平行四边形的性质简单应用

合集下载

平行四边形的周长与面积计算

平行四边形的周长与面积计算

平行四边形的周长与面积计算平行四边形是一种特殊的四边形,它具有两组平行的对边和相等的内角。

在本文中,我将详细介绍如何计算平行四边形的周长和面积。

1. 平行四边形的定义平行四边形是一个具有两组平行边的四边形,它的对边相等且内角相等。

平行四边形的特点使得我们可以通过一些简单的公式来计算其周长和面积。

2. 平行四边形的周长计算公式平行四边形的周长等于四条边的长度之和。

设平行四边形的边长分别为a、b,那么它的周长可以表示为2(a+b)。

3. 平行四边形的面积计算公式平行四边形的面积可以通过底边长度与高的乘积来计算。

设平行四边形的底边长度为b,高为h,那么它的面积可以表示为S=b×h。

4. 例题解析假设有一个平行四边形ABCD,其中AB=5cm,BC=8cm,高为4cm。

我们可以通过上述公式计算出它的周长和面积。

首先,根据周长的计算公式,平行四边形ABCD的周长为2(5+8)=26cm。

然后,根据面积的计算公式,平行四边形ABCD的面积为8cm×4cm=32cm²。

5. 平行四边形的性质及应用平行四边形具有一些特殊的性质和应用。

例如,如果两个平行四边形的底边和高都相等,那么它们的面积也相等。

另外,平行四边形的对角线相等且平分彼此。

平行四边形的性质使其在几何学和工程中有广泛的应用。

例如,在建筑设计中,平行四边形常用于描述建筑物的形状和结构。

在计算机图形学中,平行四边形也是描述和渲染图像的重要工具之一。

总结:平行四边形是一种特殊的四边形,它具有两组平行的对边和相等的内角。

根据平行四边形的定义和性质,我们可以通过简单的公式计算其周长和面积。

平行四边形的周长等于四条边的长度之和,面积等于底边长度与高的乘积。

在实际应用中,平行四边形有着广泛的应用领域,并且具有重要的几何学意义。

希望本文对您计算平行四边形的周长和面积有所帮助。

《平行四边形》教案

《平行四边形》教案

第六章平行四边形1. 平行四边形的性质(一)知识与技能目标:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。

过程与方法目标:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。

情感态度与价值观目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.探索并掌握平行四边形的性质,并能简单应用;教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学方法:探索归纳法教学过程第一环节:实践探索,直观感知1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。

将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

目的:通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;平行四边形的相邻的两个顶点连成的一段叫做它的对角线。

教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示“”。

2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。

效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。

第二环节探索归纳、合作交流小组活动三:内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?⑵你还发现平行四边形的那些性质呢?活动目的:这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。

二年级数学下册教案 - 《平行四边形》 北师大版

二年级数学下册教案 - 《平行四边形》 北师大版

二年级数学下册教案 - 《平行四边形》北师大版教学内容本节课主要学习平行四边形的基本概念、性质和在实际生活中的应用。

教学内容包括:1. 平行四边形的定义:介绍平行四边形的定义,即有两对对边分别平行的四边形。

2. 平行四边形的性质:探讨平行四边形的性质,如对边相等、对角相等、邻角互补等。

3. 平行四边形的判定:如何判断一个四边形是平行四边形。

4. 实际应用:将平行四边形的知识应用到实际问题中,如计算周长、面积等。

教学目标通过本节课的学习,学生应达到以下教学目标:1. 知识与技能:学生能够准确理解平行四边形的定义和性质,并能用这些知识解决实际问题。

2. 过程与方法:学生能够通过观察、思考和动手操作,培养空间想象力和逻辑思维能力。

3. 情感态度与价值观:培养学生对数学的兴趣,提高他们解决实际问题的能力。

教学难点1. 平行四边形性质的推导:理解并推导平行四边形的性质可能对学生来说是一个挑战。

2. 平行四边形的判定:如何准确判断一个四边形是平行四边形,需要学生有扎实的几何基础。

教具学具准备1. 教具:多媒体投影仪、平行四边形的模型或图片。

2. 学具:直尺、量角器、彩笔、剪刀、胶水等。

教学过程1. 导入:通过生活中的实例引入平行四边形的概念,激发学生的兴趣。

2. 新知识学习:详细讲解平行四边形的定义、性质和判定方法。

3. 动手操作:让学生通过剪纸、拼图等实践活动,加深对平行四边形的理解。

4. 例题讲解:通过例题,展示如何用平行四边形的性质解决实际问题。

5. 课堂练习:让学生独立完成一些练习题,巩固所学知识。

6. 总结与反思:对本节课所学内容进行总结,让学生分享他们的学习心得。

板书设计板书设计应清晰、条理分明,主要包括以下内容:1. 平行四边形2. 定义:有两对对边分别平行的四边形3. 性质:对边相等、对角相等、邻角互补等4. 判定方法:如何判断一个四边形是平行四边形5. 应用实例:展示一两个实际应用的例子作业设计作业设计应注重巩固学生对平行四边形的知识,可以包括以下内容:1. 基础题:让学生画出几个平行四边形,并标出其性质。

初中八年级数学教案-平行四边形判定定理的简单应用-“衡水杯”一等奖

初中八年级数学教案-平行四边形判定定理的简单应用-“衡水杯”一等奖

《平行四边形判定定理的简单应用》教学设计邯郸市育华中学曹海霞一、教材分析:本节课是新人教版八年级下册第十八章《平行四边形》,第一节《平行四边形》的第三课时:平行四边形判定定理的简单应用。

这是一节习题课,是继学生学习了平行四边形的判定定理之后的应用提升课。

它在学生学习了平行四边形的性质和判定定理之后来探究,表明本节重在提高学生的综合推理能力及知识迁移能力。

在解题过程中体会知识之间的联系,渗透初中数学中分类讨论思想、方程思想及数形结合思想也是本节的一项内容。

二、教学目标:知识与技能:1、通过小组活动,熟练掌握平行四边形判定定理的内容。

2、理解平行四边形形的判定方法,并学会运用适当的定理解决问题。

过程与方法:1、通过观察、实验、推理、证明、交流等教学活动,进一步培养学生的动手能力、合情推理能力。

2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力,提高学生解决问题的能力。

情感、态度与价值观:通过平行四边形判定方法的应用,使学生感受数学思考过程中的逻辑性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辩证的观点分析事物。

三、重点难点重点平行四边形判定方法的运用以及平行四边形的性质和判定的结合运用。

难点利用坐标求解平行四边形的存在性问题。

四、学情分析:经过近两年的初中学习,学生推理意识与能力有所加强。

在知识储备上,学生已经学习了平行四边形的性质,平行四边形的判定定理。

五、教学过程:一、动手发现,合作交流。

1、小组合作(多媒体展示问题):你能用:(1)两块全等的三角形纸板;(2)两根等长的小棒;(3)两条不等长的毛线;(4)一支粉笔,这4组物品,结合你对平行四边形判定的认识,构造出平行四边形吗说说你的方法和依据。

开动脑筋,尝试一下吧!AECBHGA FE D C HGAFE C B 设计意图:借助道具构造平行四边形,一方面让学生复习回顾了平行四边形的五个判定方法,初步尝试应用知识解决实际问题的过程,另一方面激发学生学习及探究的兴趣,调动学习积极性。

导学案 平行四边形的性质

导学案 平行四边形的性质

第16章 平行四边形的认识§16.1 平行四边形的性质课时一 平行四边形的性质(一)【学习目标】1. 理解平行四边形的概念及表示方式.2. 理解平行四边形在边、角上的性质并能简单应用.【课前导习】1. 有两组对边 的四边形叫做平行四边形,用几何语言表述为:如图,在四边形ABCD 中,若 ∥ , ∥ ,则四边形ABCD是平行四边形,记为 .2.平行四边形的对边 ,用数学语言表述为: ABCD 中, = , =3. 平行四边形的对角 ,邻角 ,用几何语言表述为:在 ABCD 中,∠ =∠ ,∠ =∠ ,∠ +∠ =1800(互补的角只写出一对就行了)4. ABCD 中,6=AB ,4=AD ,则=BC ,=DC ,平行四边形ABCD 的 周长为 .5. ABCD 中,∠A=400,则∠C= 0,∠B= 0.6. ABCD 中,已知AB =8,周长等于24,则=DC ,=AD . 【主动探究】概念有两组对边分别平行的四边形叫做平行四边形找一找你能从图16.1.1所示的图形中找出平行四边形吗?图16.1.1试一试中绕着它的对角线AC 、BD 的交点O ,旋转180°之后看能否与原来的位置重合?你能通过操作过程中,发现些什么样的结论?概括平行四边形是 图形,对角线的交点O 就是 .平行四边形的 相等, 相等.例题讲解例1 中,已知∠A =40°,求其他各个内角的度数.例2 中,已知AB =8,周长等于24,求其余三条边的长.【当堂训练】1.在平行四边形ABCD 中,3AB =,5BC =,则平行四边形ABCD 的周长是 。

2. 在平行四边形ABCD 中,A ∠比B ∠多050,则C ∠= ,D ∠= 。

3. 平行四边形ABCD 的周长是10厘米,三角形ABC 的周长是8厘米,则对角线AC 的长是( )A 、2厘米B 、3厘米C 、4厘米D 、5厘米4. 平行四边形的两个邻角的角平分线相交所成的角是( )A 、锐角B 、直角C 、 钝角D 、不能确定5.一个平行四边形的一边长为9,对角线的长不可能是下列选项中的( )A 、5和6B 、10和12 C、10和20 D、2和18 6. 如图,在平行四边形ABCD 中,ABC ∠角平分线BE 交ADE 点,5=AB ,3=ED ,则平行四边形ABCD 的周长为( A 、16 B 、20 C 、26 D 、307. 如图,在 ABCD 中,AE 垂直于CD ,E 是垂足.如果055B ∠=,那么D ∠与DAE ∠分别等于多少度?8. 在 ABCD 中,A ∠与B ∠的度数之比为2:3,求这个平行四边形各个内角的度数.【回学反馈】1. 如图,在平行四边形ABCD 中,0115ADC ∠=, 021CAD ∠=, 求ABC ∠与CAB∠的度数.2. 如图,平行四边形ABCD 的周长是80厘米,对角线AC 与BD 相交于O ,AOB ∆的周长比AOD ∆的周长小20厘米,求这个平行四边形的各边的长。

八年级数学下册《平行四边形性质的简单应用》优秀教学案例

八年级数学下册《平行四边形性质的简单应用》优秀教学案例
3.汇报交流:小组讨论结束后,组织各小组汇报成果,让其他同学借鉴和学习,提高课堂效果。
(四)反思与评价
1.自我反思:引导学生对自己在课堂上的学习过程进行反思,总结自己在学习平行四边形性质方面的优点和不足。
2.同伴评价:组织学生进行同伴评价,让他们在相互评价中学习他人的优点,改进自己的不足。
3.教师评价:教师对学生在课堂上的表现进行客观、全面的评价,既要肯定他们的进步,也要指出需要改进的地方,以促进学生全面发展。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养他们热爱数学的情感。
2.培养学生勇于探索、积极思考的良好学习习惯,增强他们面对困难的信心和毅力。
3.引导学生发现数学与生活的紧密联系,体会数学在现实生活中的重要作用,提高他们的数学素养。
4.培养学生的集体荣誉感,让他们在合作学习中学会互相尊重、互相帮助,形成良好的团队精神。
八年级数学下册《平行四边形性质的简单应用》优秀教学案例
一、案例背景
在我国初中数学教育中,八年级学生已经具备了一定的几何图形认知基础,对于平行四边形的性质也有了初步的理解。《平行四边形性质的简单应用》这一章节旨在帮助学生将理论知识与实际问题相结合,培养他们的逻辑思维能力和解决实际问题的能力。本教学案例以八年级数学下册教材为依据,针对平行四边形在实际问题中的简单应用进行深入剖析,通过设计丰富多样的教学活动,激发学生的学习兴趣,提高他们的几何图形应用能力。在教学过程中,注重引导学生运用所学知识解决生活中的实际问题,以彰显数学学科的魅力和实用性。
二、教学目标
(一)知识与技能
1.理解并掌握平行四边形的基本性质,如对边平行且相等、对角线互相平分等。
2.学会运用平行四边形的性质解决实际问题,如计算平行四边形的面积、周长等。

平行四边形在实际生活中的应用

平行四边形在实际生活中的应用

平行四边形在实际生活中的应用平行四边形是一个具有特殊性质的四边形,它的对边是平行的,对角线相等。

在实际生活中,平行四边形的性质和特点被广泛应用于各个领域,为人们的生活和工作带来了便利和效率。

下面将从几个方面介绍平行四边形在实际生活中的应用。

一、建筑设计在建筑设计中,平行四边形的性质经常被用来规划建筑结构和布局。

例如,在设计房屋平面图时,空间的合理利用需要考虑平行四边形的特点,如利用平行四边形的对角线相等特性来设计房间的长宽比。

此外,建筑中的各种构件,如窗户、门等,也常常采用平行四边形的形状,使整体结构更加稳定美观。

二、交通规划在交通规划领域,平行四边形的性质被广泛运用。

例如,在道路设计中,道路网格常常采用平行四边形的布局,便于车辆通行和交通管理。

此外,停车场的停车位也常常按照平行四边形的形状进行规划,使停车更加方便高效。

三、家具制作在家具制作过程中,设计一个坚固美观的家具需要考虑到平行四边形的特性。

例如,书桌、椅子等家具常常采用平行四边形的结构设计,使家具更加稳定结实。

另外,平行四边形的特点也被应用在家具的装饰设计中,如桌面、椅背等部分常采用平行四边形的图案或花纹,使家具更加美观时尚。

四、地理测量在地理测量领域,平行四边形的性质被广泛运用于测量和定位工作中。

例如,在绘制地图时,经纬度网格采用平行四边形的形式,便于准确地标示地球上各个地点的位置。

此外,在航空航天领域,平行四边形的特性也被用来规划飞行路线,确保航行安全和高效。

综上所述,平行四边形在实际生活中有着广泛的应用领域,为各个行业带来了便利和效率。

正是因为平行四边形这种简单而重要的几何形状,在现代社会中扮演着不可替代的角色,发挥着重要的作用。

希望人们在日常生活和工作中能够更加关注和利用平行四边形的特性,从而获得更多的实际收益和便利。

平行四边形的性质和判定教案

平行四边形的性质和判定教案

平行四边形的性质和判定教案教学目标知识技能目标1.运用投影的方法,通过学生的合作探究,得出结论平行四边形的认定方法.2.理解平行四边形的这两种判定方法,并学会简单运用.过程与方法目标1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.2 .在运用平行四边形的认定方法解决问题的过程中,进一步培育和发展学生的逻辑思维能力和推理小说论证的表达能力.情感态度价值观目标通过平行四边形辨别条的积极探索,培育学生直面挑战,敢于克服困难的意志,引导学生大胆尝试,从中获得成功的体验,唤起学生的自学热情.教学重点:教学难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.教学过程第一环节复习引入:( 3分钟,教师明确提出问题1,2,由学生独立思考,并口答得出结论定义正反两方面的促进作用,出来平行四边形的其他几条性质.)问题1(多媒体展示问题)1.平行四边形的定义就是什么?它存有什么促进作用?2.平行四边形还有哪些性质?问题2有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?第二环节积极探索活动(12分钟,学生动手探究,小组合作)活动1:工具:两根长度成正比的笔,两条平行线(可利用横格线).动手:恳请利用两根长度成正比的笔和两条平行线,摆以笔顶端为顶点的平行四边形吗?思考1.1:你能说明你所摆出的四边形是平行四边形吗?思索1.2:以上活动事实,能够用字语言表达吗?目的:得出结论平行四边形的一个性质:一组对边平行且成正比的四边形就是平行四边形.活动2工具:两根相同长度的细纸条.动手:能否用这两根细纸条在平面上思索2.1:你能够表明你们摆的四边形就是平行四边形吗?思考2.2:以上活动事实,能用字语言表达吗?目的:得出平行四边形的性质:对角线互相平分的四边形是平行四边形第三环节稳固练(20分钟,学生思索探讨再各自画图,图画不好后互相交流画法,教师巡回检查.对个别学生稍加指点)随堂练习:1.未知:在平行四边形abcd 中,点e、f在对角线ac上,并且oe=of.(1)oa与oc,ob与od相等吗?(2)四边形bfde就是平行四边形吗?(3)若点e,f在oa,oc的中点上,你能解决上述问题吗?2.再返回前问题:同学们想想看,是不是办法把原的平行四边形再次图画出来?(让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨,最后请学生回答画图方法)学生想起的画法存有:(1)分别过a,c作bc,ba的平行线,两平行线相交于d;(2)分别以a,c为圆心,以bc, ba的短为半径画弧,两弧平行于d,相连接ad,cd;(3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线ac,取ac的中点o,再连接bo,并延长bo到d,使bo=do,连接ad,cd.第四环节小结:(4分钟,学生提问问题)师生共同小结,主要围绕下列几个问题:(1)认定一个四边形就是平行四边形的方法存有哪几种?这些方法从什么角度回去考量的?(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?(3)投影、观测、积木、实验等都就是自学数学、辨认出结论的常用方法.第五环节布置作业:b、c组与(中等生和后三分之一生)本页习题4.3第1题、第2题a组(优等生):① 对于随堂练习题,若将g,h分别在ob ,od上移动至与b,d重合,e,f分别在oa,oc上移动,使ae=cf(如图),则结论还成立吗?② 对于随堂练习题,若e,f继续移动至oa,oc的延长线上,仍并使ae=cf(例如图),则结论还设立吗?一教学目标:1.在积极探索平行四边形的辨别条件中,认知并掌控用边、对角线去认定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培育用投影、逆向M18x及运动的思维方法去研究问题.二重点、难点2.难点:平行四边形的认定定理与性质定理的有效率应用领域.3.难点的突破方法:平行四边形的辨别方法就是本节课的核心内容.同时它又就是后面进一步研究矩形、菱形、正方形辨别的基础,更是发展学生合情推理小说及用笔的较好素材.本节课的教学重点为平行四边形的辨别方法.在本课中,可以积极探索活动为载体,并将论证做为积极探索活动的自然沿袭与必要发展,从而将直观操作方式与直观推理小说有机融合,达至突出重点、集中难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形存有四种认定方法,与性质相似,可以从边、对角线两方面展开记忆.必须特别注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只了解前两个认定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、悖论、检验、积极探索形成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节已经开始,就应当使学生轻易运用平行四边形的性质和认定回去解决问题,凡是可以用平行四边形科学知识证明的问题,不要再返回用三角形全系列等证明.必须对学生明确提出这个建议.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、认定都就是非常关键的基础知识,这些科学知识就是本章的重点内容,必须并使学生熟练地掌控这些科学知识.三例题的意图分析本节课精心安排了3个例题,基准1就是教材p96的基准3,它就是平行四边形的性质与认定的综合运用,此题最出色先使学生讲出证明的思路,然后老师总结并表示其最佳方法.基准2与基准3都就是补足的题目,其目的就是使学生能够有效率和综合地运用平行四边形的认定方法和性质去解决问题.基准3就是一道积木题,教学时,可以使学生动起来,边积木边表明道理,即为可以提升学生的动手能力和学生的思维能力,又可以提升学生的自学兴趣.例如使学生再用四个不等边三角形比拼一个例如图的大三角形,使学生表示图中所有的平行四边形,并表明理由.四课堂引入1.观赏图片、明确提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中存有一些木条,他想要通过适度的测量、割剪,钉制一个平行四边形框架,你能够帮忙他编出一些办法去吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能够适度挑选手中的硬纸板条构建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能够讲出你的作法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能够找到其他方法吗?从探究中得到:平行四边形认定方法1 两组对边分别成正比的四边形就是平行四边形。

(完整版)平行四边形的性质及判定典型例题

(完整版)平行四边形的性质及判定典型例题

平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。

八年级数学第二学期《平行四边形的性质及应用》说课稿

八年级数学第二学期《平行四边形的性质及应用》说课稿

八年级数学第二学期《平行四边形的性质及应用》说课稿一、教材分析1、教材所处的地位和作用《平行四边形的性质》是人教版八年级数学第二学期第十九章第一节内容它是在学生掌握了平行线、三角形及简单图形的平移等几何知识的基础上学习的平行四边形及其性质在实际生产和生活中有广泛的应用,它是本节的重点,又是全章的重点学习它不仅是对已学平行线、三角形等知识的综合应用和深化,又是下一步学习矩形、菱形、正方形及梯形等知识的基础,起着承上启下的作用2、教学目标根据新课标的要求及学生的实际情况,本节我制定了如下目标:(1)知识目标理解平行四边形的定义,探究平行四边形的性质;利用平行四边形的性质进行有关的证明和计算,解决简单的实际问题(2)能力目标通过观察、猜测、归纳、证明,能运用数学语言合乎逻辑地进行讨论与质疑,发展学生合理的推理意识,培养主动探究的习惯(3)情感目标通过平行四边形性质的应用过程,培养学生独立思考的习惯,在数学学习活动中获得成功的体验进一步认识数学与生活的密切联系,体验数学来源于生活又服务于生活3、教学重点、难点基于以上的分析,我认为本节课的重点是:平行四边形性质的探究与应用;难点是:平行四边形性质的探究,即如何添加辅助线将平行四边形问题转化为三角形问题来解决的思想方法二、学情及教法分析农村的学生基础知识薄弱,主动学习的积极性不高,学习能力较差,针对这种情况及本节课的特点,结合我校课题"因材施教,当堂达标"发挥学生主体地位,教师"引导-辅导-指导-讲评-归纳"有目的的辅助学生学习1、利用直观形象的图片、模型,引导学生在观察、操作、猜测、验证与交流等数学活动中发现平行四边形的性质发挥学生的观察能力、联想力,大胆猜测平行四边形的可能性2、注重学生参与,合作交流,让学生在教师的指导下自始至终处于积极思维,主动探究的学习状态,同时借助多媒体进行演示,以增加教学的直观性三、学法指导1、观察猜想以学生的观察、猜想为主,要求学生多观察,大胆猜想,主动探索来了解平行四边形的性质2、合作交流采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦3、抽象概括指导学生学会观察分析,从具体实例中抽象出平行四边形的图形,概括出平行四边形的定义,培养学生的抽象思维4、总结归纳通过例题探索、练习反馈、收获园地,引导学生总结归纳本节课学习的主要内容和解决问题的方法以及注意的问题,发挥学生的积极性和主动性,培养学生良好的学习习惯四、教学过程(一)温故思新,情境导入首先复习四边形的定义及四边形的有关性质然后课件显示章前图和一些图片提出问题:你能从图中找出我们熟悉的几何图形吗?这个问题是以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状通过查找长方形、正方形、平行四边形、梯形等起到复习的作用,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务(二)自主学习,发现问题通过观察图片,让学生举出身边存在的平行四边形的例子通过举例,为学生提供参与活动的时间和空间,调动学生的主观能动性,激发求知欲,培养学生形象思维然后自学课本83页-84页例1上面的内容,教师出示问题:1、通过观察图片,找出图形的共同特征,说出平行四边形的定义?2、你会用符号表示一个平行四边形吗?想一想用符号表示时要注意什么问题?如图平行四边形ABCD记作:□ABCD(略)3、通过观察测量自做的平行四边形你能发现平行四边形的特点吗?边:对边平行且相等角:对角相等,邻角互补4、你能证明你发现的结论吗?此环节的设计意图:从实例图片中抽象出平行四边形的几何图形,培养学生的抽象思维,让学生感受到数学与我们生活的密切联系通过自学加深理解,发现问题,提高自主学习能力感受动手测量,猜想的乐趣,培养猜想的意识教师巡视引导,帮助学生自学(三)合作交流,解决问题小组合作交流,共同解决自主学习过程中发现的问题:寻找证明的方法当学生有疑惑时,教师巡视辅导:我们目前证明线段、角相等的方法是什么?(利用三角形全等来证明)而图中没有三角形该怎么办?引导学生得出需构造辅助线,将四边形问题转化为三角形问题来解决学生完成证明,归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等,邻角互补并引导学生写出性质的几何语言设计意图:通过交流和引导,明确目前证明线段、角相等的常用方法是证明三角形全等学生完成证明,验证猜想的正确性,让学生感受到数学的严谨性,数学结论的确定性和证明的必要性对平行四边形性质的归纳,培养了学生的合作交流能力和概括能力,突出了教学的重点(四)小组展示,学以致用1、小组代表展示交流的结果,通过实物投影讲解平行四边形性质的证明过程培养学生语言组织能力和思维逻辑能力2、探究例1:小明用一根36米长的绳子围成一个平行四边形的场地,其中一条边AB长为8米,其他三条边各长多少?教师引导学生审题,学生弄清题意后教师示范解题过程,并重点强调解答中平行四边形性质的几何表述设计意图:通过运用平行四边形的性质,学会解决简单的实际问题,让学生认识到数学在现实世界中有着广泛的应用,培养了学生的应用意识3、跟踪反馈:(1)在□ABCD中,AB=5,BC=3求它的周长(2)一个平行四边形的外角是38,这个平行四边形的每个内角的度数分别是多少?为什么?(3)剪两张对边平行的纸条,随意叉叠放在一起,转动其中一张,重合的部分构成了一个四边形线段AB和DC有什么关系?练习(2)(3)需说出理由,这对学生的语言表达能力有一定的要求,因此要求学生有条理的写出解题过程(五)课堂小结:1、这节课你的收获是什么?2、还有什么困惑?设计意图:通过评价反思引导学生概括本节课学习的内容,对知识进行梳理,这样有利于强化学生对知识的理解和记忆,提高分析和小结的能力(六)达标检测:1、选择题:(1)平行四边形的两邻角的角平分线相交所成的角为()A、锐角B、直角C、钝角D、不能确定(2)平行四边形的周长为24cm,相邻两边的差为2cm,则平行四边形的各边长为()A、4cm,4cm,8cm,8cmB、5cm,5cm,7cm,7cmC、5.5cm,5.5cm,6.5cm,6.5cm D、3cm,3cm,9cm,9cm(3)下面的性质中,平行四边形不一定具有的是()A、对角互补B、邻角互补C\、对角相等D、对边相等2、填空题:(1)如图所示,DE∥AB,EF∥BC,DF∥AC,图中有_个平行四边形(2)平行四边形的一组对角度数之和为200°,则平行四边形中较大的角为_ 3、解答题:如图,在□ABCD中,∠A+∠C=160°,求∠A、∠B,∠C,∠D的度数(七)板书设计19.1.1平行四边形的性质(1)定义:两组对边分别平行的四边形例1:(略)记作:□ABCD性质:平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补本节课根据学生的认知规律,本着激发兴趣,积极投入,由易到难,突破难点,突出重点,充分发挥学生的主体地位。

五年级数学认识简单的平行四边形及其性质

五年级数学认识简单的平行四边形及其性质

五年级数学认识简单的平行四边形及其性质在数学学科中,平行四边形是一个重要的概念。

在本文中,我们将简要介绍五年级学生需要了解的平行四边形及其性质。

一、平行四边形的定义平行四边形是指有四条边,且两两相对的边是平行的四边形。

简单来说,如果四边形的相对边是平行的,那么它就是平行四边形。

二、平行四边形的性质1. 相邻角性质:平行四边形的相邻内角互补,也就是说,相邻内角的度数之和等于180度。

例如,如果一个相邻内角的度数是50度,那么它的相邻内角就是130度。

2. 对角线性质:平行四边形的对角线互相等长,且相交于中点。

也就是说,如果我们连接平行四边形的两个相对顶点,那么这条线段就是对角线,而且两条对角线的长度相等。

此外,两条对角线的交点是对角线的中点。

3. 同底角性质:平行四边形的同底角相等,也就是说,如果两个平行四边形的底边相等,那么它们的同底角也相等。

例如,如果两个平行四边形的底边长度都是5厘米,那么它们的同底角就相等。

4. 对边性质:平行四边形的对边相等,也就是说,如果两个平行四边形的相对边相等,那么它们的对边也相等。

例如,如果一个平行四边形的上边长度是8厘米,下边长度是8厘米,那么它的左边和右边也分别是8厘米。

三、平行四边形的应用1. 全等判定:当一个四边形的对边相等,且对角线相等时,可以判断它是一个平行四边形。

2. 面积计算:平行四边形的面积可以通过底边和高的乘积得到。

即面积等于底边乘以高。

3. 解题实践:平行四边形经常运用于解决几何问题和计算题。

通过运用平行四边形的性质,可以更轻松地解决各种题目。

四、总结在五年级数学中,学习平行四边形是非常重要的。

通过了解平行四边形的定义和性质,我们可以更好地应用它们解决问题。

平行四边形不仅是理论知识,还是实践解题的基础。

希望同学们能够通过实际练习和思考,更好地掌握平行四边形的概念和运用。

通过对五年级数学认识简单的平行四边形及其性质的介绍,我们希望能够帮助同学们对平行四边形有更清晰的理解。

平行四边形教案

平行四边形教案

18.1平行四边形的性质第一课时教学目的1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.重点、难点4.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.5.难点:运用平行四边形的性质进行有关的论证和计算.例题的意图分析例1是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.例习题分析例1(见教材例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.随堂练习1.填空:(1)在ABCD 中,∠A=︒50,则∠B= 度,∠C= 度,∠D= 度.(2)如果ABCD 中,∠A —∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度. (3)如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm ,CD= cm .2.如图4.3-9,在ABCD 中,AC 为对角线,BE ⊥AC ,DF ⊥AC ,E 、F 为垂足,求证:BE =DF . 课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ). (A )对角相等 (B )对角互补 (C )邻角互补 (D )内角和是︒3602.在ABCD 中,如果EF ∥AD ,GH ∥CD ,EF 与GH 相交与点O ,那么图中的平行四边形一共有( ).(A )4个 (B )5个 (C )8个 (D )9个3.如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE .作业:练习册课题18.1.1平行四边形的性质(2)课型 新授三维 目标知识目标掌握平行四边形对角线互相平分的性质.能力目标能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.情感 目标 培养学生的推理论证能力和逻辑思维能力.教学重点 平行四边形对角线互相平分的性质,以及性质的应用. 教学难点 综合运用平行四边形的性质进行有关的论证和计算. 教学方法讲练结合教学过程创设情境,导入新课复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是︒360).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.探索研究,证实发现请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD 绕点O旋转︒180,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.平行四边形性质3 平行四边形的对角线互相平分.范例点击,演练提高教材P44例2应用新知,练习巩固教材44页练习1,2题。

题型专项研究:平行四边形、矩形、菱形、正方形的判定与性质

题型专项研究:平行四边形、矩形、菱形、正方形的判定与性质

题型6平行四边形、矩形、菱形、正方形的判定与性质,备考攻略)1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题.3.平行四边形的存在性问题.4.四边形与二次函数的综合题.1.折叠、轴对称及特殊平行四边形的性质应用出错.2.平行四边形的存在性问题中解有遗漏.3.很难解答四边形与二次函数的综合题,无从下手.1.四边形是几何知识中非常重要的一块内容,因其“变化多端”更是成为中考数学考试的一个热门考点.近几年随着新课改的不断深入,中考题更加考查学生思维能力,如出现一些图形折叠、翻转等问题.这类问题的实践性强,要利用图形变化前后线段、角的对应相等关系,构造一些特殊三角形等知识来求解.2.中考还常把四边形与平面直角坐标系结合起来考查,这类题目不仅仅把“数”与“形”联系起来思考,更提高同学们综合运用知识的能力.数形结合题目可以考查学生对“新事物”“新知识”的接受和理解能力,也考查学生运用所学知识来解决“新事物”“新知识”的能力.3.四边形作为特殊的四边形,一直是中考试题中的主角.尤其是在综合了函数知识后动态研究它的存在性问题,对学生分析问题和解决问题的要求较高.此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题:平行四边形具有对边平行且相等、对角相等、对角线互相平分等性质,它们在计算、证明中都有广泛的应用:(1)求角的度数;(2)求线段的长;(3)求周长;(4)求第三边的取值范围.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题:有关矩形纸片折叠的问题,通过动手操作去发现解决问题的方法.其规律为利用折叠前后线段、角的对应相等关系,构造直角三角形,利用勾股定理来求解.折叠问题数学思想:(1)思考问题的逆向(反方向),(2)转化与化归思想;(3)归纳与分类的思想;(4)从变寻不变性的思想.3.综合了函数知识后动态研究平行四边形的存在性问题:此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.学生在处理问题的时候,往往不能正确分类,导致漏解.此外,在解题时一般需要添设辅助线,利用平行四边形的性质,转化为全等进行计算,学生顺利完成的难度就更大.如何才能让他们有目的的进行分类、简单明了的给出解答,从而减轻学习负担呢?借助平行四边形的对角线性质,来探究平行四边形的存在性问题就是一个很好的途径.4.四边形与二次函数的综合题是压轴题:综合考查了二次函数,一次函数,尺规作图,勾股定理,平面直角坐标系,一元二次方程,轴对称——翻折,最值问题.读懂题目、准确作图、熟悉二次函数及其图象是解题的关键.解决压轴题关键是找准切入点,如添辅助线,构造定理所需的图形或基本图形;紧扣不变量,并善于使用前题所采用的方法或结论;深度挖掘题干,反复认真的审题,在题目中寻找多解的信息,等等.压轴题牵涉到的知识点较多,知识转化的难度较高,除了要熟知各类知识外,平时要多练,提高知识运用和转化的能力.,典题精讲)◆简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题【例1】(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为________.【解析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB =6,由勾股定理求出AD即可.【答案】3 31.(巴中中考)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=__15__°.2.(2017甘肃中考)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.解:(1)∵四边形ABCD 是矩形,O 是BD 的中点, ∴∠A =90°,AD =BC =4,AB ∥DC ,OB =OD, ∴∠OBE =∠ODF.在△BOE 和△DOF 中,⎩⎨⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF(ASA ), ∴EO =FO,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF, 设BE =x ,则DE =x ,AE =6-x. 在Rt △ADE 中,DE 2=AD 2+AE 2, ∴x 2=42+(6-x)2, 解得:x =133.∵BD =AD 2+AB 2=213, ∴OB =12BD =13.∵BD ⊥EF,∴EO =BE 2-OB 2=2133,∴EF =2EO =4133.◆四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题【例2】(宿迁中考)如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A .2B . 3C . 2D .1【解析】根据翻折不变性,AB =FB =2,BM =1,在Rt △BFM 中,可利用勾股定理求出FM 的值.【答案】B3.(咸宁中考)已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( D )A .(0,0)B .⎝⎛⎭⎫1,12C .⎝⎛⎭⎫65,35D .⎝⎛⎭⎫107,57(第3题图)(第4题图)4.(苏州中考)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .⎝⎛⎭⎫3,43C .⎝⎛⎭⎫3,53 D .(3,2)5.(黄冈中考)如图,在矩形ABCD 中,点E ,F 分别在边CD ,BC 上,且DC =3DE =3a ,将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =.6.(2017甘肃中考)如图,E ,F 分别是▱ABCD 的边AD ,BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到EFC′D′,ED ′交BC 于点G ,则△GEF 的周长为( C )A .6B .12C .18D .247.(2017广东中考)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F.(1)求证:△BDF 是等腰三角形;(2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FG 交BD 于点O. ①判断四边形BFDG 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.解:(1)如图①,根据折叠,∠DBC =∠DBE, 又AD ∥BC,∴∠DBC =∠ADB, ∴∠DBE =∠ADB, ∴DF =BF,∴△BDF 是等腰三角形;(2)①∵四边形ABCD 是矩形, ∴AD ∥BC, ∴FD ∥BG.∴四边形BFDG 是平行四边形. ∵DF =BF,∴四边形BFDG 是菱形; ②∵AB =6,AD =8, ∴BD =10, ∴OB =12BD =5.假设DF =BF =x ,∴AF =AD -DF =8-x.∴在Rt △ABF 中,AB 2+AF 2=BF 2,即62+(8-x)2=x 2,解得x =254,即BF =254, ∴FO =BF 2-OB 2=⎝⎛⎭⎫2542-52=154, ∴FG =2FO =152. ◆解决平面直角坐标系中平行四边形存在性问题【例3】(2017大理中考模拟)如图,A ,B ,C 是平面上不在同一直线上的三个点. (1) 画出以 A ,B ,C 为顶点的平行四边形;(2)若 A ,B ,C 三点的坐标分别为(-1,5),(-5,1),(2,2),请写出这个平行四边形第四个顶点 D 的坐标.【解析】利用坐标系的知识点解题.【答案】(1)如图所示;(2)第四个顶点D 的坐标为(-2,-2)或(6,6)或(-8,4).1.(兰州中考)如图所示,菱形ABCD 的周长为20 cm ,DE ⊥AB ,垂足为E ,sin A =35,则下列结论正确的个数有( C )①DE =3 cm ;②BE =1 cm ;③菱形的面积为15 cm 2;④BD =210 cm . A .1个 B .2个 C .3个 D .4个2.(济南中考)如图,矩形ABCD 中,AB =3,BC =5,过对角线交点O 作OE ⊥AC 交AD 于E ,则AE 的长是( D )A .1.6B .2.5C .3D .3.4(第2题图)3.(珠海中考)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是__4__cm.4.(新疆中考)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A 的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.解:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E.∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′.∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;(2)∵AD=AD′,∴▱DAD′E是菱形.∴D与D′关于AE对称.连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G.∵CD ∥AB ,∴∠DAG =∠CDA =60°. ∵AD =1,∴AG =12,DG =32,BG =52,∴BD =DG 2+BG 2=7, ∴PD ′+PB 的最小值为7.5.(资阳中考)如图,在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),双曲线y =kx(k ≠0,x >0)过点D.(1)求双曲线的解析式;(2)作直线AC 交y 轴于点E ,连接DE ,求△CDE 的面积.解:(1)∵▱ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3), ∴点D 的坐标为(1,2). ∵点D 在双曲线y =kx 上,∴k =1×2=2,∴双曲线的解析式为y =2x ;(2)∵直线AC 交y 轴于点E , ∴点E 的横坐标为0. ∵AD =2,∵S △ADC =12·(3-1)·AD =2,∴S △CDE =S △EDA +S △ADC =1+2=3.。

18.1.3平行四边形判定的简单应用

18.1.3平行四边形判定的简单应用

1、在四边形ABCD中, AB∥CD;AD∥BC,AC与BD相 交于点O ,且AC=12,则 AO=____
2,新月广场风光秀丽,花木葱茏,广场上有一个形 状是平行四边形的花坛(如图),分别种有红、黄、 蓝、绿、橙、紫6种颜色的花.如果有AB//EF//DC, BC//GH//AD,那么下列说法中错误的是( )
理由:一组对边平行且相等的四边形是平行四边形
思考: 一组对边平行,另一组对边相等的四边形是平行四边形吗?
例1: 已知:如图,E、F是平行四边形 ABCD 的 对角线 AC 上的两点,AE=CF.
求证:四边形DEBF是平行四边形
证明:∵四边形ABCD是平行四边形
∴AD//BC 且 AD=BC O
∴∠DAE=∠BCF
例1和 思考中都可以用“对角线互相平分的四边形 是平行四边形”来判定四边形DEBF是平行四边形 (连接对角线)
O
O
(AE=CF)
(DE//BF)
比较这些方法哪一种更简单?你有什么启示?
(应用对角线互相平分的四边形是平行四边形进行证明最简单, 当一题多解时,要注意方法的灵活性和简便性,当题目条件集 中指向对角线上时,应用对角线的有关判定定理证明更简便)
∵AE=CF
∴△ADE≌△CBF(SAS) ∴DE=BF 同理 DF=BE
思考还有其他方法吗
∴四边形DEBF是平行四边形
例1: 已知:如图,E、F是平行四边形 ABCD 的 对角线 AC 上的两点,AE=CF.
求证:四边形DEBF是平行四边形
O 思考:
若将题目条件AE=CF改为DE//BF,其余条件不变,四边形 DEBF还是平行四边形吗?请说明理由。
文文字字语语言言
图图形形

掌握简单的平行四边形性质认识平行四边形的特点与应用

掌握简单的平行四边形性质认识平行四边形的特点与应用

掌握简单的平行四边形性质认识平行四边形的特点与应用平行四边形是我们在几何学中经常遇到的一种形状,它具有一些独特的性质和应用。

在本文中,我将详细介绍平行四边形的特点,并探究一些与它相关的应用。

一、平行四边形的定义和性质平行四边形是指四条边两两平行的四边形。

根据这个定义,我们可以得出以下几个性质:1. 对边相等性质:在平行四边形中,对边是相等的。

也就是说,相对的两条边长度相等。

2. 对角线性质:平行四边形的对角线互相平分。

也就是说,连接平行四边形相对顶点的对角线相等。

3. 内角和性质:平行四边形的内角和为 360 度。

也就是说,四个内角之和等于一个圆的角度。

4. 邻补角性质:平行四边形的邻补角互为补角。

也就是说,平行四边形两对相邻的内角之和等于 180 度。

以上是平行四边形的一些基本性质,通过这些性质我们能够更好地认识和理解平行四边形的特点。

二、平行四边形的应用平行四边形的特点和性质在实际生活和工作中有着广泛的应用。

1. 建筑设计:在建筑设计中,平行四边形可以用于设计平面图、墙面装饰和柱子的形状。

通过合理运用平行四边形的特性,可以使建筑结构更加稳定和美观。

2. 制图和绘画:在制图和绘画中,平行四边形被广泛应用于各种图形的构图和布局中。

通过运用平行四边形的对称性和对角线性质,可以使得图形更加平衡和美观。

3. 工程测量:在工程测量中,平行四边形可以用于校准工具或设备,进行长度和角度的测量。

利用平行四边形的对边相等性质,可以提高测量的准确性和可靠性。

4. 三角法和向量:在数学中,平行四边形的性质与三角法和向量有着密切的关系。

通过平行四边形的特点,可以简化三角形的计算,减少复杂的手续,并提高计算的效率。

综上所述,平行四边形是一种重要的几何形状,掌握其性质和应用对我们的学习和工作都具有重要的意义。

通过深入理解和熟练应用平行四边形的相关知识,我们能够更好地解决实际问题,并提高数学和几何学的应用能力。

希望本文对您有所帮助,使您对平行四边形的认识更加深入和全面。

平形四边形定义定理

平形四边形定义定理

平形四边形定义定理平行四边形是几何学中的一个重要概念,它具有独特的性质和定理。

本文将围绕平行四边形的定义定理展开讨论,深入探究其性质和应用。

一、平行四边形的定义平行四边形是指具有两组对边分别平行的四边形。

简单来说,就是四边形的两对边分别平行。

二、平行四边形的性质1. 对边互相平行:平行四边形的两组对边分别平行,即相邻两边、对角线上的点与点连线都是平行的。

2. 对角线互相平分:平行四边形的对角线互相平分,即对角线的交点将对角线分成两等分。

3. 对角线长度相等:平行四边形的对角线长度相等,即对角线AB 和对角线CD的长度相等。

4. 内角之和为360度:平行四边形的内角之和等于360度。

这是因为平行四边形可以看作两个相等的三角形拼接而成,而三角形的内角之和为180度,因此平行四边形的内角之和为360度。

5. 两组对边相等:平行四边形的两组对边相等,即相邻两边的长度相等。

三、平行四边形的定义定理1. 定理一:如果一个四边形的两组对边分别平行,则该四边形是平行四边形。

证明:根据平行四边形的定义,如果一个四边形的两组对边分别平行,那么它就是平行四边形。

2. 定理二:如果一个四边形的对边互相平行,则该四边形是平行四边形。

证明:根据平行四边形的定义,如果一个四边形的对边互相平行,那么它就是平行四边形。

3. 定理三:如果一个四边形的两组对边相等且对角线互相平分,则该四边形是平行四边形。

证明:根据平行四边形的性质,如果一个四边形的两组对边相等且对角线互相平分,那么它就是平行四边形。

四、平行四边形的应用平行四边形在几何学中有着广泛的应用,特别是在计算面积和解决实际问题时,其性质和定理可以发挥重要作用。

1. 计算面积:平行四边形的面积可以通过底边长度和高的乘积来计算。

即面积等于底边乘以高,公式为S=ab,其中a为底边长度,b 为高。

2. 解决实际问题:平行四边形的性质和定理在解决实际问题时也具有重要意义。

例如,可以利用平行四边形的对角线互相平分的性质,求解平行四边形的对角线长度;或者利用平行四边形的内角之和为360度的性质,求解平行四边形内角的度数。

平行四边形的周长计算

平行四边形的周长计算

平行四边形的周长计算平行四边形是一种特殊的四边形,它的两对边是平行的,且相对的边长相等。

在计算平行四边形的周长时,我们可以利用其性质和公式来简化计算过程。

本文将详细介绍计算平行四边形周长的方法。

一、平行四边形的定义与性质平行四边形是指具有两对平行边的四边形。

根据平行四边形的性质可知,它的相邻两边互相平行且相等,对角线互相平分,并且对角线相交处的角度为180度。

二、计算平行四边形周长的公式平行四边形的周长等于其四条边的长度之和。

设平行四边形的边长分别为a、b、c和d,则其周长L可以表示为:L = a + b + c + d三、解题示例假设有一个平行四边形ABCD,已知各边的长度分别为AB = 5cm,BC = 8cm,CD = 5cm,DA = 8cm。

我们可以利用上述公式计算其周长。

L = AB + BC + CD + DA= 5cm + 8cm + 5cm + 8cm= 26cm因此,平行四边形ABCD的周长为26cm。

四、结论通过上述示例,我们可以看出计算平行四边形周长的方法较为简单。

只需将四边的长度相加即可得到结果。

为了方便计算,可以提前确定好各边的长度,然后按照公式进行计算。

在实际应用中,计算平行四边形周长的方法也同样适用于其他类型的四边形,如矩形、正方形等。

只要根据具体情况确定好边长,便可按照相应公式进行计算。

总结起来,计算平行四边形周长的方法简单易行,只需将其四条边的长度相加即可。

通过熟练掌握这一方法,我们可以更快速地求解平行四边形的周长问题,提高数学计算的效率。

以上就是关于平行四边形周长计算的内容,希望可以对您有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形的性质简单应用
一、学生起点分析
学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。

学生活动经验基础:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。

二、学习任务分析
四边形和三角形一样,也是基本的平面图形,在七年级下册有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索平行四边形的性质并培养学生的探索意识。

学习目标:
1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2.探索并掌握平行四边形的性质,并能简单应用;
教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学方法:探索归纳法
三、教学过程设计
本节课分5个环节:
第一环节:实践探索,直观感知
第二环节:探索归纳,交流合作
第三环节:推理论证,感悟升华
第四环节:应用巩固,深化提高
第五环节:评价反思,概括总结
第一环节:实践探索,直观感知
1.小组活动一
内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?
目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联
系的。

效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。

2.小组活动二
内容:
问题1:同学们拿出准备好三对全等三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;
(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

目的:
通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;
平行四边形的相邻的两个顶点连成的一段叫做它的对角线。

教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示”。

第二环节探索归纳、合作交流
小组活动三:
内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?⑵你还发现平行四边形的那些性质呢?
活动目的:
这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。

活动注意事项:
引导学生动手操作、复制、旋转、观察、分析,在剪切平行四边形纸片时,要保证上
下纸片的大小、形状完全相同。

第三环节推理论证、感悟升华
1.实践探索内容
(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边形的对应边、对应角分别相等。

(2)可以通过推理来证明这个结论。

例:如图6-2(1),四边形ABCD是平行四边形.
求证:AB=CD,BC=DA.
证明:如图6-2(2),连接AC.
∵四边形ABCD是平行四边形
∴AD // BC,AB // CD
∴∠1=∠2,∠3=∠4
∴△ABC和△CDA中
∠2=∠1
AC=CA
∠3=∠4
∴△ABC≌△CDA(ASA)
∴AB=DC,AD=CB
学生证明:平行四边形的对角相等.
2.活动目的:
学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。

3.活动效果:
“实践→认识→再实践→认识”是数学学习的重要方法,说理论证平行四边形的性质时学生能很好地接受,由此看出这一年龄段的学习完全可以由感性的认知上升到理性的证明。

第四环节应用巩固深化提高
1.活动内容:
(1)练一练:已知:如图6-3,在ABCD中,E,F是对角线AC上的两点,且AE=CF.求证:BE=DF.
证明:∵四边形ABCD是平行四边形
∴AB = CD
AB // CD
∴∠BAE=∠DCF
又∵AE=CF
∴△BAE≌△DCF
C
D
B
∴ BE=DF
⑵ 议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗? A (学生思考、议论)
B 总结归纳:可以确定其它三个内角的度数。

由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

2.活动目的:
通过练一练,议一议,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。

3.活动效果:
学生经过通过此环节的思、议、练进一步理解和应用掌握了平行四边形的性质特征,是对探索归纳:比较的综合提高。

第五环节 评价反思 概括总结
1.活动内容
[1]师生相互交流、反思、总结。

(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点? (3)本节学习到了什么?(知识上、方法上) 活动目的:
鼓励学生交流课堂实践、观察探索的经历、感受和收获;鼓励学生勇于进行自我评价,进一步培养学生反思意识及总结能力。

活动效果:
学生踊跃谈感受和收获,本节学习了平行四边形的概念,探索了平行四边形的性质:平行四边形对边相等,平行四边形对角相等;平行四边形对角线互相平分。

[2]考一考: 检测(一):针对定义
1、如图: ABCD 中,EF ∥AB , ① 则图中有__个平行四边形; ②若GH ∥AD ,EF 与GH 交于点O , 则图中有__个平行四边形。

检测(二):角的性质
例:如图,在 中
A:基础知识:
若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______
B:变式训练:
1、若∠A+ ∠C= 200°,则∠A=______ 、∠B=______
2、若∠A:∠B= 5:4,则∠C=______ 、∠D=______
3、∠A:∠B: ∠C :∠D的度数可能是( )
A、1:2:3:4
B、3:2:3:2
C、2:3:3:2
D、2:2:3:3
检测(三):边的性质
例:如图,在中
A:基础知识:
1、若AB=1㎝,BC=2 ㎝,则的周长为______
2、若AB=4㎝,的周长为18㎝,则BC=___ __
B:变式训练:
1、1、若AB:BC=3:4,周长为14㎝,则CD=______,DA=________
2、若AB:BC=3:4,AB=6 ㎝,则BC=____,周长=_____
活动目的:
设置针对性、层进式的练习,检测学生本节课知识掌握运用情况。

活动效果:
学生经过通过此环节的针对性、层进式的练习,很好地检测了本节课目标的达成情况。

[3]用一用
1、有一块形状如图所示的玻璃,不小心把EDF部分
打碎了,现在只测得AE=60cm、BC=80cm,∠B=60°
且AE∥BC、AB∥CF,你能根据测得的数据计算出DE
的长度和∠D的度数吗?
2、如图,小明用一根36m长的绳子围成了一个平行四边形的
场地,其中一条边AB长为8m,其他三条边各长多少?
3学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),
现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?
活动目的:
针对本节内容,设置一些贴合生活实际的题目,检测学生在生活中运用数学知识的能力。

活动效果:
培养学生学以致用的习惯和意识。

[4]填写小组评价表,装入成长档案袋。

参与小组活动情况评价表
学生姓名:_______,时间:________,活动内容:______ ___
活动目的:
让评价促进学生的学习,增强小组合作学习的功效。

活动效果:
加强了学生小组合作学习的积极性
[5]布置作业
1.必做题:
P137知识技能
3
、写数学日记。

2.选做题:P137 联系拓广4 数学日记:
A 3 2
A B C
[6]师生共勉:在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。

——毕达哥拉斯活动目的:
1.通过作业的巩固对平行四边形性质理解并学会应用。

2.数学日记,旨在的同学们反思总结的习惯。

四、板书设计
在第五环节“评价反思概括总结”时引导学生以知识“盆栽”的形式呈现在黑板上。

五、教学反思
1.本节教材直观感知活动较多,由学生的心理及年龄特点决定,学生有一定的逻辑思考能力及说理能力,因此从理性角度分析平行四边形的性质特点是非常需要的。

2.学生在“议一议,练一练”环节中,要引导有条理的叙述及数学语言的表达。

相关文档
最新文档