矩阵求逆方法大全-1

合集下载

矩阵求逆方法大全

矩阵求逆方法大全

矩阵求逆方法大全
矩阵的逆是一个重要的数学概念,它在很多领域中都得到了广泛的应用,如线性代数、微积分、概率论等。

求解矩阵的逆可以用于解线性方程组、计算行列式、计算特征值和特征向量等。

本文将介绍几种常见的矩阵求逆方法,包括伴随矩阵法、高斯消元法、LU分解法和特征值分解法。

1.伴随矩阵法:
伴随矩阵法是求解逆矩阵最常用的方法之一、首先,计算出矩阵的伴
随矩阵,然后将其除以矩阵的行列式即可得到逆矩阵。

2.高斯消元法:
高斯消元法是一种常用的线性方程组求解方法,也可以用来求解矩阵
的逆。

通过将待求逆矩阵与单位矩阵连接起来,然后进行初等行变换,直
至左边的矩阵变为单位矩阵,右边的矩阵即为所求逆矩阵。

3.LU分解法:
LU分解法将矩阵分解为下三角矩阵L和上三角矩阵U的乘积,然后
通过求解两个三角矩阵的逆矩阵,进而求得原矩阵的逆。

LU分解法是一
种常用的数值计算方法,应用广泛。

4.特征值分解法:
特征值分解法是一种通过矩阵的特征值和特征向量来求解矩阵的逆的
方法。

首先,根据特征值定理求解矩阵的特征值和特征向量,然后利用这
些特征值和特征向量构建一个对角矩阵,最后通过对角矩阵求逆得到原矩
阵的逆。

除了上述方法外,还有其他一些方法可以用来求解矩阵的逆,如迭代法、SVD分解法等。

这些方法在不同的应用场景下有不同的优势。

总之,求解矩阵的逆是一个重要的数学问题,在实际应用中有着广泛的应用。

以上介绍的几种方法是常用的求解逆矩阵的方法,读者可以根据自己的需求选择合适的方法进行求解。

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法逆矩阵是线性代数中一个非常重要的概念,它在解线性方程组、求解矩阵方程等问题中具有重要作用。

本文将介绍解逆矩阵的三种常用方法:伴随矩阵法、初等变换法和分块矩阵法。

方法一:伴随矩阵法伴随矩阵法是一种直接求解逆矩阵的方法。

对于一个n阶方阵A,它的伴随矩阵记为adj(A)。

首先,计算矩阵A的代数余子式构成的余子式矩阵A*,即A* = [Cij],其中Cij是A的元素a_ij的代数余子式。

然后,将A*的转置矩阵记为adj(A)。

最后,计算逆矩阵A^-1 = adj(A) /det(A),其中det(A)是矩阵A的行列式。

方法二:初等变换法初等变换法是通过一系列的初等行变换将矩阵A变为单位矩阵I,同时对单位矩阵进行相同的变换,得到的矩阵就是原矩阵A的逆矩阵。

初等变换包括以下三种操作:1.对其中一行(列)乘以非零常数;2.交换两行(列);3.其中一行(列)乘以非零常数加到另一行(列)上。

具体步骤如下:1.构造增广矩阵[A,I],其中A是待求逆矩阵,I是单位矩阵;2.对增广矩阵进行初等行变换,使左侧的矩阵部分变为单位矩阵,右侧的部分就是待求的逆矩阵;3.如果左侧的矩阵部分无法变为单位矩阵,则矩阵A没有逆矩阵。

方法三:分块矩阵法当矩阵A有一些特殊的结构时,可以使用分块矩阵法来求解逆矩阵。

例如,当A是一个分块对角矩阵时,可以按照分块的大小和位置将其分解为几个小矩阵,然后利用分块矩阵的性质求解逆矩阵。

具体步骤如下:1.将方阵A进行分块,例如,将A分为4个分块:A=[A11A12;A21A22];2.根据分块矩阵的性质,逆矩阵也是可以分块的,即A的逆矩阵为A^-1=[B11B12;B21B22];3.通过求解分块矩阵的逆矩阵,可以得到原矩阵的逆矩阵。

以上就是解逆矩阵的常用三种方法:伴随矩阵法、初等变换法和分块矩阵法。

无论是在理论研究还是在实际应用中,这些方法都具有重要的作用。

在求逆矩阵时,我们可以根据具体的情况选择合适的方法,以获得高效、准确的计算结果。

求逆矩阵的四种方法

求逆矩阵的四种方法

求逆矩阵的四种方法逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵,也是线性代数中的重要概念之一。

但是,在实际应用中,需要对矩阵求逆的情况并不多,因为矩阵求逆的时间复杂度很高。

下面介绍四种求逆矩阵的方法:1. 初等变换法:采用列主元消去法(高斯-约旦消元法)进行初等变换,即将一个矩阵通过行变换,转化为一个行阶梯矩阵,其中行阶梯矩阵的左下方的元素均为零。

而这样一个变换后得到的矩阵实际上就是原矩阵的逆矩阵。

2. 伴随矩阵法:如果一个矩阵 A 可逆,则求它的逆矩阵等价于求它的伴随矩阵 AT 的结果除以 A 的行列式。

伴随矩阵的计算式为:adj(A)= COF(A)T,其中 COF(A) 为 A 的代数余子式组成的矩阵,它的每个元素满足 COF(A)ij = (-1)^(i+j) det(Aij),其中 det(Aij) 表示将第 i 行和第 j 列去掉后得到的子矩阵的行列式。

3. LU 分解法:LU 分解法是将矩阵分解为一个下三角矩阵 L 和一个上三角矩阵 U 的乘积,即 A = LU,其中 L 的对角线元素均为 1。

当矩阵 A 可逆时,可用 LU 分解求解其逆矩阵。

假设 L 和 U 都是方阵,则A 的逆矩阵为:A^(-1) = (LU)^(-1) = U^(-1)L^(-1)。

4. 奇异值分解(SVD)方法:当矩阵 A 是非方阵时可以采用奇异值分解法,将矩阵 A 分解为A = UΣV^T,其中 U 为一个m×m 的正交矩阵,V 为一个n×n 的正交矩阵,Σ 为一个m×n 的矩形对角矩阵,若r 是 A 的秩,则Σ左上角的 r 个元素不为 0,其余元素为 0,即Σ有 r 个非零奇异值。

当A 可逆时,Σ 中的非零元素都存在逆元,逆矩阵为:A^(-1) = VΣ^(-1)U^T。

综上所述,求逆矩阵的四种方法各有特点,应根据实际情况选择合适的方法进行求解。

初等变换法适合较小规模的矩阵,伴随矩阵法适用于计算代数余子式较容易的矩阵,LU 分解法适合较大规模的矩阵,而SVD 方法则适用于非方阵或奇异矩阵的情况。

矩阵的逆求解技巧

矩阵的逆求解技巧

矩阵的逆求解技巧矩阵逆的求解是线性代数中非常重要的一部分,它在科学计算、工程应用和数学理论等领域都有广泛应用。

本文将介绍矩阵逆的求解技巧,包括高斯-约当消元法、伴随矩阵法和基于特征值的方法。

1. 高斯-约当消元法高斯-约当消元法是求解矩阵逆的一种经典方法。

该方法的基本思想是将待求逆矩阵与单位矩阵联合成一个增广矩阵,然后通过一系列行变换将增广矩阵转化为单位矩阵和逆矩阵。

具体步骤如下:1) 将待求逆矩阵A与单位矩阵I联合成增广矩阵[A|I]。

2) 通过行变换,使得增广矩阵的左半部分变为单位阵。

具体步骤是将第i列的主元素调整为1,同时将位于它下方的元素调整为0。

重复这一过程,直到所有列的主元素都变为1。

3) 在增广矩阵的左半部分变为单位阵后,其右半部分将变为矩阵A的逆矩阵。

这种方法的优点是简单易懂,适用于各种规模的矩阵。

但是,当矩阵的维数较大时,计算量非常庞大。

2. 伴随矩阵法伴随矩阵法是求解矩阵逆的另一种常用方法。

该方法的基本思想是利用伴随矩阵来求解逆矩阵。

伴随矩阵是由原矩阵的代数余子式按一定规律排列而成的一个矩阵。

具体步骤如下:1) 计算原矩阵A的代数余子式。

2) 将代数余子式按照一定规律排列成伴随矩阵。

3) 利用伴随矩阵和原矩阵的行列式之积进行矩阵逆的计算。

具体计算逆矩阵的公式是:A^(-1) = adj(A)/|A|,其中adj(A)表示A的伴随矩阵,|A|表示A的行列式。

伴随矩阵法的优点是计算量相对较小,适用于中等规模的矩阵。

但是,当原矩阵的维数较大时,计算伴随矩阵和行列式都会带来较大的计算压力。

3. 基于特征值的方法基于特征值的方法是求解矩阵逆的一种常用方法。

该方法的基本思想是将矩阵A分解为特征值和特征向量的形式,然后通过特征值和特征向量的计算求解逆矩阵。

具体步骤如下:1) 计算矩阵A的特征值和特征向量。

2) 将矩阵A的特征值构成一个对角矩阵Λ,特征向量构成一个列向量矩阵P。

3) 计算原矩阵A的逆矩阵。

求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法求矩阵逆矩阵是线性代数中的一个重要问题。

在实际应用中,常常需要对矩阵进行逆矩阵的计算,以便进行某些后续操作。

以下是几种常见的求矩阵逆矩阵的方法:1. 伴随矩阵法:如果矩阵 A 可逆,则其伴随矩阵 A^(-1) 也是存在的。

实际上,A^(-1) = A^(-T),其中 A^(-T) 表示 A 的逆矩阵的转置矩阵。

伴随矩阵法简单易行,但是要求矩阵 A 必须可逆。

2. 初等行变换法:对于任意矩阵 A,可以通过初等行变换将其化为行简化梯矩阵的形式。

如果左边子块是单位矩阵 E,则矩阵 A 可逆,且其逆矩阵为 A^(-1) = (A^(-T))[E - (A^T)A]。

这里,(A^(-T))[E - (A^T)A] 表示将 A 的逆矩阵插入到单位矩阵 E 和 A 的伴随矩阵A 之间的矩阵。

初等行变换法适用于大多数矩阵,但是需要对矩阵进行多次行变换,因此计算效率较低。

3. 列主元消元法:对于矩阵 A,可以通过列主元消元法将其化为行阶梯形式。

如果矩阵 A 的行主元不为 0,则其逆矩阵为 A^(-1) = (A^(-T))[(A^T)A - EE^T]。

这里,EE^T 表示矩阵 A 的列主元部分,(A^(-T))[(A^T)A - EE^T] 表示将矩阵 A 的逆矩阵插入到行阶梯形式的矩阵 A 的列主元和主元部分之间的矩阵。

列主元消元法适用于矩阵 A 为非方阵的情况,但是要求矩阵 A 的行主元不为 0。

以上是几种常见的求矩阵逆矩阵的方法。

不同的矩阵可以通过不同的方法来求其逆矩阵,选择适合该矩阵的方法可以有效地提高计算效率。

此外,对于一些特殊的矩阵,可能存在更高效的算法。

矩阵运算 求逆

矩阵运算 求逆

矩阵求逆是线性代数中的一个重要概念,通常指的是对于一个给定的方阵,找到一个同样大小的矩阵,使得两者相乘得到单位矩阵。

以下是几种常见的求逆矩阵的方法:
1. 高斯消元法:这是一种通过行变换将矩阵转换为行阶梯形矩阵,然后通过回代求解未知数的方法。

如果矩阵可逆,最终可以通过回代得到其逆矩阵。

2. LU分解法:这种方法将矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积。

如果这样的分解存在,那么矩阵的逆可以表示为U的逆和L的逆的乘积。

3. SVD分解法:奇异值分解(SVD)是一种将矩阵分解为三个矩阵的乘积的方法。

如果矩阵是可逆的,那么它的逆可以通过对分解得到的矩阵进行相应的逆运算得到。

4. QR分解法:这种方法将矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积。

如果矩阵可逆,那么其逆可以表示为R的逆和Q的转置的乘积。

5. 伴随矩阵法:这是通过计算矩阵的伴随矩阵和行列式的倒数来求逆的方法。

适用于小矩阵或者行列式容易计算的情况。

6. 初等变换法:通过对矩阵进行一系列的初等行变换或列变换,将其转换为单位矩阵,同时对单位矩阵进行相同的变换,最终得到的就是原矩阵的逆。

矩阵求逆方法

矩阵求逆方法

求元素为具体数字的矩阵的逆矩阵时,常采用如下一些方法.
方法1 伴随矩阵法:.
注1对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意元素的位置及符号.特别对于2阶方阵
,其伴随矩阵,即伴随矩阵具有“主对角元互换,次对角元变号”的规律.
注2 对分块矩阵不能按上述规律求伴随矩阵.
方法2 初等变换法:
注对于阶数较高()的矩阵,采用初等变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.
方法3分块对角矩阵求逆:对于分块对角(或次对角)矩阵求逆可套用公式
其中均为可逆矩阵.
例1已知,求.解将分块如下:
其中,


从而
例2已知,且,试求.解由题设条件得
例3 设4阶矩阵
且矩阵满足关系式,试将所给关系式化简,并求出矩阵.解由所给的矩阵关系式得到
,即
故.利用初等变换法求.由于

例4 设,则_________.
应填:.
分析在遇到的有关计算时,一般不直接由定义去求,而是利用的
重要公式.如此题,由得,而,于是
=
例5 已知,试求和.
分析因为,所以求的关键是求.又由
知,可见求得和后即可得到.
解对两边取行列式得,于是
即,故
又因为,其中,又,可求得

故由得
例6 设,其中(),则____.
应填:.
分析法1.,其中,.
从而.又,,代入即得的逆矩阵.
法2. 用初等变换法求逆矩阵.
=
故。

求矩阵逆的方法

求矩阵逆的方法

求矩阵逆的方法
方法一,伴随矩阵法。

对于一个n阶矩阵A,如果其行列式不为0,那么A就是可逆的。

我们可以通过求解伴随矩阵来得到A的逆矩阵。

首先,我们计算A的伴随矩阵Adj(A),然后用行列式的倒数乘以伴随矩阵即可得到A的逆矩阵。

方法二,初等变换法。

初等变换法是通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为A的逆矩阵。

这种方法在计算机求解中比较常见,可以通过高斯消元法来实现。

方法三,分块矩阵法。

对于某些特殊的矩阵,我们可以通过将其分解成若干个子矩阵,从而简化逆矩阵的求解过程。

例如,对角矩阵、上三角矩阵、下三角矩阵等都有相对简单的逆矩阵求解方法。

方法四,特征值分解法。

对于对称正定矩阵,我们可以通过其特征值和特征向量来求解其逆矩阵。

通过特征值分解和特征向量矩阵的转置,我们可以得到原矩阵的逆矩阵。

方法五,数值逼近法。

对于大型矩阵或者特殊结构的矩阵,有时候我们无法通过解析的方法求解其逆矩阵,这时可以通过数值逼近的方法来计算其逆矩阵。

例如,利用迭代法或者矩阵分解等方法来近似求解逆矩阵。

总结:
以上是几种常见的求解矩阵逆的方法,不同的方法适用于不同类型的矩阵。

在实际问题中,我们需要根据具体情况选择合适的方法来求解矩阵的逆,以便更好地解决实际问题。

希望本文能够对您有所帮助,谢谢阅读!。

矩阵求逆的方法

矩阵求逆的方法

前言矩阵理论在《线性代数》课程中有着重要的地位,矩阵和数相仿可以运算,特别是乘法和数一样有逆运算,其定义为:对于 n 阶方阵 A,如果存在 n 个阶段 B 使得 AB=BA=E,则 n 个阶方阵 A 为可逆的,B 为 A 的逆矩阵。

掌握好求逆矩阵的方法对线性方程组、二次型、线性变换等问题的解决有很大帮助。

关于矩阵求逆问题,不同的《线性代数》教材介绍了不同的方法。

下面对求逆矩阵方法进行全面论述,并做一步探讨。

1矩阵求逆常见的几种方法 1.1 用伴随矩阵法求逆矩定理1.1.1:n 阶矩阵)(ij a A =可逆的充要条件0≠A ,而且当)2(≥n 阶矩阵A 有逆矩阵,*-=A AA 11,其中*A 伴随矩阵。

例1 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=412112013A 是否可逆?若可逆,求1-A 解:A A ∴≠=05可逆又511=A ,421=A ,3131=A ,1012=A ,1222=A ,332-=A ,013=A ,123=A ,133=A∴*-=A AA 11 例 2 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,*A 是A 的伴随矩阵,求()1-*A 解:1-*=A A A ,又()kB kB 11--=, 所以()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡====---*5430220011011011111A A A AA A且有规律可循。

对于三阶以上方阵用该方法逆矩阵,不仅计算量大且易出错,一般不用此种方法。

对求出逆矩阵正确与否,一般用E AA A A ==--11来检验是否正确。

1.2 用初等变换法求逆矩阵定理 1.2.1 如果n 阶方阵A 可逆,则存在有限个初等矩阵,l P P P 21,使得l P P P A 21=。

如果A 可逆,则1-A 也可逆,由上述定理, 存在初等矩阵l Q Q Q ,,,21 使得l Q Q Q A 211=-那么A A AA E 11--== 即A Q Q Q E l 21= E Q Q Q A l 211=-于是我们得到一个求逆矩阵的方法如下:如果n 阶方阵A 可逆,作一个n n 2⨯的矩阵E A ,然后对此矩阵施以初等行换,使A 化为单位矩阵E 同时化为1-A ,即:E A 1-−−−→−A E 初等行变换例1 用初等行变换求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=521310132A 的逆矩阵解:=E A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100132310521100010001521310132 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--201010100910310521211010100600310521⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→316161100123210103461361001316161100010310100521 故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=-3161611232134613611A 同理,如果n 阶矩阵A 可逆,作一个n n ⨯2的矩阵⎥⎦⎤⎢⎣⎡E A ,然后此矩阵施以初等变换,使矩阵A 化为单位阵E ,则同时E 化为1-A ,即⎥⎦⎤⎢⎣⎡−−−→−⎥⎦⎤⎢⎣⎡-1A E E A 初等列变换。

求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法矩阵逆矩阵是一个非常重要的概念,在许多数学和工程应用中都有广泛的应用。

下面介绍了三种求矩阵逆矩阵的常见方法,以及它们的拓展。

方法一:行列式求解法行列式求解法是最常用的方法之一,它基于矩阵逆矩阵的定义,即矩阵的逆矩阵等于其转置矩阵与原矩阵相乘的行列式。

具体步骤如下:1. 计算矩阵 A 的行列式;2. 将行列式乘以矩阵 A 的列向量,得到矩阵 A 的逆矩阵。

方法二:高斯 - 约旦消元法高斯 - 约旦消元法是一种用于求解矩阵逆矩阵的线性代数算法,它基于矩阵乘法的可逆性。

具体步骤如下:1. 将矩阵 A 分解成阶梯形矩阵;2. 对阶梯形矩阵的每一列进行高斯 - 约旦消元,得到一个新的矩阵;3. 将新的矩阵与原矩阵 A 相乘,得到矩阵 A 的逆矩阵。

方法三:奇异值分解法奇异值分解法是一种用于求解矩阵逆矩阵的非常规方法,它基于矩阵的奇异值分解。

具体步骤如下:1. 将矩阵 A 分解成奇异值分解;2. 对分解后的矩阵分别进行逆矩阵运算,得到矩阵 A 的逆矩阵。

拓展:矩阵逆矩阵的应用矩阵逆矩阵在许多数学和工程应用中都有广泛的应用,下面列举了其中的几个应用领域:1. 信号处理:矩阵逆矩阵在数字信号处理中被用来求解信号的逆变换,即信号的逆变换。

2. 量子力学:矩阵逆矩阵在量子力学中被用作求解系统的能级和波函数。

3. 控制理论:矩阵逆矩阵在控制理论中被用作求解系统的控制器,即控制器的逆矩阵。

4. 统计学:矩阵逆矩阵在统计学中被用于求解协方差矩阵的逆矩阵,即协方差矩阵的逆矩阵。

5. 计算机科学:矩阵逆矩阵在计算机科学中被用于求解矩阵的逆矩阵,即矩阵的逆矩阵。

矩阵逆矩阵是一种非常重要的数学概念,在许多数学和工程应用中都有广泛的应用。

了解不同方法求解矩阵逆矩阵的原理和过程,有助于更好地理解和应用矩阵逆矩阵的概念。

矩阵的逆运算公式

矩阵的逆运算公式

矩阵的逆运算公式矩阵求逆的基本原理及公式:1. 矩阵逆的定义:当矩阵A的乘积与单位矩阵I相乘,可得到单位矩阵时,称A的逆为A-1。

即A*A-1 = I, I是n阶单位矩阵。

2. 矩阵求逆的基本定理:当且仅当一个n阶矩阵A的行列式|A|≠0时,矩阵A才可求逆,即A存在逆矩阵A-1。

3. 矩阵求逆的公式:假定n阶矩阵A的逆矩阵为A-1,当矩阵A已知时,其逆是:A-1= |A|-1*(A变换矩阵),其中|A|是A的行列式,A变换矩阵为矩阵A取伴随矩阵,对角元素改变符号后有:(1)当n=2时,A变换矩阵为:\begin{pmatrix}a&b\\c&d\end{pmatrix}A变换矩阵:\begin{pmatrix}d&-b\\-c&a\end{pmatrix}(2)当n=3时,A变换矩阵为:\begin{pmatrix}a&b&c\\d&e&f\\g&h&i\end{pmatrix}A变换矩阵:\begin{pmatrix}ei-fh&ch-bi&bf-ce\\fg-di&ai-gc&dh-af\\dh-eg&bg-ah&ce-bf\end{pmatrix}4. 矩阵求逆的算法:(1)将n阶方阵A分解为两个n阶行列式:A=|A|*A变换矩阵。

(2)计算|A|:|A|= |A|1*|A|2*......|A|n,其中|A|n是A的n阶行列式。

(3)计算A变换矩阵A1:A1=A变换矩阵1*A变换矩阵2*......*A变换矩阵n。

(4)将(2)和(3)结果相乘:A-1= |A|-1*A1,得到n阶矩阵A的逆矩阵A-1。

求具体矩阵的逆矩阵(方法集锦)

求具体矩阵的逆矩阵(方法集锦)


/jp2005/26/bjjc/xj/zsyd2-55.htm[2015/3/18 22:27:11]
无标题文档
/jp2005/26/bjjc/xj/zsyd2-55.htm[2015/3/18 22:27:11]
/jp2005/26/bjjc/xj/zsyd2-55.htm[2015/3/18 22:27:11]
无标题文档
其中

而 ,
从而 例2 已知
解 由题设条件得
例3 设4阶矩阵
,且
,试求 .
且矩阵 满足关系式
,试将所给关系式化简,并求出矩阵 .
解 由所给的矩阵关系式得到
,其中 得
,又 ,
,可求得
例6 设
,其中

),则
____.
/jp2005/26/bjjc/xj/zsyd2-55.htm[2015/3/18 22:27:11]
无标题文档
应填:

分析 法1.
,其中
从而
.又
法2. 用初等变换法求逆矩阵.
=

.

,代入即得 的逆矩阵.

,而
,于是
=
例5 已知
,试求 和 .
/jp2005/26/bjjc/xj/zsyd2-55.htm[2015/3/18 22:27:11]
无标题文档
分析 因为
,所以求 的关键是求
.又由

后即可得到 .
解对
两边取行列式得
,于是
,可见求得


,故
又因为 故由
注2 对分块矩阵
不能按上述规律求伴随矩阵.
方法2初等变换法:

矩阵的逆的求法

矩阵的逆的求法

矩阵的逆的求法
矩阵的逆的求法主要有以下几种方法:
1.利用定义求逆矩阵:如果矩阵A是可逆的,那么存在一个矩阵B,使得
AB=BA=E,其中E为单位矩阵。

利用这个定义,可以通过特定的算法计算出矩阵A的逆矩阵B。

2.初等变换法:对于元素为具体数字的矩阵,可以利用初等行变换化为单位
矩阵的方法来求逆矩阵。

如果A可逆,则A可通过初等行变换化为单位矩阵I,即存在初等矩阵使(1)式成立。

同时,用右乘上式两端,得到(2)式。

比较(1)、(2)两式,可以看到当A通过初等行变换化为单位处阵的同时,对单位矩阵I作同样的初等行变换,就化为A的逆矩阵。

这种方法在实际应用中比较简单。

3.伴随阵法:如果A是n阶可逆矩阵,那么A的伴随矩阵A也是可逆的,且
(A)-1=A*/|A|。

利用这个公式可以方便地计算出A的逆矩阵。

4.恒等变形法:利用恒等式的变形规律来求逆矩阵。

例如,利用行列式的性
质和展开定理,可以计算出矩阵的行列式值,从而得到逆矩阵。

需要注意的是,不同的方法适用于不同类型的矩阵和问题,因此在选择方法时应根据具体情况进行选择。

同时,在实际应用中还需注意计算的精度和稳定性等问题。

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法矩阵的逆矩阵是矩阵理论中非常重要的概念,它在线性代数、计算机图形学、物理学等领域都有着广泛的应用。

在实际问题中,我们经常会遇到需要求解矩阵的逆矩阵的情况,因此掌握求解逆矩阵的方法对于我们理解和应用矩阵具有重要意义。

首先,让我们来了解一下什么是矩阵的逆矩阵。

对于一个n阶方阵A,如果存在另一个n阶方阵B,使得AB=BA=I(其中I为单位矩阵),那么B就是A的逆矩阵,记作A^-1。

需要注意的是,并非所有的矩阵都有逆矩阵,只有可逆矩阵才存在逆矩阵。

接下来,我们将介绍几种求解矩阵逆的方法。

一、初等变换法。

通过初等变换将原矩阵转化为单位矩阵,此时原矩阵经过一系列相同的初等变换得到单位矩阵,而这些初等变换也分别作用于单位矩阵上,得到的矩阵即为原矩阵的逆矩阵。

二、伴随矩阵法。

对于n阶矩阵A,其伴随矩阵记作adj(A),则A的逆矩阵为1/det(A) adj(A),其中det(A)为A的行列式。

通过求解伴随矩阵和行列式,可以得到原矩阵的逆矩阵。

三、矩阵的初等行变换法。

通过将原矩阵和单位矩阵进行横向组合,得到一个增广矩阵,然后对增广矩阵进行初等行变换,直到左侧的矩阵变为单位矩阵,此时右侧的矩阵即为原矩阵的逆矩阵。

四、矩阵的分块法。

对于特定结构的矩阵,可以通过矩阵的分块运算来求解逆矩阵,这种方法在一些特殊情况下比较高效。

需要指出的是,对于大型矩阵来说,直接求解逆矩阵的方法可能会比较耗时,因此在实际应用中,我们通常会利用矩阵的性质和特殊结构,采用更加高效的方法来求解逆矩阵。

总之,求解矩阵的逆矩阵是矩阵理论中的重要问题,我们可以根据具体的矩阵结构和应用场景选择合适的方法来求解逆矩阵。

通过掌握这些方法,我们能够更好地理解和应用矩阵,在实际问题中取得更好的效果。

求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法介绍在线性代数中,矩阵逆运算是一个重要的概念。

逆矩阵是指对于一个非零矩阵A,存在另一个矩阵B,使得A与B的乘积等于单位矩阵。

求矩阵逆矩阵的常用方法有多种,本文将详细探讨其中的三个常见方法:伴随矩阵求逆、初等变换法和特征值法。

伴随矩阵求逆伴随矩阵求逆是一种常见的求解矩阵逆矩阵的方法。

下面给出详细步骤:1.计算矩阵的行列式,如果行列式为0,则矩阵不可逆。

2.计算矩阵的伴随矩阵,伴随矩阵的定义是原矩阵的代数余子式矩阵的转置矩阵。

3.将伴随矩阵的元素除以原矩阵的行列式得到逆矩阵。

初等变换法初等变换法是求解矩阵逆矩阵的另一种常用方法,它通过一系列的初等行变换将原矩阵转换为单位矩阵,同时将单位矩阵通过相同的初等行变换转换为逆矩阵。

下面是具体步骤:1.将原矩阵A和单位矩阵B合并为[A|B]的形式。

2.对[A|B]进行一系列的初等行变换,将A转换为单位矩阵I。

3.将变换后的矩阵记作[A’|B’],此时B’即为A的逆矩阵。

特征值法特征值法是求解矩阵逆矩阵的另一种方法,它利用矩阵的特征值和特征向量的性质来求解逆矩阵。

下面是具体步骤:1.计算矩阵A的特征值和特征向量。

2.如果矩阵A的特征值中有0,则矩阵A不可逆。

3.计算矩阵A的特征值的倒数,得到特征值矩阵Λ。

4.计算特征向量的逆矩阵V的转置矩阵。

5.根据矩阵A的逆矩阵公式A^(-1) = VΛ(-1)V T,计算出逆矩阵A^(-1)。

总结本文介绍了求矩阵逆矩阵的常用方法,包括伴随矩阵求逆、初等变换法和特征值法。

其中,伴随矩阵求逆适用于已知矩阵的行列式非零的情况,初等变换法适用于通过一系列初等行变换将原矩阵转换为单位矩阵的情况,而特征值法适用于已知矩阵的特征值和特征向量的情况。

不同的方法在不同的情况下具有不同的适用性和计算复杂度,根据具体问题的实际需求选择合适的方法来求解矩阵逆矩阵。

参考资料1.陈红霞, 邵子涵. 线性代数与线性规划. 清华大学出版社, 2012.2.彭丽慧. 数学方程与矩阵变换. 清华大学出版社, 2004.3.Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2016.。

求逆矩阵的方法

求逆矩阵的方法

求逆矩阵的方法逆矩阵是线性代数中非常重要的概念,它在数学和工程领域有着广泛的应用。

在实际问题中,我们经常需要求解矩阵的逆,因此了解求逆矩阵的方法是非常重要的。

本文将介绍几种常见的求逆矩阵的方法,希望能对大家有所帮助。

方法一,伴随矩阵法。

伴随矩阵法是求解逆矩阵的一种常用方法。

对于一个n阶矩阵A,如果它的行列式不为0,那么它的逆矩阵存在。

我们可以通过计算伴随矩阵来求解逆矩阵。

具体步骤如下:1. 计算矩阵A的行列式,如果行列式为0,则矩阵A不存在逆矩阵;2. 计算矩阵A的伴随矩阵,即将矩阵A的每个元素的代数余子式组成的矩阵进行转置;3. 将伴随矩阵除以矩阵A的行列式,得到矩阵A的逆矩阵。

方法二,初等变换法。

初等变换法是另一种求解逆矩阵的常用方法。

对于一个n阶矩阵A,如果它的行列式不为0,那么它的逆矩阵存在。

我们可以通过初等变换将矩阵A转化为单位矩阵,然后将单位矩阵通过相同的初等变换得到A的逆矩阵。

具体步骤如下:1. 将矩阵A和单位矩阵拼接成一个2n阶的矩阵;2. 通过初等行变换将矩阵A转化为单位矩阵,此时单位矩阵部分就是A的逆矩阵。

方法三,高斯-约当消元法。

高斯-约当消元法也是一种常用的求解逆矩阵的方法。

通过将矩阵A和单位矩阵拼接在一起,然后通过初等行变换将矩阵A转化为单位矩阵,此时单位矩阵部分就是A的逆矩阵。

具体步骤如下:1. 将矩阵A和单位矩阵拼接成一个2n阶的矩阵;2. 通过高斯-约当消元法将矩阵A转化为单位矩阵,此时单位矩阵部分就是A的逆矩阵。

方法四,矩阵分块法。

矩阵分块法是一种比较直观的求解逆矩阵的方法。

对于一个2n 阶矩阵A,我们可以将其分块成四个n阶子矩阵,然后通过矩阵分块的运算规则来求解逆矩阵。

具体步骤如下:1. 将矩阵A分块成四个n阶子矩阵,记为A = [A11, A12;A21, A22];2. 如果A22存在逆矩阵,那么A的逆矩阵可以通过以下公式求解,A的逆矩阵 = [A11 A12 A22^(-1) A21]^(-1), -A11A12^(-1); -A22^(-1) A21, A22^(-1)]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求逆矩阵的若干方法和举例苏红杏广西民院计信学院00数本(二)班[摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面的读者参考。

[关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。

但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。

为此,我介绍下面几种求逆矩阵的方法,供大家参考。

定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B方法 一. 初等变换法(加边法)我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。

即,必有一系列初等矩阵 m Q Q Q 21使E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2)把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。

例 1 . 设A= ⎪⎪⎪⎭⎫ ⎝⎛-012411210 求1-A 。

解:由(3)式初等行变换逐步得到:⎪⎪⎪⎭⎫ ⎝⎛-100012010411001210→ ⎪⎪⎪⎭⎫ ⎝⎛-100012001210010411 →⎪⎪⎪⎭⎫ ⎝⎛----123200124010112001→⎪⎪⎪⎪⎭⎫ ⎝⎛----21123100124010112001于是1-A = ⎪⎪⎪⎪⎭⎫ ⎝⎛----21123124112说明:此方法适用于求元素为具体数字的矩阵的逆矩阵,比较简便,特别是当阶数较高时,使用初等变换法的优点更明显。

同样使用初等列变换类似行变换,此略,注意在使用此方法求逆矩阵是,一般做初等行变换,避免做初等列变换。

方法 二. 伴随矩阵法定理:矩阵A 是可逆的充分必要条件是A 非退化,而1-A =d1*A ,(d=A ≠0) (4) 我们用(4)式来求一个矩阵的逆矩阵。

例 2. 求矩阵A 的逆矩阵1-A :已知A= ⎪⎪⎪⎭⎫ ⎝⎛343122321解:d=A =9+6+24-18-12-4=2≠011A =2 12A =-3 13A =221A =6 22A =-6 23A =2 31A =-4 32A =5 33A =-2用伴随矩阵法,得1-A =d 1*A =⎪⎪⎪⎪⎭⎫ ⎝⎛----11125323231说明:虽然这个公式对任何可逆矩阵都适用,但由于计算量大,一般只用于较低阶的矩阵的求逆比如二阶三阶矩阵的逆,尤以对二阶,此方法更方便。

方法 三. 矩阵分块求逆法 在进行高阶矩阵运算时,经常将高阶矩阵按某种规则分成若干块,每一小块是一小矩阵,这样一方面对小矩阵进行运算,一方面每一小矩阵又可作为一个元素按运算规则来进行运算,求出矩阵的逆矩阵。

引出公式: 设T 的分块矩阵为:T= ⎪⎪⎭⎫⎝⎛D C B A , 其中T 为可逆矩阵,则1-T = ⎪⎪⎭⎫⎝⎛------+-------------1111111111111)()()()(B CA D CA B CA D B CA D B A CA B CA D B A A , (5)说明:关于这个公式的推倒从略。

例 3. 求下列矩阵的逆矩阵,已知 W=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛5243210040103001 解:将矩阵W 分成四块,设A=⎪⎪⎪⎭⎫⎝⎛100010001, B=⎪⎪⎪⎭⎫ ⎝⎛243, C=()243, D=()5,于是 ),24()(1-=--B CA D 即11)(---B CA D =)241(-B A 1-=B=⎪⎪⎪⎭⎫ ⎝⎛243, 1-CA =C=()243,利用公式(5),得1-W =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------12432208648812361215241 方法 四. 因式分解法若0=k A ,即(E-A )可逆,且有1)(--A E =12-++++K A A A E , (6) 我们通过上式(6),求出1-A 例 4.求下面矩阵的逆矩阵,已知:A=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1000011000211003211043211, 解:因为存在一个K 0,使K A E )(-=0,把这里的(E-A )替换(6)式中的“A ”,得 1-A =12)()()(--++-+-+K A E A E A E E通过计算得 4)(A E -=41000011000211003211043211⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=0,即K=4所以 1-A =32)()()(A E A E A E E -+-+-+=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000001000001000001000001+⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000010000210003210043210+=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---100011000111000111010111方法 五.多项式法我们知道,矩阵A 可逆的充分必要条件是有一常数项不为零的多项式f(x),满足f(A)=0,用这个知识点也可以求出逆矩阵。

例 5.已知矩阵A=⎪⎪⎭⎫⎝⎛--3312,且A 满足多项式f(x)=0352=+-E X X ,即0352=+-E A A 试证明A 是可逆矩阵,并求其可逆矩阵。

证:由0352=+-E A A ,可得E E A A =+-)3531(从而可知A 为可逆矩阵,并且⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛---=+=-32131110013533123135311EA A方法 六. 解方程组法在求一个矩阵的的逆矩阵时,可设出逆矩阵的待求元素,根据等式E AA =-1两端对应元素相等,可得出相应的只含待求元素的诸多线性方程组,便可求解逆矩阵。

例 6.求A=⎪⎪⎪⎭⎫ ⎝⎛343122321的逆矩阵解:求可逆矩阵A 的逆矩阵X ,则它满足AX=E ,设),,(321X X X X =,则⎪⎪⎪⎭⎫⎝⎛=0011AX , ⎪⎪⎪⎭⎫ ⎝⎛=0102AX , ⎪⎪⎪⎭⎫ ⎝⎛=1003AX利用消元解法求⎪⎪⎪⎭⎫ ⎝⎛=i i i i x x x X 321 (i=1,2,3)解得:⎪⎪⎪⎪⎭⎫ ⎝⎛----==-1110253232311X A方法 七. 准对角矩阵的求逆方法定义:形如 ii nn A A A A A ,0000002211⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛= 是矩阵 n i ,2,1= 。

A 称为准对角矩阵。

其求逆的方法:可以证明:如果nn A A A ,,,2211 都可逆,则准对角矩阵也可逆,且⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----11221111221100000000000nn nn A A A A A A例 7. 已知 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=500051002300004A ,求1-A 。

解:设11A =4 ⎪⎪⎪⎭⎫⎝⎛-=512322A 533-=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=33221100000A A A A求得:,41111=-A ⎪⎪⎪⎭⎫⎝⎛=-3125171122A 51133-=-A所以 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=----51000173171001721750000410000001331221111A A A A方法八.恒等变形法有些计算命题表面上与求逆矩阵无关,但实质上只有求出其逆矩阵之后,才能解决问题。

而求其逆矩阵常对所给矩阵进行恒等变形,且常变为两矩阵乘积等于单位矩阵的等式。

例 8.已知E A =6 , 求11A , 其中⎪⎪⎪⎪⎭⎫ ⎝⎛-=21232321A , 解:对已知矩阵等式E A =6进行恒等变形,得 E A A A A A E A =∙=∙=∙=116666于是,111-=A A ,又因为A 是正交矩阵,T A A =-1,所以⎪⎪⎪⎪⎭⎫ ⎝⎛-===-21232321111T A A A方法九.公式法利用下述诸公式,能够迅速准确地求出逆矩阵。

1) 二阶矩阵求逆公式(两调一除):若 A=⎪⎪⎭⎫ ⎝⎛d c b a , 则⎪⎪⎭⎫ ⎝⎛--=-a c b d A A 112) 初等矩阵求逆公式:ij ij E E =-1)1()(1kE k E i i =-)()(1k E k E ij ij -=-3) 对角线及其上方元素全为1的上三角矩阵的逆矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100011101111A 的逆矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=-100001100000110000111A4) 正交矩阵的求逆公式: 若A 为正交矩阵,则T A A =-15)其他常用的求逆公式: 111)(---=A B AB T T A A )()(11--= A A A A 111)*(*)(---==S A A A A ,,,,321 可逆 ,则11121121)(----=A A A A A A S S 例 9. 已知:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100010001A , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100110111B ,求1)(-AB 。

解:由于A 是初等矩阵,由公式得:A A =-1而B 为元素都为1的上三角矩阵,由公式得:⎪⎪⎪⎭⎫ ⎝⎛--=-1001100111B ,再由公式得:⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛--=-0111010111100001100110011)(1AB到此为止,我已介绍了9种求逆矩阵的方法,除此外还有求正定矩阵的逆矩阵的三角阵法,由于其方法不是很简便,在此略。

这些方法各有所长,读者可根据实际情况进行选择。

当然,除此之外还有其它方法。

希望能和大家在今后的学习中,共同研究出更方便,更有效的矩阵求逆方法。

参考文献:[1] 高等代数/北京大学数学系几何与代数教研室代数小组编。

1988.3 [2] 高等代数一题多解200例/ 魏献祝 编 福建人民出版社。

[3] 线性代数学习指导/ 戴宗儒编科学技术出版社。

[4] 线性代数解题方法技巧归纳/ 毛纲源编华中理工大学出版社。

[5] 数学手册/ 《数学手册》编写组编。

相关文档
最新文档