第十八届北京市大学生数学竞赛本科甲乙组试

合集下载

第十八届(2021年)丙组试题

第十八届(2021年)丙组试题

第十八届(2021年)北京市大学生数学竞赛本科丙组试题(有改动)班级: 学号: 姓名:一、填空题(每题4分,共40分)1.设当1x →时,111m m x x --+++是1x -的等价无穷小,则m =_____________2.设(1)(2)()()(1)(2)()x x x n f x x x x n ---=+++,则(1)f '=________________ 13.()(1,0)1,lim[1(1)]________.n n y f x y f n→∞=-++=已知曲线在点处的切线在轴上的截距为则4.[0,1]()0,(0),(1),(1)(0)_________________f x f f f f ''''>-设在上则从小到大的顺序是115.lim _________________.k n n n k n k e →∞=+=∑ π22π22sin 6.d _______________.(1cos )x x x x -+=+⎰17.()sin()1()0__________________.y x xy y y x x y x-===-设函数由方程所确定,则在曲线上对应于的点处的切线方程为08.(,)(0,1)(,1)123()d (,)10___________.d |x z f x y f x y x y o y f x y x x ρρ==+=+++====设函数在点的某邻域内可微,且,其中所确定的函数在处的导数22229.(,),(,)(,)d d ,(,)______________.x y a f x y f x y y xf x y x y f x y +≤=+=⎰⎰设为连续函数且则10.直线111011x y z ---==绕z 轴旋转的旋转曲面方程为_________________________. (8)(,)||(,),(,)(0,0).(,)(0,0)(0,0)0.f x y x y x y x y f x y φφφ=-=二、分设二元函数其中在点的一个邻域内连续试证明函数在点处可微的充分必要条件是π20(8)I x =⎰三、分求积分2,0(8)()().1,0x x x f x f x x x ⎧>=⎨+≤⎩四、分设,求的极值(8)()[1,1],(1,1),()(1)(1)(0).62f x f f f f ξξ-∈-'''--'=-五、分设在区间上有三阶连续导数证明存在实数使得222π4(8)0,(sin )1.2πx x x --<<≤+-六、分证明:当时七、(10分)在第一卦限中过定点(,,)a b c 的平面,使之与三个坐标面所围成的四面体体积最小。

北师版高中数学必修第一册课后习题 第7章 概率 第1课时 古典概型的概率计算公式及其应用

北师版高中数学必修第一册课后习题 第7章 概率 第1课时 古典概型的概率计算公式及其应用

07§2古典概型2.1 古典概型的概率计算公式 2.2 古典概型的应用第1课时古典概型的概率计算公式及其应用A级必备知识基础练1.[探究点一](多选题)下列试验是古典概型的是( )A.从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小B.同时掷两枚质地均匀的骰子,点数和为6的概率C.近三天中有一天降雨的概率D.10人站成一排,其中甲、乙相邻的概率2.[探究点二]从一副52张的扑克牌中任抽一张,“抽到K或Q”的概率是( )A.126B.113C.326D.2133.[探究点二]有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A.45B.35C.25D.154.[探究点三](多选题)以下对各事件发生的概率判断正确的是( )A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B.在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115 C.将一个质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是536D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是125.[探究点二]甲、乙、丙三人踢毽子,从甲开始,每个人都可以随意的踢给另外两人,则经过四次后又回到甲的概率为.6.[探究点二]现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为.7.[探究点二]若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.8.[探究点三]某学校有初级教师21人,中级教师14人,高级教师7人,现采用分层随机抽样的方法从这些教师中抽取6人对绩效工资情况进行调查.(1)求从初级教师、中级教师、高级教师中分别抽取的人数;(2)若从分层随机抽样抽取的6名教师中随机抽取2名教师做进一步数据分析,求抽取的2名教师均为初级教师的概率.9.[探究点三]某教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙三支队伍参加决赛.(1)求决赛中甲、乙两支队伍恰好排在前两位的概率;(2)求决赛中甲、乙两支队伍出场顺序相邻的概率.B级关键能力提升练10.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.91011.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为( )A.58B.18C.38D.1412.设m,n分别是先后抛掷一枚骰子得到的点数,则在先后两次出现的点数中有5的条件下,方程x2+mx+n=0有实根的概率为.13.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.14.某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的中位数;(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层随机抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.C级学科素养创新练15.在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有4个小球,小球上分别写有0,1,2,3的数字,小球除数字外其他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.①若取出的两个小球上数字之积大于4,则奖励飞机玩具一个;②若取出的两个小球上数字之积在区间[1,4]上,则奖励汽车玩具一个;③若取出的两个小球上数字之积小于1,则奖励饮料一瓶.(1)求每对亲子获得飞机玩具的概率;(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.16.从某商场随机抽取了2 000件商品,按商品价格(单位:元)进行统计,所得频率分布直方图如图所示.记价格在[800,1 000),[1 000,1 200),[1 200,1 400]对应的小矩形的面积分别为S1,S2,S3,且S1=3S2=6S3.(1)按分层随机抽样从价格在[200,400),[1 200,1 400]的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率.(2)在节日期间,该商场制定了两种不同的促销方案方案一:全场商品打八折;方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)参考答案 §2 古典概型2.1 古典概型的概率计算公式2.2 古典概型的应用第1课时 古典概型的概率计算公式及其应用1.ABD ABD 是古典概型,因为符合古典概型的定义和特点.C 不是古典概型,因为不符合等可能性,降雨受多方面因素影响.2.D 设“抽到K 或Q”为事件A,∵基本事件总数为52,事件A 包含的基本事件数为8,∴P(A)=852=213.3.C 从5支彩笔中任取2支不同颜色的彩笔,这个试验的样本空间Ω={(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫)},共10个样本点.用事件A 表示“取出的2支彩笔中含有红色彩笔”,则A={(红,黄),(红,蓝),(红,绿),(红,紫)},共4个样本点.故所求概率P(A)=410=25.4.BCD 对于A,如图所示:由图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P(甲获胜)=13,P(乙获胜)=13,故玩一局甲不输的概率是23,故A 错误;对于B,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有(2,3),(2,5),(2,7),(2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7) ,(5,11),(5,13),(7,11),(7,13),(11,15),共有15种样本点,其中和等于14的只有(3,11)一组,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B正确;对于C,基本事件总共有6×6=36(种)情况,其中点数之和是6的有(1,5),(2,4),(3,3),(4,2),(5,1),共5种情况,则所求概率是536,故C正确;对于D,记三件正品为A1,A2,A3,一件次品为B,任取两件产品的所有可能为A1A2,A1A3,A1B,A2A3,A2B,A3B,共6种,其中两件都是正品的有A1A2,A1A3,A2A3,共3种,则所求概率为P=36=12,故D正确.故选BCD.5.38利用树状图进行列举,如图所示.共包含16个样本点.又事件“经过四次后又回到甲”包含6个样本点,故所求概率为616=38.6.15“从5根竹竿中一次随机抽取2根竹竿”的所有可能结果为(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9),共10个样本点,又“它们的长度恰好相差0.3m”包括(2.5,2.8),(2.6,2.9),共2个样本点,由古典概型的概率计算公式可得所求事件的概率为210=15.7.23甲、乙、丙三人随机地站成一排有(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲),共6种样本点,其中甲、乙相邻有(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种样本点. 所以甲、乙两人相邻而站的概率为46=23.8.解(1)由题知应从初级教师中抽取6×2121+14+7=3人,从中级教师中抽取6×1421+14+7=2人,从高级教师中抽取6×721+14+7=1人.(2)记3名初级教师分别记为A 1,A 2,A 3,2名中级教师分别记为A 4,A 5,高级教师记为A 6,则从中抽取2名教师的样本空间为Ω={(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6)},共含有15个样本点.设事件B 表示“抽取的2名教师均为初级教师”,则B={(A 1,A 2),(A 1,A 3),(A 2,A 3)},共含有3个样本点,所以P(B)=315=15.9.解根据题意可知其样本空间Ω={(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲)},共6个样本点.(1)设“甲、乙两支队伍恰好排在前两位”为事件A,事件A包含的样本点有(甲,乙,丙),(乙,甲,丙),共2个,所以P(A)=26=13.所以甲、乙两支队伍恰好排在前两位的概率为13.(2)设“甲、乙两支队伍出场顺序相邻”为事件B,事件B包含的样本点有(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4个,所以P(B)=46=23.所以甲、乙两支队伍出场顺序相邻的概率为23.10.D 由题知,样本空间Ω={甲乙丙,甲乙丁,甲乙戊,甲丙丁,甲丙戊,甲丁戊,乙丙丁,乙丙戊,乙丁戊,丙丁戊},共包含10个样本点.设事件A表示“甲或乙被录用”,则A={甲乙丙,甲乙丁,甲乙戊,甲丙丁,甲丙戊,甲丁戊,乙丙丁,乙丙戊,乙丁戊},共包含9个样本点,则P(A)=910.11.A 甲、乙所猜数字的情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3, 3),(3,4),(4,1),(4,2),(4,3),(4,4)共16种情况,其中满足|a-b|≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10种情况,故所求概率为1016=58.12.711由题可得,样本空间Ω={(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(5,1),(5,2),(5,3),(5,4) ,(5,6)},共11个样本点,其中使方程x2+mx+n=0有实根的样本点有(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共7个,故所求事件的概率为P=711.13.解用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以样本点总数n=16.(1)记“xy≤3”为事件A,则事件A包含的样本点共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C.则事件B包含的样本点共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=616=38.事件C包含的样本点共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P(C)=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.14.解(1)由(0.005+0.010+0.030+0.025+0.010+-70)×0.03=0.5,解得m=75.(3)可得满意度评分值在[60,70)内有20人,抽得样本为2人,记为a1,a2,满意度评分值在[70,80)内有30人,抽得样本为3人,记为b1,b2,b3,样本空间Ω={(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1 ,b3),(b2,b3)},共10个样本点,记“5人中随机抽取2人作主题发言,抽出的2人恰在同一组”为事件A,A包含的样本点个数为4,利用古典概型概率公式可知P(A)=0.4.15.解样本空间Ω={(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1) ,(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)},共16个样本点.(1)记“获得飞机玩具”为事件A,则A={(2,3),(3,2),(3,3)},共3个样本点.故每对亲子获得飞机玩具的概率为P(A)=316.(2)记“获得汽车玩具”为事件B,记“获得饮料”为事件C.则B={(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)},共6个样本点.所以P(B)=616=38.则C={(0,0),(0,1),(0,2),(0,3),(1,0),(2,0),(3,0)},共7.所以P(B)<P(C),即每对亲子获得饮料的概率大于个样本点,所以P(C)=716获得汽车玩具的概率.16.解(1)根据频率和为1的性质知0.00050×200+0.00100×200+0.00125×200+S1+S2+S3=1,又S1=3S2=6S3,得到S1=0.30,S2=0.10,S3=0.05.价格在[200,400)的频率为0.00050×200=0.10,价格在[1200,1400]的频率为S3=0.05.按分层随机抽样的方法从价格在[200,400),[1200,1400]的商品中抽取6件,则在[200,400)上抽取4件,记为a1,a2,a3,a4,在[1200,1400]上抽取2件,记为b1,b2.现从中抽出2件,所有可能情况为a1a2,a1a3,a1a4,a1b1,a1b2,a2a3,a2a4,a2b1,a2b2,a3a4,a3b1,a3b2,a4b1,a4b2,b1b2,共计15个样本点,其中符合题意的有a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,a4b1,a4b2.共8个样本点,因此抽到的两件商品价格差超过800元的概率为P=815 (2)对于方案一,优惠的价钱的平均值为(300×0.10+500×0.20+700×0.25+900×0.30+1100×0.10+1300×0.05)×20%=150;对于方案二,优惠的价钱的平均值为30×0.10+50×0.20+140×0.25+160×0.30+280×0.10+320×0.05=140.因为150>140,所以选择方案一更好.。

第12~18届北京市大学生数学竞赛全部试题解答

第12~18届北京市大学生数学竞赛全部试题解答

∫ f (tx)dt = f ( x) + x sin x, f (0) = 0 且有一阶导数,则当 x ≠ 0 时, f ′( x) =
0
.
10 . 设 C 是 从 球 面 x + y + z = a 上 任 一 点 到 球 面 x + y + z = b 上 任 一 点 的 任 一 条 光 滑 曲 线
1 1 1 n ,则 lim < xn < (n + 2) sin xk = ∑ n →∞ n + 1 n +1 n +1 k =1
x →0
.
8.设 f ( x ) 在点 x = 0 可导,且 lim
1
cos x − 1 = 1 ,则 f ′(0) = e f ( x) − 1
.
9. 设 f ( x ) 满足
∑ na ( x − 3)
n=0 n
n
的收敛区间为
.
5. tdt e
0 t
∫ ∫
1 ( )2 x
dx =
.
6.设 y = 1, y = e x , y = 2e x , y = e x + 程为 .
1
π
都是某二阶常系数线性微分方程的解,则此二阶常系数线性微分方
7.设数列 { xn } 满足: n sin
五、从已知 ABC 的内部的点 P 向三边作三条垂线,求使此三条垂线长的乘积为最大的点 P 的位置. 六、求
(−1) n n3 n x 的收敛区间及和函数. ∑ n = 0 ( n + 1)!

七、设 f ( x ) 是 [0,1] 上的连续函数,证明: e f ( x ) dx e − f ( y ) dy ≥ 1 .

竞在北邮

竞在北邮

竞在北邮 编委会成员:廖宝华王聪欧云杰参与作者(按出现顺序)吴云峰,田玉龙,韦穆华,李岩,赵艳,刘翰林,杨坚,张迅,张园,路尧,黄兰,王飞,聂蔚青,孙羽经,陈琳颖,陈阳,秦浩浩,申静,杨新星,杨桅,石明洋,许奥林,杨铭,王聪,葛雨明,汪启扉,李声韧,黄海斌,扬阳特别感谢林金桐校长,蔺志青副院长,王生卫副书记,贺祖国老师,辅导员廉洁。

2007年8月序刚迈进大学校门的那一刻,我们心中充满迷茫,庆幸的是,在人生道路上有几个贵人相助,是他们让我们的整个大学生活有了质的变化。

回忆大学三年,我们几个人都参加了好几种竞赛,收获颇多。

曾经有个师兄跟我们说过,大学里面最能锻炼人的就是大作业和竞赛。

的确,竞赛是一种技能的体现,它以自身的魅力影响着我们的人生。

很多大一大二的同学对竞赛有一种恐惧感,认为竞赛是牛人做的事。

其实不是的,牛人也是人,也是从普通人成长起来的,牛人与非牛人的区别仅仅在于牛人去做了,而非牛人不敢跨出尝试的第一步。

我们希望通过本书能给学弟学妹们一定的启发,更重要是能激发同学们对竞赛的勇气。

当你认真走完那条竞赛之路后你会发现,其实竞赛很简单,并且会发现自己的大学生活变得更加丰富,更加精彩!所以,希望大家相信自己!勇敢的去拼搏,你会收获很多,你的生活会丰富很多。

这本书由很多参加各项竞赛的兄弟姐妹完成,参与这本书的同学都用心地体验了各种竞赛,并取得了一定的成绩。

最重要的是他们留给学弟学妹们的话都是真心的!各兄弟姐妹成果累累,出于某些原因,他们经验分享后面只是列出他们部分成绩,并不完整,希望大家不要见怪。

本书的完成,要感谢各位提供经验之谈的作者,感谢他们为北邮竞赛所做的贡献,是他们让北邮竞赛更成熟,更辉煌;感谢各个竞赛的指导老师,感谢他们为北邮竞赛提供的热心指导;同时感谢刘翰林、熊文钦、陆晓虎等同学在本书制作过程中提供的热心帮助和支持;最后,特别感谢林金桐校长,电信工程学院蔺志青副院长,王生卫书记,辅导员廉洁老师以及关心支持此书的学校领导,感谢他们给予的热心帮助和鼓励。

2018高考数学北京卷(理)精编

2018高考数学北京卷(理)精编

2018年普通高等学校招生全国统一考试(北京卷)数 学(理)本试卷共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|||2}A x x =<,{2,0,1,2}B =-,则AB =()A .{0,1}B .{1,0,1}-C .{2,0,1,2}-D .{1,0,1,2}-【答案】A ,交集,绝对值不等式 2.在复平面内,复数11i-的共轭复数对应的点位于() A .第一象限B .第二象限C .第三象限D .第四象限【答案】D ,复数计算、几何意义3.执行如图所示的程序框图,输出的s 值为()A .12 B .56C .76D .712【答案】B ,程序框图-循环结构4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于f ,则第八个单音的频率为()ABC.D.【答案】D ,数学文化,等比通项5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A .1B .2C .3D .4【答案】C ,三视图→直观图,三垂线定理6.设,a b 均为单位向量,则“|3||3|a b a b -=+”是“a b ⊥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C ,向量的数量积,向量的线性运算|3||3|a b a b -=+22(3)(3)a b a b ⇔-=+66a b a b ⇔-⋅=⋅0a b ⇔⋅=a b ⇔⊥7.在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离,当,m θ变化时,d 的最大值为() A .1B .2C .3D .4【答案】C ,直线与圆,点到直线距离俯视图直线20x my --=绕A 旋转,不包含与x 重合位置.max max ||1d OH =+3=,当直线垂直于x 轴,即0m =时,取得最大值. 8.设集合{(,)|1,4,2}A x y x y ax y x ay =-≥+>-≤则()A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 【答案】D ,线性规划-可行域,逻辑或,直线过定点 法一:若(2,1)A ∉,则214a +≤或22a ->,解得32a ≤或0a <,∴32a ≤ 法二:画直线也可得出结论,图象有些复杂第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.9.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________.【答案】63n a n =-,等差通项10.在极坐标系中,直线c o s s i n (0a a ρθρθ+=>与圆2c o s ρθ=相切,则a =__________.【答案】1直线0x y a +-=,与圆22(1)1x y -+=相切,求得1a =111.设函数π()cos()(0)6f x x ωω=->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________. 【答案】23,三角函数的最值 已知条件等价于()f x 在4x π=时取得最大值,∴2,46k k ππωπ-=∈Z ,解得28,3k k ω=+∈Z ,∴ω的最小值为2312.若,x y 满足12x y x +≤≤,则2y x -的最小值是__________.【答案】3,简单线性规划13.能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.【答案】sin y x =,22y x x =-+等均可,函数的单调性14.已知椭圆2222:1(0)x y M a b a b +=>>,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.1;2.椭圆、双曲线性质三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,7a =,8b =,1cos 7B =-. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.【解】同角三角函数关系,正弦定理,两角和差的三角函数(Ⅰ)在△ABC 中,∵1cos 7B =-,∴(,)2B ππ∈,∴sin 7B ==.由正弦定理sin sin a b A B =,得7sin A =,∴sin A =. ∵(,)2B ππ∈,∴(0,)2A π∈,∴∠3A π=; (Ⅱ)在△ABC 中,∵sin sin()sin cos sin cos C A B A B B A =+=+11()72=-+=.如图所示,在△ABC 中,∵sin h C BC =,∴sin h BC C =⋅7==,∴AC边上的高为2.16.(本小题满分14分)如图,在三棱柱111A B C A B C-中,1CC ⊥平面ABC ,,,,D E F G 分别为1111,,,A A A C A C B B的中点,AB BC ==12AC AA ==. (Ⅰ)求证:AC ⊥平面BEF ; (Ⅱ)求二面角1B CD C --的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.【解】线面垂直性质、判定,(Ⅰ)在三棱柱111ABC A B C -中, ∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又,E F 分别为11,AC AC 的中点,∴AC EF ⊥.∵AB BC =,∴AC BE ⊥, ∴AC ⊥平面BEF .(Ⅱ)方法一:【空间向量】由(Ⅰ)知AC EF ⊥,AC BE ⊥,1//EF CC . 又1CC ⊥平面ABC ,∴EF ⊥平面ABC .∵BE ⊂平面ABC ,∴EF BE ⊥. 如图建立空间直角坐称系E xyz -.ACD1C 1B 1A EFG由题意得(0,2,0)B ,(1,0,0)C -,(1,0,1)D ,(0,0,2)F ,(0,2,1)G . ∴(2,0,1)CD =,(1,2,0)CB =, 设平面BCD 的法向量为(,,)n a b c =,∴00n CD n CB ⎧⋅=⎨⋅=⎩,∴{2020a c a b +=+=, 令2a =,则1b =-,4c =-,∴平面BCD 的法向量(2,1,4)n =--, 又∵平面1CDC 的法向量为(0,2,0)EB =,∴cos 21||||n EB n EB n EB ⋅<⋅>==-.由图可得二面角1B CD C --为钝角,所以二面角B -CD -C 1的余弦值为. 方法二:二面角-三垂线定理,∵BE ⊥平面1CDC ,过E 作EN CD ⊥于N ,连结BN ,则BNE ∠的补角为二面角1B CD C--的平面角,易求5EN =,∴tan BNE ∠=1B CD C --的余弦值为.(Ⅲ)平面BCD 的法向量为(2,1,4)n =--,∵(0,2,1)G ,(0,0,2)F , ∴(0,2,1)GF =-,∴2n GF ⋅=-,∴n 与GF uuu r不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交. 17.(本小题满分12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(1,2,3,4,5,6k =).写出方差123456,,,,,D D D D D D ξξξξξξ的大小关系.【解】古典概型,互斥事件有一个发生的概率,相互独立事件同时发生的概率,对立事件,两点分布的方差,两个正数的和为定值差越小积越大(直接用?).(Ⅰ)由题意知,样本中电影的总部数是140503002008005102000+++++=, 第四类电影中获得好评的电影部数是2000.2550⨯=. 故所求概率为500.0252000=. (Ⅱ)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为:()P AB AB +()()P AB P AB =+()[1()][1()]()P A P B P A P B =-+-.由题意知:()P A 估计为0.25,()P B 估计为0.2. 故所求概率估计为0.250.80.750.20.35⨯+⨯=.(Ⅲ)142536D D D D D D ξξξξξξ>>=>>>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ. 18.(本小题满分13分)设函数2()[(41)43]xf x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 【解】导数的几何意义,导数判定单调区间求极值 (Ⅰ)因为2()[(41)43]xf x ax a x a e =-+++, 所以2'(x xf x ax a e ax a x a e =-++-+++2[xa=()x ∈R ,∴'(1)(1)f a e =-.由题设知'(1)0f =,即(1)0a e -=,解得1a =.此时(1)30f e =≠.所以a 的值为1.(Ⅱ)由(Ⅰ)得2'()[(21)2]x f x ax a x e =-++(1)(2)x ax x e =--. 若12a >,则当1(,2)x a∈时,'()0f x <;当(2,)x ∈+∞时,'()0f x >. 所以()f x 在2x =处取得极小值. 若12a ≤,则当(0,2)x ∈时,20x -<,11102ax x -<-<, 所以'()0f x >.所以2不是()f x 的极小值点. 综上可知,a 的取值范围是1(,)2+∞. 19.(本小题满分14分)已知抛物线2:2C y px =经过点(1,2)P .过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点,A B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.【解】待定系数法,直线与抛物线相交,丢解是易错点,韦达定理,斜率公式,计算量 (Ⅰ)因为抛物线2:2C y px =经过点(1,2)P ,所以42p =,解得2p =, 所以抛物线的方程为24y x =.由题意可知直线l 的斜率存在且不为0,设直线l 的方程为1y kx =+(0)k ≠.由{241y x y kx ==+得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得0k <或01k <<.又,PA PB 与y 轴相交,故直线l 不过点(1,2)-.从而3k ≠-. 所以直线l 斜率的取值范围是(,3)(3,0)(0,)-∞--+∞.(Ⅱ)设11(,)A x y ,22(,)B x y .由(Ⅰ)知12224k x x k -+=-,1221x x k =.直线PA 的方程为1122(1)1y y x x --=--. 令0x =,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 【求点坐标可利用斜率公式】 同理得点N 的纵坐标为22121N kx y x -+=+-.由QM QO λ=,QN QO μ=得1M y λ=-,1N y μ=-. 所以11λμ+1111M Ny y =+--121211(1)(1)x x k x k x --=+--1122()11x x x x k x x -+=⋅-222224111k k k k k -+=⋅-2=. 所以11λμ+为定值.20.(本小题满分14分)设n 为正整数,集合12{|(,,,),{0,1},1,2,,}n n A t t t t k n αα==∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记111122221(,)[(||)(||)(2nn nnM x y xy x y x yx y αβ=+--++--+++--. (Ⅰ)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.【解】集合,在计算中发现规律,(Ⅰ)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00|00|)]22M αα=+--++--++--=,1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=.(Ⅱ)设1234(,,,)x x x x α=B ∈,则1234(,)M x x x x αα=+++. 由题意知1234{0,1}x x x x +++∈,且(,)M αα为奇数, 所以1234,,,x x x x 中1的个数为1或3. 所以{B ⊆((((((((.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素,αβ,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素(枚举没全,依据?). 所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1)}满足条件, 所以集合B 中元素个数的最大值为4; (Ⅲ)设1211{(,,k nnS x xx =∈=)),11212{(,,,)|0}n n n S x x x x x x +=====,则111n A S S S +=.对于(1,2,,1)k S k n =-中的不同元素,αβ,经验证,(,)1M αβ≥. 所以(1,2,,1)k S k n =-中的两个元素不可能同时是集合B 的元素.所以B 中元素的个数不超过1n +. 取12(,,,k n k e x x x S =∈)且10(1,2,,1)k n x x k n +====-.令1211(,)n nn B e e e S S -+=,,,则集合B 的元素个数为1n +,且满足条件.故B是一个满足条件且元素个数最多的集合.11。

第十八届“希望杯”全国数学邀请赛初二第2试及答案-

第十八届“希望杯”全国数学邀请赛初二第2试及答案-

第十八届“希望杯”全国数学邀请赛初二 第2试2007年4月15 上午8:30至10:30 得分________一、选择题(本大题共10小题,每小题4分,共40分),以下每题的四个选项中,•仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内.1.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图?所示,红丝带重叠部分形成的图形是( ).(A )正方形 (B )矩形 (C )菱形 (D )梯形2.设a ,b ,c 是不为零的实数,那么x=||||||a b c a b c +-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3.△ABC 的边长分别是a=m 2-1,b=m 2+1,c=2m (m>0),则△ABC 是( )(A )等边三角形 (B )钝角三角形(C )直角三角形 (D )锐角三角形4.古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸.•地支有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行:甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,•我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,•农历纪年来甲亥年的哪一个在公历中( )(A )是2019年 (B )是2031年(C )是2043年 (D )没有对应的年号5.实数a ,b ,m ,n 满足a<b ,-1<n<m ,若M=,11a mb a nb N m n++=++,则M 与N 的大小关系是( )(A )M>N (B )M=N (C )M<N (D )无法确定的6.若干个正方形和等腰直角三角形拼接成如图所示的图形,若最大的正方形的边长是7cm ,则正方形A ,B ,C ,D 的面积和是( )(A )14cm 2 (B )42cm 2(C )49cm 2 (D )64cm 27.已知关于x 的不等式组230,320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B )43≤a ≤32(C )43<a ≤32 (D )43≤a<328.The number of intersection point of the graths of function y=||k x •andfunction y=kx (k ≠0) is ( )(A )0 (B )1 (C )2 (D )0 or 29.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时,治疗有效,则服药一次治疗疾病有效的时间为(• )(A )16小时 (B )1578小时 (C )151516小时 (D )17小时 10.某公司组织员工到公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘,每只船坐10人,那么其余的船坐满后,•仅有一只船不空也不满.参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11.已知a ,b ,c 为△ABC 三边的长,则化简│a+b+c │+2()a b c --的结果是________.12.自从扫描隧道显微镜发明后,世界上便诞生了一门新科学,•这就是“纳米技术”.已知1毫米=1000微米,1微米=1000纳米,那么2007•纳米的长度用科学记数法表示为_________米. 13.若不等式组21,23x a x b -<⎧⎨->⎩中的未知数x 的取值范围是-1<x<1,那么(a+1)(•b-•1)•的值等于_______.14.已知a 1,a 2,a 3,…,a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2007),那么M•与N•的大小关系是M______N.15.a bc d叫做二阶行列式,它的算法是:ad-bc,将四个数2,3,4,5排成不同的二阶行列式.则不同的计算结果有______个,其中,数值最大的是________.16.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米.•当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了_________米.17.Xiao Ming says to Xiao Hua that my age add yuor age.addyour •agewhen I was your agg is 48.The age of Xiao Huais______now.(英汉词典:age 年龄;add 加上;when 当……时)18.长方体的长、宽、高分别为正整数a,b,c,且满足a+b+c+ab+•bc+•ac+•abc=2006,那么这个长方体的体积为________.19.已知a为实数,且a+26与1a-26都是整数,则a的值是_________.20.为确保信息安全,信息传输需加密,发送方由明文→密文(加密),接收方由密文→明文(解密).现规定英文26个字母的加密规则是:26个字母按顺序分别对应整数0到25,例如:英文a,b,c,d,写出它们的明文(对应整数0,1,2,3),然后将这4个字母对应的整数(分别为x1,x2,x3,x4)按x1+2x2,3x2,x3+2x4;3x4计算,得到密文,即a,b,c,d•四个字母对应的密文分别是2,3,8,9.现在接收方收到的密文为35,42,23,12,则解密得到的英文单词为_________.三、解答题(本大题共3小题,共40分),要求:写出推算过程.21.(本题满分10分)如图,一个大的六角星形(粗实线)的顶点是周围六个全等的小六角星形(•细实数)的中心,相邻的两个小六角星形各有一个公共顶点,如果小六角星形的顶点C到中心A的距离为a,求:(1)大六角星形的顶点A到其中心O的距离;(2)大六角星形的面积;(3)大六角星形的面积与六个小六角星形的面积之和的比值.(注:本题中的六角星形由12个相同的等边三角形拼接而成).22.(本题满分15分)甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A•地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/•小时的速度返回,请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从A地返回的速度多大时,才能比乙车先回到A地?23.(本题满分15分)平面上有若干个点,其中任意三点都不在同一直线上,将这些点分成三组,•并按下面的规则用线段连接:①在同一组的任意两点间都没有线段连接;②不在同一组的任意两点间一定有线段连接.(1)若平面上恰好有9个点,且平均分成三组,那么平面上有多少条线段?(2)若平面上恰好有9个点,且点数分成2,3,4三组,那么平面上有多少条线段?(3)若平面上共有192条线段,那么平面上至少有多少个点?第十八届“希望杯”全国数学邀请赛参考答案及评分标准初二 第2试一、选择题(每小题4分)1.C 2.B 3.C 4.D 5.A 6.C 7.B 8.D 9.C 10.A二、填空题(每小题4分,第15小题,每个空2分,第19小题,答对一个答案2分)11.2c 12.2.007×10-4 13.-6 14.> 15.6;14 16.2.5 17.16 •18.•888•19.5-26或-5-26 20.hope三、解答题21.(1)连结CO ,易知△AOC 是直角三角形,∠ACO=90°,∠AOC=30°,所以AO=2AC=2a . (3分)(2)如图,大六角星形的面积是等边△AMN 面积的12倍.因为AM 2=222()()22AM a , 解得23a . 所以大六角星形的面积是S=12×12×33a ×32. (7分) (3)小六角星形的顶点C 到其中心A 的距离为a ,大六角星形的顶点A 到其中心O•的距离为2a ,所以大六角星形的面积是一个小六角星形的面积的4倍,所以 大六角星形的面积:六个小六角星形的面积和=2:3 (10分)22.(1)由图知,可设甲车由A 地前往B 地的函数解析式为s=kt ,将(2.4,48)代入,解得k=20.所以 s=20t . (2分)由图2可知,在距A 地30千米处,乙车追上甲车,所以当s=30千米时, t=302020s ==1.5(小时). 即甲车出发1.5小时后被乙车追上. (5分)(2)由图知,可设乙车由A 地前往B 地的函数的解析式为s=pt+m ,将(1.0,0)和(1.5,30)代入,得0,60,30 1.5,60.p m p p m m =+=⎧⎧⎨⎨=+=-⎩⎩解得 所以s=60t-60. (7分)当乙车到达B 地时,s=48千米,代入s=60t-60,得t=1.8小时.又设乙车由B 地返回A 地的函数的解析式为s=-30t+n ,将(1.8,48)代入,得48=-30×1.8+n ,解得 n=102,所以 s=-30t+102. (9分)当甲车与乙车迎面相遇时,有-30t+102=20t ,解得 t=2.04小时,代入s=20t ,得s=40.8千米.即甲车与乙车在距离A 地40.8千米处迎面相遇. (12分)(3)当乙车返回A 地时,有-30t+102=0,解得 t=3.4小时.甲车要比乙车先回到A 地,速度应大于483.4 2.4-=48(千米/小时). (15分) 23.(1)平面上恰好有9个点,且平均分成三组,每组3个点,•其中每个点可以与另外两组的6个点连接,共有线段692⨯=27(条). (5分) (2)若平面上恰好有9个点,且点数分成2,3,4三组,则平面上共有线段 12[2×(3+4)+3×(2+4)+4×(2+3)]=26(条). (10分)(3)设第一组有a个点,第二组有b个点,第三组有c个点,则平面上共有线段1[a(b+c)+b(a+c)+c(a+b)]=ab+bc+ca(条).2若保持第三组点数不变,将第一组中的一个点划归到第二组,则平面上线段的条数为(a-1)(b+1)+(b+1)c+(a-1)c=ab+bc+ca+a-b-1.与原来线段的条数的差是a-b-1,即当a>b时,a-b-1≥0时,此时平面上的线段条数不减少;当a≤b时,a-b-1<0,此时平面上的线段条数一定减少.由此可见,当平面上由点数较多的一组中划出一个点到点数较少的一组中时,平面上的线段条数不减少,所以当三组中点数一样多(或基本平均)时,平面上线段的条数最多.(13分)设三组中都有x个点,则线段条数为3x2=192,解得x=8.所以平面上至少有24个点.(15分)。

北京市大学生数学竞赛试题

北京市大学生数学竞赛试题

六、 (10分 ) 设正项级数 (1) lim
a
n 1

n
收敛 , 且和为 S . 试求:
n
a1 2 a 2 na n ; ( 2) n

n 1

a1 2 a 2 na n . n ( n 1)
a1 2 a 2 na n S n S n S1 S n S 2 S n S n 1 n n S1 S 2 S n 1 S1 S 2 S n 1 n 1 Sn Sn , n n 1 n a 2 a 2 na n S S 0; lim 1 n n a 2 a 2 na n a1 2 a 2 na n a1 2 a 2 na n ( 2) 1 n ( n 1) n n 1 a1 2 a 2 na n a1 2 a 2 na n ( n 1) a n 1 a n 1 . n n 1 解 (1)



七、 (10分) 飞机在机场开始滑行着陆. 在着陆时刻已失去垂直速度, 水平速度为v0 米 / 秒. 飞机与地面的摩擦系数为 , 且飞机运动时所受空气的阻力与速度的平方成正比, 在水 平方向的比例系数为k x 千克 秒 2 / 米 2 , 在垂直方向的比例系数为k y 千克 秒 2 / 米 2 . 设飞 机的质量为m千克, 求飞机从着陆到停止所需的时间.

0 V

dzdx 2π,
D 2 0 Dx
2
2
0
( x y z)dv,
V
0
.
0
故原式 2
( x y z)dv 2π.

北京市高等数学竞赛真题(第十二届至第二十一届)

北京市高等数学竞赛真题(第十二届至第二十一届)

北京市高等数学竞赛真题(第十二届至第二十一届)第十二届(2000年)北京市大学生数学竞赛本科甲、乙组试题(有改动)班级:学号:姓名:一、填空题(每题4分,满分40分)1、若2tan (1cos )limln(12)(1)x x a x b x x c e -→+--+-= _________ .2、若20zx y ?=??,且当0x =时,sin z y =;0y =时,sin z x =,则z= ____ .3、积分2()110tx ttdt edx =__________________.4、设数列{}n x 满足:11sin (2)sin 11n n x n n n <<+++,则11lim 1n k x k x n →∞==+∑ .5、设()f x 在点0x =可导,且()0cos 1lim11f x x x e →-=-,则(0)f '= .6、设()f x 满足10()()sin f tx dt f x x x=+?,(0)0f =且有一阶导数,则当0x ≠时,()f x '=_________________________ .7、极限22lim[lim(cos cos cos)]222nn x x xxπ→∞→=________________________.8、设由曲线2x y =和1x =则sin D xydxd y x =??___________.9、设()sincos 22xf x x =+,则(2012)()f π=____________________________. 10、极限12lim 1nn x dx x →∞=+?________________.二、(8分)设()f x 是(0,)+∞上递减的连续函数,且在()0f x >,证明数列{}n a 收敛,其中11()()nnn k a f k f x dx==-∑?。

三、(8分)设)(1lim)(2212Nnxbxaxxxfnnn∈+++=-∞→,试确定a、b的值,使与)(lim1xfx→)(lim1xfx-→都存在。

精品解析:2024年北京高考数学真题(原卷版)(合并)

精品解析:2024年北京高考数学真题(原卷版)(合并)

绝密★本科目考试启用前2024年普通高等学校招生全国统一考试(北京卷)数学本试卷共12页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A.{}11x x -≤< B.{}3x x >-C.{}|34x x -<< D.{}4x x <2.已知1i iz=--,则z =().A.1i --B.1i -+C.1i- D.1i+3.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A. B.2 C.3 D.4.在(4x -的展开式中,3x 的系数为()A .6B.6- C.12D.12-5.设a ,b 是向量,则“()()·0a b a b +-= ”是“a b =- 或a b = ”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设函数()()sin 0f x x ωω=>.已知()11f x =-,()21f x =,且12x x -的最小值为π2,则ω=()A.1B.2C.3D.47.生物丰富度指数1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则()A.2132N N =B.2123N N =C.2321N N = D.3221N N =8.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4PA PB ==,PC PD ==该棱锥的高为().A.1B.2C.D.9.已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则()A.12122log 22y y x x ++< B.12122log 22y y x x ++>C.12212log 2y y x x +<+ D.12212log 2y y x x +>+10.已知()(){}2,|,12,01M x y y x t xx x t ==+-≤≤≤≤是平面直角坐标系中的点集.设d 是M 中两点间距离的最大值,S 是M 表示的图形的面积,则()A.3d =,1S <B.3d =,1S >C.d =,1S < D.d =,1S >第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.抛物线216y x =的焦点坐标为________.12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于原点对称.若ππ,63α⎡⎤∈⎢⎥⎣⎦,则cos β的最大值为________.13.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为________.14.汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为______mm ,升量器的高为________mm .15.设与是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若与均为等差数列,则M 中最多有1个元素;②若与均为等比数列,则M 中最多有2个元素;③若为等差数列,为等比数列,则M 中最多有3个元素;④若为递增数列,为递减数列,则M 中最多有1个元素.其中正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos 7B b B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.17.如图,在四棱锥P ABCD -中,//BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2PE DE ==.(1)若F 为线段PE 中点,求证://BF 平面PCD .(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 夹角的余弦值.18.某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望()E X ;(ⅱ)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中()E X 估计值的大小.(结论不要求证明)19.已知椭圆E :()222210+=>>x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.20.设函数()()()ln 10f x x k x k =++≠,直线l 是曲线()y f x =在点()()(),0t f t t >处的切线.(1)当1k =-时,求()f x 的单调区间.(2)求证:l 不经过点()0,0.(3)当1k =时,设点()()(),0A t f t t >,()()0,C f t ,()0,0O ,B 为l 与y 轴的交点,ACO S 与ABOS 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S =△△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)21.已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.绝密★本科目考试启用前2024年普通高等学校招生全国统一考试(北京卷)数学本试卷共12页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A.{}11x x -≤< B.{}3x x >-C.{}|34x x -<< D.{}4x x <【答案】C 【解析】【分析】直接根据并集含义即可得到答案.【详解】由题意得{}|34M x x N ⋃=-<<.故选:C.2.已知1i iz=--,则z =().A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】直接根据复数乘法即可得到答案.【详解】由题意得()i 1i i 1z =--=-.故选:C.3.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A.B.2C.3D.【答案】D 【解析】【分析】求出圆心坐标,再利用点到直线距离公式即可.【详解】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+==故选:D.4.在(4x -的展开式中,3x 的系数为()A.6B.6- C.12D.12-【答案】A 【解析】【分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T xxr --+==-=,令432r-=,解得2r =,故所求即为()224C 16-=.故选:A.5.设a ,b 是向量,则“()()·0a b a b +-=”是“a b =- 或a b = ”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量数量积分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件分析判断.【详解】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = ,若a b = 或a b =- ,可得a b =,即()()0a b a b +⋅-= ,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.6.设函数()()sin 0f x x ωω=>.已知()11f x =-,()21f x =,且12x x -的最小值为π2,则ω=()A .1B.2C.3D.4【答案】B 【解析】【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:1x 为()f x 的最小值点,2x 为()f x 的最大值点,则12minπ22T x x -==,即πT =,且0ω>,所以2π2Tω==.故选:B.7.生物丰富度指数1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则()A.2132N N =B.2123N N =C.2321N N = D.3221N N =【答案】D 【解析】【分析】根据题意分析可得12112.1,3.15ln ln S S N N --==,消去S 即可求解.【详解】由题意得12112.1, 3.15ln ln S S N N --==,则122.1ln 3.15ln N N =,即122ln 3ln N N =,所以3221N N =.故选:D.8.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4PA PB ==,PC PD ==该棱锥的高为().A.1B.2C.D.【答案】D 【解析】【分析】取点作辅助线,根据题意分析可知平面PEF ⊥平面ABCD ,可知⊥PO 平面ABCD ,利用等体积法求点到面的距离.【详解】如图,底面ABCD 为正方形,当相邻的棱长相等时,不妨设4,PA PB AB PC PD =====,分别取,AB CD 的中点,E F ,连接,,PF EF ,则,PE AB EF AB ⊥⊥,且PE EF E ⋂=,,PE EF ⊂平面PEF ,可知AB ⊥平面PEF ,且AB ⊂平面ABCD ,所以平面PEF ⊥平面ABCD ,过P 作EF 的垂线,垂足为O ,即PO EF ⊥,由平面PEF 平面ABCD EF =,PO ⊂平面PEF ,所以⊥PO 平面ABCD ,由题意可得:2,4PE PF EF ===,则222PE PF EF +=,即PE PF ⊥,则1122PE PF PO EF ⋅=⋅,可得PE PF PO EF⋅==,当相对的棱长相等时,不妨设4PA PC ==,PB PD ==,因为BD PB PD ==+,此时不能形成三角形PBD ,与题意不符,这样情况不存在.故选:D.9.已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则()A.12122log 22y y x x ++< B.12122log 22y y x x ++>C.12212log 2y y x x +<+ D.12212log 2y y x x +>+【答案】B 【解析】【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x x x x ++>=,即12122202x x y y ++>>,根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==,可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误;对于选项C :例如121,x x =-=-,则1211,24y y ==,可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误,故选:B.10.已知()(){}2,|,12,01M x y y x t xx x t ==+-≤≤≤≤是平面直角坐标系中的点集.设d 是M 中两点间距离的最大值,S 是M 表示的图形的面积,则()A.3d =,1S <B.3d =,1S >C.d =,1S <D.d =,1S >【答案】C 【解析】【分析】先以t 为变量,分析可知所求集合表示的图形即为平面区域212y x y x x ⎧≤⎪≥⎨⎪≤≤⎩,结合图形分析求解即可.【详解】对任意给定[]1,2x ∈,则()210xx x x -=-≥,且[]0,1t ∈,可知()222x x t x x x x x x ≤+-≤+-=,即2x y x ≤≤,再结合x 的任意性,所以所求集合表示的图形即为平面区域212y x y x x ⎧≤⎪≥⎨⎪≤≤⎩,如图阴影部分所示,其中()()()1,1,2,2,2,4A B C,可知任意两点间距离最大值d AC ==;阴影部分面积11212ABC S S <=⨯⨯△.故选:C.【点睛】方法点睛:数形结合的重点是“以形助数”,在解题时要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维.使用数形结合法的前提是题目中的条件有明确的几何意义,解题时要准确把握条件、结论与几何图形的对应关系,准确利用几何图形中的相关结论求解.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.抛物线216y x =的焦点坐标为________.【答案】()4,0【解析】【分析】形如()22,0y px p =≠的抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,由此即可得解.【详解】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0.故答案为:()4,0.12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于原点对称.若ππ,63α⎡⎤∈⎢⎥⎣⎦,则cos β的最大值为________.【答案】12-##0.5-【解析】【分析】首先得出π2π,Z k k βα=++∈,结合三角函数单调性即可求解最值.【详解】由题意π2π,Z k k βα=++∈,从而()cos cos π2πcos k βαα=++=-,因为ππ,63α⎡⎤∈⎢⎥⎣⎦,所以cos α的取值范围是1,22⎡⎢⎣⎦,cos β的取值范围是1,22⎡⎤--⎢⎥⎣⎦,当且仅当π3α=,即4π2π,Z 3k k β=+∈时,cos β取得最大值,且最大值为12-.故答案为:12-.13.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为________.【答案】12(或12-,答案不唯一)【解析】【分析】联立直线方程与双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立()22143x y y k x ⎧-=⎪⎨⎪=-⎩,化简并整理得:()222214243640k x k x k -+--=,由题意得2140k -=或()()()2222Δ244364140k k k =++-=,解得12k =±或无解,即12k =±,经检验,符合题意.故答案为:12(或12-,答案不唯一).14.汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为______mm ,升量器的高为________mm .【答案】①.23②.57.5##1152【解析】【分析】根据体积为公比为10的等比数列可得关于高度的方程组,求出其解后可得前两个圆柱的高度.【详解】设升量器的高为1h ,斗量器的高为2h (单位都是mm ),则2222212325325ππ230221065325ππ22h h h ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,故223mm h =,1115mm 2h =.故答案为:11523mm,mm 2.15.设与是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若与均为等差数列,则M 中最多有1个元素;②若与均为等比数列,则中最多有2个元素;③若为等差数列,为等比数列,则M 中最多有3个元素;④若为递增数列,为递减数列,则M 中最多有1个元素.其中正确结论的序号是______.【答案】①③④【解析】【分析】利用两类数列的散点图的特征可判断①④的正误,利用反例可判断②的正误,结合通项公式的特征及反证法可判断③的正误.【详解】对于①,因为{}{},n n a b 均为等差数列,故它们的散点图分布在直线上,而两条直线至多有一个公共点,故M 中至多一个元素,故①正确.对于②,取()112,2,n n n n a b --==--则{}{},n n a b 均为等比数列,但当n 为偶数时,有()1122n n n n a b --===--,此时M 中有无穷多个元素,故②错误.对于③,设()0,1nn b AqAq q =≠≠±,()0n a kn b k =+≠,若M 中至少四个元素,则关于n 的方程n Aq kn b =+至少有4个不同的正数解,若0,1q q >≠,则由n y Aq =和y kn b =+的散点图可得关于n 的方程n Aq kn b =+至多有两个不同的解,矛盾;若0,1q q <≠±,考虑关于n 的方程n Aq kn b =+奇数解的个数和偶数解的个数,当n Aq kn b =+有偶数解,此方程即为nA q kn b =+,方程至多有两个偶数解,且有两个偶数解时ln 0Ak q >,否则ln 0Ak q <,因,ny A q y kn b ==+单调性相反,方程nA q kn b =+至多一个偶数解,当n Aq kn b =+有奇数解,此方程即为nA q kn b -=+,方程至多有两个奇数解,且有两个奇数解时ln 0Ak q ->即ln 0Ak q <否则ln 0Ak q >,因,ny A q y kn b =-=+单调性相反,方程nA q kn b =+至多一个奇数解,因为ln 0Ak q >,ln 0Ak q <不可能同时成立,故n Aq kn b =+不可能有4个不同的整数解,即M 中最多有3个元素,故③正确.对于④,因为{}n a 为递增数列,{}n b 为递减数列,前者散点图呈上升趋势,后者的散点图呈下降趋势,两者至多一个交点,故④正确.故答案为:①③④.【点睛】思路点睛:对于等差数列和等比数列的性质的讨论,可以利用两者散点图的特征来分析,注意讨论两者性质关系时,等比数列的公比可能为负,此时要注意合理转化.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos 7B b B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)2π3A =;(2)选择①无解;选择②和③△ABC 面积均为1534.【解析】【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出33sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sinC ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【小问1详解】由题意得32sin cos cos 7B B B =,因为A 为钝角,则cos 0B ≠,则32sin 7B b =,则7sin sin sin 37b a BA A ===,解得3sin 2A =,因为A 为钝角,则2π3A =.【小问2详解】选择①7b =,则sin 714142B b ==⨯=,因为2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则33sin 14B ==,则代入32sin 7B b =得3332147b ⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭13121421414⎛⎫=⨯+-⨯=⎪⎝⎭,则11sin 7322144ABC S ab C ==⨯⨯⨯=.选择③sin c A =2c ⨯=,解得5c =,则由正弦定理得sin sin a c A C =5sin 32C =,解得53sin 14C =,因为C 为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+ ⎪⎝⎭3111533321421414⎛⎫=⨯+-⨯=⎪⎝⎭,则11sin 7522144ABC S ac B ==⨯⨯=△17.如图,在四棱锥P ABCD -中,//BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2PE DE ==.(1)若F 为线段PE 中点,求证://BF 平面PCD .(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 夹角的余弦值.【答案】(1)证明见解析(2)3030【解析】【分析】(1)取PD 的中点为S ,接,SF SC ,可证四边形SFBC 为平行四边形,由线面平行的判定定理可得//BF 平面PCD .(2)建立如图所示的空间直角坐标系,求出平面APB 和平面PCD 的法向量后可求夹角的余弦值.【小问1详解】取PD 的中点为S ,接,SF SC ,则1//,12SF ED SF ED ==,而//,2ED BC ED BC =,故//,SF BC SF BC =,故四边形SFBC 为平行四边形,故//BF SC ,而BF ⊄平面PCD ,SC ⊂平面PCD ,所以//BF 平面PCD .【小问2详解】因为2ED =,故1AE =,故//,=AE BC AE BC ,故四边形AECB 为平行四边形,故//CE AB ,所以CE ⊥平面PAD ,而,PE ED ⊂平面PAD ,故,CE PE CE ED ⊥⊥,而PE ED ⊥,故建立如图所示的空间直角坐标系,则()()()()()0,1,0,1,1,0,1,0,0,0,2,0,0,0,2A B C D P --,则()()()()0,1,2,1,1,2,1,0,2,0,2,2,PA PB PC PD =--=--=-=-设平面PAB 的法向量为(),,m x y z =,则由0m PA m PB ⎧⋅=⎪⎨⋅=⎪⎩可得2020y z x y z --=⎧⎨--=⎩,取()0,2,1m =- ,设平面PCD 的法向量为(),,n a b c =,则由0n PC n PD ⎧⋅=⎪⎨⋅=⎪⎩可得20220a b b c -=⎧⎨-=⎩,取()2,1,1n = ,故cos ,30m n ==-,故平面PAB 与平面PCD 夹角的余弦值为303018.某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望()E X ;(ⅱ)如果无索赔的保单的保费减少,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中()E X 估计值的大小.(结论不要求证明)【答案】(1)110(2)(i)0.122万元;(ii)这种情况下一份保单毛利润的数学期望估计值大于(i )中()E X 估计值【解析】【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(ⅰ)设ξ为赔付金额,则ξ可取0,0.8,0.1.6,2.4,3,用频率估计概率后可求ξ的分布列及数学期望,从而可求()E X .(ⅱ)先算出下一期保费的变化情况,结合(1)的结果可求()E Y ,从而即可比较大小得解.【小问1详解】设A 为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得()603010180010060301010P A ++==++++.【小问2详解】(ⅰ)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3,由题设中的统计数据可得()()800410010,0.810005100010P P ξξ======,603( 1.6)100050P ξ===,303( 2.4)1000100P ξ===,101(3)1000100P ξ===,故()4133100.8 1.6 2.430.27851050100100E ξ=⨯+⨯+⨯+⨯+⨯=故()0.40.2780.122E X =-=(万元).(ⅱ)由题设保费的变化为410.496%0.4 1.20.403255⨯⨯+⨯⨯=,故()0.1220.40320.40.1252E Y =+-=(万元),从而()()E X E Y <.19.已知椭圆E :()222210+=>>x y a b a b,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)221,422x y e +==(2)2t =【解析】【分析】(1)由题意得b c ==,进一步得a ,由此即可得解;(2)设(:,0,AB y kx t k t =+≠>,()()1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k --+==++,而()121112:y y AD y x x y x x -=-++,令0x =,即可得解.【小问1详解】由题意b c ===,从而2a ==,所以椭圆方程为22142x y +=,离心率为2e =;【小问2详解】直线AB 斜率不为0,否则直线AB与椭圆无交点,矛盾,从而设(:,0,AB y kx t k t =+≠>,()()1122,,,A x y B x y ,联立22142x y y kx t ⎧+=⎪⎨⎪=+⎩,化简并整理得()222124240k x ktx t +++-=,由题意()()()222222Δ1682128420k t k t k t=-+-=+->,即,k t 应满足22420kt +->,所以2121222424,1221kt t x x x x k k --+==++,若直线BD 斜率为0,由椭圆的对称性可设()22,D x y -,所以()121112:y y AD y x x y x x -=-++,在直线AD 方程中令0x =,得()()()()2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt t-++++++====+==+++-,所以2t =,此时k 应满足222424200k t k k ⎧+-=->⎨≠⎩,即k 应满足22k <-或22k >,综上所述,2t =满足题意,此时22k <-或22k >.20.设函数()()()ln 10f x x k x k =++≠,直线l 是曲线()y f x =在点()()(),0t f t t >处的切线.(1)当1k =-时,求()f x 的单调区间.(2)求证:l 不经过点()0,0.(3)当1k =时,设点()()(),0A t f t t >,()()0,C f t ,()0,0O ,B 为l 与y 轴的交点,ACO S 与ABOS 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S =△△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)【答案】(1)单调递减区间为(1,0)-,单调递增区间为(0,)+∞.(2)证明见解析(3)2【解析】【分析】(1)直接代入1k =-,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t ⎛⎫-=+-> ⎪+⎝⎭,将(0,0)代入再设新函数()ln(1)1tF t t t=+-+,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S = 得到13ln(1)21501tt t t+--=+,再设新函数15()13ln(1)2(0)1th t t t t t=+-->+研究其零点即可.【小问1详解】1()ln(1),()1(1)11x f x x x f x x x x'=-+=-=>-++,当()1,0x ∈-时,′<0;当∈0,+∞,′>0;()f x ∴在(1,0)-上单调递减,在(0,)+∞上单调递增.则()f x 的单调递减区间为(1,0)-,单调递增区间为(0,)+∞.【小问2详解】()11k f x x '=++,切线l 的斜率为11k t++,则切线方程为()1()(0)1k y f t x t t t ⎛⎫-=+-> ⎪+⎝⎭,将(0,0)代入则()1,()111k k f t t f t t t t ⎛⎫⎛⎫-=-+=+ ⎪ ⎪++⎝⎭⎝⎭,即ln(1)1k t k t t tt ++=++,则ln(1)1t t t +=+,ln(1)01tt t +-=+,令()ln(1)1tF t t t=+-+,假设l 过(0,0),则()F t 在(0,)t ∈+∞存在零点.2211()01(1)(1)t t t F t t t t +-'=-=>+++,()F t ∴在(0,)+∞上单调递增,()(0)0F t F >=,()F t ∴在(0,)+∞无零点,∴与假设矛盾,故直线l 不过(0,0).【小问3详解】1k =时,12()ln(1),()1011x f x x x f x x x+'=++=+=>++.1()2ACO S tf t = ,设l 与y 轴交点B 为(0,)q ,0t >时,若0q <,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q ≠.所以0q >,则切线l 的方程为()()1ln 111y t t x t t ⎛⎫--+=+- ⎪+⎝⎭,令0x =,则ln(1)1t y q y t t ===+-+.215ACO ABO S S = ,则2()15ln(1)1t tf t t t t ⎡⎤=+-⎢⎥+⎣⎦,13ln(1)21501t t t t ∴+--=+,记15()13ln(1)2(0)1th t t t t t=+-->+,∴满足条件的A 有几个即()h t 有几个零点.()()()()()()()()2222221313221152141315294211111t t t t t t t h t t t t t t +-++--+--+-=--=++'==+++,当10,2t ⎛⎫∈ ⎪⎝⎭时,()0h t '<,此时()h t 单调递减;当1,42t ⎛⎫∈⎪⎝⎭时,()0h t '>,此时()h t 单调递增;当()4,t ∞∈+时,()0h t '<,此时()h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h ⎛⎫==-⨯-=> ⎪⎝⎭,15247272(24)13ln 254826ln 548261.614820.5402555h ⨯=--=--<⨯--=-<,所以由零点存在性定理及()h t 的单调性,()h t 在1,42⎛⎫⎪⎝⎭上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S =的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.21.已知集合()}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.【答案】(1)():3,4,4,5,8,4,3,10A Ω(2)不存在符合条件的Ω,理由见解析(3)证明见解析【解析】【分析】(1)直接按照()ΩA 的定义写出()ΩA 即可;(2)解法一:利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;解法二:对于任意序列,所得数列之和比原数列之和多4,可知序列Ω共有8项,可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==,检验即可;(3)解法一:分充分性和必要性两方面论证;解法二:若12345678a a a a a a a a +=+=+=+,分类讨论1357,,,a a a a 相等得个数,结合题意证明即可;若存在序列Ω,使得()ΩA 为常数列,结合定义分析证明即可.【小问1详解】因为数列:1,3,2,4,6,3,1,9A ,由序列()11,3,5,7T 可得()1:2,3,3,4,7,3,2,9T A ;由序列()22,4,6,8T 可得()21:2,4,3,5,7,4,2,10T T A ;由序列()31,3,5,7T 可得(321:3,4,4,5,8,4,3,10T T T A ;所以()Ω:3,4,4,5,8,4,3,10A .【小问2详解】解法一:假设存在符合条件的Ω,可知()ΩA 的第1,2项之和为12a a s ++,第3,4项之和为34a a s ++,则()()()()121234342642a a a a sa a a a s⎧+++=++⎪⎨+++=++⎪⎩,而该方程组无解,故假设不成立,故不存在符合条件的Ω;解法二:由题意可知:对于任意序列,所得数列之和比原数列之和多4,假设存在符合条件的Ω,且()128Ω:,,,A b b b ⋅⋅⋅,因为2642824484+++++++=,即序列Ω共有8项,由题意可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==,检验可知:当2,3n =时,上式不成立,即假设不成立,所以不存在符合条件的Ω.【小问3详解】解法一:我们设序列()21...s T T T A 为{}(),18s n a n ≤≤,特别规定()0,18nn aa n =≤≤.必要性:若存在序列12:,,s T T T Ω ,使得()ΩA 的各项都相等.则,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a =======,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+.根据()21...s T T T A 的定义,显然有,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =.所以不断使用该式就得到12345678,1,2s s a a a a a a a a a a s +=+=+=+=+-,必要性得证.充分性:若12345678a a a a a a a a +=+=+=+.由已知,1357a a a a +++为偶数,而12345678a a a a a a a a +=+=+=+,所以()()24681213574a a a a a a a a a a +++=+-+++也是偶数.我们设()21...s T T T A 是通过合法的序列Ω的变换能得到的所有可能的数列()ΩA 中,使得,1,2,3,4,5,7,8s s s s s s s s a a a a a a a a -+-+--最小的一个.上面已经说明,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =.从而由12345678a a a a a a a a +=+=+=+可得,1,2,3,4,5,6,7,812s s s s s s s s a a a a a a a a a a s +=+=+=+=++.同时,由于t t t t i j k w +++总是偶数,所以,1,3,5,7t t t t a a a a +++和,2,4,6,8t t t t a a a a +++的奇偶性保持不变,从而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数.下面证明不存在1,2,3,4j =使得,21,22s j s j a a --≥.假设存在,根据对称性,不妨设1j =,,21,22s j s j a a --≥,即,1,22s s a a -≥.情况1:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+-=,则由,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,知,1,24s s a a -≥.对该数列连续作四次变换()()()()2,3,5,8,2,4,6,8,2,3,6,7,2,4,5,7后,新的4,14,24,34,44,54,64,74,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-减少4,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+->,不妨设,3,40s s a a ->.情况2-1:如果,3,41s s a a -≥,则对该数列连续作两次变换()()2,4,5,7,2,4,6,8后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2-2:如果,4,31s s a a -≥,则对该数列连续作两次变换()()2,3,5,8,2,3,6,7后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,7,8s s s s s s s s a a a a a a a a -+-+--的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的1,2,3,4j =都有,21,21s j s j a a --≤.假设存在1,2,3,4j =使得,21,21s j s j a a --=,则,21,2s j s j a a -+是奇数,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+都是奇数,设为21N +.则此时对任意1,2,3,4j =,由,21,21s j s j a a --≤可知必有{}{},21,2,,1s j s j a a N N -=+.而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,故集合{},s m m a N =中的四个元素,,,i j k w 之和为偶数,对该数列进行一次变换(),,,i j k w ,则该数列成为常数列,新的1,11,21,31,41,51,61,71,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-等于零,比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-更小,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.综上,只可能(),21,201,2,3,4s j s j a a j --==,而,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+,故{}(),Ωs na A =是常数列,充分性得证.解法二:由题意可知:Ω中序列的顺序不影响()ΩA 的结果,且()()()()12345678,,,,,,,a a a a a a a a 相对于序列也是无序的,(ⅰ)若12345678a a a a a a a a +=+=+=+,不妨设1357a a a a ≤≤≤,则2468a a a a ≥≥≥,①当1357a a a a ===,则8642a a a a ===,分别执行1a 个序列()2,4,6,8、2a 个序列()1,3,5,7,可得1212121212121212,,,,,,,a a a a a a a a a a a a a a a a ++++++++,为常数列,符合题意;②当1357,,,a a a a 中有且仅有三个数相等,不妨设135a a a ==,则246a a a ==,即12121278,,,,,,,a a a a a a a a ,分别执行2a 个序列()1,3,5,7、7a 个序列()2,4,6,8可得122712212272778,,,,,,,a a a a a a a a a a a a a a a a ++++++++,即1227122712272712,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为1357a a a a +++为偶数,即173a a +为偶数,可知17,a a 的奇偶性相同,则*712a a -∈N ,分别执行712a a -个序列()1,3,5,7,()1,3,6,8,()2,3,5,8,()1,4,5,8,可得72172172172172172172173232323232323232,,,,,,,22222222a a a a a a a a a a a a a a a a a a a a a a a+-+-+-+-+-+-+-+,为常数列,符合题意;③若1357a a a a =<=,则2468a a a a =>=,即12125656,,,,,,,a a a a a a a a ,分别执行5a 个()1,3,6,8、1a 个()2,4,5,7,可得1512151215561556,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为1256a a a a +=+,可得1512151215121512,,,,,,,a a a a a a a a a a a a a a a a ++++++++,即转为①,可知符合题意;④当1357,,,a a a a 中有且仅有两个数相等,不妨设13a a =,则24a a =,即12125678,,,,,,,a a a a a a a a ,分别执行1a 个()2,4,5,7、5a 个()1,3,6,8,可得1512151215561758,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1256a a a a +=+,可得1512151215121758,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为13571572a a a a a a a +++=++为偶数,可知57,a a 的奇偶性相同,则()()()()1515151715743a a a a a a a a a a a +++++++=++为偶数,且15151517a a a a a a a a +=+=+<+,即转为②,可知符合题意;⑤若1357a a a a <<<,则2468a a a a >>>,即12345678,,,,,,,a a a a a a a a ,分别执行1a 个()2,3,5,8、3a 个()1,4,6,7,可得1312133415363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1234a a a a +=+,可得1312131215363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++,因为1357a a a a +++为偶数,则()()()()()()131315371313572a a a a a a a a a a a a a a +++++++=+++++为偶数,且13131537a a a a a a a a +=+<+<+,即转为④,可知符合题意;综上所述:若12345678a a a a a a a a +=+=+=+,则存在序列Ω,使得()ΩA 为常数列;(ⅱ)若存在序列Ω,使得()ΩA 为常数列,因为对任意()128Ω:,,,A b b b ⋅⋅⋅,均有()()()()12123434b b a a b b a a +-+=+-+()()()()56567878b b a a b b a a =+-+=+-+成立,若()ΩA 为常数列,则12345678b b b b b b b b +=+=+=+,所以12345678a a a a a a a a +=+=+=+;综上所述:“存在序列Ω,使得()ΩA 为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.。

第十八届北京市大学生数学竞赛甲乙组试题与解答

第十八届北京市大学生数学竞赛甲乙组试题与解答

第十八届北京市大学生数学竞赛本科甲、乙组试题解答(2007年10月14日 下午2:30--5:00)注意:本考卷共九题. 甲组九题全做, 乙组只做前七题一、填空题(每小题2分,共20分) 1. 设当1→x 时,111-+++-m x x m是1-x 的等价无穷小,则=m .解 3=m . 2. 设)()2)(1()()2)(1()(n x x x n x x x x f +++---=,则=')1(f .解 )1()1()1(1+-='-n n f n .3. 已知曲线)(x f y =在点)0,1(处的切线在y 轴上的截距为1-,则=++∞→n n nf )]11(1[lim . 解 e n f nn =++∞→)]11(1lim[.4. =+∑=∞→nk nk n kn e11lim.解 原式1-=e .5.=++⎰-x x xx d )cos 1(sin 2222ππ.解 原式4-=π.6. 设函数),(y x f z =在点)1,0(的某邻域内可微,且)(321)1,(ρo y x y x f +++=+,其中22y x +=ρ,则曲面),(y x f z =在点)1,0(处的切平面方程为.解 切平面方程为0232=--+z y x . 7. 直线111101-=-=-z y x 绕z 轴旋转的旋转曲面方程为.解 旋转曲面方程为1222=-+z y x .8. 设L 为封闭曲线1||||=++y x x 的正向一周,则⎰=+-Ly y x x y x d )cos(d 22.解 原式0=.9. 设向量场k j i A 222232yz x z y x yz x --=,则其散度A div 在点)2,1,1(M 处沿方向}1,2,2{-=l 的方向导数=∂∂M |)(div A l.解 原式322=. 10. 设x x e x e y )1(2++=是二阶常系数线性微分方程x e y y y γβα=+'+''的一个特解,则=++222γβα.解14222=++γβα.二、(10分)设二元函数),(||),(y x y x y x f ϕ-=,其中),(y x ϕ在点)0,0(的一个邻域内连续.试证明函数),(y x f 在)0,0(点处可微的充分必要条件是0)0,0(=ϕ. .)0,0(),(.0),(||lim ,2||||||,),(||)0,0()0,0()0,0(),(.0)0,0(,0)0,0(,0)0,0()(.0)0,0(),0,0()0,(||lim ),0,0()0,(||lim ,)0,(||lim )0,0()0,(lim )0,0(.)0,0(),0,0(,)0,0(),()(220022222222220000点处可微在由定义所以又因为则可知若充分性故有且由于存在则点处可微在设必要性证y x f y x y x y x yx y y x x y x y x y x y x y x y x y f x f f y x f f f xx x x x x xx x x f x f f f f y x f y x y x y x x x x x x y x =+-≤+++≤+-+-=+'-'--='='==-===-='''→→→→→→-+ϕϕϕϕϕϕϕϕϕ三、(10分)设)(x f 在区间]1,1[-上三次可微,证明存在实数)1,1(-∈ξ,使得)0(2)1()1(6)(f f f f '---='''ξ..)0(2)1()1(6)()].()([21)(),,()].()([61)0(2)1()1(,!3)(!2)0()0()0()1(,!3)(!2)0()0()0()1(21212121f f f f f f f f f f f f f f f f f f f f f f '---=''''''+'''='''∈'''+'''+'=--'''-''+'-=-'''+''+'+=ξξξξξξξξξξξ于是使得实数由导数的介值性知存在证四、(10分)设函数),(y x u ,),(y x v 在闭区域1:22≤+y x D 上有一阶连续偏导数,又=),(y x f i ),(y x v j ),(y x u +,=),(y x g i ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂y u x u j ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+y v x v ,且在D 的边界上有1),(≡y x u ,y y x v ≡),(,求⎰⎰⋅Dσd g f ..,1:π,d )cos sin sin (d d d d d )()(d ,)()(22π202正向解=+-=+-=+=+=⎪⎪⎭⎫⎝⎛∂∂-∂∂=∴∂∂-∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-∂∂+∂∂=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=⎰⎰⎰⎰⎰⎰⎰∙∙y x L yy x y y uv x uv y uv x uv y uv x uv y v u y u v x v u x u v y v x v u y u x u v L L D Dθθθθσσg f g f 五、(10分)计算y x z x z y z y x d d d d d d 222++⎰⎰∑,其中14)1()1(:222=+-+-∑z y x )1(≥y ,取外侧.π.325π2π319π,319d )sin 32sin sin 41sin cos 41(d 4d sin )2sin sin sin cos 2(d d 2d )(2d )(2π,2d d .,14)1(:,,1:π022π0102π0π0220000=+=∴=++=++=+=++=-=-=-=≤+-=∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑+∑∑∑∑+∑原式则原式左侧设解ϕϕϕθϕθθϕϕθϕθϕθrr r r v y x v z y x x z z x D y VVDπ.325π2π311π38,24)1(:π,611d )2(2πd d d d ,1,24)1(:π,34d )2(πd d d d π.2d )(2,d )(2π,2d d .,14)1(:,,1:2222221222202202200=++=∴-≤+-=-⋅⋅==≥-≤+-=-==+++=++=-=-=-=≤+-=∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑+∑∑∑∑+∑原式故原式则原式左侧设另解y y z x D y y y y x z x y v y y x x zy D x x x x z y xx v x v z y x v z y x x z z x D y y D Vx D V V VDyx六、(10分)设正项级数∑∞=1n na收敛,且和为S .试求:(1)n na a a n n +++∞→ 212lim ;(2)∑∞=++++121)1(2n nn n na a a ..1)1(22122)1(2)2(;02lim ,112)1(1121212121212112112112121++→∞---+++++++-+++=++++-+++=++++=-=+++∴-⋅-+++-=+++-=-++-+-+=+++n n n n n n n n n n n n n n n n n n n a n a n na a a n na a a n na a a n na a a n n na a a S S nna a a nn n S S S S n S S S S nS S S S S S S n na a a 解.)1(2)1(2,21111121112121S a a b n n na a a a b b n n na a a n na a a b n n n n n nn n n nn n ==+=++++∴+-=+++++++=∑∑∑∞=∞=+∞=++ 则记七、(10分)飞机在机场开始滑行着陆.在着陆时刻已失去垂直速度,水平速度为0v 米/秒.飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为x k 千克⋅秒2/米2,在垂直方向的比例系数为y k 千克⋅秒2/米2.设飞机的质量为m 千克,求飞机从着陆到停止所需的时间.).(arctan )()arctan(10).arctan(1)arctan(1).arctan(1,,0.)arctan(1,d d .0d d ,0)d d (d d .0,,.0)d d (d d ).(,,000002222222222秒时,当得代入初始条件积分得分离变量得即于是有根据题意知记由牛顿第二定律,有摩擦力垂直方向的阻力水平方向的阻力解v gm k k g k k mv BAABt v v BA ABv B AABt v BA ABC v v t C t v BAAB t BAv vB Av t vB t s A ts A g B mk k A g t s m k k t s R m g W v k R v k R y x y x yx y x y y x y x μμ-μμ-===-=∴===+-=-=+=++=++>μ=μ-==μ+μ-+-μ===以下两题乙组考生不做 八、(10分)证明1sin 是无理数..1sin .,)12(2cos )1(,12,1|cos |).(cos )12(2)1(cos )12(2)1(])!12()1(!71!51!311[)!12()!12().12(cos )!12()1()!12()1(!71!51!311sin .,,1sin 1sin 11是无理数所以矛盾不可能是整数故然而两个整数之差仍是整数是整数知,由的展开式有根据是互素的正整数是有理数,则设证+->≤+-+-+--++-+--=->-+-+--++-+-==--n n n n n n n n n q p n q n n n q p x q p qpn n nn nn ξξξξξ九、(10分)在区间)2,0(π内,试比较函数)tan(sin x 与)sin(tan x 的大小,并证明你的结论.。

2018北京高考数学卷

2018北京高考数学卷

2018北京高考数学卷数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A ={}2x x <,B ={−2,0,1,2},则A B = ()A.{0,1} B.{−1,0,1}C.{−2,0,1,2}D.{−1,0,1,2}2.在复平面内,复数11i-的共轭复数对应的点位于A.第一象限 B.第二象限C.第三象限D.第四象限3.执行如图所示的程序框图,输出的s 值为A.12B.56C.76D.7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为A.fB.C.D.5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.46.设a ,b 均为单位向量,则“33a b a b -=+ ”是“a b ⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B.2C.3D.48.设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则A.对任意实数a ,(2,1)A ∈B.对任意实数a ,(2,1)A ∉C.当且仅当a <0时,(2,1)A ∉D.当且仅当32a ≤时,(2,1)A ∉第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2024年全国高中数学联赛初赛试题+答案[北京、广西、吉林、内蒙、四川、浙江、重庆]

2024年全国高中数学联赛初赛试题+答案[北京、广西、吉林、内蒙、四川、浙江、重庆]

2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 11一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为.(其中i 为虚数单位)2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为.3.若点A -12,32关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB,则△ABC 最大角的正弦值为.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-a n +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为.7.已知四面体ABCD 满足AB ⊥BC ,BC ⊥CD ,AB =BC =CD =1,且异面直线AD 与BC 所成的角为60°,则四面体ABCD 的外接球的体积为.ABCD A 1D 1O 1O 8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p 0≤p ≤1 的概率消失,有1-p3的概率保持不变,有1-p 3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p 至多为.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分 已知函数f x =ln x -sin x ,若两不相等的实数x 1,x 2∈0,π 满足曲线y =f x 在点x 1,f x 1 和点x 2,f x 2 处的切线斜率相等,求证:f x 1 +f x 2 >-2.10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)一、填空题(每小题8分,共计96分)1.设集合A =x x -12x -1≤0 ,集合B =x ∣x 2+2x +m ≤0 .若A ⊆B ,则实数m 的取值范围为.2.设函数f :{1,2,3}→{2,3,4}满足f f x -1 =f x ,则这样的函数有个.3.函数y =sin 2x +sin x +1sin 2x +1的最大值与最小值之积为.4.已知数列x n 满足:x 1=22,x n +1=x n n n +1x 2n+n n +1,n ≥1,则通项x n =.5.已知四面体A -BCD 的外接球半径为1,若BC =1,∠BDC =60°,球心到平面BDC 的距离为.6.已知复数z 满足z 24=z -1 510=1,则复数z =.7.已知平面上单位向量a ,b 垂直,c 为任意单位向量,且存在t ∈0,1 ,使得向量a +1-t b 与向量c -a 垂直,则a +b -c的最小值为.8.若对所有大于2024的正整数n ,成立n2024=2024i =0a i C in ,a i ∈N ∗,则a 1+a 2024=.9.设实数a ,b ,c ∈(0,2],且b ≥3a 或a +b ≤43,则max {b -a ,c -b ,4-2c }的最小值为.10.在平面直角坐标系xOy 上,椭圆E 的方程为x 212+y 24=1,F 1为E 的左焦点;圆C 的方程为x -a 2+y -b 2=r 2,A 为C 的圆心.直线l 与椭圆E 和圆C 相切于同一点P 3,1 .当∠OAF 1最大时,实数r =.11.设n 为正整数,且nk =0-1 kC knk 3+9k 2+26k +24=1312,则n =.12.设整数n ≥4,从编号1,2,⋯,n 的卡片中有放回地等概率抽取,并记录下每次的编号.若1,2均出现或3,4均出现就停止抽取,则抽取卡片数的数学期望为.二、解答题(13题满分14分,14、15题满分各20分,合计54)13.正实数k 1,k 2,k 3满足k 1<k 2<k 3;实数c 1,c 2满足c 1=k 2-k 1,c 2-c 1=2k 3-k 2 ,定义函数f x =k 1x ,0≤x ≤1k 2x -c 1,1<x ≤2,k 3x -c 2,x >2 g x =k 1x ,0≤x ≤1k 2x -c 112,1<x ≤2k 3x -c 212,x >2 试问,当k 1,k 2,k 3满足什么条件时,存在A >0使得定义在[0,A ]上的函数g x +f A -x 恰在两点处达到最小值?14.设集合S ={1,2,3,⋯,997,998},集合S 的k 个499元子集A 1,A 2,⋯,A k 满足:对S 中任一二元子集B ,均存在i ∈{1,2,⋯,k },使得B ∈A i .求k 的最小值.15.设f x ,g x 均为整系数多项式,且deg f x >deg g x .若对无穷多个素数p ,pf x +g x 存在有理根,证明:f x 必存在有理根.(考试时间:2024年5月19日9:00∼11:00)一、填空题:本大题共8小题,每小题8分,满分64分.1.设函数f x =ln x +x -2的零点都在区间[a ,b ]a ,b ∈Z ,a <b 内,则b -a 的最小值为.2.已知a >b >1,若log a b +log b a =52,则ba +4的最大值为.3.设a ∈R ,若函数f x =ax -ax-2ln x 在其定义域内为单调递增函数,则实数a 的最小值为.4.用f X ,Γ 表示点X 与曲线Γ上任意一点距离的最小值.已知⊙O :x 2+y 2=1及⊙O 1:x -4 2+y 2=4,设P 为⊙O 上的动点,则f P ,⊙O 1 的最大值为.5.设△ABC 中,AC =2,∠ABC =2∠BAC ,则△ABC 面积的最大值为.6.将边长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1绕着其中心旋转45°得到一个十面体ABCD -EFGH (如图),则该十面体的体积为.7.若T =100k =1299+k ⋅3101-k ,则T 的末尾数字0的个数为.8.记I ={1,4,5,6},U ={1,2,3,⋯,25},集合U 的子集A =a 1,a 2,a 3,a 4,a 5 ,满足a i -a j ∉I ∀1≤i <j ≤5 ,则符合条件的集合A 的个数为.(用具体数字作答)二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(16分)已知t 为正实数,若曲线y =t ⋅e x 与椭圆C :x 22+y 2=1交于A 、B 两个不同的点,求证:直线AB 的斜率k <22.10.(20分)设复数x ,y ,z 满足:x +2y +3z =1.求x 2+y 2+z 2+x 2+y 2+z 2的最小值.11.(20分)给定正整数n ≥2,数组a 1,a 2,⋯,a n 称为“好数组”是指:a 1,a 2,⋯,a n 均不为0,a 1=1,且对任意的1≤k ≤n -1,均有a k +1+a k a k +1-a k -1 =0.求“好数组”a 1,a 2,⋯,a n 的组数.一、选择题:本大题共6小题,每小题x 分,满分x 分.1.记S =32+432-4+42+442-4+52+452-4+⋯+132+4132-4,则与S 最接近的整数为()A.14B.15C.16D.172.在四边形ABCD 中,AB ⎳CD ,AC =λAB +μAD λ,μ∈R .若λ+μ=32,则CDAB=()A.13B.12C.1D.23.函数f x =ax 3-6x a ∈R ,若f x ≤2对∀x ∈-1,12成立,则()A.f x ≤1对∀x ∈-12,12 成立B.f x ≤32对∀x ∈-12,12成立C.f x ≤18对∀x ∈-32,32成立D.f x ≤352对∀x ∈-32,32成立4.在正四面体ABCD 中,棱AD 的中点和面BCD 的中心的连线为MN ,棱CD 的中点和面ABC 的中心的连线为PQ ,则MN 与PQ 所成角的余弦值为()A.118B.117C.116D.1155.已知函数f x =2x 4-18x 2+12x +68+x 2-x +1,则()A.f x 的最小值为8 B.f x 的最小值为9C.f x =8有1个实根D.f x =9有1个实根6.已知A ,B ,C 是平面上三个不同点,且BC =a ,CA =b ,AB =c ,则c a +b +bc的最小值为()A.2-12B.22-12C.2-22D.1-22二、填空:本大题共6小题,每小题x 分,满分x 分.7.设集合S ={1,2,3,4,5}.若S 的子集A 满足:若x ∈A ,则6-x ∈A ,则称子集A 具有性质p ,现从S 的所有非空子集中,等可能地取出一个,则所取出的非空子集具有性质p 的概率为.8.函数f x =log a 4-ax (a >0,且a ≠1),若f x ≥1对∀x ∈[1,2]成立,则实数a 的取值范围.9.已知甲、乙、丙、丁四位同学对某10道判断题的解答情况如下表:题号12345678910甲×√××√×√√√×乙××√√×√√√××丙√√×√√√×√×√丁××√√××√√××若甲、乙、丙三人均答对7题,则丁答对的题数为.10.已知函数f x =ln x -1x2+2ax -ax .若∃m >0,使得f m ≥a 2,则实数a 的最大值为11.设函数f x =sin x⋅sin3x,若关于x的方程f x =a在(0,π]上有奇数个不同的实数解,则实数a的值为.12.在△ABC中,AP平分∠BAC,AP交BC于P,BQ平分∠ABC,BQ交CA于Q,∠BAC=30°,且AB+BP =AQ+QB,则∠ABC的度数为.三、解答:本大题共4小题,每小题x分,满分x分.13.已知椭圆C1的中心为坐标原点O,焦点在坐标轴上.圆C2的圆心为坐标原点O,过点A-2,0且倾斜角为30°的直线与圆C2相切.(1)求圆C2的方程;(2)过圆C2上任意一点P x0,y0x0⋅y0≠0作圆C2的切线,与椭圆C1交于A,B两点,均有∠AOB=90°成立.判断椭圆C1是否过定点?说明理由.14.已知数列a n满足:a1=1,a2=2,a n+1=1a n+an-1n≥2.求证:2024k=11a k>88.15.如图,⊙O1、⊙O2外切于点A,过点A的直线交⊙O1于另一点B,交⊙O2于另一点C,CD切⊙O1于点D,在BD的延长线上取一点F,使得BF2=BC2-CD2,连接CF交⊙O2于E,求证:DE与⊙O2相切.16.全体正有理数的集合Q+被分拆为三个集合A,B,C(即A∪B∪C=Q+,且A∩B=B∩C=C∩A=∅,满足B*A=B,B*B=C,B*C=A,这里H*K={h⋅k∣h∈H,k∈K}.(1)给出一个满足要求的例子(即给出A,B,C);(2)给出一个满足要求的例子,且1,2,⋯,35中的任意两个相邻正整数均不同时在A中.2024年广西省高中数学联赛初赛试题一、填空题(本大题共8小题,每小题10分,共80分).1.设函数f x =log2x.若a<b且f a =f b ,则a+2024b的取值范围是.2.已知椭圆x 2a2+y2b2=1a>b>0的焦点为F1,F2,M为椭圆上一点,∠F1MF2=π3,OM=153b.则椭圆的离心率为.3.若正实数x,y满足x-2y=2x-y,则x的最大值为.4.方程3x=x37的正整数解为.5.设x1,x2,x3,x4均是正整数,且x i x j x k∣1≤i<j<k≤4=18,36,54.则x1+x2+x3+x4=.6.正三棱雉P-ABC中,AP=3,AB=4.设D是直线BC上一点,面APD与直线BC的夹角为45°,则线段PD的长度是.7.已知四次多项式x4-25x3+ax2+61x-2024的四个根中有两个根的乘积是-253,则实数a=.8.设数列x n满足x1=2001,x n+1=x n+y n,其中y n等于x n的个位数,则x2024=.二、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)9.(15分)如图所示,AD=CD,DP=EP,BE=CE,DP<AD<BE,∠ADC=∠DPE=∠BEC=90°.证明:P为线段AB的中点.10.(15分)设A为数集{1,2,3,⋯,2024}的n元子集,且A中的任意两个数既不互素又不存在整除关系.求n 的最大值.11.(20分)用[x]表示不超过x的最大整数.设数列x n满足:x1=1,x n+1=4x n+11x n.求x2024的个位数.12.(20分)图G是指一个有序二元组V,E,其中V称为顶点集,E称为边集.一个图G中的两点x,y的距离是指从x到y的最短路径的边数,记作d x,y.一个图G的直径是指G中任意两点的距离的最大值,记作diam G.∣x,y∈G,即diam G=max d x,y记Z n={[0],[1],[2],⋯,[n-1]}是模n的剩余类,定义Z n上的加法和乘法,均是模n的加法和乘法,例如在Z12={[0],[1],[2],⋯,[11]}中:[3]+[4]=[7],[6]+[9]=[3];[3]⋅[4]=[0],[6]⋅[9]=[6].在Z n中,设[x]≠[0].若存在[y]≠[0]使得[x]⋅[y]=[0],则称[x]是Z n的一个零因子.记Z n的所有零因子的集合为D Z n,它是以={[2],[3],[4],[6],[8],[9],[10]}.Z n的零因子图,记为ΓZ n .例如D Z12D Z n为顶点集,两个不同的顶点[x],[y]之间有一条边相连当且仅当[x]⋅[y]=[0].下图是ΓZ12的例子.证明:对一切的整数n≥2,都有diamΓZ n≤3.2024年内蒙古高中数学联赛初赛试题(2024年5月19日,8:30-9:50)一、填空题(本题满分64分,每小题8分)1.集合M ={1,2,3,5,6}的全部非空子集的元素和等于.2.设a ,b ,c 是实数,满足a +b +c =1,a 2+b 2+c 2=1,a ≠0,bca 3的取值范围为.3.已知正三棱柱ABC -A 1B 1C 1的侧棱长为4,底面边长为2,过点A 的一个平面截此棱柱,与侧棱BB 1,CC 1分别交于点M ,N ,若△MNA 为直角三角形,则△MNA 面积的最大值为.4.已知在△ABC 中BC =3,A =π3,BD =14BC,则线段AD 的最大值为.5.从1,2,⋯,11中任取三个不同的数,则这三个数可以构成等差数列的概率为.6.O 是原点,椭圆x 24+y 25=1,直线l 过1,0 且与椭圆交于A ,B 两点,则△ABO 面积的最大值为.7.数列a n 中,a 1=110,且对任意n ∈N *,a n +1=a 2n +a n ,求2024n =11a n+1 的整数部分是.8.已知关于x 的方程x 3-3x +4=0的三个复数根分别为z 1,z 2,z 3,则z 1-z 2 2z 2-z 3 2z 3-z 1 2的值为.二、解答题(本题满分56分)9.(16分)已知双曲线C :x 24-y 23=1,直线l :y =kx +1与双曲线C 的左右支分别相交于A ,B 两点,双曲线C 在A ,B 两点处的切线相交于点P ,求△ABP 面积的最小值.10.(20分)已知函数f x =e x -1-xax 2-2x +1.(1)当a =0时,讨论f x 在-4,12上的极值.(2)若x =0是f x 的极小值点,求a 的取值范围.11.(20分)设n 是一个给定的正整数,集合S n =i ,j ∣1≤i ,j ≤2n ,i ,j ∈N * ,求最大的正数c =c n ,使得对任意正整数d 1,d 2,都存在集合S n 的子集P ,满足集合P 至少有cn 2个元素,且集合P 的任两个元素i ,j ,k ,l 均有i -k2+j -l 2≠d 1,i -k 2+j -l 2≠d 2.2024年北京市高中数学联赛初赛一试考试时间:8:00-9:20一、填空题(1-8题每题8分,第9题16分,第10,11题每题20分,共120分)1.设整数集合A=a1,a2,a3,a4,a5,若A中所有三元子集的三个元素之积组成的集合为B={-30,-15, -10,-6,-5,-3,2,6,10,15},则集合A={-30,-15,-10,-6,-5,-3,20,10,15},则集合A=.2.已知函数f x =x+2,x<0;ln12x+1,x≥0.若关于x的方程f f x=m恰有三个不相等的实数根x1,x2,x3且满足x1<x2<x3,则2x1+9ln x2+4的取值范围是.3.从1,2,⋯,2024中任取两个数a,b a≤b,则3a+7b的值中,个位数字为8的数有个.4.设复数z满足3z-2i=6,令z1=z2-10z+74z-5+7i,则z1的最大值是.5.已知函数f x =x,若x为无理数;q+1p,若x=qp,其中p,q∈N*,且p,q互质,p>q.则函数f x 在区间89,910上的最大值为.6.对于c>0,若非零实数a,b满足4a2-2ab+4b2-c=0,且使2a+b最大,则3a-4b+2c的最小值为.7.已知函数f x =cos4x+sin4x+a sin4x-b,且f x+π6为奇函数.若方程f x +m=0在[0,π]上有四个不同的实数解x1,x2,x3,x4,则fx1+x2+x3+x44的平方值为.8.已知A⊆{1,2,⋯,2625},且A中任意两个数的差的绝对值不等于4,也不等于9,则A 的最大值为.9.设多项式f x =x2024+2023i=0c ix i,其中c i∈{-1,0,1}.记N为f x 的正整数根的个数(含重根).若f x 无负整数根,N的最大值是.10.在棱长为4的正方体ABCD-A1B1C1D1中,E为棱AA1上的一点,且A1E=1,F为截面A1BD上的动点,则AF+FE的最小值等于.11.数列a n定义如下:设2n!n!n+2024!写成既约分数后的分母为A n ,a n等于2A n 的最大质因数,则a n的最大值等于.2024年北京市高中数学联赛初赛二试考试时间:9:40-12:301.(40分)设a,b,c是三个正数,求证:2a2a2+b2+c2+2ba2+2b2+c2+2ca2+b2+2c2≤32a+b+c5a2+5b2+5c2+ab+bc+ca.2.(40分)如图所示,锐角△ABC的三条高线AD,BE,CF交于点H,过点F作FG⎳AC交直线BC于点G,设△CFG的外接圆为⊙O,⊙O与直线AC的另一个交点为P,过P作PQ⎳DE交直线AD于点Q,连接OD,OQ.求证:OD=OQ.3.(50分)有n个球队参加比赛,球队之间的比赛计划已经安排好了.但是每场比赛的主场客场还没有分配好.这时每个球队都上报了自己能够接受的客场比赛的最大次数.最终组委会发现这些次数加在一起恰好是比赛的总场次,并且组委会还发现任意挑出若干支球队,他们能够接受的客场次数之和都要大于等于他们之间的比赛总场次.请问组委会能否安排好主客场使得每支球队都满意,请证明你的结论.4.(50分)设a1,a2,⋯,a n为n个两两不同的正整数且a1a2⋯a n恰有4048个质因数.如果a1,a2,⋯,a n中任意多个数相乘均不是一个整数的4049次方,求n的最大值.2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 112024年重庆市高中数学联赛初赛试题一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为2-2.(其中i 为虚数单位)【答案】2-2【解析】z -4z 为纯虚数⇒z -4z =-z -4z⇔z +z =4z +zzz.当z +z=0时,,z -1-i min =1;当z +z≠0时,,则z =2,,此时z -1-i min =2-2<1,,当z =21+i 可取等号.2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为-12,52 .【答案】-12,52 【解析】因为f x 为R 上单调递增的奇函数,,且值域为R ,,所以f -1x 也为R 上单调递增的奇函数.注意f 1 =32,,故f -1x -1 <1⇔-32<x -1<32⇔-12<x <52.3.若点A -12,32 关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =3.【答案】3【解析】注意点A 在圆x 2+y 2=1上,,且A 关于直线y =kx 对称的点必然在圆x 2+y 2=1上,,而圆x 2+y 2=1与圆x -2 2+y 2=1仅有唯一公共点B 1,0 ,,因此对称点只能是B .易知∠AOB =120°,,因此k =tan60°= 3.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB ,则△ABC 最大角的正弦值为31010.【答案】31010【解析】设△ABC 的内角A ,,B ,,C 所对的边分别为a ,,b ,,c ,,由条件知b 2+c 2-a 22=a 2+c 2-b 2=3a 2+b 2-c 2 2,,解得b 2=85a 2,,c 2=95a 2,,故最大角为角C ,,由余弦定理得cos C =a 2+b 2-c 22ab =1010⇒sin C =31010.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-an +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=62029.【答案】62029【解析】由a n +1-a n a n =a n +2-a n +1a n +2可得1a n +1a n +2=2a n +1,,则数列1a n 为等差数列,,首项为1a 1=1,,设公差为d ,,则a 1a 2+a 2a 3+⋯+a 6a 7=11+d +11+d 1+2d +⋯+11+5d 1+6d=1d 1-11+d +11+d -11+2d +⋯11+5d -11+6d =61+6d =3⇒d =16,,故1a 2024=1+20236=20296⇒a 2024=62029.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为21600.【答案】21600【解析】一个圆排列满足要求当且仅当该排列中8,,9与7,,9这两对数均不能相邻.设满足8,,9相邻的圆排列有N1个,,满足7,,9相邻的圆排列有N2个,,满足8,,9相邻且7,,9相邻的圆排列有N3个,,则N1= N2=A22⋅7!,,N3=A22⋅6!,,从而由容斥原理,,满足要求的排列的个数为N=8!-N1+N2-N3=21600.7.已知四面体ABCD满足AB⊥BC,BC⊥CD,AB=BC=CD=1,且异面直线AD与BC所成的角为60°,则四面体ABCD的外接球的体积为55π6.ABC DA1D1 O1O【答案】55π6【解析】由题设条件,,可将四面体补成直三棱柱ABD1-A1CD,,如图所示.由题知∠A1AD=60°,,AA1=1,,于是A1D=AD1=3,,又AB=BD1=1,,则∠ABD1=120°.设四面体ABCD的外接球球心为O,,则O在平面ABD1的投影O1为△ABD1的外心,,且OO1=12.由正弦定理知,,O1A=1,,从而外接球半径R=OA=52,,于是V=43πR3=55π6.8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p0≤p≤1的概率消失,有1-p3的概率保持不变,有1-p3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p至多为5 17.【答案】517【解析】设开始有一个珍稀生物、最终灭绝的概率为f1 =q≤12,,那么若开始有n个珍稀生物、最终灭绝的概率则为f n =q n.由题知,,f1 =p+1-p3f1 +1-p3f2 +1-p3f3 ,,从而有q=p+1-p3q+1-p 3q2+1-p3q3即q-11-p3q2+2q+3-1∣=0,,由于q≤12,,则0=1-p3q2+2q+3-1≤1-p 3⋅174-1,,得p≤517.故p至多为517.注:该题也可以用母函数.其第n天的母函数为f n x ,,其中f x =p+1-p3x+1-p3x2+1-p3x3,,考虑limn→+∞f n 0 ≤12即可.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分已知函数f x =ln x-sin x,若两不相等的实数x1,x2∈0,π满足曲线y=f x 在点x1,f x1和点x2,f x2处的切线斜率相等,求证:f x1 +f x2 >-2.【解析】先证一个引理:对x>0,,有sin x<x.引理的证明:令φx =sin x-x,,φ x =cos x-1≤0,,故φx 为减函数,,所以当x>0时,,φx <φ0 =0,,引理得证!4分回到原题:f x =1x-cos x,,由题知f x1=f x2 .不妨x 1>x 2,,则x 1-x 22∈0,π2,,于是由f x 1 =f x 2 并结合引理可得x 1-x 2x 1x 2=cos x 2-cos x 1=2sin x 1+x 22sin x 1-x228分≤2sin x 1-x 22<2×x 1-x22=x 1-x 2,,因此x 1x 2>1.12分所以f x 1 +f x 2 =ln x 1x 2-sin x 1-sin x 2>-sin x 1-sin x 2≥-2.16分10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.【解析】设M x 1,x 21 ,,N x 2,x 22 ,,注意k MN =x 22-x 21x 2-x 1=x 1+x 2,,从而当MN ⎳AB 时,,k MN =k AB =3⇒x 1+x 2= 3.5分因为y =2x ,,所以k AM =2x 1,,可得切线AM 的方程为y -x 21=2x 1x -x 1 ,,即y =2x 1x -x 21.同理可得切线BN 的方程为y =2x 2x -x 22.由题设中A ,,B 的要求,,可设A t ,3t -3 ,,B t +3,3t ,,10分将A t ,3t -3 代入切线AM 的方程,,得3t -3=2tx 1-x 21,,即x 21-2tx 1+3t -3=0,,可求得x 1=t -t 2-3t +3,,这里取较小的根是因为M 为左边的切点.同理可求得x 2=t +3+t 2+3t +3.15分于是x 1+x 2=3⇒t -t 2-3t +3+t +3+t 2+3t +3=3,,整理得t 1+3t 2-3t +3+t 2+3t +3=0⇒t =0.故点A 的横坐标为0.20分11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)【解析】设f x =x +14-x +2=12x +14+x +2.对于x >0,,f x 连续且单调递减.由于x 1>2,,则0<x 2=f x 1 <f 2 =2,,进而依次可以得到x 3>2,,0<x 4<2,,即0<x 2k <2,,x 2k +1>2.5分令g x =x +f x .由于g x =1+12x +14-12x +2>0恒成立,,故当x ≥0时,,g x 单调递增.又由于g 2 =4,,故当x >2时,,g x >4;当0<x <2时,,g x <4.10分当n 为偶数时,,设n =2k k ∈N * ,,有x 1+⋯+x 2k =x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k =g x 1 +g x 3 +⋯+g x 2k -1 >4k ,,且x 1+⋯+x 2k =x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k -2+x 2k -1 +x 2k =x 1+g x 2 +g x 4 +⋯+g x 2k -2 +x 2k <4k +1,,故x 1+x 2+⋯+x 2k =4k =2n .当n 为大于1的奇数时,,设n =2k +1k ∈N * ,,有x 1+⋯+x 2k +1=x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k +x 2k +1=g x 1 +g x 3 +⋯+g x 2k -1 +x 2k +1>4k +2x 1+⋯+x 2k +1=x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k +x 2k +1=x1+g x2+g x4 +⋯+g x2k<4k+3,,故x1+x2+⋯+x2k+1=4k+2=2n.当n=1时,,x1=3.综上,,当n=1时,,x1=3;当n≥2时,,x1+x2+⋯+x n=2n.20分2024年浙江省高中数学联赛初赛试题一、填空题(每小题8分,共计96分)1.设集合A=x x-12x-1≤0,集合B=x∣x2+2x+m≤0.若A⊆B,则实数m的取值范围为m≤-3.【答案】m≤-3【解析】集合A=x 12<x≤1,,要使A⊆B,,则12+2×1+m≤0,,解得m≤-3.2.设函数f:{1,2,3}→{2,3,4}满足f f x -1=f x ,则这样的函数有10个.【答案】10【解析】令y=f x -1∈{1,2,3},,则f y =y+1.对f1 =2以下三种情况都满足条件f2 =f3 =2;f2 =f3 =3;f2 =f3 =4,,共3种.同理对f2 =3,,f1 =f3 有3种情况;f3 =4,,f1 =f2 也有3种情况.又f1 =2,,f2 =3,,f3 =4显然满足条件.所以满足已知条件的函数共有3×3+1=10个.(可以看出这种映射的限制仅在值域上,,因此也可对值域大小分类讨论.)3.函数y=sin 2x+sin x+1sin2x+1的最大值与最小值之积为34.【答案】34【解析】令t=sin x,,-1≤t≤1,,原式变形y=1+1t+1t ,,当t≠0时,,12≤y≤32.当t=0时,,y=1.所以y的最大、最小值分别为32,,12,,其积为34.4.已知数列x n满足:x1=22,x n+1=xnn n+1x2n+n n+1,n≥1,则通项x n=n3n-1.【答案】n3n-1【解析】将已知条件变形得1x2n+1-1x2n=1n-1n+1,,将上式从1到n叠加得到1 x2n -1x21=1-1n,,即x n=n3n-1.5.已知四面体A-BCD的外接球半径为1,若BC=1,∠BDC=60°,球心到平面BDC的距离为6 3.【答案】63【解析】因为球心在平面BDC上的投影就是△BDC的外心,,由已知求得△BDC的外接圆半径为33,,所以球心到平面BDC的距离为1-332=63.6.已知复数z满足z24=z-1510=1,则复数z=12±32i.【答案】12±32i【解析】由已知得z =z-1=1,,解得z=12±3i2.显然这两个解满足题设条件.。

第十八届“华杯赛”笔试初赛试题

第十八届“华杯赛”笔试初赛试题

第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。

在考试中,选择恰当的方法很重要。

这道题,看到这道题后,我第一个想法就是归纳。

2222315=+、2231422=+、2244537=+、2255648=+、写完前三个,发现第二个算式很不和谐,又写出了第四个,仔细一想,原来第二个可以写成2233426=+,规律找到了,分子是原式中分子部分的一个因数,分母比分子大3!答案一定是20132016,很简单,第一题是很容易的年份题,等等,年份2013这个数是我们非常熟悉的,2013=3×11×61,是3的倍数,那么加3不还是3的倍数么?可以约分,所以最后的答案是20136712016672=所以选B ! 如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的2013也适用呢,所以最正确的方法是这样思考:如果这道题直接计算,分别算出分子分母,然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分,是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出2013.具体过程是这样的:201320132014(20131)2012201320132014201320142012201320132014201320132201320132013671,2013(20142)2016672⨯=⨯++⨯=⨯++⨯=⨯+⨯⨯===⨯+原式 6716721343.m n +=+=这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“m 与n 为互质的自然数”,那么就容易把答案写成D 。

数学竞赛真题大汇总

数学竞赛真题大汇总

lim (
1x 2 x 3 x 1 )x 3
n
(十届,北京大专组)
21. 设 x1 1, xn1 sin xn (n 1, 2,
) ,则 lim xn (九届,北京甲乙组)
sin t 2 dt ) t 22. lim (九届,北京甲乙组) x0 x f ( x) ln(1 ) f ( x) sin 2 x 23. lim 5, 则 lim 2 (八届,北京甲乙组) x x0 x 0 x 3 1 (
f n ( x) 1 在 [0, ) 上有唯一实根; (2)求 lim xn(六届,北京甲乙组)
1 2 cos x Cn cos 2 x 十五、 设 f n ( x) Cn n (1) n 1 Cn cos n x, 求证: ( 1)
对于任何自然数 n,方程 f n ( x)
f (0,0) 0 , 且 在 点 (0, 0) 处 f ( x, y) 可 微 , 求 极 限 :
5
x0
lim

x2
0
dt
t x
f (t , u )du
x4 4
(六届,北京甲乙组)
1 e
十七、 设 函 数 f (u) 在 u 内 可 导 , 且 f (0) 0 , 又
f (0), f (0), f (0)及 lim[1
x0
f ( x) 1 ] x (十一届,北京甲乙组) x
七、
求数列 n


1 n
(十一届,北京大专组) 中的最小项。 x2 x x 0; (1)讨论函数的连续性; (2 ) x 1 x 0
八、
设函数 y f ( x)

2024年高考全国甲卷数学(理)真题卷(含答案与解析).

2024年高考全国甲卷数学(理)真题卷(含答案与解析).

绝密★启用前2024年普通高等学校招生全国统一考试理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A 10iB. 2iC. 10D. 2-2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9C. {}1,2,3D. {}2,3,53. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A. 2-B.73C. 1D. 25. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( ) A. 4B. 3C. 2D.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) .A.16B.13C.12D.237. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.8.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 19. 已知向量()()1,,,2a x x b x =+=r r,则( )A. “3x =-”是“a b ⊥r r”的必要条件 B. “3x =-”是“//a b r r”的必要条件 C. “0x =”是“a b ⊥r r ”充分条件D. “1x =-”是“//a b r r”的充分条件10. 设αβ、两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③B. ②④C. ①②③D. ①③④11. 在ABC V 中内角,,A B C 所对边分别,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A.32B.C.D.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )的是为A. 2B. 3C. 4D. 二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______. 15. 已知1a >,8115log log 42a a -=-,则=a ______. 16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品 合格品 不合格品总计 甲车间 26 24 0 50 乙车间 70 28 2 100 总计96522150(1)填写如下列联表:优级品非优级品甲车间 乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥0.050 0.010 0.001 k3.8416.63510.82818. 记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式; (2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21 已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程; (2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.参考答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A. 10iB. 2iC. 10D. 2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9C. {}1,2,3D. {}2,3,5.【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解. 【详解】因为{}}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B =I ,(){}2,3,5A A B =I ð 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫ ⎪⎝⎭,则min 375122z =-⨯=-. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A. 2- B.73C. 1D. 2【答案】B 【解析】【分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭. 故选:B.5. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( ) A. 4 B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【详解】设()10,4F -、()20,4F 、()6,4-P , 则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===. 故选:C.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+, 令0x =,则1y =,令0y =,则13x =-, 故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=. 故选:A.7. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D. 【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭, 故可排除D.故选:B. 8. 已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B. 1-C.D. 1【答案】B 【解析】 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭, 故选:B .9. 已知向量()()1,,,2a x x b x =+=r r,则( )A. “3x =-”是“a b ⊥r r”的必要条件B. “3x =-”是“//a b r r”的必要条件C. “0x =”是“a b ⊥r r”的充分条件D. “1x =-”是“//a b r r”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥r r 时,则0a b ⋅=r r,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==r r ,故0a b ⋅=r r,所以a b ⊥r r,即充分性成立,故C 正确;对B ,当//a b r r时,则22(1)x x +=,解得1x =,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b r r不成立,即充分性不立,故D 错误. 故选:C.10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n④若n 与α和β所成的角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③ B. ②④C. ①②③D. ①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β, 当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确; 对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β, 因为s ⊂平面α,m αβ=I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误; 综上只有①③正确, 故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 由余弦定理可得:22294b ac ac ac =+-=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==, 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=. 故选:C.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A. 2B. 3C. 4D. 【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解. 【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===,此时24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 【答案】5 【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩, 294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =, 所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭. 故答案为:5.14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台高分别为)12h r r==-甲,)12h r r==-乙,所以V hV h====甲甲乙乙.15. 已知1a>,8115log log42aa-=-,则=a______.【答案】64【解析】【分析】将8log,log4aa利用换底公式转化成2log a来表示即可求解.【详解】由题28211315loglog log4log22aaa a-=-=-,整理得()2225log60log aa--=,2log1a⇒=-或2log6a=,又1a>,所以622log6log2a==,故6264a==故答案为:64.16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b,第三个球的号码为c,则的323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种, 设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤, 故2()3c a b -+≤,故32()3c a b -≤-+≤, 故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种, 当5c =,则713a b ≤+≤,同理有10种, 当6c =,则915a b ≤+≤,同理有2种, 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=, 故所求概率为56712015=. 故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品 合格品 不合格品总计 甲车间262450乙车间 70 28 2 100 总计96522150(1)填写如下列联表:优级品非优级品甲车间 乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥0.050 0.010 0.001 k3.841 6.63510828【答案】(1)答案见详解(2)答案见详解 【解析】【分析】(1)根据题中数据完善列联表,计算2K ,并与临界值对比分析; (2)用频率估计概率可得0.64p =,根据题意计算p +. 【小问1详解】 根据题意可得列联表:.优级品非优级品甲车间 26 24 乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯, 因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异. 【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=, 用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+ 所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 18. 记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式; (2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅-(2)(21)31nn T n =-⋅+ 【解析】【分析】(1)利用退位法可求{}n a 的通项公式. (2)利用错位相减法可求n T.【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-, ∴数列{}n a 是以4为首项,3-为公比的等比数列, 所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++L 0211438312343n n -=⋅+⋅+⋅++⋅L 故1233438312343nn T n =⋅+⋅+⋅++⋅L 所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅L()1313444313n nn --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值. 【答案】(1)证明见详解;(2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解. 【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =, 四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =, 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =, 所以ABM V 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =, 四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM V 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==u u u u r u u u r,()2,3BE =u u u r ,设平面BFM 的法向量为()111,,m x y z =r,平面EMB 的法向量为()222,,n x y z =r,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =r ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-r,11cos ,13m n m n m n ⋅===⋅r r r r r r,则sin ,m n =r r , 故二面角F BM E --20. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析 【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=, 故()()422Δ102443464120k kk=-+->,故1122k -<<, 又22121222326412,3434k k x x x x k k -+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Qy y y x x --==--, 所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k kx x -⨯-⨯+-++++==-- 2222212824160243234025k k k k k x --+++==-, 故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21. 已知函数()()()1ln 1f x ax x x =-+-. (1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围. 【答案】(1)极小值为0,无极大值.(2)12a ≤- 【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值. (2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围. 【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-, 故121()2ln(1)12ln(1)111x f x x x x x +'=++-=+-+++, 因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数, 故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>, 故()f x 在0x =处取极小值且极小值为()00f =,无极大值. 【小问2详解】()()()()11ln 11ln 1,011a x axf x a x a x x x x +-=-+'+-=-+->++, 设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a aax a s x x x x x ++++-++=-=-=-+++'+, 当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数, 故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=. 当102a -<<时,当210a x a+<<-时,()0s x '<, 故()s x 在210,a a +⎛⎫-⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫-⎪⎝⎭上()0f x '<即()f x 为减函数, 故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍. 当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得()0,∞+上()()00f x f <=恒成立,不合题意,舍; 综上,12a ≤-. 【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a = 【解析】【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;在法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值. 【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥. 【答案】(1)证明见解析.(2)证明见解析 【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明. (2)根据绝对值不等式并结合(1)中结论即可证明. 【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥, 当a b =时等号成立,则22222()a b a b +≥+, 因为3a b +≥,所以22222()a b a b a b +≥+>+; 【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=绝密★启用前2024年普通高等学校招生全国统一考试文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,92.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 23. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2-B.73C. 1D.295. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.236. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A. 4B. 3C. 2D.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( ) A.16B.C.12D. 8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-大致图像为()A. B.C. D.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③B. ②④C. ①②③D. ①③④11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A.32B.C.D.二、填空题:本题共4小题,每小题5分,共20分.原13题略的的12. 函数()sin f x x x =在[]0,π上的最大值是______. 13. 已知1a >,8115log log 42a a -=-,则=a ______. 14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17. 已知函数()()1ln 1f x a x x =--+. (1)求()f x 单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.的的(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 直角坐标方程; (2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算. 【详解】依题意得,对于集合B 中元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =, 于是{1,2,3,4}A B ⋂=. 故选:A 2.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 2【答案】D 【解析】的的【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=. 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =-⨯=-. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2- B.73C. 1D.29【答案】D【解析】【分析】可以根据等差数列基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质 根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=. 故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意; 基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B6. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )的A. 4B. 3C. 2D.【答案】C【解析】 【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===. 故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A. 16B.C. 12 D. 【答案】A【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =--=-, 故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236⨯⨯= 故选:A. 8. 函数()()2e e sin x x f x x x -=-+-在区间[ 2.8,2.8]-的大致图像为( )A. B.C. D. 【答案】B【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=, 又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭, 故可排除D.故选:B.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1【答案】B【解析】 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+⎪-α⎝⎭, 故选:B .原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥ ③若//n α,且//n β,则//m n④若n 与α和β所成的角相等,则m n ⊥其中所有真命题编号是( )A. ①③B. ②④C. ①②③D. ①③④ 【答案】A 的【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ=I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A. 32B.C.D. 【答案】C【解析】 【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A C B ==. 由余弦定理可得:22294b ac ac ac =+-=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==, 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=. 故选:C. 二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x ⎛⎫==- ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦, 当ππ32x -=时,即5π6x =时,()max 2f x =. 故答案为:213. 已知1a >,8115log log 42a a -=-,则=a ______. 【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解. 【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=, 2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______. 【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+> 则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =, 当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点, 所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.。

北京数学竞赛试题及答案

北京数学竞赛试题及答案

北京数学竞赛试题及答案试题一:代数问题题目:已知 \( a, b, c \) 为实数,且满足 \( a^2 + b^2 + c^2 = 1 \)。

求证:\( (a + b + c)^2 \leq 3 \)。

解答:根据题目条件,我们有 \( a^2 + b^2 + c^2 = 1 \)。

展开\( (a + b + c)^2 \) 得到:\[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \]由于 \( a^2 + b^2 \geq 2ab \),\( b^2 + c^2 \geq 2bc \),\( c^2 + a^2 \geq 2ca \)(根据算术平均数-几何平均数不等式),我们可以得到:\[ 2(ab + ac + bc) \leq 2(a^2 + b^2 + c^2) = 2 \]将上述不等式代入 \( (a + b + c)^2 \) 的展开式中,得到:\[ (a + b + c)^2 \leq 1 + 2 = 3 \]证明完毕。

试题二:几何问题题目:在直角三角形 ABC 中,∠A = 90°,AB = 3,AC = 4。

求三角形 ABC 的外接圆半径。

解答:直角三角形 ABC 的外接圆半径 R 可以通过以下公式求得:\[ R = \frac{a + b + c}{2} \]其中,a 和 b 是直角边,c 是斜边。

在本题中,a = 3,b = 4,c = 5(根据勾股定理)。

代入公式得到:\[ R = \frac{3 + 4 + 5}{2} = 6 \]所以,三角形 ABC 的外接圆半径为 6。

试题三:组合问题题目:有 5 个不同的球和 3 个不同的盒子,将这些球放入盒子中,每个盒子至少有一个球。

求不同的放法总数。

解答:首先,我们需要将 5 个球分成 3 组,每组至少有一个球。

这可以通过组合数学中的“插板法”来解决。

我们有 4 个板子来分割 5 个球,形成 3 组。

十八届数学竞赛试题及答案

十八届数学竞赛试题及答案

十八届数学竞赛试题及答案一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(2) \)的值。

A. 5B. 3C. 1D. -1答案:A2. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π答案:B3. 以下哪个数是无理数?A. 0.33333...B. πC. √2D. 1/3答案:C4. 一个等差数列的首项是2,公差是3,求第10项的值。

A. 25B. 29C. 32D. 35答案:B5. 已知三角形ABC的三边长分别为3, 4, 5,求其面积。

A. 6B. 9C. 10D. 12答案:A6. 一个正方体的体积是27立方厘米,求其边长。

A. 3厘米B. 4厘米C. 5厘米D. 6厘米答案:A7. 以下哪个是二次方程的根?A. x = 2B. x = -2C. x = 3D. x = -3答案:C8. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 8答案:A9. 已知\( \sin(30^\circ) = \frac{1}{2} \),求\( \cos(30^\circ) \)的值。

A. √3/2B. √2/2C. 1/√2D. 1/2答案:A10. 一个数的平方根是4,求这个数。

A. 16B. 8C. 12D. 20答案:A二、填空题(每题2分,共20分)1. 圆的周长公式是 \( C = \pi d \),其中 \( d \) 是直径。

如果\( d = 10 \),则周长是 \( 30\pi \) 。

2. 一个数的立方根是 \( a \),那么这个数是 \( a^3 \)。

3. 正弦函数在第一象限是正值。

4. 如果一个数列是等比数列,且首项 \( a = 2 \),公比 \( r = 3 \),那么第5项是 \( 162 \)。

5. 一个二次方程 \( ax^2 + bx + c = 0 \) 的判别式是 \( b^2 -4ac \)。

第十六届北京市大学生数学竞赛甲乙组试题与解答

第十六届北京市大学生数学竞赛甲乙组试题与解答

第十六届北京市大学生数学竞赛甲乙组试题与解答第十六届北京市数学竞赛试题答案(甲、乙组) 一、 填空(20分)1.1)0(,)1(2='=+'-+''y e y x y x y x ,且a xxx y x =-→2)(lim,则__________=a .解 由a xxx y x =-→2)(lim,得0)0(=y ,利用方程,得2)0(=''y ,得1=a . 2.))(()(b x a x be xf x ---=,e x =为无穷间断点,1=x 为可去间断点,则__________=b .e解 ))(1()(b x x be xf x ---=3.,),0(,)0,(,),,(22y y f x x f y x yx zy x f z ==+=∂∂∂= 则 __________),(=y x f .解 __________),(=y x f y x xy y x +++2222. 4.,)2()2()2(222dz xy z dy xz y dx yz x du -+-+-= 则__________),,(=z y x u .解 C xyz z y x z y x u +-++=23__________),,(333 5.,)(13)(1022⎰--=dx x f x x x f 则__________)(=x f . 解 ,13)(2x k x x f --=其中⎰--=1022)13(dx x k x k ,得k k k dx x kx x k dx x k x k 2329)16)9(()13(22102221022-+=+---=--=⎰⎰,得,2992k k +=得23,3439472819=±=-±=k .6.⎰⎰≤+-→=++22222._________)cos(1lim20r y x y x r dxdy y x er解 π. 7. ,4)cos 1)(1ln(121lim=-+-→x x f x x 则.__________)(lim 30=→xx f x 解 2ln 28.,)1(,)()(a f xx f x f ==' 则.__________)2(=f 解 .2)2(,)(,)1(,)(,1)(/)(a f ax x f a f cx x f xx f x f =⇒=⇒==⇒='9.14:22=+y x L ,周长为l ,则.__________)2(2=+⎰ds y x L解 l 410.设,0>x 或,1-<x 则级数∑∞∞=-+++-+1))1(21)(1()21)()1(1(lnn x n nx nx x n 的和为_______.解∑∞∞=-+++-+1))1(21)(1()21)()1(1(lnn x n nx nx x n =.2ln 211lim ))21()1(ln ))1(21())1(1((ln1=++-=++--+-+∞→∞∞=∑nx nxnx nx x n x n n n . 二、)(x f '存在,且,cos 6sin 4cos )(23C x x x x x dx x f x +--='⎰求)(x f . 解 x x x x x x x x x f x sin 6sin 4cos 4sin cos 2)(23+---=' 问题:可能是设)(x f '连续,积分才有意义。

2023年高考数学甲卷18解析

2023年高考数学甲卷18解析

2023年高考数学甲卷18解析2023年高考数学甲卷18解析一、选择题解析2023年高考数学甲卷18的选择题部分是考察学生对基本数学概念和计算能力的理解和掌握程度。

在解题过程中,要注意审题、分析和思考,避免盲目猜测和草率行事。

第1题是一道求根问题。

题目给出了一个一元二次方程,需要求出它的根。

解答这个问题,首先要注意到给出的方程是一元二次方程,然后利用求根公式计算出根的值即可。

第2题是一道几何问题。

题目给出了一个等腰梯形,需要求出它的面积。

解答这个问题,首先要注意到给出的图形是等腰梯形,然后利用等腰梯形面积公式计算出面积即可。

第3题是一道函数问题。

题目给出了一个函数关系式,需要求出函数的定义域。

解答这个问题,首先要注意到给出的函数关系式,然后根据函数的定义域的概念进行分析和计算即可。

二、填空题解析2023年高考数学甲卷18的填空题部分是考察学生对数学知识的掌握和应用能力的考验。

在解题过程中,要注意灵活运用所学的数学知识,不断推理和思考,寻找合适的解题方法。

第4题是一道三角函数问题。

题目给出了一个三角函数的比值,需要求出它的值。

解答这个问题,首先要注意到给出的一个三角函数的比值,然后根据所学的三角函数知识进行计算即可。

第5题是一道概率问题。

题目给出了一个事件的概率,需要求出事件的互补事件的概率。

解答这个问题,首先要注意到给出的事件的概率,然后根据互补事件的概念进行计算即可。

第6题是一道数列问题。

题目给出了一个数列的前几项,需要求出数列的通项公式。

解答这个问题,首先要注意到给出的数列的前几项,然后根据数列的性质进行分析和计算即可。

三、解答题解析2023年高考数学甲卷18的解答题部分是考察学生对数学知识的理解和运用能力的考验。

在解题过程中,要注意完整地给出解题思路和步骤,并用严谨的语言表达出来。

第7题是一道向量问题。

题目给出了两个向量的关系,需要求出它们的数量积。

解答这个问题,首先要注意到给出的两个向量的关系,然后根据向量的运算规则进行计算即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八届北京市大学生数学竞赛本科甲、乙组试题解答(2007年10月14日 下午2:30--5:00)注意:本考卷共九题. 甲组九题全做, 乙组只做前七题一、 填空题(每小题2分,共20分).3.______,111,1.11==-+++-→-m m x xx m x m 解则的等价无穷小是时设当 .)1()1()1(.________)1(,)()2)(1()()2)(1()(.21+-='='+++---=-n n f f n x x x n x x x x f n 解则设 .)]11(1[lim ._____)]11(1[lim ,1)0,1()(.3e nf n f y x f y n n n n =++=++-=∞→∞→解则轴上的截距为处的切线在在点已知曲线.1.______lim.411-==∑=∞→+e e n k n k n k n 原式解 π.4._________d )cos 1(sin .52π2π22-==++⎰-原式解x x x x .0232___.__________为处的切平面 (0,1) 在点 ),( 则曲面其中),(321)1,(且 ,微的某邻)1,0( 在点),(设函数6.22=--+=+=+++=+=z y x y x f z y x o y x y x f y x f z 切平面方程为解方程,域内可ρρ.1旋转转曲面方程._____________为轴旋转的旋转曲面方程绕111101线.7222=-+-=-=-z y x z z y x 解直.0.____d )cos(d 1||||.822==+-=++⎰原式解的正向一周,则为封闭曲线设Ly y x x y x y x x L .322.______|)div (}1,2,2{)2,1,1(div ,2.922223==∂∂-=--=原式解的方向导数方向处沿在点则其散度设向量场M M z y x z y x z y x A ll A k j i A .14._______,)1(.102222222=++=++=+'+''++=γβαγβαγβα解则的一个特解方程是二阶常系数线性微分设x x x e y y y e x e y .0)0,0()0,0(),(.)0,0(),(),,(||),()10(=-=ϕϕϕ件是点处可微的充分必要条在试证明函数的一个邻域内连续在点其中设二元函数分、二y x f y x y x y x y x f.)0,0(),(.0),(||lim ,2||||||,),(||)0,0()0,0()0,0(),(.0)0,0(,0)0,0(,0)0,0()(.0)0,0(),0,0()0,(||lim ),0,0()0,(||lim ,)0,(||lim )0,0()0,(lim )0,0(.)0,0(),0,0(,)0,0(),()(220022222222220000点处可微在由定义所以又因为则可知若充分性故有且由于存在则点处可微在设必要性证y x f y x y x y x y x y yx x y x y x y x y x y x y x y f x f f y x f f f x x x x x x xx x x f x f f f f y x f y x y x y x x x x x x y x =+-≤+++≤+-+-=+'-'--='='==-===-='''→→→→→→-+ϕϕϕϕϕϕϕϕϕ.)0(2)1()1(6)(),1,1(,]1,1[)()10(f f f f x f '---='''-∈-ξξ使得存在实数证明上三次可微在区间设分三、 .)0(2)1()1(6)()].()([21)(),,()].()([61)0(2)1()1(,!3)(!2)0()0()0()1(,!3)(!2)0()0()0()1(21212121f f f f f f f f f f f f f f f f f f f f f f '---=''''''+'''='''∈'''+'''+'=--'''-''+'-=-'''+''+'+=ξξξξξξξξξξξ于是使得实数由导数的介值性知存在证 .d ,),(,1),(,),(,),(),(),(,1:),(),,()10(22⎰⎰•≡≡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=+=≤+D y y x v y x u D y v x v y u x u y x y x u y x v y x y x D y x v y x u σg fj i g j i f 求的边界上有且在又上有一阶连续偏导数在闭区域设函数分四、 .,1:π,d )cos sin sin (d d d d d )()(d ,)()(22π202正向解=+-=+-=+=+=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∴∂∂-∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-∂∂+∂∂=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=⎰⎰⎰⎰⎰⎰⎰••y x L y y x y y uv x uv y uv x uv y uv x uv y v u y u v x v u x u v y v x v u y u x u v L L D D θθθθσσg f g f.),1(14)1()1(:,d d d d d d )10(222222取外侧其中计算分五、≥=+-+-∑++⎰⎰∑y z y x y x z x z y z y x π.325π2π319π,319d )sin 32sin sin 41sin cos 41(d 4d sin )2sin sin sin cos 2(d d 2d )(2d )(2π,2d d .,14)1(:,,1:π022π0102π0π0220000=+=∴=++=++=+=++=-=-=-=≤+-=∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑+∑∑∑∑+∑原式则原式左侧设解ϕϕϕθϕθθϕϕθϕθϕθr r r r v y x v z y x x z z x D y V VDπ.325π2π311π38,24)1(:π,611d )2(2πd d d d ,1,24)1(:π,34d )2(πd d d d π.2d )(2,d )(2π,2d d .,14)1(:,,1:22220221222202202200000=++=∴-≤+-=-⋅⋅==≥-≤+-=-==+++=++=-=-=-=≤+-=∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑+∑∑∑∑+∑原式故原式则原式左侧设另解y y z x D y y y y x z x y v y y x x z y D x x x x z y x x v x v z y x v z y x x z z x D y y D V x D VV V D y x.)1(2)2(;2lim )1(.,)10(121211∑∑∞=→∞∞=+++++++n n n n n n n n na a a n na a a S a试求:且和为收敛设正项级数分六、.1)1(22122)1(2)2(;02lim ,112)1(1121212121212112112112121++→∞---+++++++-+++=++++-+++=++++=-=+++∴-⋅-+++-=+++-=-++-+-+=+++n n n n n n n n n n n n n n n n n n n a n a n na a a n na a a n na a a n na a a n n na a a S S n na a a n n n S S S S n S S S S n S S S S S S S n na a a 解 .)1(2)1(2,21111121112121S a a b n n na a a a b b n n na a a n na a a b n n n n n n n n n n n n ==+=++++∴+-=+++++++=∑∑∑∞=∞=+∞=++ 则记 .,./,/,,./,.)10(22220需的时间求飞机从着陆到停止所千克机的质量为设飞米秒千克为在垂直方向的比例系数米秒千克平方向的比例系数为在水正比的阻力与速度的平方成且飞机运动时所受空气为飞机与地面的摩擦系数秒米水平速度为速度在着陆时刻已失去垂直陆飞机在机场开始滑行着分七、m k k v y x ⋅⋅μ).(arctan )()arctan(10).arctan(1)arctan(1).arctan(1,,0.)arctan(1,d d .0d d ,0)d d (d d .0,,.0)d d (d d ).(,,000002222222222秒时,当得代入初始条件积分得分离变量得即于是有根据题意知记由牛顿第二定律,有摩擦力垂直方向的阻力水平方向的阻力解v g m k k g k k m v B A AB t v v B A AB v B A AB t v B A AB C v v t C t v B A ABt B Av v B Av t v B t s A ts A g B m k k A g t s m k k t s R mg W v k R v k R y x y x yx y x y y x y x μμ-μμ-===-=∴===+-=-=+=++=++>μ=μ-==μ+μ-+-μ===以下两题乙组考生不做.1sin )10(是无理数证明分八、 .1sin .,)12(2cos )1(,12,1|cos |).(cos )12(2)1(cos )12(2)1(])!12()1(!71!51!311[)!12()!12().12(cos )!12()1()!12()1(!71!51!311sin .,,1sin 1sin 11是无理数所以矛盾不可能是整数故然而两个整数之差仍是整数是整数知,由的展开式有根据是互素的正整数是有理数,则设证+->≤+-+-+--++-+--=->-+-+--++-+-==--n n n n n n n n n q p n q n n n q p x q p qp n nnn nn ξξξξξ.)sin(tan )tan(sin ,)2π,0()10(论的大小,并证明你的结与试比较函数内在区间分九、x x ).sin(tan )tan(sin ,)2π,0,.0)(,)2π,2π[arctan .1tan )tan(sin 1.1sin 4π,4ππ4π4π12π)2π(arctan tan 1)2π(arctan tan )2πsin(arctan .1sin )2πsin(arctan ,)2π,2π[arctan .0)(,0)0(,0)()2πarctan ,0(.cos )(sin cos )cos(tan ,cos 3sin 2tan cos,3sin 2tan .02sin 4tan 3cos 2sec )(3sin 2tan )(.3sin 2tan cos )]cos(sin 2)[cos(tan 31)(sin cos )cos(tan 2π0.2πsin 0,2πtan 02πarctan 0.cos )(sin cos )(sin cos )cos(tan cos sec )cos(tan cos )(sin sec )(则),sin(tan )tan(sin )( 设 解2223222232222322x x x x f x x x x x x f f x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x xx x x x x x x x x f x x x f >∈>∈∴<<<<>+=+=+=<<∈>=>'∈<<+>+>-=-+='-+=+≤+≤<<<<<<-=-='-=时(当综上可得时当于是故由于时当所以又时,于是当即所以于是,设)上的凸性有,由余弦函数在(时,当ϕϕ。

相关文档
最新文档