人教版七年级数学上册各章知识点总结及对应章节经典练习

合集下载

人教版七年级数学上册各章知识点总结及对应章节经典练习

人教版七年级数学上册各章知识点总结及对应章节经典练习

人教版七年级数学上册各章知识点总结及对应章节经典练习第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。

问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数。

判断:有理数可分为正有理数和负有理数(错,还有0)②零既不是正数,也不是负数。

判断:0是最小的正整数(错),正整数负整数统称整数(错,还有0 ),正分数负分数统称分数(对)③有限小数和无限循环小数因都能化成分数,故都是有理数。

判断:0是最小的有理数(错)④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。

判断:整数和小数统称有理数(错,整数和分数统称有理数)。

二、数轴1.数轴三要素:原点、正方向、单位长度(另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。

3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a和数b为端点的线段中点为a与b和的一半(如何用代数式表示?)三、相反数1.定义:若a+b=0,则a与b互为相反数特例:因为0+0=0,所以0的相反数是02.性质:①若a与b互为相反数,则a+b= 0②-a不一定表示负数,但一定表示a的相反数(仅仅相差一个负号)③若a与b互为相反数且都不为零,ab-1④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。

⑤互为相反数的两个数绝对值相等,平方也相等。

即:a =a -,()22a a =-四、绝对值1.定义:在数轴上表示数a 点到原点的距离,称为a 的绝对值。

记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。

即()()()000a a a a a a >⎧⎪==⎨⎪-<⎩ 0 ()()00a a a a a ≥⎧⎪=⎨-<⎪⎩ ()()00a a a a a >⎧⎪=⎨-≤⎪⎩3.一个数的绝对值越小,说明这个数越接近0(离原点越近)。

人教版七年级数学(上册)各章知识点总结材料与对应章节经典练习

人教版七年级数学(上册)各章知识点总结材料与对应章节经典练习

七年级上册各章知识点第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。

问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数 。

判断:有理数可分为正有理数和负有理数( 错,还有0)②零既不是正数,也不是负数。

判断:0是最小的正整数(错 ),正整数负整数统称整数(错,还有0 ),正分数负分数统称分数(对 )③有限小数和无限循环小数因都能化成分数,故都是有理数。

判断:0是最小的有理数(错 )④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。

判断:整数和小数统称有理数(错,整数和分数统称有理数 )。

二、数轴1.数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。

3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1.定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是02.性质:①若a 与b 互为相反数,则a+b= 0②-a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,a b= -1 ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。

⑤互为相反数的两个数绝对值相等,平方也相等。

即:a =a -,()22a a =-四、绝对值1.定义:在数轴上表示数a 点到原点的距离,称为a 的绝对值。

记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。

人教版数学七年级上重点知识点及题目

人教版数学七年级上重点知识点及题目

人教版数学七年级上重点知识点及题目第一章有理数重点知识点:- 正数、负数的概念- 有理数的定义- 有理数的大小比较- 有理数的加减法- 有理数的乘除法- 数轴的概念和应用练题目:1. 有理数的定义及分类2. 有理数的大小比较3. 有理数的加减法4. 有理数的乘除法5. 数轴的绘制第二章整式与分式重点知识点:- 整式的概念和分类- 分式的概念和分类- 分式的加减法- 分式的乘除法- 分式方程的解法练题目:1. 整式的计算2. 分式的计算3. 分式方程的解法第三章方程式与不等式重点知识点:- 一元一次方程的概念- 一元一次方程的解法- 一元一次不等式的概念和解法练题目:1. 一元一次方程的解法2. 一元一次不等式的解法第四章代数式的计算重点知识点:- 代数式的概念- 代数式的加减法- 代数式的乘法- 代数式的除法- 多项式的概念和分类- 多项式的加减法练题目:1. 代数式的加减法计算2. 代数式的乘法计算3. 多项式的加减法计算第五章几何初步重点知识点:- 点、线、面的概念- 角的概念和分类- 三角形的概念和分类- 直线与平面的位置关系- 三角形中角的性质练题目:1. 角的概念、分类及判定2. 三角形的定义及分类3. 三角形中角的性质第六章数据的收集整理与描述重点知识点:- 统计调查的方法- 统计图的绘制- 数据的分析和描述练题目:1. 统计调查的方法2. 统计图的绘制3. 数据的分析和描述第七章运算定律重点知识点:- 加法结合律、交换律、分配律- 乘法结合律、交换律、分配律- 公式的应用练题目:1. 运用运算定律化简式子2. 应用公式解题第八章指数重点知识点:- 正整数指数幂的概念和运算- 分数指数幂的概念和运算- 小数指数幂和零的幂的概念- 幂运算的基本性质练题目:1. 正整数指数幂的计算2. 分数、小数指数幂的计算第九章几何图形重点知识点:- 平行四边形的概念- 矩形、正方形、菱形的概念- 梯形的概念- 面积的概念和计算练题目:1. 不同类型四边形的性质2. 用图形进行推导3. 计算图形的面积第十章实数初步重点知识点:- 无理数的概念- 实数的概念和分类- 实数间的大小关系- 实数的加减法和乘除法练题目:1. 实数的概念及分类2. 实数间的大小比较3. 实数的加减法和乘除法第十一章相似和相等重点知识点:- 相似的概念- 相似三角形的判定- 相似三角形的性质- 相等三角形的判定练题目:1. 计算相似三角形的比例2. 判定相似和相等三角形第十二章立体几何初步重点知识点:- 空间中的点、线、面、立体体形单位体- 空间图形和正交投影- 空间中的位置关系练题目:1. 绘制空间图形及其正交投影2. 空间中的位置关系总结:以上知识点和题目是人教版数学七年级上重点内容,期望有助于同学们的学习。

(word完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总,推荐文档

(word完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总,推荐文档

人教版七年级数学上册期末总复习( 学)第一章有理数知识要点本章的主要内容能够概括为有理数的看法与有理数的运算两局部。

有理数的看法能够利用数轴来认识、理解,同时,利用数轴又能够把这些看法串在一起。

有理数的运算是全章的要点。

在详尽运算时,要注意四个方面,一是运算法那么,二是运算律,三是运算序次,四是近似计算。

1. 有理数:(1) 凡能写成q(p, q为整数且 p 0) 形式的数,都是有理数,和统称有理数 . p注意: 0 即不是正数,也不是负数;-a 不用然是负数, +a 也不用然是正数;〔是不是〕有理数;正有理数正整数正整数正分数整数零(2) 有理数的分类 :① 有理数零②有理数负整数负有理数负整数分数正分数负分数负分数(3)注意:有理数中, 1、0、 -1 是三个特其他数,它们有自己的特点;这三个数把数轴上的数分成四个地域,这四个地域的数也有自己的特点;(4) 自然数0 和正整数;a>0 a 是正数;a<0 a 是负数;a≥ 0 a 是正数或0 a 是非负数;a≤ 0 a 是负数或0 a 是非正数 . 2.数轴:数轴是规定了〔数轴的三要素〕的一条直线. 3.相反数: (1) 只有符号不一样的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0; (2) 注意: a-b+c的相反数是;a-b的相反数是;a+b 的相反数是;(3) 相反数的和为a+b=0 a 、 b 互为相反数 .(4) 相反数的商为.〔5〕相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它,0 的绝对值是,负数的绝对值等于;注意:绝对值的意义是数轴上表示某数的点走开原点的距离;(2)绝对值可表示为: a a(a0)aa(a0)0(a0)或a( a;a(a0)0)(3)a a1a 0 ;1a 0 ;a a(4) |a|是重要的非负数,即|a| ≥ 0, 非负性;5.有理数比大小:(1〕正数永远比 0 大,负数永远比 0 小;(2〕正数大于所有负数;(3〕两个负数比较,绝对值大的反而小;(4〕数轴上的两个数,右边的数总比左边的数大;〔5〕 -1 , -2 , +1, +4, -0.5 ,以上数据表示与标准质量的差,绝对值越小,越凑近标准。

人教版七年级数学上册各章知识点总结及对应章节经典练习[1]

人教版七年级数学上册各章知识点总结及对应章节经典练习[1]

(直打版)人教版七年级数学上册各章知识点总结及对应章节经典练习(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)人教版七年级数学上册各章知识点总结及对应章节经典练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)人教版七年级数学上册各章知识点总结及对应章节经典练习(word版可编辑修改)的全部内容。

七年级上册各章知识点第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。

问:收入+10元与支出—10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数 。

判断:有理数可分为正有理数和负有理数( )②零既不是正数,也不是负数。

判断:0是最小的正整数( ),正整数负整数统称整数( ),正分数负分数统称分数( )③有限小数和无限循环小数因都能化成分数,故都是有理数。

判断:0是最小的有理数( )④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。

判断:整数和小数统称有理数( )二、数轴1.数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。

3.数轴上点的移动规律:“正加负减"向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1. 定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是02.性质:①若a 与b 互为相反数,则a+b=②—a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,a b= ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。

人教版七年级数学上册第1--4章知识点总结及对应章节经典练习

人教版七年级数学上册第1--4章知识点总结及对应章节经典练习

人教版七年级数学上册第1--4章知识点总结及对应章节经典练习第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。

问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数。

判断:有理数可分为正有理数和负有理数()②零既不是正数,也不是负数。

判断:0是最小的正整数(),正整数负整数统称整数(),正分数负分数统称分数()③有限小数和无限循环小数因都能化成分数,故都是有理数。

判断:0是最小的有理数()④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。

判断:整数和小数统称有理数()二、数轴1.数轴三要素:原点、正方向、单位长度(另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。

3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1. 定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是02.性质:①若a 与b 互为相反数,则a+b=②-a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,a b= ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。

⑤互为相反数的两个数绝对值相等,平方也相等。

即:a =a -,()22a a =-四、绝对值1.定义:在数轴上表示数a 点到原点的距离,称为a 的绝对值。

记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。

即()()()000a a a a a a >⎧⎪==⎨⎪-<⎩ 0 ()()00a a a a a ≥⎧⎪=⎨-<⎪⎩ ()()00a a a a a >⎧⎪=⎨-≤⎪⎩ 3.一个数的绝对值越小,说明这个数越接近0(离原点越近)。

(完整)人版七年级数学(上册)各章知识点总结及对应章节经典练习,推荐文档

(完整)人版七年级数学(上册)各章知识点总结及对应章节经典练习,推荐文档

aa ( )⎪⎩a 七年级上册各章知识点第一章《有理数》一、正数与负数1. 正数与负数表示具有相反意义的量。

问:收入+10 元与支出-10 元意义相反吗?2. 有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数 。

判断:有理数可分为正有理数和负有理数( ) ②零既不是正数,也不是负数。

判断:0 是最小的正整数( ),正整数负整数统称整数( ),正分数负分数统称分数( )③有限小数和无限循环小数因都能化成分数,故都是有理数。

判断:0 是最小的有理数( )④无限不循环小数因为不能化成两个整数之比,固称为无理数,如 π,π/2 等。

判断:整数和小数统称有理数( ) 二、数轴1. 数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线)2. 作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。

3. 数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4. 数轴上以数 a 和数 b 为端点的线段中点为 a 与b 和的一半(如何用代数式表示?)三、相反数1. 定义:若 a+b=0,则 a 与 b 互为相反数 特例:因为 0+0=0,所以 0 的相反数是 02. 性质:①若 a 与 b 互为相反数,则 a+b=②-a 不一定表示负数,但一定表示 a a的相反数(仅仅相差一个负号)③若 a 与 b 互为相反数且都不为零,=b④除 0 以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。

⑤互为相反数的两个数绝对值相等,平方也相等。

即: a = - a , a 2 = (-a )2四、绝对值1. 定义:在数轴上表示数 a 点到原点的距离,称为 a 的绝对值。

记作 a2. 法则:1)正数的绝对值等于它本身;2)0 的绝对值是 0;3)负数的绝对值是它的相反数。

七年级数学上上册知识点总结及练习题(含答案)

七年级数学上上册知识点总结及练习题(含答案)

人教版七年级数学上册知识点及练习题第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。

实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。

正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

【能力训练】一、选择题。

1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b <-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。

人教版七年级数学上册知识点归纳(附例题解析)

人教版七年级数学上册知识点归纳(附例题解析)

人教版七年级数学上册知识点归纳(附例题解析)第一章:有理数一、有理数的基础知识1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。

概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。

②正数和负数的应用:正数和负数通常表示具有相反意义的量。

③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A、一个数前面有“-”号,这个数就是负数;B、非负数就是正数;C、一个数前面没有“-”号,这个数就是正数;D、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-,正整数集合{}整数集合{}负整数集合{}正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是____________, 0米的意义是______________。

例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。

例5 若0>a,则a是;若0<a,则a是;若ba<,则ba-是;若ba>,则ba-是;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。

人教版七年级上册全册知识点复习及每章对应练习(计4章练习,无答案)

人教版七年级上册全册知识点复习及每章对应练习(计4章练习,无答案)

D. 整数不能写成分数形式
2. 下列几组数中,不相等的是(

A.- (+3)和 +( -3 ) B.-5 和- ( +5) C.+ (-7 )和 - ( -7 ) D.- ( -2 )和∣ -2 ∣
3. 有理数 a、 b 在数轴上的位置如图所示 , 那么下列式子中成立的是 ( )
A. a +b < 0 B. a - b < 0 C.
1 n为偶数 1 n为奇数
区分:
2
1,
12 ,
3
1,
3
1,
13
混合运算顺序:先乘方,再乘除,最后加减;对于同级运算,一般按从左到右的顺序进行;如果有括号的,先做括号内的运算,按小 括号、中括号、大括号依次进行 . 七、有理数的大小比较 1) 宏观比较法:正数 >0>负数
2) 数轴法 : 在数轴上右边的数总比左边的大 . (沿着数轴正方向数在逐渐变大)
③有限小数和无限循环小数因都能化成分数,故都是有理数。判断:
0 是最小的有理数( )
④无限不循环小数因为不能化成两个整数之比,固称为无理数,如
π ,π /2 等。判断:整数和小数统称有理数( )
二、数轴
1.数轴三要素:原点、正方向、单位长度
(另:数轴是一条有向直线)
2.作用: 1)描点:数形结合; 2)比较大小:沿着数轴正方向数在逐渐变大; 对值的几何意义; 5)有理数都在数轴上,但数轴上的数并非都是有理数。
方程的解检验方法(验根)
把未知数的值分别代入方程的左、右两边计算它们的值,比较两边的值是否相等 解方程的一般步骤:
变形名称
具体做法
变形依据
去分母

2022年人教版七年级数学上册知识点总结及阶梯练习

2022年人教版七年级数学上册知识点总结及阶梯练习

第一章一、知识点回忆正整数整数 0有理数负整数正分数一一相应于原点实数分数数轴正方向负分数数轴上旳点单位长度无理数相反数:只有符号不同旳两个数叫做互为相反数。

(数轴上有关原点对称)绝对值正数自身正数> 0 >负数(距离)负数相反数数旳比较两个负数,绝对值大旳反而小1. 有理数加法法则有理数加法运算总是波及两个方面:一方面是拟定成果旳符号,另一方面是求成果旳绝对值。

法则:(一)同号两数相加,取相似旳符号,并把绝对值相加。

(二)异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大数旳符号,并用较大旳绝对值减去较小旳绝对值。

(三)一种数同0相加,仍得这个数。

2. 有理数减法法则法则:减去一种数,等于加上这个数旳相反数。

注:在运用减法法则时,注意两个符号旳变化,一是运算符号,减号变成加号,二是性质符号,减数变成它旳相反数。

3. 有理数加法旳运算律(1)满足互换律;(2)满足结合律。

4. 有理数旳加减混合运算加减混合运算可以通过减法法则,将减法化加法,统一为加法运算。

环节:①减法化加法②省略加号和括号③运用加法法则,加法运算律进行简便运算。

5. 有理数旳乘法法则法则:(1)两数相乘,同号为正,异号得负,并把绝对值相乘。

(2)任何数同0相乘,积仍是0。

(3)多种有理数相乘旳法则:当因数都不为0时,积旳符号由负因数旳个数决定,当负因数有偶数个时,积为正,当负因数有奇数个时,积为负,并把绝对值相乘,有一种因数为0时,积就为0。

6. 倒数若两个有理数旳乘积为1,那么我们称其中一种数是另一种数旳倒数,也称它们互为倒数。

7. 有理数除法法则法则一:(1)两数相除,同号为正,异号为负,并把绝对值相除。

(2)零除以任何一种不为零旳数仍是零。

法则二:除以一种不为零旳数等于乘以这个数旳倒数。

8. 乘法运算律(1)满足乘法互换律(2)满足乘法结合律(3)满足乘法分派律9. 有理数旳加减乘除混合运算按先乘除后加减旳运算顺序,运用乘法和加法旳运算律进行计算。

(2021年整理)人教版七年级数学上册各章知识点总结及对应章节经典练习

(2021年整理)人教版七年级数学上册各章知识点总结及对应章节经典练习

人教版七年级数学上册各章知识点总结及对应章节经典练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级数学上册各章知识点总结及对应章节经典练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版七年级数学上册各章知识点总结及对应章节经典练习的全部内容。

七年级上册各章知识点第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。

问:收入+10元与支出—10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数 。

判断:有理数可分为正有理数和负有理数( )②零既不是正数,也不是负数。

判断:0是最小的正整数( ),正整数负整数统称整数( ),正分数负分数统称分数( )③有限小数和无限循环小数因都能化成分数,故都是有理数。

判断:0是最小的有理数( )④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等.判断:整数和小数统称有理数( )二、数轴1.数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。

3.数轴上点的移动规律:“正加负减"向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1. 定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是02.性质:①若a 与b 互为相反数,则a+b=②—a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,a b= ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册各章知识点第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。

问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数 。

判断:有理数可分为正有理数和负有理数( 错,还有0)②零既不是正数,也不是负数。

判断:0是最小的正整数(错 ),正整数负整数统称整数(错,还有0 ),正分数负分数统称分数(对 )③有限小数和无限循环小数因都能化成分数,故都是有理数。

判断:0是最小的有理数(错 )④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。

判断:整数和小数统称有理数(错,整数和分数统称有理数 )。

二、数轴1.数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。

3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1.定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是02.性质:①若a 与b 互为相反数,则a+b= 0②-a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,a b= -1 ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。

⑤互为相反数的两个数绝对值相等,平方也相等。

即:a =a -,()22a a =-四、绝对值1.定义:在数轴上表示数a 点到原点的距离,称为a 的绝对值。

记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。

即()()()000a a a a a a >⎧⎪==⎨⎪-<⎩0 ()()00a a a a a ≥⎧⎪=⎨-<⎪⎩ ()()00a a a a a >⎧⎪=⎨-≤⎪⎩ 3.一个数的绝对值越小,说明这个数越接近0(离原点越近)。

绝对值最小的有理数是04.若0a >,则aaa a == 1 ,若0a <,则aaa a == -15.数轴上数a 与数b 之间的距离d 满足:d = |a-b|6.非负数的性质: 220ab c d +++=,则a b c d ==== 五、倒数1.定义:若ab=1,则a 与b 互为倒数。

注意:因为0乘以任何数都为0,所以0没有倒数。

2.若a 与b 互为倒数,则ab=1。

3.因两数相乘同号才能得正,故互为倒数的两数必定同号。

所以负数的倒数肯定还是负数。

4.求带分数的倒数要先将其化为假分数,再颠倒分子分母位置(有负号的勿忘负号!)5.注意:只有当指明0a ≠时,1a 才能表示a 的倒数! 六、有理数的运算加000,与相加:等于没加同号相加:取相同的符号,绝对值相加两数相加无参与互为相反数和为异号相加取绝对值较大数的符号绝对值大减小互为相反数优先结合相加多数相加分母相同的分数优先结合相加同号的数优先结合相加⎧⎧⎪⎪⎪⎧⎪⎨⎪⎪⎨⎧⎪⎪⎨⎪⎪⎩⎩⎩⎨⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩减:减去一个数等于加上这个数的相反数!切一刀就搞定加减混合运算要求对()()(),,,a a a a --+--+--型符号化简相当纯熟,你行吗?乘⎧⎧⎪⎪⎨⎧⎫⎪⎪⎨⎬⎪⎩⎩⎭⎨⎪⎧⎪⎨⎪⎩⎩与0相乘:马上得0两数相乘同号得正无0参与绝对值相乘异号得负只要有0:马上得0多数相乘无0参与:先定符号,奇负偶正;再将绝对值直接相乘作为最终结果的绝对值除:除以一个不为零的数等于乘以这个数的倒数!(两数相除也满足同号得正,异号得负的法则)乘方()()()432332*********,1,1,1,1n n n a a n n 定义:个相乘记做,作用: 为偶数性质: 为奇数区分:⨯=-=------⎧⎪⎪⎧⎨⎨⎩⎪⎪⎩混合运算顺序:先乘方,再乘除,最后加减;对于同级运算,一般按从左到右的顺序进行;如果有括号的,先做括号内的运算,按小括号、中括号、大括号依次进行.七、有理数的大小比较1)宏观比较法:正数>0>负数2)数轴法:在数轴上右边的数总比左边的大.(沿着数轴正方向数在逐渐变大)3)绝对值法:正数绝对值越大,数就越大;负数绝对值越大;数越小。

4)作差法:与0作比较.若a>b,则a-b>0;若a=b,则a-b=0;若a<b,则a-b<0.注:这就是:大数减小数等于正数,小数减大数等于负数,相等两数差为0.八、科学记数法,近似数,有效数字 把一个绝对值较大的数,表示为()10110,n a a n ⨯≤<为正整数称为科学记数法。

a 与原数只是小数点位置不同, n 等于a 化为原数时小数点移动的位数精强记1万=410,1亿=810;确到X 位就是指四设五入到X 位(这时要看X 后面那一位上的数字) 一个数,从左边第一个不是0的数起到末位为止,所有的数字称为这个数的有效数字。

对于较小数,只要能准确的写出0.0010061800的所有有效数字即掌握有效数字概念 对于较大数,一般先用科学记数法表示,a 的有效数字即为原数的有效数字,a 的末位数字在原数中的位置(数位)即为原数精确度;Q 万,Q 亿中Q 的有效数字即为原数的有效数字。

4.23与4.23万各自精确到哪位?第二章《整式的加减》代数式:含有 的算式。

特例:单独的一个数也是代数式。

注意:代数式中不含:,,,,,代数式的书写规则:1)数与字母,字母与字母相乘,乘号可以省略,数字与数字相乘,乘号不能省略。

2)数与字母相乘时,数要写在字母(包括带括号的多项式)前面3)带分数一定要写成假分数4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式5)式子后面有单位时,和差形式的代数式要在单位前把代数式用括号括起来。

试列代数式:a 与b 的差的一半,a 与b 的一半的差,a 与b 的平方和,a 与b 的和的平方,a 与b 差的绝对值,a 与b 绝对值的差单项式:数与字母的 构成的代数式叫做单项式一个书写习惯:当数字因数是1时,“1”省略不写;一个特例:单独的一个数也是单项式简称常数项;一个特殊字母:圆周率π是常数两条判断捷径:A :单项式中不含“+”“—”号,如2a b 不是单项式. B.单项式的分母中不含字母,如23bca 不是单项式。

单项式中的 叫做这个单项式的系数。

单项式中 叫做这个单项式的次数。

说出2325ab系数和次数多项式:几个单项式的 叫做多项式。

在多项式中,每个单项式简称为多项式的 。

多项式里, 次数,就是这个多项式的次数.练习:多项式9x 4-2x 3+xy -4,常数项为 ,次数最高项为 ,三次项系数为 ,这个多项式是 次 项式.整式: 和 统称为整式.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,另外,所有的常数项都是同类项.“两个相同”是指:①含有的字母相同;②相同字母的指数也分别相同“两个无关”是指:①与系数无关;②与字母顺序无关合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:同类项的系数相 ,所得的结果作为系数,字母和字母的指数 ,不是同类项, 。

去括号法则:括号外的是“+”号,把括号和括号外的“+”号一起去掉,括号内各项的符号都 。

括号外的是“—”号,把括号和括号外的“—”号一起去掉,括号内各项都变号(变成它的 )。

若括号外有系数应先用乘法分配律将系数绝对值乘给括号内的每一项,再按以上法则去括号。

整式加减:把去括号,合并同类项的过程统称为整式加减。

(与X 无关=不含X 项=X 项系数为0)代数式求值三个要点:(1) 代入准备:“先化简,再代入”——化到最简形式的标准:再也没有括号可去,再也没有同类项可合并(2) 代入格式:“当…………时,原式=…………”只有规范,才能得分!(3) 代入方法:“先挖坑,后填数”——保持代数式的形式不变,只是把字母换成数,注意:该带的括号不能丢!第三章《一元一次方程》等式性质辨析:性质1同加(同减)同一个数。

性质2,同乘(同除)同一个数。

【性质2中有陷阱】①若a=b,则3a+2=2b+3. ( ), ②若a=b,则3a-2=3b-2. ( ), ③若-2a+3=-2b+3,则a=b. ( )④若ax=ay,则x=y. ( ) ⑤若a=b,则xa+y=xb+y. ( ) ⑥若xa+y=xb+y,则a=b. ( )方程,整式方程,一元一次方程概念辨析含有字母的等式叫做方程. 方程的命名:先移项使得方程右端为0,判左端代数式名称定方程名称。

分母中含字母的统称分式方程。

①5=4+1,②222a b ab ,③1x y ,④210x x ,⑤1x ,⑥13x x ,⑦4322x ,⑧211x以上8个式子哪些是方程?哪些是整式方程?哪些是一元一次方程?“方程的解”与“解方程”概念辨析使方程中等号左右两边相等的未知数的值,叫做方程的解.它是一个数,不是x这个字母!而解方程是指求出方程的解的过程.方程解的“不管三七二十一”:已知方程的解,不管三七二十一,把解代回方程建立等式方程的解检验方法(验根)把未知数的值分别代入方程的左、右两边计算它们的值,比较两边的值是否相等.(格式还记得吗?)解方程的一般步骤:列方程解应用题步骤:1)写 2)审 3)设 4)找 5)列 6)解 7)验 8)答一元一次方程应用题归类:(1)和差倍分问题(2)调配问题(3)比例问题(4)配套问题(5)行程问题(6)工程问题(7)利息问题(8)盈不足问题(9)增长率问题(10)打折销售与利润率问题(11)年龄问题(12)数字问题(13)日历与数表问题(14)“超过的部分”问题(15)等积问题(16)方案设计问题第四章《图形认识初步》线段中点性质:如果点M 是线段AB 的中点,那么AM =BM.=12AB (请补图) 角平分线的性质:如果射线OM 平分AOB ,那么12AOM MOB AOB (请补图)七年级上册各章节经典练习题第一章 有理数1.下列说法正确的是( )A.有理数就是正有理数和负有理数B.最小的有理数是0C.有理数都可以在数轴上找到表示它的一个点D.整数不能写成分数形式2.下列几组数中,不相等的是( )A.-(+3)和+(-3)B.-5和-(+5)C.+(-7)和-(-7)D.-(-2)和∣-2∣3.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( )A. a +b < 0B. a -b < 0C. 0>abD.0a b >4.点A 在数轴上距原点3个单位长度,将A 向右移动4个单位长度,再向左移7个单位长度,此时A 所对应的数是( )A.0B.-6C.0或-6D.0或65.计算2000-(2001+∣2000-2001∣)的结果为( )A.-2B.-2001C.-1D.20006.若-a 不是负数,那么a 一定是( )A.负数B.正数C.正数和零D.负数和零7.如果两个数的和为负数,那么这两个数( )A.都是正数B.都是负数C.至少有一个正数D.至少有一个负数8.已知c b a >>,且0=++c b a ,则c b a ,,的积( )A. 一定是正数B. 一定是负数C. 一定是非零数D. 不能确定9.已知(b+3)2+∣a-2∣=0,则b a 的值是( )A.-6B.6C.-9D.910.有一张厚度为0.1mm 的纸,如果将它连续对折10次后的厚度为( )A.1mmB.2mmC.102.4mmD.1024mm11.若有理数a 、b 满足ab >0,且a + b <0,则下列说法正确的是( )A .a 、b 可能一正一负B .a 、b 都是正数C .a 、b 都是负数D . a 、b 中可能有一个为012.如果=2a (2)3-,那么a 等于( )A.3B.-3C.9D.± 313.已知|a|=2,|b|=1,且ab <0,那么a+b 的值是( )A.1或-1B.1C.3或-3D.-314.下列说法正确的个数为( ) ○1若b a ≠,则︱a ︱≠︱b ︱ ○2若︱a ︱=︱b ︱,则a = b.○3若22b a =,则b a =. ○4若︱a ︱>︱b ︱, 则a > bA.0个B.2个C.3个D.4个15.观察下列算式:,, , , , , , , 2562128264232216282422287654321======== 根据上述算式中的规律,你认为202的末位数字是( )A.2B.4C.6D.816.若∣x +2y ∣+(y -3)2=0,那么x 2+xy +y 2的值为( )A.27B.-27C.12D.-1217.2011(1)-是( )A.最大负整数B.绝对值最小的有理数C.-2003D.最大的负数18.已知5=x ,2=y ,则y x +的值( )A.3±B.7±C.3或7D.3±或7±19.若a 2 = b 2, 则下列说法中正确的有 ( )⑴a = b ⑵a = -b ⑶ a = ±b ⑷ a = b = 0 ⑸|a | = |b | ⑹ a 3 = ±b 3A.2个B.3个C.4个D.5个20.下列不等式()3322-〉-, ()2222〈-, ()2222-〉-, ()()2322-〉- 大小关系正确的有( )A.1个B.2个C.3个D. 4个21.654321-+-+-+……+1999-2000的结果不可能是( )A.奇数B.偶数C.负数D.整数22.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水。

相关文档
最新文档