全等三角形的判定与性质

合集下载

全等三角形的判定和性质

全等三角形的判定和性质

全等三角形的判定和性质在初中数学的学习中,全等三角形是一个非常重要的概念。

它不仅在几何证明中经常出现,而且对于培养我们的逻辑思维和空间想象力也有着重要的作用。

接下来,让我们一起深入了解全等三角形的判定和性质。

一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

全等用符号“≌”表示,读作“全等于”。

比如,三角形 ABC 全等于三角形 DEF,记作“△ABC≌△DEF”。

二、全等三角形的性质1、全等三角形的对应边相等这意味着,如果△ABC ≌△DEF,那么 AB = DE,BC = EF,AC = DF。

2、全等三角形的对应角相等即∠A =∠D,∠B =∠E,∠C =∠F。

3、全等三角形的对应线段(角平分线、中线、高)相等例如,如果两个三角形全等,那么它们对应的角平分线长度相等,对应的中线长度相等,对应的高的长度也相等。

4、全等三角形的周长相等、面积相等因为全等三角形的对应边相等,所以它们的周长必然相等。

而由于对应边和对应高都相等,根据三角形面积公式(面积=底×高÷2),可得它们的面积也相等。

三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

例如,在△ABC 和△DEF 中,AB = DE,BC = EF,AC = DF,那么就可以判定△ABC ≌△DEF。

2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。

比如,在△ABC 和△DEF 中,AB = DE,∠B =∠E,BC = EF,那么△ABC ≌△DEF。

3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

假设在△ABC 和△DEF 中,∠A =∠D,AB = DE,∠B =∠E,就能够得出△ABC ≌△DEF。

4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。

全等三角形的概念、性质与判定

全等三角形的概念、性质与判定

1. 能够完全重合的两个三角形叫做全等三角形。

重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2. 全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等。

3. 全等三角形的判定(1)三边对应相等的两个三角形全等(简记为:“边边边”或“SSS”);(2)两边和它们的夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”);(3)两角和它们的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”);(4)两个角和其中一个角的对边对应相等的两个三角形全等(简记为:“角角边”或“AAS”);(5)斜边和一条直角边对应相等的两个直角三角形全等(简记为:“斜边、直角边”或“HL”)。

4. 常见的一个三角形经过变换得到另一个全等三角形。

(1)平移(2)翻折(3)旋转5. 判定两个三角形全等所需条件:(1)需要三个条件;(2)至少有一个条件为边。

注意:“边边角”不一定成立。

反例:如图,△ABC与△ABC'中,AB=AB,AC=AC',∠ABC=∠ABC',但△ABC与△ABC'不全等。

【解题方法指导】例1. (2005年安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?并任选其中一对给予证明。

分析:由AB∥DE,可以得到∠A=∠D;由AF=DC,可以得到AC=DF;由AB=DE,由“SAS”可以得到△BAF≌△EDC,及△BAC≌△EDF由此又可以得到BF=EC,BC=EF,FC又是公共边,可证△BFC≌△EFC证明:在△BAF与△EDC中,∵AB∥DE∴∠A=∠D又AB=DE,AF=DC∴△BAF≌△EDC(SAS)评析:判断两个三角形全等,设法找齐三个条件,至少有一个条件是边,因此先找出给出的条件(如AB=DE,AF=DC);然后发展条件,继续得到有关信息(如由AB∥DE⇒∠A=∠D;由AF=DC⇒AC=DF)例2. 如图,B是AC上一点,DA⊥AC,EC⊥AC,DB=BE。

全等三角形(知识点讲解)

全等三角形(知识点讲解)

全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。

在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。

一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。

简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。

二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。

当两个三角形的三条边分别相等时,它们就是全等的。

2. SAS判定法:即边-角-边判定法。

当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。

3. ASA判定法:即角-边-角判定法。

当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。

4. AAS判定法:即角-角-边判定法。

当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。

需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。

三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。

即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。

2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。

3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。

4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。

通过以上性质,我们可以进行全等三角形的各种推理和计算。

四、全等三角形的应用全等三角形在几何学的应用非常广泛。

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

4.2-4.5全等三角形的性质与判定判定(教案)

4.2-4.5全等三角形的性质与判定判定(教案)
在学生小组讨论环节,我发现有些学生过于依赖教材,缺乏独立思考。针对这一问题,我将在下一节课中引导学生从不同角度思考问题,培养他们的创新意识和解决问题的能力。
同时,我也注意到,本节课的实践活动和例题较为单一,未能涵盖所有判定方法。在今后的教学中,我将增加更多类型的实践题目,让学生全面掌握全等三角形的判定方法。
举例:通过多媒体教学、实物演示等方法,帮助学生建立空间观念,提高抽象思维能力。
(4)几何直观与逻辑推理能力:学生在解题过程中,需要运用几何直观和逻辑推理能力。
举例:引导学生通过观察、分析、归纳,培养几何直观;在讲解过程中,强调逻辑推理的重要性,提高学生推理能力。
四、教学流程
(一)导入新课(用时5分钟)
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法(SSS、SAS、ASA、AAS、HL)和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示全等三角形的基本原理。
五、教学反思
在今天这节课中,我们探讨了全等三角形的性质与判定。整体来看,学生的学习效果还是不错的,但我也发现了一些需要改进的地方。
首先,关于全等三角形的定义和性质,大多数学生能够理解并掌握。但在实际应用时,部分学生仍然会混淆对应角和对应边。在接下来的教学中,我需要加强对这一知识点的巩固,通过更多实际例题和练习,帮助学生更好地运用全等三角形的性质。
1.加强对全等三角形性质的理解和应用;
2.提高学生选择合适判定方法的能力;
3.培养学生的口头表达和独立思考能力;

全等三角形知识点归纳

全等三角形知识点归纳

全等三角形知识点归纳
全等三角形是指两个三角形的所有对应的边和角都相等。

以下是
关于全等三角形的一些重要知识点:
1. 全等三角形的定义:两个三角形的所有对应的边和角都相等时,这两个三角形就是全等三角形。

2. 全等三角形的性质:
a. 边-边-边(SSS)判定准则:如果两个三角形的三条边相等,那
么它们是全等的。

b. 边-角-边(SAS)判定准则:如果两个三角形的一条边和夹角的
对边的长度和角度相等,那么它们是全等的。

c. 角-边-角(ASA)判定准则:如果两个三角形的两个角和他们夹
着的边的长度相等,那么它们是全等的。

d. 角-角-角(AAA)判定准则:两个三角形的三个角度分别相等,
不能确定它们是全等的。

3. 全等三角形的性质与应用:
a. 全等三角形的对应部分相等:如果两个三角形全等,则它们的
对应边长相等,对应角度相等,对应的高、中线、中位线等也相等。

b. 全等三角形的性质可用于解决实际问题,例如测量无法直接测
量的长度或角度,或在建造、设计等领域中的应用。

4. 全等三角形的判定准则:在判定两个三角形是否全等时,根
据给定的信息应选择适合的判定准则进行判断,如SSS、SAS、ASA等。

以上是关于全等三角形的一些基本知识点和性质总结。

要确定两
个三角形全等,一般需要给出足够的边长和角度信息,利用相应的判
定准则进行判断。

全等三角形的性质

全等三角形的性质

全等三角形的性质三角形是几何学中的基本图形之一,而全等三角形则是其中一个特殊的类型。

全等三角形是指具有相等边长和相等角度的两个三角形。

在几何学中,全等三角形有一些特殊的性质,对于解决几何问题和推导几何定理非常重要。

本文将探讨全等三角形的性质及其应用。

一、全等三角形的定义和判定方法全等三角形可以通过边边边、边角边、角边角三种判定方法来判断。

边边边(SSS)判定法要求两个三角形的对应边长相等;边角边(SAS)判定法要求两个三角形的一对对应边长相等,以及夹角也相等;角边角(ASA)判定法要求两个三角形的一对对应角度相等,以及两对对应边长相等。

如果满足以上判定方法之一,那么可以确定两个三角形是全等的。

二、全等三角形的性质1. 对应边和对应角的性质在全等三角形中,对应边和对应角具有相等的性质。

例如,若三角形ABC和三角形DEF是全等三角形,那么对应的边AB和DE、BC和EF、AC和DF对应相等。

同样,对于对应的角度∠A、∠B、∠C和∠D、∠E、∠F也相等。

2. 全等三角形的相等性质全等三角形不仅有对应边和对应角相等的性质,还有其他一些相等性质。

这些性质在求解几何问题时非常有用。

以下是常见的全等三角形性质:a. 全等三角形的周长相等:周长是三角形边长之和,如果两个三角形是全等的,则它们的周长也相等。

b. 全等三角形的面积相等:三角形的面积是通过底边和高的乘积计算得到的,如果两个三角形的高都相等且底边也相等,那么它们的面积也相等。

c. 全等三角形的高相等:如果两个全等三角形的某一边为底边,而另一边为高,那么它们的高相等。

d. 全等三角形的角平分线相等:在全等三角形中,对应角的平分线相等。

e. 全等三角形的中位线相等:在全等三角形中,对应边的中位线相等。

三、全等三角形的应用全等三角形在几何学中应用广泛,具有许多实际应用。

以下是几个典型的应用:1. 测量无法直接测量的距离:通过构建两个全等的三角形,并利用已知的边长和角度,可以测量无法直接测量的距离。

全等三角形的性质及判定

全等三角形的性质及判定

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS)(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA)(3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS)(4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS)专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是()A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形例题2:如图1,折叠长方形,使顶点与边上的点重合,如果AD=7,DM=5,∠DAM=39°,则=____,=____,= .【仿练1】如图2,已知,,,那么与相等的角是.【仿练2】如图3,,则AB=,∠E=_.若∠BAE=120°,∠BAD=40°,则∠BAC=.、图4EDCBA图2 图3MDN BC图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF∵CM 是△的中线∴_____________()∴____________________ ∴__________() 或 ∵AC=EF∴____________________ ∴__________() AB=AB ()FECACMBA在△ABC和△DEFxx∵∴△ABC≌△DEF()例1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?例2.如图,C是AB的中点,AD=CE,CD=BE.求证△ACD≌△CBE.例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠CB.AB=ADC.AD∥BCD.AB∥CD2、如图所示,在△ABCxx,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSSB.SASC.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

全等三角形的性质及判定(习题及答案)

全等三角形的性质及判定(习题及答案)

全等三角形的性质及判定(习题及答案)全等三角形的性质及判定全等三角形是指具有相等的对应边长和对应角度的两个三角形。

在几何学中,全等三角形有着重要的性质和判定方法。

本文将介绍全等三角形的性质,并提供一些习题及答案,以帮助读者更好地理解和掌握这一概念。

一、全等三角形的性质1. 对应边长相等性质:如果两个三角形的三边分别相等,则它们是全等三角形。

即若∆ABC≌∆DEF,则AB = DE, BC = EF, AC = DF。

2. 对应角度相等性质:如果两个三角形的三个角度分别相等,则它们是全等三角形。

即若∆ABC≌∆DEF,则∠A = ∠D, ∠B = ∠E, ∠C = ∠F。

3. 边角相等性质:若两个三角形的两边和夹角分别相等,则它们是全等三角形。

即若∆ABC≌∆DEF,则AB = DE, ∠A = ∠D, ∠C = ∠F。

4. 斜边和一角相等性质:若两个三角形的一边与一角分别相等,则它们是全等三角形。

即若∆ABC≌∆DEF,则AC = DF, ∠A = ∠D。

二、全等三角形的判定方法1. SSS判定法:如果两个三角形的三边分别相等,则它们是全等三角形。

即若AB = DE, BC = EF, AC = DF,则∆ABC≌∆DEF。

2. SAS判定法:如果两个三角形的一边和夹角,以及另一边分别相等,则它们是全等三角形。

即若AB = DE, ∠A = ∠D, AC = DF,则∆ABC≌∆DEF。

3. ASA判定法:如果两个三角形的两个夹角和一边分别相等,则它们是全等三角形。

即若∠A = ∠D, ∠B = ∠E, AC = DF,则∆ABC≌∆DEF。

4. RHS判定法:如果两个直角三角形的斜边和一个直角边分别相等,则它们是全等三角形。

即若AC = DF, ∠A = ∠D,则∆ABC≌∆DEF。

三、习题及答案1. 已知∆ABC和∆DEF,且AB = DE, ∠A = ∠D, BC = EF。

证明∠B = ∠E, AC = DF。

全等三角形的性质

全等三角形的性质

全等三角形的性质全等三角形是指具有完全相等的形状和大小的三角形。

在几何学中,全等三角形具有一些独特的性质和特征。

本文将探讨全等三角形的性质,包括定义、判定条件以及相关的定理和应用。

一、定义全等三角形定义为具有完全相等的形状和大小的三角形。

换句话说,如果两个三角形的三条边分别相等,则这两个三角形就是全等三角形。

全等三角形可以通过一系列变换操作来叠加在一起,如平移、旋转和翻转。

二、判定条件为了判断两个三角形是否全等,需要满足以下条件之一:1. SSS判定法:两个三角形的三条边相互对应相等。

2. SAS判定法:两个三角形的两条边和夹角相对应相等。

3. ASA判定法:两个三角形的一边和两个夹角相互对应相等。

4. RHS判定法:两个直角三角形的斜边和一个直角边相互对应相等。

三、全等三角形的性质全等三角形具有以下性质:1. 三个内角完全相等:两个全等三角形的对应内角相等,即三个内角相互对应相等。

2. 三个内角和相等:两个全等三角形的内角和分别相等。

3. 对应的边相等:两个全等三角形的对应边分别相等。

4. 周长相等:两个全等三角形的周长相等。

5. 面积相等:两个全等三角形的面积相等。

四、全等三角形的相关定理全等三角形的性质使得它们具有一些重要的应用和相关定理,如下所示:1. 位于全等三角形相等边上的等角一定相等。

2. 位于全等三角形等角上的边上的角平分线相等。

3. 全等三角形的重心、外心和内心重合。

4. 如果两个三角形的某一边与两个相对角分别相等,则这两个三角形全等。

5. 全等三角形之间的比较定理,包括大小关系和边长比例关系。

五、应用全等三角形在几何学和实际生活中具有广泛的应用,例如:1. 测量和导航:通过观测两个全等三角形的边长和角度,可以计算出距离和方向。

2. 建筑和工程:使用全等三角形的定理来设计、计算和建造各种结构和设备。

3. 图像处理:利用全等三角形的性质来进行图像变换和形状匹配。

4. 运动轨迹:通过观察全等三角形的形状和大小变化,可以描述物体的运动轨迹。

全等三角形的性质与判定复习课

全等三角形的性质与判定复习课

6.如图,AB⊥CD于B,CF交AB于E,
CE=AD,BE=BD,求证:CF⊥AD.
证明:∵AB⊥CD,
∴∠ABC=∠ABD=90°,
在 Rt△BEC 和 Rt△BDA 中, ∴∠C=∠A,
CE=AD,
∵∠A+∠D=90°,
BE=BD, ∴Rt△BEC≌Rt△BDA(HL),
∴∠C+∠D=90°, ∴∠CFD=180°-90° =90°,
∴AD⊥BC.
考点二 全等三角形的判定
3 已知,∠ABC=∠DCB,∠ACB= ∠DBC,
求证:△ABC≌△DCB.
【分析】运用“两角和它们的夹边对应相等两个三角形
全等”进行判定.
A
证明: 在△ABC和△DCB中,
∠ABC=∠DCB(已知),
BC=CB(公共边),
∠ACB=∠DBC(已知),B
∴△ABC≌△DCB(ASA ).
全等三角形的性质与判定
一、全等三角形的性质性质:
全等三角形的对应边相等,对应角相等. 应用格式:
如图:∵△ABC≌△DEF, B ∴AB=DE,BC=EF,AC=DF
全(等三角形的对应边相等 ), ∠A=∠D,∠B=∠E,∠C=∠F (全等三角形的对应角相等 )E .
A C
D
F
二、三角形全等的判定方法
证明:∵BE⊥AC,CD⊥AB,∴∠AEB=∠ADC=90°,在
∠AEB=∠ADC,
△ABE 和 △ACD 中 , ∠A=∠A,
∴ △ ABE ≌ △
AB=AC,
ACD(AAS),∴AD=AE,∠B=∠C,∴AB-AD=AC-AE,
即 BD = CE , 在 △BDO 和 △CEO 中 ,
∠BOD=∠COE(对顶角相等),

(完整版)全等三角形的性质及判定

(完整版)全等三角形的性质及判定

全等三角形第 1 节全等三角形的性质和判断【知识梳理】1、全等图形:能够完整重合的两个图形就是全等图形.2、全等三角形的观点与表示:能够完整重合的两个三角形叫作全等三角形.能够互相重合的极点、边、角分别叫作对应极点、对应边、对应角.全等符号为“≌”.3、全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角均分线相等,面积相等.4、全等三角形的判断方法:(1)边角边定理 ( SAS) :两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理 ( ASA) :两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理 ( SSS) :三边对应相等的两个三角形全等.(4)角角边定理 ( AAS ) :两个角和此中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理 ( HL ) :斜边和一条直角边对应相等的两个直角三角形全等.【诊疗自测】1、假如ABC≌Δ DBC,则 AB的对应边是_____,AC的对应边是_____,∠DBC的对应角是_____,∠ DCB的对应角是_____.2、如图,已知△ABE≌△ DCE, AE=2 cm, BE=1.5 cm,∠ A=25°,∠ B=48°;那么 DE=_____cm,EC= _____cm,∠C= _____°;∠D= _____°.C 和点E,点 B 和点D 分别是对应点,则另一3、假如△ABC和△ DEF这两个三角形全等,点组对应点是,对应边是,对应角是,表示这两个三角形全等的式子是.【考点打破】种类一:全等形例 1、由同一张底片冲刷出来的两张五寸照片的图案 _____全等图案,而由同一张底片冲刷出来的五寸照片和七寸照片 ____全等图形。

(填“是”或许“不是”)种类二:全三角形的定义和性质例 2、如图,点 E,F 在线段 BC 上,△ ABF 与△ DCE 全等,点 A 与点 D ,点 B 与点 C 是对应极点, AF 与 DE 交于点 M ,则∠ DCE= ()A .∠B B.∠ A C.∠ EMF D .∠ AFB例 3、如图,△ ABE 和△ ADC 是△ ABC 分别沿着AB 、AC 边翻折 180°形成的,若∠ BAC :∠ABC :∠ BCA=28 : 5: 3,则∠α的度数为()A . 90° B. 85° C. 80° D. 75°种类三:全等三角形的判断(SSS)例 4、用直尺和圆规作一个角等于己知角的作图印迹如下图,则作图的依照是()A . SSS B. SAS C. ASA D. AAS例 5、已知:如图 2- 1,△ RPQ 中, RP= RQ, M 为 PQ 的中点.求证: RM 均分∠ PRQ.剖析:要证 RM 均分∠ PRQ,即∠ PRM= ______,只需证 ______≌ ______证明:∵M 为 PQ 的中点(已知),∴______= ______在△ ______和△ ______中,RP RQ(已知 ),PM ______,______ ______(),∴______≌ ______().∴∠ PRM = ______( ______).即 RM.例 6.已知:如图, AD =BC. AC= BD .试证明:∠ CAD =∠ DBC .种类四:全等三角形的判断(SAS)例 7. 已知:如图3-1,AB、CD订交于O点,AO=CO,OD=OB.求证:∠ D=∠ B.剖析:要证∠ D=∠ B,只需证 ______≌ ______证明:在△ AOD 与△ COB 中,AO CO ( ),______ ______( ),OD ______( ),∴△ AOD ≌△ ______ ().∴∠D=∠ B ( ______).例8、小红家有一个小口瓶(如下图),她很想知道它的内径是多少?可是尺子不可以伸在里边直接测,于是她想了想,唉!有方法了.她拿来了两根长度同样的细木条,而且把两根长木条的中点固定在一同,木条能够绕中点转动,这样只需量出AB 的长,就能够知道玻璃瓶的内径是多少,你知道这是为何吗?请说明原因.(木条的厚度不计)例 9、如图,将两个一大、一小的等腰直角三角尺拼接∠ABC= ∠ EBD=90 °),连结 AE 、 CD,试确立 AE 结论.(A 、B、D 三点共线,AB=CB ,EB=DB ,与 CD 的地点与数目关系,并证明你的种类五:全等三角形的判断(AAS和 ASA)例 10、某同学把一块三角形的玻璃打坏成了 3 块,现要到玻璃店去配一块完整同样的玻璃,同学小明知道只需带③ 去就行了,你知道此中的道理是()A . SAS B. SSA C. ASA D. HL例 11.如图,已知△ ABC的六个元素,则以下甲、乙、丙三个三角形中和△ABC 全等的图形是例 12、已知:如图,PM = PN,∠ M=∠ N.求证: AM= BN.剖析:∵ PM= PN,∴要证AM=BN,只需证PA= ______,只需证 ______≌ ______.证明:在△ ______与△ ______中,______ ______( ),______ ______( ),______ ______( ),∴△ ______≌△ ______ ().∴ PA= ______ ().∵PM=PN (),∴PM - ______= PN- ______,即 AM = ______.例 13、已知: AB ⊥ AE ,AD ⊥ AC ,∠ E=∠ B, DE=CB .求证: AD=AC ..例 14、如图,在△ ABC中,∠ ACB=90°, AC=BC,BE⊥CE于点 E. AD⊥CE于点D.求证:△ DEC≌△ CDA.种类六:全等三角形的判断(HL)例 15. 已知在△ ABC和△ DEF中 , ∠ A=∠D=90°, 则以下条件中不可以判断△ABC和△DEF全等的是 ( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠ F,BC=EF例 16、如下图,在△ ABC中,∠ C=90°, DE⊥AB 于点 D, BD=BC,若 AC=6,则AE+DE=_____BDAE C【易错优选】1、如下图,△ABC ≌△ DEC,则不可以获得的结论是()A . AB=DEB .∠ A= ∠ D C. BC=CD D .∠ ACD= ∠ BCE2、如图,梯形 ABCD中,AD∥BC,点 M是 AD的中点,且 MB=MC,若 AD=4,AB=6,BC=8,则梯形 ABCD的周长为()A.22 B.24 C.26 D. 283、如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度 DF 相等,则∠ ABC+∠ DFE=__________度【精髓提炼】判断三角形全等的基本思路:找夹角SAS已知两边 SS找直角HL找另一边SSS边为角的对边→找随意一角→AAS找这条边上的另一角→ASA已知一边一角 SA边就是角的一条边找这条边上的对角→AAS找该角的另一边→ SAS找两角的夹边ASA已知两角 AA找随意一边AAS备注:找寻对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边 ( 或最大角 ) 是对应边 ( 或对应角 ) ,一对最短边 ( 或最小角 ) 是对应边 ( 或对应角 ) .要想正确地表示两个三角形全等,找出对应的元素是重点.全等三角形的图形概括起来有以下几种典型形式:⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型【本节训练】训练【 1】如图, E 为线段 BC 上一点, AB ⊥BC,△ ABE ≌△ ECD ,判断 AE 与 DE 的关系,并证明你的结论.训练【 2】如图,点A、F、C、D在同向来线上,点 B 和点 E 分别在直线 AD的双侧,且 AB=DE,∠ A=∠ D,AF= DC.求证: BC∥EF.训练【 3】已知图中的两个三角形全等,则∠ 1 等于度.【训练 4】.如图,∠ BAC= ∠DAE ,∠ ABD= ∠ ACE ,AB=AC .求证: BD=CE .基础稳固一、选择题1、以下说法:①有两条直角边对应相等的两个直角三角形全等;②有斜边对应相等的两个等腰直角三角形全等;③有一条直角边和斜边上的高对应相等的两个直角三角形全等;④有一条边相等的两个等腰直角三角形全等.此中正确的有().A、1 个B、2 个C、3 个D、4 个DE=BC,以D、 E 为两个极点作地点不一样的三2、如图,△ABC是不等边三角形,角形,使所作三角形与△ABC全等,这样的三角形最多能够画出[ ] .A.2 个B.4 个C.6 个D.8 个3、以下说法正确的选项是()A、全等三角形是指周长和面积都同样的三角形;B、全等三角形的周长和面积都同样;C、全等三角形是指形状同样的两个三角形;D、全等三角形的边都相等4、以下两个三角形中,必定全等的是()A.两个等边三角形B.有一个角是 40°,腰相等的两个等腰三角形C.有一条边相等,有一个内角相等的两个等腰三角形D.有一个角是 100°,底相等的两个等腰三角形5、如图,△ ABC与△ BDE都是等边三角形, AB<BD,若△ ABC不动,将△ BDE绕点CD的大小关系为( )B 旋转,则在旋转过程中,AE与A.AE=CD B . AE>CD C.AE<CD D.没法确立ECA B D6、如图,已知 AB=AD,那么增添以下一个条件后,仍没法判断△ABC≌△ ADC的是()A.CB=CD B .∠ BAC=∠DAC C.∠ BCA=∠ DCA D.∠ B=∠D=90°二、填空题6、如图,在△ ABC 中,AD⊥ BC 于 D,BE⊥ AC 于 E,AD 与 BE 订交于点F,若 BF=AC,则∠ ABC=_______7、如图,等腰直角三角形ABC的直角极点 B 在直线 PQ上,AD⊥ PQ于 D,CE⊥PQ 于 E,且 AD=2cm,DB=4cm,则梯形 ADEC的面积是 _____ .8、(着手操作实验题)如下图是小明自制对顶角的“小仪器”表示图:(1)将直角三角板 ABC的 AC边延伸且使 AC固定;(2)另一个三角板 CDE?的直角极点与前一个三角板直角极点重合;(3)延伸 DC,∠PCD与∠ ACF就是一组对顶角,已知∠ 1=30°,∠ ACF为多少?三、简答题9、如图,已知AB=AC ,∠ 1=∠ 2,AD=AE ,求证:∠ C=∠ B.10、如图,在△ ABC中, AD是∠ BAC的均分线, DE、DF分别是△ ABD和△ ACD的高线,求证: AD⊥EF。

小学数学知识归纳三角形的全等判定及性质

小学数学知识归纳三角形的全等判定及性质

小学数学知识归纳三角形的全等判定及性质三角形是数学中一个重要的几何形状,研究三角形的性质和判断三角形是否全等是小学数学的基础内容之一。

本文将对小学数学中三角形的全等判定及性质进行归纳总结,并提供相应的例题进行说明。

一、三角形全等的判定方法1. SSS全等法则SSS全等法则是指三角形的三边分别相等时,可以判断两个三角形全等。

具体来说,如果三角形ABC和三角形DEF的边长满足AB=DE,BC=EF,AC=DF,那么可以得出三角形ABC≌DEF。

例题1:已知在三角形ABC和三角形DEF中,AB=DE,BC=EF,AC=DF,证明三角形ABC≌DEF。

解:根据SSS全等法则,可以得出三角形ABC≌DEF。

2. SAS全等法则SAS全等法则是指两个三角形的边边角相对应相等时,可以判断两个三角形全等。

具体来说,如果三角形ABC和三角形DEF满足AB=DE,∠ABC=∠DEF,BC=EF,那么可以得出三角形ABC≌DEF。

例题2:已知在三角形ABC和三角形DEF中,AB=DE,∠ABC=∠DEF,BC=EF,证明三角形ABC≌DEF。

解:根据SAS全等法则,可以得出三角形ABC≌DEF。

3. ASA全等法则ASA全等法则是指两个三角形的角边角相对应相等时,可以判断两个三角形全等。

具体来说,如果三角形ABC和三角形DEF满足∠ABC=∠DEF,AC=DF,∠BAC=∠EDF,那么可以得出三角形ABC≌DEF。

例题3:已知在三角形ABC和三角形DEF中,∠ABC=∠DEF,AC=DF,∠BAC=∠EDF,证明三角形ABC≌DEF。

解:根据ASA全等法则,可以得出三角形ABC≌DEF。

二、全等三角形的性质1. 全等三角形的对应边和对应角相等如果两个三角形全等,那么它们的对应边和对应角相等。

例如,如果三角形ABC≌DEF,那么AB=DE,BC=EF,AC=DF,并且∠ABC=∠DEF,∠BCA=∠EFD,∠CAB=∠FDE。

专题06 全等三角形的性质与判定篇(解析版)

专题06 全等三角形的性质与判定篇(解析版)

专题06 全等三角形的判定与性质1. 三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。

2. 三角形的内角和定理:三角形的三个内角之和等于180°。

3. 三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。

大于它不相邻的任意一个内角。

4. 全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。

5. 全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。

②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。

③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。

④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。

⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。

全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。

在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。

1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC是等腰三角形,∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS可得△ABC≌△ADC;(2)由(1)△ABC ≌△ADC ,得BC =CD =3,S △ABC =S △ADC ,求出S △ABC =AB •BC =6,即可得四边形ABCD 的面积是12.【解答】(1)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵CB ⊥AB ,CD ⊥AD ,∴∠B =90°=∠D ,在△ABC 和△ADC 中,,∴△ABC ≌△ADC (AAS );(2)解:由(1)知:△ABC ≌△ADC ,∴BC =CD =3,S △ABC =S △ADC ,∴S △ABC =AB •BC =×4×3=6,∴S △ADC =6,∴S 四边形ABCD =S △ABC +S △ADC =12,答:四边形ABCD 的面积是12.5.如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .【分析】利用平行线的性质得∠EDC =∠B ,再利用ASA 证明△CDE ≌△ABC ,可得结论.【解答】证明:∵DE ∥AB ,∴∠EDC =∠B ,在△CDE 和△ABC 中,,∴△CDE ≌△ABC (ASA ),∴DE =BC .6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC 于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ =∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号) (只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是 (填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC DEF.求证:AB∥DE.【分析】(1)根据SSS即可证明△ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED=45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC=5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,=BC•DE=×5×4=10,∴S△BCD∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B=90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S=123,则BC= ,BF= .△ABC【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S=12,△ABC∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=PA+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠PAF=60°,∴△AFP是等边三角形,∴PF=PA,∴PB=BF+PF=PC+PA;(3)PC=PA+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠PAM=60°,∴△AMP是等边三角形,∴PM=PA,∴PC=PM+CM=PA+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG.。

全等三角形及基本判定定理

全等三角形及基本判定定理

全等三角形【常识要点】1.全等图形界说:两个可以或许重合的图形称为全等图形. 2.全等图形的性质:(1)全等图形的外形和大小都雷同,对应边相等,对应角相等 (2)全等图形的面积相等3.全等三角形:两个可以或许完全重合的三角形称为全等三角形 (1)暗示办法:两个三角形全等用符号“≌”来暗示,读作“全等于” 如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆(2)符号“≌”的寄义:“∽”暗示外形雷同,“=”暗示大小相等,合起来就是外形雷同,大小也相等,这就是全等.(3)两个全等三角形重应时,互相重合的极点叫做对应极点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,平日把暗示对应极点的字母写在对应的地位上.全等三角形的剖断1:SSS三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”.如图,在ABC ∆和DEF ∆中⎪⎩⎪⎨⎧===DF AC EF BC DE ABABC ∆∴≌DEF ∆【典范例题】AD例1.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点,︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求ACD D CAD ∠∠∠,,的度数及ACD ∆的面积.例2.如图,ABC ∆≌DEF ∆,cm CE cm BC A 5,9,50==︒=∠,求EDF ∠的度数及CF 的长.例3.如图,已知:AB=AD,AC=AE,BC=DE,例4.如图AB=DE,BC=EF,AD=CF,(1)ABC ∆≌DEF ∆ (2)AB//DE,BC//EF 例5.如图,在,90︒=∠∆C ABC 中 D.E 的点,且BE=BC,DE=DC,求证:(1)AB DE ⊥;(2)BD 等分ABC ∠全等三角形剖断定理2或“SAS ”. 几何暗示如图,在ABC ∆和DEF ∆中ABCEF BC E B DEAB ∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SAS DEF ∆【典范例题】【例1】 已知:如图,AB=AC,AD=AE,求证:BE=CD.【例2】 如图,已知:点D.E 在BC 上,且BD=CE,AD=AE,∠1=∠2,由此你能得出哪些结论?给出证实.【例3】 如图已知:AE=AF,AB=AC,∠DCADBECA=60°,∠B=24°,求∠BOE 的度数.【例4】 如图,B,C,D 在统一条直线上,△ABC,△ADE 是等边三角形,求证:①CE=AC+DC; ②∠ECD=60°. 【例5】如图,已知△ABC.△BDEBD +CD=AD.全等三角形剖断定理3:ASAASA 正义:有两角和它们的夹边对应相等的两个三角形全等.如图,在ABC ∆与DEF ∆中ASA 正义推论(AAS 正义):两个三角形全等.如图,在ABC ∆与DEF ∆中 【典范例题】 【例1】已知如图,DE AB DE AB D A //,,=∠=∠,求证:BC=EF【例2】如图,AB=AC,C B ∠=∠,求证:AD=AE【例3】已知如图,43,21∠=∠∠=∠,点P 在上,可以得出PC=PD 吗?试证实之.【例4】如图,321∠=∠=∠,AC=AE,求证:1.已知,如图,CD AF D A =∠=∠∠=∠,21,,2.如图,已知CAD BAE ADE AED ∠=∠∠=∠,, DABC ED3.已知如图,AB=AD,CAE BAD D B ∠=∠∠=∠,,求证:AC=AE4.已知如图,在ABC∆中,AD 等分AD BAC ∠,ABD ACD ∆≅∆5.已知如图,ABD DCA DBC ACB ,,∠=∠∠=∠求写出完全的进程)6.如图ABC △中,∠B =∠C,D,E,F 上,且BD=CE,∠DEF=∠B 求证:ED=EFEACBA DECBF。

全等三角形知识点归纳

全等三角形知识点归纳

全等三角形知识点归纳全等三角形是初中数学中的重要内容之一。

本文将对三角形全等的概念、判定条件以及性质进行归纳总结,以帮助读者更好地理解和应用全等三角形知识。

一、全等三角形的概念全等三角形是指具有相等对应边长和对应角度的两个三角形。

形象地说,即两个三角形的所有对应部分完全重合。

二、全等三角形的判定条件1. SSS 判定法当两个三角形的三条边分别相等时,即两组对应边长完全一致,那么这两个三角形是全等的。

例如,已知△ABC 和△PQR ,若 AB = PQ,BC = QR,CA = RP,则△ABC ≌△PQR.2. SAS 判定法当两个三角形的两对边长相等,并且这两组对应边之间的夹角也相等时,即一个三角形的两边和夹角分别等于另一个三角形的两边和夹角,那么这两个三角形是全等的。

例如,已知△ABC 和△PQR ,若 AB = PQ,BC = QR,∠B = ∠Q,则△ABC ≌△PQR.3. ASA 判定法当两个三角形的两对夹角相等,并且这两组对应边之间的夹角也相等时,即一个三角形的两夹角和边分别等于另一个三角形的两夹角和边,那么这两个三角形是全等的。

例如,已知△ABC 和△PQR ,若∠A = ∠P,∠B = ∠Q,BC = QR,则△ABC ≌△PQR.4. RHS 判定法当两个直角三角形的斜边和一个锐角(或钝角)的任意一条直角边相等时,即一个直角三角形的斜边和一个锐角(或钝角)的任意一条直角边分别等于另一个直角三角形的斜边和同样的一个锐角(或钝角)的直角边,那么这两个直角三角形是全等的。

例如,已知△ABC 和△PQR ,若 AB = PQ,∠B = ∠Q,AC = PR,则△ABC ≌△PQR.三、全等三角形的性质1. 全等三角形的对应边和对应角分别相等。

2. 全等三角形的对应高相等。

3. 全等三角形的对应中线相等。

4. 全等三角形的对应角平分线相等。

5. 全等三角形的对应边上的中垂线和角平分线相等。

第1讲 全等三角形的性质与判定

第1讲  全等三角形的性质与判定

B ACDEF 第1讲 全等三角形地性质与判定考点·方式·破译1.能够完全重合地两个三角形叫全等三角形.全等三角形地形状和大小完全相同。

2.全等三角形性质:①全等三角形对应边相等,对应角相等。

②全等三角形对应高,角平分线,中线相等。

③全等三角形对应周长相等,面积相等。

3.全等三角形判定方式有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等地判定方式,除上述方式外,还有HL 法。

4.证明两个三角形全等地关键,就是证明两个三角形满足判定方式中地三个款件,具体思路步骤是先找出两个三角形中相等地边或角,再由选定地判定方式,确定还需要证明哪些相等地边或角,再设法对它们进行证明。

5..证明两个三角形全等,由款件,有时能直接进行证明,有时要证地两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用地方式有:平移,翻折,旋转,等倍延长线中线,截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( )A .5对B .4对C .3对D .2对【解法指导】从题设题设款件出发,首先找到比较明显地一对全等三角形,并由此推出结论作为下面有用地款件,从而推出第二对,第三对全等三角形.这种逐步推进地方式常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF =⎧⎨=⎩∴Rt △EFB ≌Rt △EFC (HL )故选C .【变式题组】01.(天津)下面判断中错误地是( )A .有两角和一边对应相等地两个三角形全等B .有两边和一角对应相等地两个三角形全等C .有两边和其中一边上地中线对应相等地两个三角形全等AFCEDBD .有一边对应相等地两个等边三角形全等02.(丽水)已知命题:如图,点A ,D ,B ,E 在同一款直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,假如是真命题,请给出证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在解题分析中注意引导学生掌握数形 结合思想的应用。
二、设问与解析
设问:证明线段相等的常用方法有哪些呢? 解题指导:(1)、数学思想:数形结合的数学思想;(2)、解题方法:主要是构造全 等三角形,正确的利用等边三角形中隐含的条件证明全等是解决本题的关键。 解析:由△ABD和△AEC均为等边三角形,可得AB=AD,AE=AC,∠BAD=∠EAC=60°,继而 可利用SAS证得△BAE≌△DAC,则可证得BE=CD。 证明:在等边△ABD中,有AD=AB,且∠DAB=60°; 在等边△AEC中,有AE=AC,且∠EAC=60°。 ∴∠DAB=∠EAC 由图可知, ∠DAC=∠DAB+∠BAC ∠BAE=∠EAC+∠BAC ∴∠DAC=∠BAE 在△DAC和△BAE中: AD=AB,∠DAC=∠BAE,AE=AC ∴△DAC≌△BAE(SAS) ∴BE=DC
在数学教学中,要引导学生探索数学问题的解题方法,做一题,通一类,会 一片。让学生走出题海,教会学生思考、善于思考,提高学生分析问题解决问题 的能力。
《全等三角形的判定与性质》 -----------复习课教学设计
南安市新侨中学◆许元星
教学过程
反思与小结
背景与立意
拓展与延伸
设问与解析 试题的评价
例题再现
如图1,△ABD,△AEC都是等边三 角形。求证:BE=DC。
图1
一、背景与立意
本题主要考查学生对全等三角形的判 定与性质和等边三角形的性质的理解与掌 握,难度不大,是一道基础题。本题旨在 了解学生对基础知识和基本技能的掌握情 况,重在培养学生的观察、分析、概括、 归纳及语言表达能力。
三、试题的评价
本题的解答重在考察学生的基础知识和基本技能, 对大部分学生来说不是难题,这样既激发了学生的学习 兴趣,也增强了学生的学习信心,同时又培养了学生推 理论证能力和语言表达能力,最后,在老师的补充和启 发下,完善本题的证明。当然我们还可以对这类问题进 一步拓展。
四、拓展与延伸
1.如图2,若△ABD,△AEC都是等腰直角三角形,∠ADB=∠AEC=90°, 那么 BE=DC吗? 2.如图3,若四边形ABFD、四边形ACGE都是正方形,(1)那么 BE=DC还 成立吗?(2)BE⊥DC. 3.如图4,若点A在线段BC上,△ABD,△AEC都是等边三角形,那么 BE=DC吗? 4.在3题的条件下,若AD与BE交于F点,AE与CD交于G点,如图5. (1)AF=AG吗? (2)△AFG是等边三角形吗?为什么?
五、作业:
• 拓展题 第3、4题
பைடு நூலகம்
六、反思与小结
通过拓展,启发学生进一步思考,引导学生自主探索、合作交流,获得广泛 的数学经验,拓变之前,先让学生分析其特点,渗透解题思想,既通过全等证线 段相等的理念,运用数形结合的思想,通过不断的变化,建立新与旧、已知与未 知的联系,有助于学生关注问题的不同方面,让他们觉得有新的理念出现,学会 从不同的角度看问题,从而加深对题意的理解,让学生在充分的交流与合作中加 深对问题的认识。学习数学不仅是为了掌握一些基本的知识、基本技能,更重要 的是可以提高学生的发散思维能力、迁移思想能力和思维的灵活性。
相关文档
最新文档