求逆矩阵的四种方法

合集下载

矩阵求逆方法大全

矩阵求逆方法大全

矩阵求逆方法大全
矩阵的逆是一个重要的数学概念,它在很多领域中都得到了广泛的应用,如线性代数、微积分、概率论等。

求解矩阵的逆可以用于解线性方程组、计算行列式、计算特征值和特征向量等。

本文将介绍几种常见的矩阵求逆方法,包括伴随矩阵法、高斯消元法、LU分解法和特征值分解法。

1.伴随矩阵法:
伴随矩阵法是求解逆矩阵最常用的方法之一、首先,计算出矩阵的伴
随矩阵,然后将其除以矩阵的行列式即可得到逆矩阵。

2.高斯消元法:
高斯消元法是一种常用的线性方程组求解方法,也可以用来求解矩阵
的逆。

通过将待求逆矩阵与单位矩阵连接起来,然后进行初等行变换,直
至左边的矩阵变为单位矩阵,右边的矩阵即为所求逆矩阵。

3.LU分解法:
LU分解法将矩阵分解为下三角矩阵L和上三角矩阵U的乘积,然后
通过求解两个三角矩阵的逆矩阵,进而求得原矩阵的逆。

LU分解法是一
种常用的数值计算方法,应用广泛。

4.特征值分解法:
特征值分解法是一种通过矩阵的特征值和特征向量来求解矩阵的逆的
方法。

首先,根据特征值定理求解矩阵的特征值和特征向量,然后利用这
些特征值和特征向量构建一个对角矩阵,最后通过对角矩阵求逆得到原矩
阵的逆。

除了上述方法外,还有其他一些方法可以用来求解矩阵的逆,如迭代法、SVD分解法等。

这些方法在不同的应用场景下有不同的优势。

总之,求解矩阵的逆是一个重要的数学问题,在实际应用中有着广泛的应用。

以上介绍的几种方法是常用的求解逆矩阵的方法,读者可以根据自己的需求选择合适的方法进行求解。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

矩阵运算 求逆

矩阵运算 求逆

矩阵求逆是线性代数中的一个重要概念,通常指的是对于一个给定的方阵,找到一个同样大小的矩阵,使得两者相乘得到单位矩阵。

以下是几种常见的求逆矩阵的方法:
1. 高斯消元法:这是一种通过行变换将矩阵转换为行阶梯形矩阵,然后通过回代求解未知数的方法。

如果矩阵可逆,最终可以通过回代得到其逆矩阵。

2. LU分解法:这种方法将矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积。

如果这样的分解存在,那么矩阵的逆可以表示为U的逆和L的逆的乘积。

3. SVD分解法:奇异值分解(SVD)是一种将矩阵分解为三个矩阵的乘积的方法。

如果矩阵是可逆的,那么它的逆可以通过对分解得到的矩阵进行相应的逆运算得到。

4. QR分解法:这种方法将矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积。

如果矩阵可逆,那么其逆可以表示为R的逆和Q的转置的乘积。

5. 伴随矩阵法:这是通过计算矩阵的伴随矩阵和行列式的倒数来求逆的方法。

适用于小矩阵或者行列式容易计算的情况。

6. 初等变换法:通过对矩阵进行一系列的初等行变换或列变换,将其转换为单位矩阵,同时对单位矩阵进行相同的变换,最终得到的就是原矩阵的逆。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。

求逆矩阵的三种方法

求逆矩阵的三种方法

求逆矩阵的三种方法求逆矩阵的三种方法1.待定系数法待定系数法顾名思义是一种求未知数的方法。

将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。

然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。

对于这个题来说,左边是题目中的矩阵,右边是假设的三阶矩阵[1 -4 -3] | [a b c][1 -5 -3] | [d e f][-1 6 4] | [g h i]接下来该说说矩阵的乘法,两个矩阵相乘,内部决定可乘与否,外部决定新形状形如A[3*1]与B[2*3]不可乘,A[3*3]与B[3*1]可乘A*B=C3*1(三行一列的矩阵)其核心是第一个矩阵第一行的每个数字,各自乘以第二个矩阵第一列对应位置的数字,然后乘积相加就可以得到,换句话说,结果矩阵的第M行与第N列交叉的位置的那个值等于第一个矩阵的第M行与第二个矩阵第N列对应位置的每个数字的乘积之和。

过程如下[a-4d-3g b-4e-3h c-4f-3i ] | [1 0 0][a-5d-3g b-5e-3h c-5f-3i ] | [0 1 0][-a+6d+4g -b+6d+4g -c+6c+4i ] | [0 0 1]九个未知数九个方程a-4d-3g=1 a=2b-4e-3h=0 b=2c-4f-3i=0 c=3a-5d-3g=0 >>> d=1b-5e-3h=1 >>> e=-1c-5f-3i=0 >>> f=0-a+6d+4g=0 g=-1-b+6d+4g=0 h=2-c+6c+4i=1 i=1以上就是待定系数法的全部内容,这种方法方法并不难,主要考察的是细心。

2.伴随矩阵法用这个方法之前,必须先搞清什么是余子式和代数余子式!设矩阵,将矩阵的元素所在的第i行第j列元素划去后,剩余的,各元素按原来的排列顺序组成的n-1阶矩阵所确定的行列式称为元素的余子式,记为,称谓元素的代数余子式。

12-逆矩阵的求法3-4

12-逆矩阵的求法3-4
逆阵的求法 1 方法一: 用A求。 A1 A A
方法二: 初等变换法。
A可逆 A 可逆, A
1
1
P 1P 2 P s
P 1P 2 P sA E 1 P 1P 2 P sE A
( A E ) ( E A )
行变换
1
方法三:用定义求。 定义:对n阶方阵A,若有n阶矩阵B,使
E Ak E
练 习
设 A,B 为 n 阶方阵,且 E AB 与 E BA 均可逆, 证明 ( E BA)1 E B( E AB)1 A.
证 因为
( E BA 〔 ) E B( E AB) 1 A〕
E BA ( E BA) B( E AB) A E BA ( B BAB )( E AB) A
方法三:用定义求。 对n阶方阵A,只需找到一个n阶矩阵B,使 AB=E或者BA=E就行了。
行变换
1
方法四:用定义证明B为A的逆。
也就是证明等式AB=E成立或者BA=E成立。
E BA B( E AB)( E AB) 1 A
1
1
E BA BA E
故 ( E BA) 1 E B( E AB) 1 A.
方法二: 初等变换法。
逆阵的求法 1 1 方法一: 用A 求。 A A A
( A E ) ( E A )
解 由 2 A( A E ) A3,得
A3 2 A2 2 A 0,
所以
从而有
(A3 E ) (2 A2 2 A) E,
( E A)( A2 A E ) E.

( E A) A A E.

求矩阵逆的方法

求矩阵逆的方法

求矩阵逆的方法
方法一,伴随矩阵法。

对于一个n阶矩阵A,如果其行列式不为0,那么A就是可逆的。

我们可以通过求解伴随矩阵来得到A的逆矩阵。

首先,我们计算A的伴随矩阵Adj(A),然后用行列式的倒数乘以伴随矩阵即可得到A的逆矩阵。

方法二,初等变换法。

初等变换法是通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为A的逆矩阵。

这种方法在计算机求解中比较常见,可以通过高斯消元法来实现。

方法三,分块矩阵法。

对于某些特殊的矩阵,我们可以通过将其分解成若干个子矩阵,从而简化逆矩阵的求解过程。

例如,对角矩阵、上三角矩阵、下三角矩阵等都有相对简单的逆矩阵求解方法。

方法四,特征值分解法。

对于对称正定矩阵,我们可以通过其特征值和特征向量来求解其逆矩阵。

通过特征值分解和特征向量矩阵的转置,我们可以得到原矩阵的逆矩阵。

方法五,数值逼近法。

对于大型矩阵或者特殊结构的矩阵,有时候我们无法通过解析的方法求解其逆矩阵,这时可以通过数值逼近的方法来计算其逆矩阵。

例如,利用迭代法或者矩阵分解等方法来近似求解逆矩阵。

总结:
以上是几种常见的求解矩阵逆的方法,不同的方法适用于不同类型的矩阵。

在实际问题中,我们需要根据具体情况选择合适的方法来求解矩阵的逆,以便更好地解决实际问题。

希望本文能够对您有所帮助,谢谢阅读!。

矩阵求逆的几种方法

矩阵求逆的几种方法

矩阵求逆的几种方法矩阵求逆是线性代数学习的重要内容,给出一个矩阵A,要求求矩阵A的逆矩阵存在时,可以通过几种方法来解决这个问题。

本文对这几种求逆方法进行了总结,一起来学习一下。

一、矩阵求逆的2x2特例2x2矩阵求逆是求矩阵逆最为基础的方法,下面以A为例,计算A的逆矩阵。

A=begin{pmatrix}a&bc&dend{pmatrix}则A的逆矩阵为:A^{-1}=frac{1}{ad-bc}begin{pmatrix}d&-b-c&aend{pmatrix}二、增广矩阵的方法用增广矩阵的方法,可以求任意阶的方阵的逆矩阵。

由A增广矩阵B:B=begin{pmatrix}a&b&e_1c&d&e_2e_3&e_4&e_5end{pmatrix} 其中,$e_i$是单位矩阵的元素。

用行列式计算法求出$Delta_B$由$Delta_B=ad-bceq 0$可以判断行列式不等于0,即矩阵A可逆。

计算A的逆矩阵:A^{-1}=frac 1{Delta_B}begin{pmatrix}d&-b&e_3-c&a&e_4e_1&e_2&e_5end{pmatr ix}其中,$e_i$为求解此增广矩阵过程中得到的单位矩阵的元素。

三、分块矩阵的求逆分块矩阵的方法是求解大型矩阵的另一种简便方法,假设A为4阶矩阵:A=begin{pmatrix}A_{11}&A_{12}A_{21}&A_{22}end{pmatrix} 它的逆矩阵为:A^{-1}=begin{pmatrix}A_{11}^{-1}&-A_{11}^{-1}A_{12}-A_{21}A _{11}^{-1}&A_{22}-A_{21}A_{11}^{-1}A_{12}end{pmatrix} 以上三种矩阵求逆的方法在实际应用中都有不同的作用,但是本质都是同一种方法,以上三种方法矩阵求逆的数学原理是一样的,只不过实现过程和求解结果有所不同而已。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且(E-A)1-= E + A + A2+…+A1-K证明因为E 与A 可以交换, 所以(E- A )(E+A + A2+…+ A1-K)= E-A K,因A K= 0 ,于是得(E-A)(E+A+A2+…+A1-K)=E,同理可得(E + A + A2+…+A1-K)(E-A)=E,因此E-A是可逆矩阵,且(E-A)1-= E + A + A2+…+A1-K.同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A2+…+(-1)1-K A1-K.由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A 的逆矩阵.例2 设 A =?0000300000200010,求 E-A 的逆矩阵.分析由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解容易验证A 2=0000000060000200, A 3=?0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=?1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使(1)s p p p Λ21A=I ,用A 1-右乘上式两端,得:(2)s p p p Λ21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )→?初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=521310132.解[A I]→100521010310001132→????001132010310100521→ --3/16/16/1100010310100521→-----3/16/16/110012/32/10103/46/136/1001 故 A 1-=-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=987654321.解[A E]=100987010654001321→????------1071260014630001321→ ??----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1?nn nnn n A A A A A A A A A .....................212221212111 其中A ij 是A 中元素a ij 的代数余子式.矩阵?nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性:设A 为非奇异,存在矩阵B=A 1?nn nnn n A A A A A A A A A (2122212) 12111,其中AB=?nn n n n n a a a a a a a a a (2) 12222111211?A 1?nn nn n n A A A A A A A A A (2122212)12111=A 1A A A A ... .........0...00...0=?1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵221100A A ??--12211100A A 证明因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=W ZY X,于是有W Z Y X221100A A =??m nI I 00, 其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ??--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-?k A A A =---11211...k A A A4.2.准三角形矩阵求逆命题设A 11、A 22都是非奇异矩阵,则有12212110-A A A =??-----122122121111110A A A A A证明因为2212110A A A--I A A I 012111=??221100A A 两边求逆得1121110---I A A I 1221211-A A A =??--12211100A A 所以 1221211-A A A=--I A A I 012111??--12211100A A =??-----122122121111110A A A A A同理可证12221110-A A A =??-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

逆矩阵的几种求法与解析

逆矩阵的几种求法与解析

.逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A K = 0, 那么E-A 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A *,于是有A 1-=A 1 A *.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1 A *. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

逆矩阵的几种求法与解析 很全很经典

逆矩阵的几种求法与解析 很全很经典


1

é- 1 / 6 - 13 / 6 4 / 3ù A = ê 1/ 2 3/ 2 -1 ú . ê ú ê 1 / 6 1 / 6 1 / 3 ú ë û
-1
在事先不知道n阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变 换过程中发现左边的矩阵有一行元素全为0, 则意味着A不可逆, 因为此时表明 A =0, 则A -1 不存在.
其中A ij 是 A 中元素a ij 的代数余子式.
A21 A22 ... A2 n
... An1 ù ú ... An 2 ú ... ... ú ú ... Ann û
é A11 ê A 矩阵 ê 12 ê ... ê ë A1n
证明
A21 A22 ... A2 n
... An1 ù ú ... An 2 ú 1 称为矩阵A的伴随矩阵,记作A 3 ,于是有A -1 = A3. A ... ... ú ú ... Ann û
é A11-1 A = ê ë 0
21
-1 -1 -1
-1
0 ù ú A22 -1 û
-1 ù é A1 ú ê ú =ê ú ê ú ê Ak û ê ë -1
把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:
é A1 ê ê ê ê ë A2 ... A2
-1
...
ù ú ú ú -1 ú Ak û ú
0 ù é 1 0 ... 0 ù ú 0 ú ê 0 1 ... 0 ú ú =I =ê ... ú ê... ... 1 ...ú ú ê ú A û ë 0 0 ... 1 û
同理可证BA=I. 由此可知,若A可逆,则A -1 =
1 A3. A

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法矩阵的逆矩阵是矩阵理论中非常重要的概念,它在线性代数、计算机图形学、物理学等领域都有着广泛的应用。

在实际问题中,我们经常会遇到需要求解矩阵的逆矩阵的情况,因此掌握求解逆矩阵的方法对于我们理解和应用矩阵具有重要意义。

首先,让我们来了解一下什么是矩阵的逆矩阵。

对于一个n阶方阵A,如果存在另一个n阶方阵B,使得AB=BA=I(其中I为单位矩阵),那么B就是A的逆矩阵,记作A^-1。

需要注意的是,并非所有的矩阵都有逆矩阵,只有可逆矩阵才存在逆矩阵。

接下来,我们将介绍几种求解矩阵逆的方法。

一、初等变换法。

通过初等变换将原矩阵转化为单位矩阵,此时原矩阵经过一系列相同的初等变换得到单位矩阵,而这些初等变换也分别作用于单位矩阵上,得到的矩阵即为原矩阵的逆矩阵。

二、伴随矩阵法。

对于n阶矩阵A,其伴随矩阵记作adj(A),则A的逆矩阵为1/det(A) adj(A),其中det(A)为A的行列式。

通过求解伴随矩阵和行列式,可以得到原矩阵的逆矩阵。

三、矩阵的初等行变换法。

通过将原矩阵和单位矩阵进行横向组合,得到一个增广矩阵,然后对增广矩阵进行初等行变换,直到左侧的矩阵变为单位矩阵,此时右侧的矩阵即为原矩阵的逆矩阵。

四、矩阵的分块法。

对于特定结构的矩阵,可以通过矩阵的分块运算来求解逆矩阵,这种方法在一些特殊情况下比较高效。

需要指出的是,对于大型矩阵来说,直接求解逆矩阵的方法可能会比较耗时,因此在实际应用中,我们通常会利用矩阵的性质和特殊结构,采用更加高效的方法来求解逆矩阵。

总之,求解矩阵的逆矩阵是矩阵理论中的重要问题,我们可以根据具体的矩阵结构和应用场景选择合适的方法来求解逆矩阵。

通过掌握这些方法,我们能够更好地理解和应用矩阵,在实际问题中取得更好的效果。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )= E + A + A +…+A 1-21-K 证明 因为E 与A 可以交换, 所以(E- A )(E+A + A +…+ A )= E-A ,21-K K 因A = 0 ,于是得 K (E-A)(E+A+A +…+A )=E ,21-K 同理可得(E + A + A +…+A )(E-A)=E ,21-K 因此E-A 是可逆矩阵,且(E-A)= E + A + A +…+A .1-21-K 同理可以证明(E+ A)也可逆,且(E+ A)= E -A + A +…+(-1)A .1-21-K 1-K 由此可知, 只要满足A =0,就可以利用此题求出一类矩阵E A 的逆矩阵.K ±例2 设 A =,求 E-A 的逆矩阵.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00300000200010分析 由于A 中有许多元素为零, 考虑A 是否为零矩阵, 若为零矩阵, 则可以K 采用例2 的方法求E-A 的逆矩阵.解 容易验证A =, A =, A =02⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000000600002003⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006004而 (E-A)(E+A+ A + A )=E,所以23(E-A)= E+A+ A + A =.1-23⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10003100621062112.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵使S P P P ,,21 (1)A=I ,用A 右乘上式两端,得:s p p p 211- (2) I= A s p p p 211-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A .1-用矩阵表示(A I )为(I A ),就是求逆矩阵的初等行变换法,−−−→−初等行变换1-它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A =.1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明=0,则A 不存在.A 1-例2 求A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321 .→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ]为可逆的充分必要条件是A 非奇异.且ij A =1-A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中A 是中元素a 的代数余子式.ij A ij 矩阵称为矩阵A 的伴随矩阵,记作A ,于是有A = A .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A AA A A (2122212)1211131-A 13证明 必要性:设A 可逆,由A A =I ,有=,则=,所以1-1-AA I A 1-A I A0,即A 为非奇异.≠充分性: 设A 为非奇异,存在矩阵B=,A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A ............... (2122212)12111===I A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A AA A ...00.........0...00...0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1...00...1......0...100...01同理可证BA=I.由此可知,若A 可逆,则A =A .1-A13用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA =I 来检验.一1-旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 、A 都是非奇异矩阵,且A 为n 阶方阵,A 为m 阶方阵11221122 ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为==0, 所以A 可逆.A 22110A A 11A 22A ≠设A =,于是有=,1-⎥⎦⎤⎢⎣⎡WZYX⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡m nI I 00其中 X A =I , Y A =0,Z A =0,W A =I .又因为A 、A 都可逆,用11n 221122m 1122A 、A 分别右乘上面左右两组等式得:111-122-X= A ,Y=0,Z=0,W= A 111-122-故 A = 21⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:=121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 、A 都是非奇异矩阵,则有1122=12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 证明 因为=⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡22110A A 两边求逆得=1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--12211100A A 所以 =1221211-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 同理可证=12221110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA =E ,把题目中的逆矩阵化简掉。

逆矩阵的几种求法与解析

逆矩阵的几种求法与解析
因此E-A是可逆矩阵,且
(E-A) = E + A + A +…+A .
同理可以证明(E+ A)也可逆,且
(E+ A) = E -A + A +…+(-1) A .
由此可知,只要满足A =0,就可以利用此题求出一类矩阵E A的逆矩阵.
例2设A = ,求E-A的逆矩阵.
分析由于A中有许多元素为零,考虑A 是否为零矩阵,若为零矩阵,则可以采用例2的方法求E-A的逆矩阵.
3.伴随阵法
定理n阶矩阵A=[a ]为可逆的充分必要条件是A非奇异.且
A =
其中A 是 中元素a 的代数余子式.
矩阵 称为矩阵A的伴随矩阵,记作A*,于是有A = A*.
证明必要性:设A可逆,由AA =I,有 = ,则 = ,所以 0,即A为非奇异.
充分性: 设A为非奇异,存在矩阵
B= ,
其中
AB=
X= A ,Y=0,Z=0,W= A
故 A =
把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:
=
4.2.准三角形矩阵求逆
命题设A 、A 都是非奇异矩阵,则有
=
证明因为 =
两边求逆得
=
所以 =
=
同理可证
=
此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.
5.恒等变形法
恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA =E,把题目中的逆矩阵化简掉。
例1计算(A+4E) (4E-A) (16E-A )的行列式,其中 A=

逆矩阵的几种求法与解析

逆矩阵的几种求法与解析

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A K = 0, 那么E-A 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E ,同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001 故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A *,于是有A 1-=A 1 A *.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111,其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1 A *. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡WZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00, 其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A=⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求逆矩阵的四种方法
逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵,也是线性代数中
的重要概念之一。

但是,在实际应用中,需要对矩阵求逆的情况并不多,因为矩阵求逆的时间复杂度很高。

下面介绍四种求逆矩阵的方法:
1. 初等变换法:采用列主元消去法(高斯-约旦消元法)进行初等变换,即将一个矩阵通过行变换,转化为一个行阶梯矩阵,其中行阶梯矩阵
的左下方的元素均为零。

而这样一个变换后得到的矩阵实际上就是原
矩阵的逆矩阵。

2. 伴随矩阵法:如果一个矩阵 A 可逆,则求它的逆矩阵等价于求它的伴随矩阵 AT 的结果除以 A 的行列式。

伴随矩阵的计算式为:adj(A)
= COF(A)T,其中 COF(A) 为 A 的代数余子式组成的矩阵,它的每个
元素满足 COF(A)ij = (-1)^(i+j) det(Aij),其中 det(Aij) 表示将第 i 行和第 j 列去掉后得到的子矩阵的行列式。

3. LU 分解法:LU 分解法是将矩阵分解为一个下三角矩阵 L 和一个上
三角矩阵 U 的乘积,即 A = LU,其中 L 的对角线元素均为 1。

当矩
阵 A 可逆时,可用 LU 分解求解其逆矩阵。

假设 L 和 U 都是方阵,则A 的逆矩阵为:A^(-1) = (LU)^(-1) = U^(-1)L^(-1)。

4. 奇异值分解(SVD)方法:当矩阵 A 是非方阵时可以采用奇异值分解法,将矩阵 A 分解为A = UΣV^T,其中 U 为一个m×m 的正交矩阵,V 为一个n×n 的正交矩阵,Σ 为一个m×n 的矩形对角矩阵,若
r 是 A 的秩,则Σ左上角的 r 个元素不为 0,其余元素为 0,即Σ有 r 个非零奇异值。

当A 可逆时,Σ 中的非零元素都存在逆元,逆矩阵为:A^(-1) = VΣ^(-1)U^T。

综上所述,求逆矩阵的四种方法各有特点,应根据实际情况选择合适
的方法进行求解。

初等变换法适合较小规模的矩阵,伴随矩阵法适用
于计算代数余子式较容易的矩阵,LU 分解法适合较大规模的矩阵,而SVD 方法则适用于非方阵或奇异矩阵的情况。

相关文档
最新文档