图象与性质,即可求解()g x 的单调递增区间以及()3g x ≥时x 的取值范围.21.【解析】(1)由2x +2π3=k π,得函数的对称轴方程是x =-π3+k π2,k ∈Z .所以函数的图象离y 轴距离最近的那条对称轴方程为x =π6.(2)将函数y =2cos ⎝⎛⎭⎫2x +2π3的图象向右平移φ个单位长度后,得到函数图象的解析式是y =2cos ⎝⎛⎭⎫2x +2π3-2φ. 因为y =2cos ⎝⎛⎭⎫2x +2π3-2φ的图象关于原点对称,所以2π3-2φ=π2+k π.所以φ=π12-k π2,k ∈Z . 所以φ的最小正值是π12.22.【解析】(1)依题意,A =2,T =4×⎝⎛⎭⎫3π2-π2=4π, ∵T =2π|ω|=4π,ω>0,∴ω=12.∴y =2sin ⎝⎛⎭⎫12x +φ.∵曲线上的最高点为⎝⎛⎭⎫π2,2,∴sin ⎝⎛⎭⎫12×π2+φ=1. ∴φ+π4=2k π+π2,k ∈Z .∵-π2<φ<π2,∴φ=π4.∴y =2sin ⎝⎛⎭⎫12x +π4.(2)令2k π-π2≤12x +π4≤2k π+π2,k ∈Z ,∴4k π-3π2≤x ≤4k π+π2,k ∈Z .∴函数f (x )的单调递增区间为4k π-3π2,4k π+π2(k ∈Z ).令2k π+π2≤12x +π4≤3π2+2k π,k ∈Z ,∴4k π+π2≤x ≤4k π+5π2,k ∈Z .∴函数f (x )的单调递减区间为4k π+π2,4k π+5π2(k ∈Z ).23.【解析】(1)由图象知,周期T =11π12–(–π12)=π,∴ω=2πT=2.∵点(–π12,0)在函数图象上, ∴A sin (–2×π12+φ)=0,即sin (φ–π6)=0,又∵–π2<φ<π2,∴–2π3<φ–ππ63<,从而φ=π6. 又∵点(0,1)在函数图象上,∴1=A sinπ6,∴A =2. 故函数f (x )的解析式为f (x )=2sin (2x +π6). 令2x +π6=k π+π2,k ∈Z ,解得x =π2k +π6,k ∈Z . 即为函数f (x )图象的对称轴方程.(2)依题意,得g (x )=2sin (x +π3), ∵g (x )=2sin (x +π3)的周期T =2π, ∴g (x )=2sin (x +π3)在x ∈[–π3,11π3]内有2个周期. 令x +π3=k ππ2+(k ∈Z ),则x =π6+k π(k ∈Z ), 即函数g (x )=2sin (x +π3)的对称轴为x =π6+k π(k ∈Z ). 又x ∈[π11π33-,],则x +π3∈[0,4π],且0<m <2,所以g (x )=m ,(0<m <2)在x ∈[π11π33-,]内有4个实根,不妨从小到大依次设为x i (i =1,2,3,4), 则12π26x x +=,3413π26x x +=. ∴关于x 的方程g (x )=m (0<m <2)在x ∈[π11π33-,]时,所有的实数根之和为x 1+x 2+x 3+x 4=14π3. 24.【解析】(1)由2ππ22ω=⨯可得ω=2,则f (x )=sin (2x +φ)+b ,又()πsin 26g x x b ϕ⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎝⎭⎣⎦0<φ<π,则π3b ϕ==,()πsin 23f x x ⎛⎫=+ ⎪⎝⎭.(2)结合(1)的结论可得对称轴满足ππ2π32x k k +=+∈Z ,, 据此可得对称轴方程为ππ122k x k =+∈Z ,, 函数的增区间满足()πππ22π2π322x k k k ⎡⎤+∈-+∈⎢⎥⎣⎦Z ,, 故增区间为()5ππππ1212k k k ⎡⎤-++∈⎢⎥⎣⎦Z ,.(3)因为π03x ⎡⎤∈⎢⎥⎣⎦,,所以()()111f x f x ≤--≤而f 2(x )–(2+m )f (x )+2+m ≤0恒成立,整理可得()()111m f x f x ≤+--,由()1313f x --≤-≤-,得()()13314311f x f x --≤+-≤--, 故133m --≤,即m 取值范围是133⎛⎫---∞ ⎪ ⎪⎝⎭,. 25.【答案】C【解析】f (x )=cos x –sin x =–(sin x –cos x )=–2sin (x –π4),由–π2+2k π≤x –π4≤π2+2k π,k ∈Z ,得–π4+2k π≤x ≤3π4+2k π,k ∈Z ,取k =0,得f (x )的一个减区间为[–π4,3π4],由f (x )在[0,a ]是减函数,得a ≤3π4.则a 的最大值是3π4.故选C .26.【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D .【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.【名师点睛】本题将三角函数的单调性与对称性结合在一起进行考查,题目新颖,是一道考查能力的好题.注意本题求解中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是最小正周期的一半;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图象关于直线0x x =对称,则()0f x A =或()0f x A =-. 28.【答案】D【解析】函数2sin(2)6y x π=+的周期为π,将函数2sin(2)6y x π=+的图象向右平移14个周期即4π个单位,所得图象对应的函数为2sin[2())]2sin(2)463y x x πππ=-+=-,故选D.【名师点睛】函数图象的平移问题易错点有两个,一是平移方向,注意“左加右减”;二是平移多少个单位是对x 而言的,不要忘记乘以系数. 29.【答案】A【解析】由题图知,2A =,最小正周期ππ2[()]π36T =--=,所以2π2πω==,所以2sin(2)y x ϕ=+.因为图象过点π(,2)3,所以π22sin(2)3ϕ=⨯+,所以2πsin()13ϕ+=,所以2ππ2π()32k k ϕ+=+∈Z ,令0k =,得π6ϕ=-,所以π2sin(2)6y x =-,故选A. 【名师点睛】根据图象求解析式问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 30.【答案】B【解析】由题意,将函数2sin 2y x =的图象向左平移π12个单位长度得函数ππ2sin 2()2sin(2)126y x x =+=+的图象,则平移后函数图象的对称轴为ππ2π,62x k k +=+∈Z ,即ππ,62k x k =+∈Z ,故选B. 【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加或减多少值,而不是依赖于ωx 加或减多少值. 31.【答案】D【解析】由图象可知,1π++2π42()53π++2π42m m m ωϕωϕ⎧=⎪⎪∈⎨⎪=⎪⎩Z ,解得=πω,π=+2π()4m m ϕ∈Z ,所以ππ()cos(π+2π)=cos(π)()44f x x m x m =++∈Z ,令π2ππ2ππ,4k x k k <+<+∈Z ,解得124k -<x <324k +,k ∈Z ,故函数()f x 的单调减区间为(124k -,324k +),k ∈Z ,故选D . 31.【答案】–π6【解析】∵y =sin (2x +φ)(–π2<φ<π2)的图象关于直线x =π3对称,∴2×π3+φ=k π+π2,k ∈Z ,即φ=k π–π6,∵–π2<φ<π2,∴当k =0时,φ=–π6,故答案为:–π6.32.【答案】23【解析】函数f (x )=cos (ωx –π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,可得:ππ2π46k ω⋅-=,k ∈Z ,解得ω=283k +,k ∈Z ,ω>0,则ω的最小值为:23.故答案为:23.。

2020学年高中数学第1章三角函数章末复习课讲义苏教版必修4(2021-2022学年)

2020学年高中数学第1章三角函数章末复习课讲义苏教版必修4(2021-2022学年)

第1章三角函数任意角的三角函数概念(1)已知角α的终边过点P(-4m,3m)(m≠0),则2sinα+cosα的值是________.(2)函数y=错误!+错误!未定义书签。

的定义域是________.思路点拨:(1)根据三角函数的定义求解,注意讨论m的正负.(2)利用三角函数线求解.(1)错误!未定义书签。

或-错误!(2)错误![(1)r=|OP|=错误!未定义书签。

=5|m|。

当m>0时,sin α=错误!未定义书签。

=\f(3m,5m)=\f(3,5),cos α=错误!未定义书签。

=错误!未定义书签。

=-错误!未定义书签。

,∴2sin α+cosα=错误!.当m<0时,sin α=错误!=错误!=-错误!未定义书签。

,cos α=错误!=错误!未定义书签。

=错误!,∴2sin α+cos α=-错误!.故2sin α+cosα的值是\f(2,5)或-错误!未定义书签。

.(2)由错误!得错误!未定义书签。

如图,结合三角函数线知:错误!解得2k π≤x≤2k π+错误!未定义书签。

(k ∈Z ),∴函数的定义域为错误!未定义书签。

]三角函数的概念所涉及的内容主要有以下两方面:(1)任意角和弧度制。

理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。

(2)任意角的三角函数.掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利用三角函数线判断三角函数的符号,借助三角函数线求三角函数的定义域.1.(1)已知角α的顶点在原点,始边为x 轴的非负半轴.若角α的终边经过点P (-\r(3),y ),且sin α=错误!y (y≠0),判断角α所在的象限,并求cos α和ta n α的值;(2)若角α的终边在直线y =-3x 上,求10si n α+错误!的值.[解] (1)依题意,点P 到原点O的距离为|PO |=错误!,∴sin α=错误!未定义书签。

=错误!=错误!y .∵y≠0,∴9+3y 2=16,∴y2=错误!未定义书签。

数学必修四知识点(15篇)

数学必修四知识点(15篇)

数学必修四知识点(15篇)数学必修四知识点1平面向量戴氏航天学校老师总结加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。

戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,,使得=e1+e2 高考数学必修四学习方法养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。

虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。

学生们不得不预习课本。

我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。

在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。

同时,在课堂上安排笔记也是必要的。

在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。

这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

高考数学必修四学习技巧养成良好的学习数学习惯多质疑、勤思考、好动手、重归纳、注意应用。

学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的'脑海中。

良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

及时了解、掌握常用的数学思想和方法中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。

高中数学必修4复习教案

高中数学必修4复习教案

高中数学必修4复习教案
第一部分:向量与空间解析几何
1. 向量的概念与运算
- 向量的定义:大小和方向确定的量
- 向量的运算:加法、减法、数乘、数量积、向量积
2. 向量的数量积
- 定义:两个向量的数量积等于两个向量的模的乘积与夹角的余弦值的乘积- 性质:交换律、分配律、数量积为零的条件
3. 向量的向量积
- 定义:两个向量的向量积是一个垂直于这两个向量构成的平面的向量
- 性质:满足右手定则、交换律、分配律等
4. 空间直线和平面
- 空间直线的方程:点向式、对称式、参数式等
- 空间平面的方程:点法式、一般式等
第二部分:概率与统计
1. 概率的基本概念
- 概率的定义:某一事件发生的可能性大小
- 概率的性质:介于0和1之间、互斥事件、独立事件等
2. 随机事件与概率
- 随机事件的分类:必然事件、不可能事件、对立事件等
- 求概率的方法:古典概型、几何概型、统计概型等
3. 统计的基本概念
- 统计的定义:收集、整理、分析和解释数据的方法
- 数据的统计特征:均值、中位数、众数等
4. 统计图的作画
- 直方图、饼图、散点图等的绘制方法
- 图形的解读:分布情况、相关性等
以上是高中数学必修4的复习教案范本,希望对你的复习有所帮助。

祝学习顺利!。

高中数学必修4 第一章 三角函数 章末复习课件

高中数学必修4 第一章 三角函数 章末复习课件

x
-2
y O
2
x
[2k- 2 ,2k+ 2 ]↑在[2k-,2k]↑在(k- ,k+ ) 2 2
[-1,1]
[-1,1]
{x|xR且x≠ k+ ,(kZ)} 2
R
(kZ) (kZ) 3 在[2k,2k+]↓ (kZ)上都是 [2k+ 2 ,2k+ 2 ]↓ 增函数 (kZ) (kZ)

2 一个最大值和一个最小 值,且当x 时,y有最大值3,当
)在x (0,7 )内取到
五、章末寄语
三角函数是高中阶段学习的基本初 等函数之一,蕴含丰富的函数思想和 数形结合思想,是高考必考的重点内 容之一。其中三角函数的概念、业:P71章末复习参考题B组1-8题。
图像关于y轴对称,则的一个值是() B
A. 2
B.

8
C. 4
3 D. 8
四、考点突破
练习3
函数y A sin(x )( A 0, 0, x 6时,y有最小值 - 3. (1)求此函数解析式 . (2)求该函数单调递增区间 . (3)是否存在实数 满足不等式 m A sin( - m 2 2m 3 ) A sin( - m 2 4 )? 若存在,求出m的值(或范围),若不 存在,请说明理由 .
2
sin 商数关系: cos tan
两个基本关系式有哪些运用?
三、知识回顾
4、诱导公式
本章学习了哪些诱导公式?有何用途? • 如何记忆诱导公式?
k 诱导公式是针对角 的各三角函数的化简 2
口诀为:“奇变偶不变,符号看象限”.
三、知识回顾

高中数学必修4教案6篇

高中数学必修4教案6篇

高中数学必修4教案6篇教学目标1、把握平面对量的数量积及其几何意义;2、把握平面对量数量积的重要性质及运算律;3、了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4、把握向量垂直的条件。

教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2.4A组2、7题课后小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2.4A组2、7题高中数学必修4优秀教案篇二教学预备教学目标一、学问与技能(1)理解并把握弧度制的定义;(2)领悟弧度制定义的合理性;(3)把握并运用弧度制表示的弧长公式、扇形面积公式;(4)娴熟地进展角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系。

(6) 使学生通过弧度制的学习,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并把握弧度制的定义,领悟定义的合理性。

依据弧度制的定义推导并运用弧长公式和扇形面积公式。

以详细的实例学习角度制与弧度制的互化,能正确使用计算器。

三、情态与价值通过本节的学习,使同学们把握另一种度量角的单位制---弧度制,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

1.4.2 正弦函数、余弦函数的性质 课件(人教A版必修4)

1.4.2 正弦函数、余弦函数的性质 课件(人教A版必修4)
栏目 导引
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π +2kπ,74π+2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
变式训练
3.求函数 y=2sin(x+π4)的单调区间. 解:y=sinx 的单调增区间为[-π2+2kπ,π2+ 2kπ],k∈Z;单调减区间为[π2+2kπ,32π+2kπ], k∈Z. 由-π2+2kπ≤x+π4≤π2+2kπ,k∈Z,
栏目 导引
第一章 三角函数
由-π2+2kπ≤x-π4≤π2+2kπ,k∈Z, 得-π4+2kπ≤x≤34π+2kπ,k∈Z; 由π2+2kπ≤x-π4≤32π+2kπ,k∈Z, 得34π+2kπ≤x≤74π+2kπ,k∈Z. 所以函数 y=sin(x-π4)的单调增区间为[-π4 +2kπ,34π+2kπ](k∈Z);
∴y=sin12x 的周期是 4π.
(2)∵2sinx3-π6+2π=2sinx3-π6, 即 2sin13(x+6π)-π6
栏目 导引
=2sinx3-π6, ∴y=2sinx3-π6的周期是 6π.
(3)y=|sinx|的图象如图所示.
第一章 三角函数
∴周期T=π.
∴|φ|的最小值|φ|min=2π+π2-83π=π6.
栏目 导引
归纳总结
第一章 三角函数
栏目 导引
函 数 y= sinx (k∈z)
性质
y= cosx 第(k一∈章z) 三角函数
定义域 值域
最值及相应的 x的 集合
单调性
对称轴 对称中心

2019-2020学年高中数学三维设计人教A版浙江专版必修4讲义:复习课(三) 平面向量 Word版含答案.doc

2019-2020学年高中数学三维设计人教A版浙江专版必修4讲义:复习课(三) 平面向量 Word版含答案.doc

复习课(三) 平面向量1.题型为选择题和填空题.主要考查向量的线性运算及对向量有关概念的理解,常与向量共线和平面向量基本定理及数量积运算交汇命题.2.向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算,向量的加减法满足交换律、结合律,数乘运算满足结合律、分配律.实数运算中的去括号、移项、合并同类项等变形方向在向量的线性运算中都可以使用.[典例] (北京高考)在△ABC 中,点M ,N 满足AM =2MC ,BN =NC .若MN =x AB +y AC ,则x =________;y =________.[解析] ∵AM =2MC ,∴AM =23AC .∵BN =NC ,∴AN =12(AB +AC ),∴MN =AN -AM =12(AB +AC )-23AC=12AB -16AC . 又MN =x AB +y AC , ∴x =12,y =-16.[答案]12 -16[类题通法]向量线性运算的基本原则向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.[题组训练]1.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( ) A .13 B .-13 C .9D .-9解析:选D AB =(-8,8),AC =(3,y +6). ∵AB ∥AC , ∴-8(y +6)-24=0.∴y =-9.2.设点M 是线段BC 的中点,点A 在直线BC 外, |BC |2=16,|AB +AC |=|AB -AC |,则|AM |=( )A .8B .4C .2D .1解析:选C 由|BC |2=16,得|BC |=4. ∵|AB +AC |=|AB -AC |=|BC |=4, |AB +AC |=2|AM |, ∴|AM |=2.3.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且OP =3OA -OB2,则( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上解析:选B 由于2OP =3OA -OB , ∴2OP -2OA =OA -OB ,即2AP =BA , ∴AP =12BA ,则点P 在线段AB 的反向延长线上.1.题型既有选择题、填空题,又有解答题,主要考查数量积运算、向量的垂直等问题,常与平面几何、三角函数、解析几何等知识交汇命题.2.解决此类问题要掌握平面向量数量积的两种求法:一是根据数量积的定义,即a ·b =|a ||b |cos θ,二是利用坐标运算,即a ·b =x 1x 2+y 1y 2;同时还要掌握利用数量积求向量的夹角、求向量的长度和判断两个向量垂直的方法.[典例] (1)(福建高考)设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C.53D.32(2)(四川高考)设四边形ABCD 为平行四边形,|AB |=6,|AD |=4.若点M ,N 满足BM=3MC ,DN =2NC ,则AM ·NM =( )A .20B .15C .9D .6[解析] (1)c =a +kb =(1+k,2+k ), 又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得 k =-32.(2)如图所示,由题设知:AM =AB +BM =AB +34AD , NM =NC -MC =13AB -14AD ,∴AM ·NM =⎝⎛⎭⎫AB +34 AD ·⎝⎛⎭⎫13 AB -14 AD =13|AB |2-316|AD |2+14AB ·AD -14AB ·AD =13×36-316×16=9. [答案] (1)A (2)C [类题通法](1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义; (2)可以利用数量积求向量的模和夹角,向量要分解成题中已知向量的模和夹角进行 计算.[题组训练]1.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .以上都不对解析:选C ∵a +b +c =0,∴c =-(a +b ), ∴c 2=(a +b )2,即|c |2=|a |2+|b |2+2|a ||b |cos 〈a ,b 〉, ∴19=4+9+12cos 〈a ,b 〉, ∴cos 〈a ,b 〉=12.又∵0°≤〈a ,b 〉≤180°,∴〈a ,b 〉=60°.2.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,且AD ·AB =AD ·AC ,则AD ·AB 的值为( )A .0B .-4C .8D .4解析:选D 由AD ·AB =AD ·AC ,得AD ·(AB -AC )=0,即AD ·CB =0,所以AD ⊥CB ,即AD ⊥CB .又AB =4,∠ABC =30°,所以AD =AB sin 30°=2,∠BAD =60°,所以AD ·AB =AD ·AB ·cos ∠BAD =2×4×12=4.3.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________.解析:∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1. 答案:14.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC ·BE =1,则AB 的长为________.解析:设|AB |=x ,x >0,则AB ·AD =12x .又AC ·BE =(AD +AB )·⎝⎛⎭⎫AD -12 AB =1-12x 2+14x =1,解得x =12,即AB 的长为12. 答案:121.题目以解答题为主.主要包括向量与三角函数化简、求值与证明的结合,向量与三角函数的图象与性质的结合等几个方面.此类题目所涉及向量的知识往往是数量积的运算,所研究的问题主要是讨论三角函数的图象与性质.2.解决此类问题,首先要根据向量的运算性质将向量问题转化为三角函数问题,然后利用三角公式进行恒等变换,转化为题目中所要求的问题.[典例] (广东高考)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.[解] (1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12, ∴sin ⎝⎛⎭⎫x -π4=12. 又∵x ∈⎝⎛⎭⎫0,π2, ∴x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=π6,即x =5π12.[类题通法]在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.[题组训练]1.设a =(sin x,1),b =⎝⎛⎭⎫12,cos x ,且a ∥b ,则锐角x 为( ) A.π3 B.π4 C.π6D.π12解析:选B 因为a ∥b ,所以sin x cos x -12=0,所以sin 2x =1,又x 为锐角,所以0<2x <π, 所以2x =π2,x =π4,故选B.2.设向量a =(sin x ,cos x ),b =(cos x ,cos x ),x ∈R ,函数ƒ(x )=a ·(a +b ). (1)求函数ƒ(x )的最大值与最小正周期; (2)求使不等式ƒ(x )≥32成立的x 的取值范围.解:(1)∵ƒ(x )=a ·(a +b )=a ·a +a ·b =sin 2x +cos 2x +sin x cos x +cos 2x =1+12sin 2x +12(cos 2x +1)=32+22sin ⎝⎛⎭⎫2x +π4, ∴ƒ(x )的最大值为32+22,最小正周期T =2π2=π.(2)由(1)知ƒ(x )≥32⇔32+22sin ⎝⎛⎭⎫2x +π4≥32⇔sin ⎝⎛⎭⎫2x +π4≥0⇔2k π≤2x +π4≤2k π+π⇔k π-π8≤x ≤k π+3π8(k ∈Z ). ∴使ƒ(x )≥32成立的x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪k π-π8≤x ≤k π+3π8,k ∈Z .1.设P ,Q 是线段AB 的三等分点,若OA =a ,OB =b ,则OP +OQ =( ) A .a +b B .a -b C .2(a +b ) D.13(a +b ) 解析:选A 如图,OP =OA +AP ,OQ =OB +BQ ,∵AP =-BQ ,∴OP +OQ =OA +OB =a +b .2.已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=( ) A .0 B .1 C .2D. 5解析:选D 因为|a -b |2=a 2-2a ·b +b 2=1-0+22=5,所以|a -b |=5,故选D. 3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( ) A .(3,-6) B .(-3,6) C .(6,-3)D .(-6,3)解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以λ=-3,b =(3,-6).4.已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( ) A.π6 B.π4 C.π3D.2π3解析:选B ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =0,∴a ·b =a 2,∵|a |=1,|b |=2,∴cos 〈a ,b 〉=a ·b |a ||b |=a 2|a ||b |=22,∴向量a 与向量b 的夹角为π4,故选B.5.在△ABC 中,(BC +BA )·AC =|AC |2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形解析:选C 由(BC +BA )·AC =|AC |2,得AC ·(BC +BA -AC )=0,即AC ·(BC +BA +CA )=0,∴2AC ·BA =0,∴AC ⊥BA ,∴A =90°.故选C.6.已知平面向量a ,b ,c 满足|a |=1,|b |=2,|c |=3,且a ,b ,c 两两所成的角相等,则|a +b +c |等于( )A .6或 3B .6或 2 C. 2D .6解析:选A ∵a ,b ,c 两两所成的角相等, ∴这个角为0°或120°.当夹角为0°时,|a +b +c |=|a |+|b |+|c |=1+2+3=6,排除C ;当夹角为120°时,a ·b =|a ||b |cos 120°=1×2×⎝⎛⎭⎫-12=-1,b ·c =|b ||c |·cos 120°=2×3×⎝⎛⎭⎫-12=-3,c ·a =|c ||a |cos 120°=3×1×⎝⎛⎭⎫-12=-32, ∴|a +b +c |2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =12+22+32+2⎝⎛⎭⎫-1-3-32=3, ∴|a +b +c |= 3. ∴|a +b +c |=6或 3.7.已知向量a =(-1,3),b =(1,t ),若(a -2b )⊥a ,则|b |=________.解析:∵a =(-1,3),b =(1,t ),∴a -2b =(-3,3-2t ).∵(a -2b )⊥a ,∴(a -2b )·a =0,即(-1)×(-3)+3(3-2t )=0,即t =2,∴b =(1,2),∴|b |=12+22= 5.答案: 58.已知平面向量a 与b 的夹角等于2π3,如果|a |=2,|b |=3,那么|2a -3b |=________.解析:|2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2=4×22-12×2×3×cos 2π3+9×32=133,∴|2a -3b |=133.答案:1339.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是________.解析:由于|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则|a |2-4a ·b ≥0.设向量a 与b 的夹角为θ,则cos θ=a ·b |a ||b |≤14|a |212|a |2=12,∴θ∈⎣⎡⎦⎤π3,π. 答案:⎣⎡⎦⎤π3,π10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61, 即64-4a ·b -27=61. ∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)|a +b |=a 2+2a ·b +b 2=16+2×(-6)+9=13. 11.已知向量a =(-3,2),b =(2,1),c =(3,-1),t ∈R . (1)求|a +tb |的最小值及相应的t 值; (2)若a -tb 与c 共线,求实数t . 解:(1)∵a =(-3,2),b =(2,1),∴a +tb =(-3,2)+t (2,1)=(-3+2t,2+t ), ∴|a +tb |=(-3+2t )2+(2+t )2 =5t 2-8t +13=5⎝⎛⎭⎫t -452+495≥495=755, 当且仅当t =45时取等号,即|a +tb |的最小值为755,此时t =45.(2)∵a -tb =(-3,2)-t (2,1)=(-3-2t,2-t ), 又a -tb 与c 共线,c =(3,-1), ∴(-3-2t )×(-1)-(2-t )×3=0. 解得t =35.12.已知向量m =(1,1),向量n 与向量m 的夹角为3π4,且m ·n =-1.(1)求向量n ;(2)设向量a =(1,0),向量b =(cos x ,sin x ),其中x ∈R ,若n ·a =0,试求|n +b |的取值 范围.解:(1)令n =(x ,y ),则⎩⎪⎨⎪⎧x +y =-1,2·x 2+y 2cos 3π4=-1,∴⎩⎪⎨⎪⎧ x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.∴n =(-1,0)或n =(0,-1). (2)∵a =(1,0),n ·a =0,∴n =(0,-1).∴n +b =(cos x ,sin x -1).∴|n +b |=cos 2x +(sin x -1 )2=2-2sin x =2(1-sin x ). ∵-1≤sin x ≤1,∴0≤|n +b |≤2.(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.tan 8π3的值为( ) A.33B .-33C. 3D .- 3解析:选D tan8π3=tan ⎝⎛⎭⎫2π+2π3=tan 2π3=- 3. 2.下列函数中最值是12,周期是6π的三角函数的解析式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6D .y =12sin ⎝⎛⎭⎫x +π6 解析:选A 由题意得,A =12,2πω=6π,ω=13,故选A.3.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA +OB +OC +OD 等于 ( )A .OMB .2OMC .3OMD .4OM解析:选D 依题意知,点M 是线段AC 的中点,也是线段BD 的中点,所以OA +OC =2OM ,OB +OD =2OM ,所以OA +OC +OB +OD =4OM ,故选D.4.若点(sin α,sin 2α)在第四象限,则角α在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B ∵点(sin α,sin 2α)在第四象限,∴⎩⎪⎨⎪⎧ sin α>0,sin 2α<0,∴⎩⎪⎨⎪⎧sin α>0,2sin αcos α<0.即⎩⎪⎨⎪⎧sin α>0,cos α<0.∴α在第二象限. 5.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B ∵a =(1,2),b =(-2,m ), ∴1×m -2×(-2)=0, ∴m =-4.∴2a +3b =(2,4)+(-6,-12)=(-4,-8).6.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos(π-α)的值为( ) A.225B .-25 C.25D .-225解析:选B sin ⎝⎛⎭⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α =22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π, ∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 7.已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( ) A .30° B .60° C .120°D .150°解析:选C a ·b =-10,则(c -b )·a =c ·a -b ·a =c ·a +10=152,所以c ·a =-52,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=-525×5=-12,又0°<θ<180°,所以θ=120°.8.将函数y =sin ⎝⎛⎭⎫2x +π3的图象经怎样的平移后所得的图象关于点⎝⎛⎭⎫-π12,0成中心对称( )A .向左平移π12个单位长度B .向左平移π6个单位长度C .向右平移π12个单位长度D .向右平移π6个单位长度解析:选C 函数y =sin ⎝⎛⎭⎫2x +π3的对称中心为⎝⎛⎭⎫k π2-π6,0,其中离⎝⎛⎭⎫-π12,0最近的对称中心为⎝⎛⎭⎫-π6,0,故函数图象只需向右平移π12个单位长度即可. 9.函数ƒ(x )=A sin(ωx +φ)(A >0,ω>0,x ≥0)的部分图象如图2所示,则ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)的值等于( )A .2B .2+ 2C .2+2 2D .-2-2 2解析:选C 由图象可知,函数的振幅为2,初相为0,周期为8,则A =2,φ=0,2πω=8,从而ƒ(x )=2sin π4x .∴ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)=ƒ(1)+ƒ(2)+ƒ(3)=2sin π4+2sin π2+2sin 3π4=2+2 2.10.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )=( ) A .0 B .-35C.35D .-45解析:选B 由3a +4b +5c =0,得向量3a,4b,5c 能组成三角形,又|a |=|b |=|c |=1,所以三角形的三边长分别是3,4,5,故三角形为直角三角形,且a ⊥b ,所以a ·(b +c )=a ·c =-35. 11.如图,在四边形ABCD 中,|AB |+|BD |+|DC |=4,|AB |·|BD |+|BD |·|DC |=4,AB ·BD =BD ·DC =0,则(AB +DC )·AC 的值为( )A .4B .2C .4 2D .2 2解析:选A ∵AC =AB +BD +DC ,AB ·BD =BD ·DC =0, ∴(AB +DC )·AC=(AB +DC )·(AB +BD +DC )=AB 2+AB ·BD +AB ·DC +DC ·AB +DC ·BD +DC 2=AB 2+2AB ·DC +DC 2.∵AB ·BD =0,BD ·DC =0,∴AB ⊥BD ,DC ⊥BD ,∴AB ∥DC ,∴AB ·DC =|AB ||DC |, ∴原式=(|AB |+|DC |)2.设|AB |+|DC |=x ,则|BD |=4-x ,|BD |·x =4, ∴x 2-4x +4=0,∴x =2,∴原式=4,故选A.12.已知函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,其图象与直线y =2的交点的横坐标为x 1,x 2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4解析:选A ∵函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,∴θ=π2,∴y =2cos ωx ,排除C 、D ;y =2cos ωx ∈[-2,2],结合题意可知T =π,∴2πω=π,ω=2,排除B ,选A.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC =λAE +μAF ,其中λ,μ∈R ,则λ+μ=________.解析:设AB =a ,AD =b ,则AF =a +12b ,AE =12a +b ,AC =a +b ,代入条件得λ=μ=23,∴λ+μ=43.答案:4314.在平面直角坐标系 xOy 中,已知OA =(-1,t ),OB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:∵∠ABO =90°,∴AB ⊥OB ,∴OB ·AB =0. 又AB =OB -OA =(2,2)-(-1,t )=(3,2-t ),∴(2,2)·(3,2-t )=6+2(2-t )=0. ∴t =5. 答案:515.已知ƒ(x )=sin ⎝⎛⎭⎫x +π6,若cos α=35⎝⎛⎭⎫0<α<π2,则ƒ⎝⎛⎭⎫α+π12=________. 解析:因为cos α=35⎝⎛⎭⎫0<α<π2,所以sin α=45; ƒ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4 =22(sin α+cos α)=7210. 答案:721016.有下列四个命题:①若α,β均为第一象限角,且α>β,则sin α>sin β; ②若函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期是4π,则a =12; ③函数y =sin 2x -sin xsin x -1是奇函数;④函数y =sin ⎝⎛⎭⎫x -π2在[0,π]上是增函数. 其中正确命题的序号为________.解析:α=390°>30°=β,但sin α=sin β,所以①不正确; 函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期为T =2π|a |=4π, 所以|a |=12,a =±12,因此②不正确;③中函数定义域是⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠2k π+π2,k ∈Z ,显然不关于原点对称,所以③不正确; 由于函数y =sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,它在(0,π)上单调递增,因此④正确. 答案:④三、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a ·b ; (2)若a -b 与a 垂直,求θ.解:(1)∵a ∥b ,∴θ=0°或180°, ∴a ·b =|a ||b |cos θ=±2.(2)∵a -b 与a 垂直,∴(a -b )·a =0, 即|a |2-a ·b =1-2cos θ=0, ∴cos θ=22. 又0°≤θ≤180°,∴θ=45°.18.(本小题满分12分)已知tan α=12,求1+2sin (π-α)cos (-2π-α)sin 2(-α)-sin 2⎝⎛⎭⎫5π2-α的值.解:原式=1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α +2sin αcos αsin 2α-cos 2α=(sin α+cos α)2(sin α-cos α )(sin α+cos α ) =sin α+cos αsin α-cos α =tan α+1tan α-1,又∵tan α=12,∴原式=12+112-1=-3.19.(本小题满分12分)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈π2,π,a ·b =25,求52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2 α2.解:∵a ·b =cos 2α+sin α(2sin α-1) =cos 2α+2sin 2α-sin α =1-sin α=25,∴sin α=35.∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45, ∴sin 2α=2sin αcos α=-2425,∴52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2=52sin 2α-22(cos α-sin α)1+cos α=52×⎝⎛⎭⎫-2425-22⎝⎛⎭⎫-45-351-45=-10 2.20.(本小题满分12分)已知函数ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x . (1)当x ∈⎣⎡⎦⎤0,π2时,求ƒ(x )的值域; (2)用五点法在下图中作出y =ƒ(x )在闭区间⎣⎡⎦⎤-π6,5π6上的简图;解:ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x =2cos x ⎝⎛⎭⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x =sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3. (1)∵x ∈⎣⎡⎦⎤0,π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝⎛⎭⎫2x +π3≤1,∴当x ∈⎣⎡⎦⎤0,π2时,ƒ(x )的值域为[-3,2]. (2)由T =2π2,得T =π,列表:21.(本小题满分12分)已知f (x )=sin x +2sin π4+x2·cos ⎝⎛⎭⎫π4+x 2. (1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 解:f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2=sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4. (1)由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22, ∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4. ∴α+π4=π6,∴α=-π12.(2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35.∴sin x =2sin x 2cos x 2=2425,cos x =-1-sin 2x =-725. ∴f (x )=sin x +cos x =2425-725=1725.22.(本小题满分12分)已知函数ƒ(x )=A sin(ωx +φ)ω>0,0<φ<π2的部分图象如图所示.(1)求ƒ(x )的解析式;(2)将函数y =ƒ(x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤-π2,5π12时,求函数y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3的最值. 解:(1)由图得34T =11π6-π3=9π6=3π2,∴T =2π,∴ω=2πT=1. 又ƒ⎝⎛⎭⎫11π6=0,得A sin ⎝⎛⎭⎫11π6+φ=0, ∴11π6+φ=2k π,k ∈Z ,φ=2k π-11π6,k ∈Z. ∵0<φ<π2,∴当k =1时,φ=π6.又由ƒ(0)=2,得A sin π6=2,∴A =4,∴ƒ(x )=4sin ⎝⎛⎭⎫x +π6. (2)将ƒ(x )=4sin ⎝⎛⎭⎫x +π6的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变得到y =4sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π6个单位得到g (x )= 4sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6=4sin ⎝⎛⎭⎫2x -π6, 由2k π-π2≤2x -π6≤2k π+π2(k ∈Z)得k π-π6≤x ≤k π+π3(k ∈Z),∴g (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z). (3)y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3 =4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π12+π6-2×4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π3+π6 =4sin ⎝⎛⎭⎫x +π4-42sin ⎝⎛⎭⎫x +π2 =4⎝⎛⎭⎫sin x ·cos π4+cos x ·sin π4-42cos x =22sin x +22cos x -42cos x=22sin x -22cos x =4sin ⎝⎛⎭⎫x -π4. ∵x ∈⎣⎡⎦⎤-π2,5π12,x -π4∈⎣⎡⎦⎤-3π4,π6, ∴sin ⎝⎛⎭⎫x -π4∈⎣⎡⎦⎤-1,12, ∴函数的最小值为-4,最大值为2.。

高一数学必修四教案优秀10篇

高一数学必修四教案优秀10篇

高一数学必修四教案优秀10篇高一数学必修四教案篇一教学准备教学目标o了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·o通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力· 教学重难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·教学难点:平行向量、相等向量和共线向量的区别和联系·教学过程(一)向量的概念:我们把既有大小又有方向的量叫向量。

(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)1、数量与向量有何区别?(数量没有方向而向量有方向)2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?课后小结1、描述向量的两个指标:模和方向·2、平面向量的概念和向量的几何表示;3、向量的模、零向量、单位向量、平行向量等概念。

反思教学方式及能力培养篇二为了强调学生的主体性,把时间还给学生,有的教师上课便叫学生自己看书,教师指导性差、没有提示和具体要求,看得如何没有检查也没有反馈等等。

一些课堂上教师片面追求小组合作这一学习形式,对小组合作学习的目的、时机及过程没有进行认真设计。

这些学习方式,学生表面上获得了自主的权利,可实际上并没有做到真正的自主。

课堂教学是开展反思性学习的主渠道。

在课堂教学中要有意识的引导学生从多方位、多角度进行反思性的学习;要引导学生自然地合理地提出问题、自然地合理地解决问题、自然地合理地拓展问题,从而提高逻辑思维能力和解决问题的能力。

(人教B版)高中数学必修四全册同步ppt课件:1-2-4-1

(人教B版)高中数学必修四全册同步ppt课件:1-2-4-1

3.角α与α+(2k+1)π(k∈Z)的三角函数关系(公式三) sin[α+(2k+1)π]=-sinα ; cos[α+(2k+1)π]= -cosα tan[α+(2k+1)π]= tanα . ;
思考探究 1.诱导公式一、二各有什么作用? 提示 诱导公式一将角转化到(0,2π)上求值;诱导公式二 将角转化为正角求值. 2.怎样记忆三组诱导公式? 提示 诱导公式的记忆口诀是“函数名不变,符号看象 限”.其含义是诱导公式两边的函数名称一致,符号则是将α 看成锐角时原角所在象限的三角函数值的符号.α看成锐角, 只是公式记忆的方便,实际上α可以是任意角.
4 ∵α是第三象限角,∴cosα=-5, 4 cos(π+α)=-cosα=5.
答案 D
名师点拨 1.公式(三)可以化简为 cos[α+(2k+1)π]=cos(α+π)=-cosα, sin[α+(2k+1)π]=sin(α+π)=-sinα, tan[α+(2k+1)π]=tan(α+π)=tanα. 即cos(α+π)=-cosα, sin(α+π)=-sinα, tan(α+π)=tanα. 这样看起来更简单、易记,要求熟练记忆和应用.
π π π 1 1 =sin6+cos3-tan4=2+2-1=0.
2π 5π π (2)原式=sin6π+ 3 +cos2π+ 6 -tan2π-4 π 2π 5π =sin 3 +cos 6 -tan-4 π π π =sinπ-3+cosπ-6+tan4
典例剖析
例1
求下列各式的值.
16π 17π 29π (1)sin- 3 +cos- 4 -tan- 6 ;
19π 10π 15π (2)sin +cos +tan . 6 3 4

2019人教版高中数学必修4全套教案(80页)

2019人教版高中数学必修4全套教案(80页)

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称: ③角的分类:
B 终边
始边
O 顶点
A
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边(端点除外) 在第几象限,我们就说这个角是第几象限角. 例 1.如图⑴⑵中的角分别属于第几象限角?
人教版高中数学必修精品教学资料
1.1.1 任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念. 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合 的书写.
情感与态度目标
提高学生的推理能力; 2.培养学生应用意识.
教学重点
例 5.写出终边在 y x 上的角的集合 S,并把 S 中适合不等式-360°≤β<720°的元素β
写出来. 4.课堂小结 ①角的定义; ②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角
③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材 P2-P5; ②教材 P5 练习第 1-5 题;
(Ⅳ)
由四个图看出:
当角 的终边不在坐标轴上时,有向线段 OM x, MP y ,于是有

高中数学必修四知识点

高中数学必修四知识点

高中数学必修四知识点高中数学是学生学习的一门重要课程,主要包括必修一、必修二、必修三、必修四四个部分。

其中,必修四是学生最后一年的数学学习环节,所以必修四的知识点掌握的好不好会对高中数学的总成绩有很大的影响。

本文将介绍必修四中的常见知识点,希望能为高中学生提供一些帮助。

一、立体几何1. 常见概念:正方体、长方体、圆锥、圆柱、球等。

2. 轴测图法:三视图、剖视图、轴侧投影等。

3. 体积和表面积的计算:正方体、长方体、圆锥、圆柱、球的体积和表面积的计算。

二、函数与导数1. 常见概念:函数、定义域、值域、单调性、奇偶性、周期性等。

2. 函数的运算:加、减、乘、除等。

3. 导数的定义与计算方法:导数表示函数的变化率,可以用于求函数的极值、拐点、曲率等。

三、向量和数列1. 向量的定义和运算:加、减、数量积、点积等。

2. 向量的坐标表示法:平面直角坐标系和空间直角坐标系中的向量坐标表示法。

3. 数列的基本概念:数列是一组有规律的数,分为等差数列和等比数列两种。

四、概率统计1. 随机事件:可以发生也可以不发生的事件。

2. 事件的概率计算:概率是一个介于0和1之间的实数,可以用分段计数法、几何概型等方法来计算概率。

3. 统计:数据的集中趋势和离散程度的计算。

以上是必修四中的常见知识点,其中,立体几何部分主要是为了引导学生思维的三维空间的认识和表达;函数与导数部分可以帮助学生提高数学分析和解决实际问题的能力;向量和数列部分则可以帮助学生加强几何的直观性和数学证明的技巧;最后的概率统计部分可以帮助学生对实际生活中的数据进行分析和处理。

此外,在学习必修四的时候,还需要注意以下几点:1. 熟练掌握概念和公式:每个知识点都有很多概念和公式需要掌握,但不要只死记硬背,要理解其意义和应用。

2. 掌握解题方法:不同的知识点有不同的解题方法,在做题时要根据具体情况选择合适的方法。

3. 多练习:数学是需要多做题才能掌握好的学科,学生需要花时间做各种类型的题目。

【精编】人教A版高中数学必修四课件:二次函数的值域课件-精心整理

【精编】人教A版高中数学必修四课件:二次函数的值域课件-精心整理
二次函数的值域
一、复习旧知:二次函数f(x)=ax2+bx+c(a≠0)
定义域
R
判别式
a>0
a<0
△>0
y
o
x
y
o
x

△=0
y
o
x

Zx.xk
y
△<0
o
x
对称性
关于 x=-对2ba称
单调性
x∈(-∞, 2ba]单调递减
x∈[
b 2a
,
+∞)单调递增
y
o∈(-∞, 2ba]单调递增
x∈[
b 2a
[a,b]上的值域为[f(b),f(a)],则( ) Z.x.x. K

A. x0 b
B. x0 a
C.x0∈[a,b]
D.x0 [a,b]
3.函数y=x2+2(a-1)x+2的最小值为2,求a的值.
,
+∞)单调递减
最值
最小值为 4ac-b2
4a
最大值为 4ac-b2
4a
二、典型题探究:
例1.已知函数y=x2-2x-3,求x在下列范围内函数的值域.
(1)x∈R (2)0≤x≤3 (3)-2≤x≤0
解:配方得: y=(x-1)2-4
(1) ∵x∈R
(4)3≤x≤4
y
∴y≥-4
∴值域为[-4,+∞)
Y
3 2
Oa1
X
四、小结:
1.求函数值域就是确定函数图象最高 点和最低点的函数值
2.解决二次函数值域问题的一般步骤: 学科网 (1).配方; (2).画图象; (3).看区间; (4).确定值域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ab |a||b|
5、已知a, b都是非零向量,且a+3b与7a-5b 垂直, a-4b与7a-2b垂直,求a与b的夹角.
解 (a+3b)·(7a-5b)=0, 且 (a-4b)·(7a-2b)=0
7a2+16a·b-15b2=0, 且 7a2-30a·b+8b2=0
解得 2a·b=b2 , a2=b2
∴cosθ=
必修4第二章 《平面向量》复习课
知识网络
向量
向量有关概念 向量的定义 单位向量及零向量
向量的运算
基本应用
向量的加法 平行与垂直的充要条件
向量的减法
求长度
相等向量
实数和向量的积
求角度
平行向量和共线向量 向量的数量积
要点复习
一、向量的概念 既有大小又有方向的量叫向量。 (1)零向量: 长度为0的向量,记作0. (2)单位向量: 长度为1个单位长度的向量. (3)平行向量: 方向相同或相反的非零向量.也 叫共线向量 (4)相等向量: 长度相等且方向相同的向量. (5)相反向量:长度相等且方向相反的向量.
x2+y2=100 x=6,
x=-6,

4x+3y=0
y=-8, y=8.
所以 a=(6,-8)或(-6,8)
4、 设|a|=|b|=1 |3a-2b|=3则|3a+b|=____
解 9a2+4b2-12a·b=9
∴a·b= 1 3
又 (3a+b)2=9a2+b2+6a·b=12 ∴|3a+b|=2 3
(3)(a b)c ac b c
三、向量的运算
平面向量的数量积 a·b的性质:
①e·a=a·e=|a|cosθ
②a⊥b a·b=0
③a,b同向a·b=|a||b|反向时a·b=-|a|·|b|
a2=a·a=|a|2 ( a·a= a2 )
④cosθ=
ab |a||b|
⑤|a·b|≤|a|·|b|
二、向量的表示
向 量
几何表示: 有向线段
的 表
字母表示: a 、AB 等

坐标表示: (x,y)
(1)a xi y j (x, y)
(2)若A( x, y),则OA ( x, y)
B
A
y
a
y
A (x,y)
a
j
O
i
x
x
(3)若A(x1,y1),B(x2,y2),则 AB=(x2-x1 ,y2-y1)
5、平面向量基本定理的推论
设e1,e2是同一平面内两个不共线的向量 (1) 如果λ1e1+λ2e2=x1e1+x2e2, 则 λ1=x1, λ2=x2 . (2) 如果λ1e1+λ2e2=0 ,则 λ1=0, λ2=0 .
三、向量的运算
向量的夹角:
B
b
两个非零向量 a 和 b ,作 OA a ,
OB b ,则 AOB (0 180 )
O
a
A
叫做向量 a 和 b 的夹角.
注意: 两向量
夹角的范围: 00 ,1800
必须共起点。 B
a
ObB
0
a
A Bb O
180
A
b
O
a
A
90
a 与b 同向
a 与 b 反向 a 与 b 垂直,记作 a b
三、向量的运算
(四) 向量的数量积
四、向量垂直的判定
(1) a b a b 0
(2) a b x1x2 y1 y2 0,其中a (x1,y1),b (x2,y2). 五、向量平行的判定(共线向量的判定)
(1)a // b b a(a 0)
(2)b // a x1y2 x2 y1 0,其中a (x1,y1),b (x2,y2)
三、向量的运算
(一)向量的加法
1、作图 三角形法则: AB BC AC
平行四边形法则:
2、坐标运算:设a (x1,y1),b (x2,y2)
则 a b (x1 x2,y1 y2)
C
B
C
a +b b
Aa
B
三角形法则
O
A
平行四边形法则
三、向量的运算
3.加法运算率
(1) 交换律: a+b=b+a (2) 结合律:(a+b)+c=a+(b+c)
当 0时,a 与a 异向
当 0时, a 0 2、数乘向量的坐标运算:a (x,y)( x, y)
3、数乘向量的运算律:
a a ( )a a a (a b) a b
三、向量的运算
4、平面向量基本定理
如果 e1 ,e2 是同一个平面内的两个不共线向量,那么对
于这一平面内的任一向量 a ,有且只有一对实数1,2使 a 1 e1 2 e2
Y (5)b c a b a c
N (6)a b 0 a 0或b=0
N
(7)(a
b)2
2
a2Biblioteka b3、 |a|=10 b=(3,-4)且a∥b求a
解1 b (3, 4), b 5 a 10, a b, a 2b 2(3, 4)
即 a=(6,-8)或a=(-6,8) 解2:设a =(x,y), 则
六、向量的长度
(1) a a | a |2 , | a |
2
a
(2)设 a (x,y),则 | a | x2 y2
(3)若A(x1,y1), B(x2,y2),则
AB (x1 x2)2 (y1 y2)2
七、向量的夹角
cos a b
x1x2 y1 y2
| a || b |
x12 y12 x22 y22
1、平面向量数量积的定义: a b | a | | b | cos
2、数量积的几何意义:
等于 a 的长度 | a | 与 b 在 a 方向上的投影 | b | cos 的乘积.
3、数量积的坐标运算
B
a b x1x2 y1 y2
θ
O
4、运算律: (1) ab ba
B1
A
(2)( a)b (a b) a( b)
三、向量的运算
(二)向量的减法
1、作图 平行四边形法则: AB AD DB
2、坐标运算: 设a (x1,y1),b (x2,y2)
则 a b (x1 x2,y1 y2)
D
ab
b
Aa
B
三、向量的运算
(三)数乘向量 λ a( R)
1、 a 的大小和方向:
(1)长度: a a
(2)方向: 当 0时,a 与a 同向
巩固练习
1 、e1,e2不共线,a=e1-2e2 ,b=3e1-4e2, a 与 b是否共线。
解:∵1/3≠-2/(-4) ∴a与b不共线。
2、判断真假:
Y
(1)(a
b)2
2
a
2a
b
2
b
22
Y (2)(a b) (a b) a b
N(3)(a b)c a(b c)
N(4)a b a c b c
相关文档
最新文档