八年级上册12章第一节全等三角形
人教版数学八年级上册第12章 全等三角形3(25页)

练一练
找一找下列全等图形的对应元素,分组回答:
A
D
A
C
DC
A B
D
O
B
CB
ED
B AE C
(1)
(2)
(3)
(4)
归纳总结
全等三角形找对应边、对应角方法
1.有公共边的,公共边是对应边; 2.有公共角的,公共角是对应角; 3.有对顶角的,对顶角是对应角; 4.长边对应长边,短边对应短边,大角对应大角,小角 对应小角.
2.如图,△ABC≌ △ADE,若∠D=∠B,
∠C= ∠AED,则∠DAE= ∠BAC ;
∠DAB= ∠EAC .
D
A
B
E
C
3.如图,△ADE≌△BDE,若△ADC的周长为12,AC的长为5,
则CB的长为( B ) A.8 B.7 C.6
D.5
4.如图,△ABD≌△EBC,AB=3 cm,
BC=5 cm,求DE的长.
D A
B
CE
F △ABC≌△FDE
几何语言
D A
B
CE
F
∵△ABC≌△DEF, ∴点 A 和 点 D ,点 B 和点 E ,点 C 和_点__F_是对应顶点;
∠A 和 ∠D ,∠B 和∠E ,∠C 和 ∠F 是对应角; AB 和 DE ,BC 和 EF ,AC 和 DF 是对应边.
类比操作 1 ,说一说操作 2、操作 3 的对应顶点、对应边、 对应角.
B
各图中的两个三角形全等吗?
A C
操作 1
操作 2
操作 3
D
D
A
A
A
人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案) (97)

人教版_部编版八年级数学上册第十二章第一节全等三角形练习题(含答案)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,点B的对应点为B′.(1)证明:AE=CF;(2)若AD=12,DC=18,求DF的长.【答案】(1)见解析;(2)5.【解析】【分析】(1)根据折叠的性质以及矩形的性质,运用ASA即可判定△ADF△△AB′E;(2)先设FA=FC=x,则DF=DC-FC=18-x,根据Rt△ADF中,AD2+DF2=AF2,即可得出方程122+(18-x)2=x2,解得x=13.所在DF=18-13=5.【详解】(1)证明:△四边形ABCD是矩形,△△D=△C=△B′=90°,AD=CB=AB′,△△DAF+△EAF=90°,△B′AE+△EAF=90°,△△DAF=△B′AE,在△ADF和△AB′E中,'''D B AD AB DAF B AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ADF △△AB ′E (ASA ). ∴AE=CF ;(2)解:由折叠性质得FA=FC , 设FA=FC=x ,则DF=DC-FC=18-x , 在Rt △ADF 中,AD 2+DF 2=AF 2, △122+(18-x )2=x 2. 解得x=13.∴DF=18-13=5 【点睛】本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以的运用,解决问题的关键是:设相关线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.62.如图,已知AD 是ABC ∆的一条中线,延长AD 至E ,使得DE AD =,连接BE . 如果5,7AB AC ==,试求AD 的取值范围.【答案】AD 的取值范围是16AD <<.【解析】 【分析】先证明ADC EDB ∆∆≌得到7BE AC ==,然后根据三角形的三边关系得到AE 的取值范围,从而计算出AD 的取值范围。
12.1全等三角形 说课稿-2021-2022学年数学人教版八年级上册

《全等三角形》说课稿珲春市第四中学林芳羽尊敬的各位评委,各位老师,大家好!今天我说的课是人教版八年级上册第12章《全等三角形》的第一课时,下面我将从一下几个方面对本节课的教学设计进行说明。
一、教材分析全等三角形是八年级上册人教版数学第十二章第一节,属于图形与几何大单元。
本章是在研究了线段、角、相交线、平行线、三角形的有关知识后进行研究的。
研究对象从一个图形“升级”为两个图形,主要关注的是两个图形之间的一种特殊关系,即全等关系。
同时全等三角形也可以看作是由一个三角形经过不同的位置变化得到的另一个图形,是后面我们要研究的图形变换中全等变换的基础。
也为相似的学习提供思路。
通过对本章的学习,可以丰富和加深学生对已学图形的认识。
本节课是“全等三角形”的开篇,是三角形全等条件以及全等三角形判定的基础,也是后面将学习的等腰三角形、四边形、圆的基础。
2022新课表要求二、教学目标1.知识目标(1)知道什么是全等形,全等三角形以及全等三角形对应的元素;(2)能用符号正确地表示两个三角形全等;(3)能熟练地找出两个全等三角形的对应顶点、对应边、对应角;(4)理解全等三角形的性质2.学生经历观察、操作、探究、归纳、总结等过程,获取全等三角形的性质和寻找对应边与对应角的方法。
3.通过感受全等三角形的对应美,激发学生热爱科学,勇于探索的精神。
通过动手操作,构建数学知识,体验获取知识的过程,发展学生概括总结能力、几何直观、符号意识等核心素养。
重点:全等三角形的有关概念和性质难点:全等三角形的对应元素的确定三、学情分析①学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,初步具有对简单图形的分析和辨识能力。
②学生通过对平行线,三角形等知识的学习,已经具备了一定的推理,合作与交流的能力,但严密的逻辑思维能力和规范语言表达上仍有欠缺。
③八年级学生有比较强的自我表现和展示的意识,对新鲜事物有一定的好奇心,在情感上也具有学习新知识的强烈欲望。
人教版数学八年级上册第12章第1课-12.1全等三角形(教案)

反思今天的整个教学过程,我认为在以下几个方面可以做出改进:
1.对于全等三角形的判定方法,我可以设计更多的例题和练习,让学生们在课堂上即时巩固所学知识,提高解题技巧。
-应用全等三角形的性质与判定方法解决实际问题:培养学生将理论知识应用于实际问题的能力。
-举例:设计一些实际问题的题目,如测量不规则图形的面积,要求学生运用全等三角形的性质与判定方法来解决。
2.教学难点
-理解全等三角形的判定方法的应用:学生在理解判定方法的基础上,需要能够将方法灵活应用于不同的问题场景中。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的定义和四种判定方法(SSS、SAS、ASA、AAS)这两个重点。对于难点部分,我会通过具体图形和实际例题来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用纸片制作全等三角形,并验证它们之间的全等关系。
3.判定全等三角形的实际应用:通过实际案例分析,运用全等三角形的判定方法解决实际问题。
4.全等三角形的性质与判定方法的综合运用:结合实际题目,让学生学会运用全等三角形的性质和判定方法进行解题。
5.全等三角形在实际生活中的应用:举例说明全等三角形在建筑、艺术、工程等领域中的应用,增强学生的实际应用意识。
在实践活动中,分组讨论和实验操作让学生们积极参与,主动探索全等三角形的性质。我发现这种互动式的学习方式能够有效提高学生的几何直观和动手能力。然而,我也观察到部分小组在讨论过程中,学生们对于如何将理论知识应用到实际问题中的思考还不够深入,这可能需要我在引导讨论时,提供更多具体的案例和问题来激发他们的思考。
人教版八年级数学上册第12章第1节全等三角形公开课一等奖优秀课件

到的,求∠BAE,∠CAF和∠BME的度数.
F
A
B
C
A
N
M E
C ∠A+∠B=∠C+∠D
B D
课堂小结
1.能够重合的两个图形叫做全等形 。
其中:互相重合的顶点叫做_对_应_顶点 互相重合的边叫做_对_应_边_ 互相重合的角叫做_对_应_角
2. 能够重合的两个三角形 叫做全等三角形。
3.“全等”用符号“ ≌ ”来表示,读作全等于
E
A
B
F
C
类型二:利用全等证明线段的关系
例2:如图,已知ΔABD≌ΔAEC, ∠B和∠E, 是对应角,AB与AE是对应边,试说明:BC=DE.
A
B
CD
E
典型例题
例3:如图,已知ΔABC≌ΔFED, BC=ED, 求 证:AB∥EF
E
AD B
F C
拓展提升
如图,已知ΔAEF是ΔABC绕A点顺时针旋转55°得
记作△ABC≌ △DEF,读作△ABC全等于△DEF
记两个三角形全等时,通常把表示对应 注意 顶点的字母写在对应的位置上。
用全等符号表示下列全等三角形,指出
对应的顶点,对应边,对应角.
全等三
角形的
A
M
S 性质
C
O
O
B
发现:全D等三角形的对应N 边相等; T
全等三角形的对应角相等.
全等三角形性质的几何语言
下列各组图形的形状 与大小有什么特点?
点此播放动画视频
下列各组图形的形状 与大小有什么特点?
思考:他们能完全重合吗?
下列各组图形的形状 与大小有什么特点?
思考:他们能完全重合吗?
人教版八年级数学上册第12章《12.1 全等三角形》

边
AC=DE
边
BC=EF
角 ∠A=∠D
角 ∠B=∠F
角 ∠ACB=∠DEF
第十二章 全等三角形
1.如果∆ABC≌∆ADC,AB=AD,∠B=70°,BC=3cm,那么 ∠D=_7_0_°_,DC=__3__cm 2.如果 ∆ABC≌∆DEF,且∆ABC的周长为100cm,A、B分 别与D 、E对应, AB=30cm,DF=25cm,则BC的长为( A ) A.45cm B.55cm C.30cm D. 25cm
第十二章 全等三角形
3.如图,矩形ABCD沿AM折叠,使D点落在BC上的N点处,如
果AD=7cm,DM=5cm,∠DAM=39°,则AN=__7_cm,NM=__5_cm,
∠NAB=_1_2_°_.
A
7cm
D
B
N
5 cm M
C
第十二章 全等三角形
4.如图,已知△ AOC ≌ △BOD,求证:AC∥BD.
1、全等三角形对应角所对的边是对应边; 全等三角形对应边所对的角是对应角.
2、有公共边的,公共边是对应边; 有公共角的,公共角是对应角.
3、在全等三角形中相等的边是对应边; 相等的角是对应角.
你能否直接从记作∆ABC≌∆DEF中判断出所有的对应顶 点、对应边和对应角?
第十二章 全等三角形 ≌
边
AB=Байду номын сангаасF
【解析】∵ △AOC ≌△BOD, ∴∠A= ∠B.(全等三角形的对应角相等) ∴ AC∥BD.(内错角相等,两直线平行)
第十二章 全等三角形
5.仔细观察,图中的全等三角共有几对?各是哪些?
【解析】共有四对:分别是 △ACM ≌△BDM; △EDN ≌△FCN; △AEM ≌△BFM; △DFM ≌△CEM.
2024年人教版八年级数学上册教案及教学反思第12章12.1 全等三角形

第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。
数学人教版八年级上册第12章第一节全等三角形

数学人教版八年级上册第12章第一节全等三角形----b327c178-6eb3-11ec-929d-7cb59b590d7d12.1全等三角形课程内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识和技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法通过研究全等三角形的性质,我们可以正确地找到全等三角形中相应的边和角。
3.情感、态度和价值观养观察、操作、分析能力,体会全等三角形的应用价值.重点难点1.要点:能够确定全等三角形的对应元素。
2.难点:掌握寻找相应边缘和角度的方法3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个被相应角点夹住的边就是相应的边;(2)与相应边相对的角度就是相应的角度,?两条对应边之间的角度就是对应的角度教具准备四张同样大小的纸、尺子和剪刀。
教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、实际操作和主题介绍1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.在学生的操作过程中,教师应要求学生提前在纸上画三角形,然后固定重叠的两张纸,注意整个过程程要细心.【互动交流】从切割的多边形和三角形可以看出,它们具有相同的形状和大小,可以完全重合图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】随意在纸板上剪一个三角形。
让学生拿一个三角形,做以下动作:平移和旋转折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示每个切割三角形,并相互指出每个三角形的顶点和三个点角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重准备好了吗?(2)它们的顶点、边和角的特征是什么?【沟通与讨论】通过同一个表格的沟通,实验得出以下结论:1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合意味着三条边相等,三个内角相等,?相应的顶点位于相应的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当堂练习
1.如图,已知△ABC≌△DEF, 请指出图中对应边和对应角.
A
B
C
D
F
E
边 AC= DF
边 AB= DE
边
BC= EF
角 ∠A= ∠D
角 ∠B= ∠E
角
∠C= ∠F
归纳 两个全等三角形的长边与长边,短边与短边分别是对 应边,大角与大角,小角与小角分别是对应角.
3.如图,已知△ABC≌△BAD 请指出图中的对应边和对应角.
一 全等三角形的定义及性质
全等形定义: 能够完全重合的两个图形叫做全等形.
判一判:观察下面两组图形,它们是不是全等图形?为什么?
(1) (2)
如果两个图形全等,它们的形状和大小一定都相等 !
全等三角形的定义: 能够完全重合的两个三角形叫__全__等__三__角__形_____.
把两个全等的三角形重合到一起,重合的顶点叫做 (对应顶点), 重合的边叫做 (对应边), 重合的角叫做(对应角),
性质: 全等三角形的对应边相等,对应角相等.
A
D
B
CE
F
应用格式 :
如图:∵△ABC≌△DEF,
∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等), ∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等).
一个三角形经过平移、旋转、翻折后所得到的三角形与原三
角形全等.
A
D
A
B
C
边 AB= BA 边 AC= BD 边 BC= AD
角 ∠BAC= ∠ABD 角 ∠ABC= ∠BAD 角 ∠C= ∠D
归纳 有公共边的,公共边一定是对应边.
4. 如图,已知△ABC≌△AED, 请指出图中对应边和对应角.
A
D
C
B
E
边 AB= AE 边 AC= AD 边 BC= ED
角 ∠A= ∠A 角 ∠B= ∠E 角 ∠ACB= ∠ADE
M
E
D
A
B
FC
N
图1 A
B
C
图2
A
B
C
图3 D
B
E
D
C 图4
2.如图,已知△ABC≌△ADE 请指出图中对应边和对应角.
E
D
2
A
1
B
C
边 AB= AD 边 AC= AE 边 BC= DE
角 ∠BA∠C=1=∠∠D2AE
角 ∠B= ∠D 角 ∠C= ∠E
归纳 有对顶角的,两个对顶角一定为一对对应角.
归纳 有公共角的,公共角一定是对应角.
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
其中点A和 点D,点B和 点E ,点C和_ 点F _是对应顶点.
AB和 DE ,BC和 EF ,AC和 DF 是对应边.
∠A和 ∠D ,∠B和 ∠E , ∠C和 ∠F 是对应角.
A
D
B
CE
F
A
D
B
பைடு நூலகம்
CE
F
全等的表示方法:
“全等”用符号“≌”表示,读作“全等于”.
如上图:△ABC全等于△DEF记作:△ABC ≌△DEF (注意:书写时应把对应顶点写在相对应的位置上). ∆ABC≌ ∆DEF,对应边大小有什么关系?对应角呢?
第十二章 全等三角形
12.1 全等三角形
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.理解全等形的概念,并能识别图形的全等. 2.理解全等三角形及其有关概念. 3.掌握全等三角形的性质,并能进行简单的推理 和计算.
问题:观察下面各组平移前后所得到的图形,说说变换前后图形 的特点.
讲授新课