逆矩阵的几种求法与解析(很全很经典)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逆矩阵的几种求法与解析
矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.
1.利用定义求逆矩阵
定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用.
例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且
(E-A)1-= E + A + A2+…+A1-K
证明因为E 与A 可以交换, 所以
(E- A )(E+A + A2+…+ A1-K)= E-A K,
因A K= 0 ,于是得
(E-A)(E+A+A2+…+A1-K)=E,
同理可得(E + A + A2+…+A1-K)(E-A)=E,
因此E-A是可逆矩阵,且
(E-A)1-= E + A + A2+…+A1-K.
同理可以证明(E+ A)也可逆,且
(E+ A)1-= E -A + A2+…+(-1)1-K A1-K.
由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.
例2 设 A =⎥
⎥
⎥⎥
⎦
⎤⎢⎢⎢
⎢⎣⎡000030000020
0010,求 E-A 的逆矩阵.
分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.
解 容易验证
A 2=⎥⎥⎥⎥
⎦⎤⎢⎢⎢
⎢⎣⎡0000
000060000200, A 3=⎥
⎥
⎥⎥
⎦
⎤
⎢
⎢⎢
⎢⎣⎡0000
0000
00006000
, A 4=0
而 (E-A)(E+A+ A 2+ A 3)=E,所以
(E-A)1-= E+A+ A 2+ A 3
=⎥
⎥
⎥⎥
⎦
⎤⎢⎢⎢
⎢⎣⎡1000
31006210
6211.
2.初等变换法
求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使
(1)s p p p Λ21A=I ,用A 1-右乘上式两端,得:
(2) s p p p Λ21I= A 1-
比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.
用矩阵表示(A I )−−−
→−初等行变换
为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.
例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡521310132.
解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡001132010310100521
→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001 故 A 1-=⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡-----3/16/16/112/32
/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明
A =0,则A 1-不存在.
例2 求A=⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡987654321.
解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡------107126001463000132
1
→ ⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡----12100001463000132
1. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.
3.伴随阵法
定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且
A 1
-=
A 1⎥
⎥⎥
⎥
⎦
⎤
⎢⎢⎢⎢⎣⎡nn n
n
n n A A A A A A A A A .....................212221212111 其中A ij 是A 中元素a ij 的代数余子式.
矩阵⎥
⎥
⎥⎥
⎦
⎤
⎢⎢⎢⎢⎣⎡nn n
n n n A A A A A A
A A A (2122212)
12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1
A 3.
证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.
充分性: 设A 为非奇异,存在矩阵
B=
A 1⎥
⎥⎥
⎥
⎦
⎤
⎢⎢⎢⎢⎣⎡nn n
n
n n A A A A A A A A A (2122212)
12111
, 其中
AB=⎥
⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)
122221
11211⨯
A 1⎥
⎥⎥
⎥
⎦
⎤
⎢⎢⎢⎢
⎣⎡nn n
n n n A A A A A A A A A ...............
(2122212)
12111
=
A 1⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎣⎡A A A A ...
.........0...00...0=⎥
⎥
⎥⎥
⎦
⎤⎢⎢⎢⎢⎣⎡1 (00)
...1......0...100...01=I
同理可证BA=I.
由此可知,若A 可逆,则A 1-=
A
1
A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有