逆矩阵的几种求法与解析(很全很经典)

合集下载

归纳求矩阵的逆矩阵的方法

归纳求矩阵的逆矩阵的方法
因AK= 0 ,于是得
(E-A)(E+A+A2+-+AK 1)=E,
同理可得(E+A+A2+-+AK 1)(E-A)=E,
因此E-A是可逆矩阵,且
2.1
矩阵的基本概念
矩阵,是由“w个数组成的一个比 行列的矩形表格,通常用大写字母
…表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其 元素"-表示,其中下标都是正整数,他们表示该元素在矩
「% 先…叮
乂_如如…%
■■■ ■ ■ ■ BI■B
阵中的位置。比如,」或表示一个^匸 矩阵,
下标'表示元素' 位于该矩阵的第;行、第」列。元素全为零的矩阵称为零
the solution of inverse matrix nature has become one of the main research contents of lin ear algebra. The paper will give
some method of finding inv erse matrix.
从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对 角线。若一个H阶方阵的主对角线上的元素都是],而其余元素都是零,则称
0
C1
0
0r
[%
A=

血…
0
B~
0

血…
■ •

%…
旦一於卞二存
0

角线上
方的元素都是零,
(下)

则称为下(上)三角矩阵,例如,
阶上三角矩阵。今后我们用表示数域B上的巳矩阵构成
Abstract:

矩阵求逆的方法

矩阵求逆的方法
埙 埙 1 埙 埙 埙 埙 埙 埙 埙 埙 埙
A
A2 埙
A
埙 埙 埙 埙 埙 埙 埙 埙 埙 埙 n 埙
-1
=
埙 -1 埙 埙 1 埙 埙 埙 埙 埙 埙 埙 埙 埙 埙A源自A2-1埙A
埙 埙 埙 埙 埙 埙 埙 埙 埙 埙 -1 埙 埙 n 埙

这样求矩阵的逆就转化为求子块的逆。 6、 使用技巧求逆 技巧的使用依赖于题目条件, 这需要具体问题具体分析。 在这里举 一个例子来说明。比如已知矩阵 A 的具体表达式, 求(A*)- 1。若直接来求 然后利用上述提到的第三种方法在求出 (A*)- 1, 这 的话, 需要先计算 A*, 样处理的话, 运算量较大。 若利用 A* 与 A- 1 之间的关系及逆矩阵的性质 计算就比较简单。 因为 A*= A A- 1 所以(A*)- 1=( A A- 1)- 1= 1 A。 从而这个 A 题目只需要求出 A 的行列式, 让矩阵 A 的每一个元素乘上 A 的行列式 的倒数便是所要的答案了。 总之,矩阵求逆的方法很多, 这需要大家多总结, 同时在遇到题目 时根据题目条件选择合适的方法, 这有利于知识的巩固与掌握。 参考文献 [1] 苏德矿, 裘哲勇.线性代数.高等教育出版社,2005,7. 望 [J ] .汽车技术,2007,设计 · 计算 · 研究(4):21- 24. [2] 董敬,庄志,常思勤编.汽车拖拉机发动机(第 3 版[ ) M] .北京:机械 工业出版社,2000:51- 52. [3] 姚春德 . 甲醇在柴油机上应用的技术进展 [J ] . 中外能源 ,2009, (14):38- 44. [4] 王明扬,卢贵忠,毛明华等.柴油机混燃汽化醇类燃料的试验研究 [J ] .云南农业大学学报.2008,23(2):277- 280. [5] 陈强福 . 醇类燃料在车用发动机上的研究现状 [J ] . 甘肃科技纵 横,2006,35(2):19,43- 44. [6] 蒋德明, 黄佐华编. 内燃机替代燃料燃烧学 [M] . 西安:西安交通 大学出版社, 2007:3,6,10- 12. [7] 李冠峰 , 梁爱琴 , 李遂亮等 . 我国车用代用燃料研发与应用现状 [J ] .农机化研究,2007,5:197- 201. [8] 徐美同, 王立华. 二甲醚的生产工艺技术比较 [J ] . 甘肃石油和化 工,2008,1:32- 34. [9] 祁东辉,陈昊,刘津.柴油机燃用生物柴油的燃烧和排放特性研究 [J ] .汽车工程,2008,30(7):581- 584. [10] 谭天伟 , 王芳 , 邓立 . 生物柴 油 的 生 产 和 应 用 [J ] .现代化工, 2002,22(2):4- 6.

第三章 矩阵的逆

第三章 矩阵的逆

唯一性: 是可逆矩阵, 的逆矩阵唯一. 唯一性:若A是可逆矩阵,则A的逆矩阵唯一 是可逆矩阵 的逆矩阵唯一 证明: 证明: 设B、C都是 的逆矩阵,则 都是A的逆矩阵 、 都是 的逆矩阵,
AB = BA = E ,
AC = CA = E
⇒ B = EB = (CA) B = C ( AB) = CE = C.
逆矩阵的求法二: 逆矩阵的求法二:伴随矩阵法
A11 ∗ A12 A = M A1n A21 A22 M A2 n L L M L An1 An 2 , M Ann
(1)
A
−1
1 ∗ = A , A
其中 A * 为A的伴随矩阵。 的伴随矩阵。 的伴随矩阵
2a + c 2b + d 1 0 ⇒ = − b 0 1 −a
a = 0, 2a + c = 1, b = −1, 2b + d = 0, ⇒ ⇒ c = 1, − a = 0, d = 2. − b = 1,
又因为
BA AB 2 1 0 − 1 0 − 1 2 1 1 0 , = = − 1 0 1 2 1 2 − 1 0 0 1
所以
0 − 1 A = . 1 2
−1
0 A 例: 设n阶矩阵 及s阶矩阵 都可逆,求 阶矩阵A及 阶矩阵 都可逆, 阶矩阵B都可逆 阶矩阵 . B O X 11 X 12 解:设所求逆矩阵为 , X 21 X 22
∴ A 存在
−1
A
−1
A∗ = A
0 0 0 0 2⋅ 3⋅ 4⋅ 5 1⋅ 3⋅ 4⋅ 5 0 0 0 0 1 = 0 0 1⋅ 2⋅ 4⋅ 5 0 0 5! 0 0 1⋅ 2⋅ 3⋅ 5 0 0 0 0 0 0 1⋅ 2⋅ 3⋅ 4

矩阵逆及其求法

矩阵逆及其求法
1
5 2 例1 求 A 1 3 的逆矩阵。
5 x1 2 x3 1
5x2 2 x4 0 解得
x1 3x3 0 x2 3x4 1

3 x1 17 2 x2 17 1 x3 17 5 x4 17
1 0 0 1
1 0
0 A21
1 1
1 0
1 A31
1 1

1
证 !
1 3 1 3 2 3 1 3 2 3 1 3 13

13
23
33


例5
0 1 2 A 1 1 4 , 求 A1 2 1 3

A11 7 , A12 5 , A13 3 , A 1 1 4 1 A 5 , A22 4 , A23 2 , 21 2 1 3 A31 2 , A32 2 , A33 1 ,
An1 An 2 Ann
A 0 0 0 A 0 0 0 A

A En A A
* *

A* A1 由定义1知, A可逆, 且 A
A A 当 A 0 时, AA A E 则 A( ) E ( ) A A A
三、逆矩阵的基本性质 6、
可逆,且 ( AT ) 1 ( A1 )T A 可逆,则 A
T
( A1 )T AT ( AA1 )T E T E
7、
A 可逆,则
1
A
1
1
1 , A
1
A A

n 1
.
1 , A
AA E AA A A E 1

逆矩阵的概念矩阵可逆的条件逆矩阵的求法-毕业论文-全文在线阅读-

逆矩阵的概念矩阵可逆的条件逆矩阵的求法-毕业论文-全文在线阅读-
上页 下页 返回
上页 下页 返回
例10 设
求矩阵X使满足AXB= C。 分析:
若A-1,B -1存在,则由A-1左乘AXB=C,又
用B-1右乘AXB= C,

A-1AXBB-1= A-1CB-1,

X = A-1CB-1。
上页 下页 返回

上页 下页 返回
矩阵的运算小结
一、已定义过的运算:
★ 矩阵与矩阵的加、减法; ★ 矩阵与数的乘积; ★ 矩阵与矩阵的乘积; ★ 方阵的行列式; ★ 逆矩阵; ★ 矩阵的转置。
Ex.4


上页 下页 返回
于是
上页 下页 返回
也可以直接按定义来验证这一结论。
上页 下页 返回
Ex.5 解
上页 下页 返回
Ex.6 解
上页 下页 返回
上页 下页 返回上页Fra bibliotek返回设给定一个线性变换: 它的系数矩阵是一个 n 阶方阵A,
上页 下页 返回

则线性变换(7)可记为 Y =AX.
逆矩阵。
例如
因为AB= BA= E,所以B是A的逆矩阵,同样A也 是B的逆矩阵。
上页 下页 返回
如果方阵A是可逆的,则 A的逆阵一定是唯一 的。 这是因为:设 B、C都是 A的逆矩阵, 则有
B=BE =B(AC)=(BA)C =EC =C, 所以 A的逆阵是唯一的。
A的逆阵记作A-1。 即若AB=BA=E,则 B=A-1。
§3 逆 阵
★ 逆矩阵的概念 ★ 矩阵可逆的条件 ★ 逆矩阵的求法
矩阵之间没有定义除法,而数的运算有 除法,本节相对于实数中的除法运算,引入 逆矩阵的概念。
下页 关闭
逆阵的概念

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。

(完整版)逆矩阵的几种求法与解析(很全很经典)

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

逆矩阵 算法-概述说明以及解释

逆矩阵 算法-概述说明以及解释

逆矩阵算法-概述说明以及解释1.引言1.1 概述逆矩阵是矩阵理论中一个非常重要的概念,它在线性代数、数值计算等领域中都有广泛的应用。

简单来说,对于一个可逆的方阵A,存在另一个方阵B,使得A与B的矩阵乘积等于单位矩阵I,那么我们称B为A的逆矩阵。

逆矩阵在很多实际问题中起到了至关重要的作用。

本文将主要介绍逆矩阵的定义、性质以及计算方法。

首先,我们将给出逆矩阵的定义,并讨论什么样的矩阵会存在逆矩阵以及如何判断一个矩阵是否可逆。

然后,我们将深入探讨逆矩阵的性质,比如逆矩阵的唯一性以及逆矩阵与矩阵的乘法规则等。

接下来,我们将介绍一些常见的逆矩阵计算方法,包括伴随矩阵法、初等变换法以及利用矩阵的特征值和特征向量来求逆矩阵等。

逆矩阵算法在数值计算中具有广泛的应用领域。

例如,在线性方程组的求解中,我们可以利用逆矩阵的性质来求解未知数向量。

此外,在图像处理、信号处理、网络优化等领域也都可以看到逆矩阵算法的应用。

逆矩阵算法的发展前景非常广阔,随着计算机计算能力的不断提升,逆矩阵算法将能够承担更加复杂和庞大的计算任务。

总之,逆矩阵算法是一项重要且充满潜力的计算方法,它在线性代数和数值计算领域具有重要的地位。

通过深入研究和应用逆矩阵算法,我们可以更好地理解矩阵的性质和应用,从而为实际问题的求解提供有效的数学工具。

在接下来的正文中,我们将详细介绍逆矩阵的定义、性质以及计算方法,以期帮助读者更好地理解和应用逆矩阵算法。

文章结构部分的内容如下所示:1.2 文章结构本文将按照以下结构组织内容:引言部分将首先概述逆矩阵算法的背景和重要性,介绍本文的目的,并对整篇文章进行总结。

正文部分将着重介绍逆矩阵的定义,包括数学上对逆矩阵的准确描述。

随后,我们将详细探讨逆矩阵的性质,包括逆矩阵与原矩阵之间的关系,以及逆矩阵的特点和作用。

最后,我们将介绍逆矩阵的计算方法,包括传统的高斯消元法和基于分解的LU分解法等。

结论部分将重点探讨逆矩阵算法的重要性,阐述逆矩阵算法在实际问题中的应用领域,如线性方程组的求解、图像处理和机器学习等。

矩阵求逆矩阵的方法

矩阵求逆矩阵的方法

矩阵求逆矩阵的方法矩阵求逆矩阵是线性代数中的一个重要问题,对于矩阵的逆的求解方法有多种,下面我们将介绍几种常见的方法。

1. 初等变换法。

对于一个可逆矩阵A,我们可以通过初等变换将其变为单位矩阵I,这时候A经过一系列的初等变换得到I,而I经过同样的一系列初等变换得到A的逆矩阵。

这种方法的优点是简单直观,容易理解,但对于大型矩阵来说计算量较大。

2. 克拉默法则。

对于n阶方阵A,如果A是可逆的,那么它的逆矩阵可以通过克拉默法则来求解。

克拉默法则利用矩阵的行列式和代数余子式的概念,将矩阵A的逆矩阵表示为A的伴随矩阵的转置除以A的行列式。

这种方法的优点是不需要对矩阵进行初等变换,但计算量也比较大。

3. 初等行变换法。

初等行变换法是通过对矩阵进行一系列的初等行变换,将矩阵A变为单位矩阵I,然后将I变为A的逆矩阵。

这种方法与初等变换法类似,但是更加注重矩阵的行变换,适合于对行变换较为熟悉的人来说。

4. 矩阵的分块法。

对于特定结构的矩阵,我们可以通过矩阵的分块来求解逆矩阵。

例如对角矩阵、上三角矩阵、下三角矩阵等,通过分块的方法可以简化逆矩阵的求解过程。

5. LU分解法。

LU分解是将一个矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过LU分解可以求解矩阵的逆。

这种方法适用于对矩阵分解比较熟悉的人来说,可以简化逆矩阵的求解过程。

总结:矩阵求逆矩阵的方法有多种,每种方法都有其适用的场景和计算复杂度。

在实际应用中,我们可以根据矩阵的特点和问题的需求来选择合适的方法。

希望本文介绍的方法可以帮助读者更好地理解矩阵求逆矩阵的过程,提高解决实际问题的能力。

逆矩阵的求法及逆矩阵的应用

逆矩阵的求法及逆矩阵的应用

逆矩阵的几种求法及逆矩阵的应用摘要:在现代数学中,矩阵是一个非常有效而且应用广泛的工具,而逆矩阵则是矩阵理论中一个非常重要的概念。

关于逆矩阵的求法及逆矩阵的应用的探讨具有非常重要的意义。

目前,对于逆矩阵的求法及其应用领域的研究已比较成熟。

本文将对逆矩阵的定义、性质、判定方法及求法进行总结,并初步探讨矩阵的逆在编码、解码等方面的应用。

关键词:矩阵逆矩阵逆矩阵的求法逆矩阵的应用The methods for identifying inverse matrix and application of inverse matrix Abstract: In modern mathematics,matrix is an effective tool with extensive application,and inverse matrix is a significant concept in matrix theory. The disduss about the way to evaluating inverse matrix and its application is of an important meaning with mature development at present. This paper will summarize the definition and properties of inverse matrix and disscuss the methods evaluating inverse matrix.We will also talk about the application of inverse matrix, especially its application in encoding and decoding. Keywords: Matrix Inverse matrix The way to evaluating inverse matrix Application of inverse matrix一:引言在现代数学中,矩阵是一个有效而应用广泛的工具。

求逆矩阵知识点总结

求逆矩阵知识点总结

求逆矩阵知识点总结一、定义矩阵的逆是指存在一个矩阵使得它与原矩阵相乘得到单位矩阵。

具体来说,如果矩阵A的逆矩阵存在,我们用A^-1来表示它,那么矩阵A的逆矩阵定义为满足下式的矩阵B:A *B = B * A = I其中,I是单位矩阵。

二、求解方法1. 初等变换法利用行初等变换把矩阵A转换为单位矩阵,所做的初等行变换同时作用于一个相同次序的单位矩阵,然后将单位矩阵转换得到的矩阵即是A的逆矩阵。

2. 伴随矩阵法对于n阶方阵A,它的伴随矩阵定义为其每个元素的代数余子式。

A的伴随矩阵记作Adj(A),则有A^-1 = (1/det(A)) * Adj(A),其中det(A)是A的行列式。

3. 初等矩阵法对于矩阵A,构造一个n阶单位矩阵In,然后对In进行一系列的乘法和加减操作所得到的新矩阵记为B,如果B=A^-1,则B就是矩阵A的逆矩阵。

三、性质1. 逆矩阵的唯一性如果一个矩阵A有逆矩阵,那么这个逆矩阵是唯一的。

也就是说,如果存在矩阵B和C,使得A*B=I和A*C=I,那么B=C。

2. 若A和B都是可逆矩阵,则AB也是可逆矩阵,并且有(A*B)^-1=B^-1*A^-13. (A^-1)^-1 = A4. (A^T)^-1 = (A^-1)^T5. 行列式为0的矩阵没有逆矩阵。

四、应用求逆矩阵在实际应用中有着广泛的作用,其中包括但不限于以下几个方面。

1. 线性方程组求解线性方程组Ax=b时,如果A是可逆矩阵,则可以直接用逆矩阵求解:x=A^-1*b。

2. 信号处理在信号处理领域中,矩阵的逆可以用来解决信号的解耦、滤波等问题。

3. 机器学习矩阵的逆在机器学习中也有重要的应用,比如用于参数的最小二乘估计以及矩阵分解等问题。

4. 几何变换在计算机图形学和几何变换领域,矩阵的逆可以用来表示坐标点的逆向变换。

总结求逆矩阵是线性代数中的一个重要概念,有着广泛的应用。

本文从定义、求解方法、性质和应用等方面对求逆矩阵的知识点进行了总结,希望能帮助读者更好地理解和应用这一概念。

逆矩阵的求法

逆矩阵的求法

第六节逆矩阵一、逆矩阵的概念利用矩阵的乘法和矩阵相等的含义,可以把线性方程组写成矩阵形式。

对于线性方程组令A=X=B=则方程组可写成AX=B.方程A X=B是线性方程组的矩阵表达形式,称为矩阵方程。

其中A称为方程组的系数矩阵,X称为未知矩阵,B称为常数项矩阵。

这样,解线性方程组的问题就变成求矩阵方程中未知矩阵X的问题。

类似于一元一次方程ax=b(a≠0)的解可以写成x=a-1b,矩阵方程A X=B的解是否也可以表示为X=A-1B的形式?如果可以,则X可求出,但A-1的含义和存在的条件是什么呢?下面来讨论这些问题。

定义11 对于n阶方阵A,如果存在n阶方阵C,使得AC=CA=E(E为n阶单位矩阵),则把方阵C称为A的逆矩阵(简称逆阵)记作A-1,即C=A-1。

例如因为AC==CA==所以C是的A逆矩阵,即C=A-1。

由定义可知,AC=CA=E,C是A的逆矩阵,也可以称A是C的逆矩阵,即A=C-1。

因此,A与C称为互逆矩阵。

可以证明,逆矩阵有如下性质:(1)若A是可逆的,则逆矩阵唯一。

(2)若A可逆,则(A-1)-1=A.(3)若A、B为同阶方阵且均可逆,则AB可逆,且(AB)-1=B-1A-1(4)若A可逆,则det A≠0。

反之,若det A≠0,则A是可逆的。

证(1)如果B、C都是A的逆矩阵,则C=CE=C(AB)=(CA)=EB=B即逆矩阵唯一。

其它证明略。

二、逆矩阵的求法1、用伴随矩阵求逆矩阵定义12 设矩阵A=所对应的行列式det A中元素aij的代数余子式矩阵称为A的伴随矩阵,记为A*。

显然,AA*=仍是一个n阶方阵,其中第i行第j列的元素为由行列式按一行(列)展开式可知=所以AA*==det AE (1)同理AA*=det AE=A*A定理3n阶方阵A可逆的充分必要条件是A为非奇异矩阵,而且A-1=A*=证必要性:如果A可逆,则A-1存在使AA-1=E,两边取行列式det(AA-1)= det E,即det A det A-1=1,因而det A≠0,即A为非奇异矩阵。

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)

E-A) 1= E + A + 2 K1 + … +A(E- A )(E+A + A 2+…+ AK 1)= E-A K(E-A) (E+A+A 2 + …+A K 1)=E,逆矩阵的几种求法与解析矩阵是线性代数的主要内容 ,很多实际问题用矩阵的思想去解既简单又快捷 .逆矩阵又是矩阵理论的很重要的内容 , 逆矩阵的求法自然也就成为线性代数研究的主要内容之一 .本文将给出几种求逆矩阵的方法 .1. 利用定义求逆矩阵定义:设A、B都是n阶方阵,如果存在n阶方阵B使得AB= BA = E,则称A为可逆矩阵,而称B为A的逆矩阵.下面举例说明这种方法的应用.例1 求证:如果方阵A满足A k= 0,那么EA是可逆矩阵,且证明因为E与A可以交换,所以因A K= 0 ,于是得同理可得( E + A + A 2 + … +A K 1 )(E-A)=E ,因此E-A是可逆矩阵,且(E-A) 1 = E + A + A 2 +…+A K 1同理可以证明 (E+ A) 也可逆,且E-A 的逆矩阵.(E+ A) 1 = E -A + A 2+…+ (-1 ) K1A K1.由此可知,只要满足A K=0,就可以利用此题求出一类矩阵E A 的逆矩阵.例2 设 A =00 20 00 03,求0003 0000分析 由于A 中有许多元素为零,考虑A K是否为零矩阵,若为零矩阵,则可以 采用例2的方法求E-A 的逆矩阵.解 容易验证00 2 00 0 0 6200 0 630 0 0 04A 2=■A 3=, A 4 =000 0 00 00 0000 00 0 0 0而 (E-A)(E+A+ A2+ A 3 )=E , 所以1 12 61230 12 6 (E-A)E+A+ A2+ A.0 0 1 30 00 12. 初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法 •如果A 可逆,则A 可通过 初等变换,化为单位矩阵I ,即存在初等矩阵R,P 2 , P S 使(1) p 1 p 2 p s A=I ,用 A 1右乘上式两端,得:(2) p 1 p 2 p s I= A 1比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单 位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1.用矩阵表示( A I )为( I A 1 ),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法 .需要注意的是,在作初等变换时只允许作行初 等变换 .同样,只用列初等变换也可以求逆矩阵 .2 3 1例1 求矩阵A的逆矩阵•已知A= 0 1 31 2 52 3 1 1 0 0 1 2 5 0 0 1解[A I] 0 1 3 0 1 0 0 1 3 0 1 01 2 5 0 0 1 2 3 1 1 0 01 2 5 0 0 1 1 0 0 1/6 13/6 4/30 1 3 0 1 0 0 1 0 1/2 3/2 10 0 1 1/6 1/6 1/3 0 0 1 1/6 1/6 1/31/6 13/6 4/3故 A 1 = 1/2 3/2 11/6 1/6 1/3在事先不知道n阶矩阵是否可逆的情况下,也可以直接用此方法•如果在初等变换过程中发现左边的矩阵有一行元素全为 0,则意味着A不可逆,因为此时表明A =0,则A 1不存在.1 2 3例 2 求 A= 4 5 6.7 8 91 2 3 1 0 0 1 2 3 1 0 0解[A E]= 4 5 6 0 1 0 0 3 6 4 1 07 8 9 0 0 1 0 6 12 7 0 11 2 3 1 0 00 3 6 4 1 0 .0 0 0 1 2 1由于左端矩阵中有一行元素全为0,于是它不可逆,因此A不可逆.3. 伴随阵法定理 n阶矩阵A=[a j ]为可逆的充分必要条件是A非奇异.且A n1A n2矩阵A 21.A n1A 22...A 12称为矩阵A 的伴随矩阵,记作A 3,于是有A 1=-A A 3'' ''' )A 2n.A nnB=A n A 2n 由此可知,若A 可逆,则AA 3.其中A j 是A 中元素a j 的代数余子式.证明 必要性:设A 可逆,由A A 1=I ,有AA 1 = l |,则A A 1 =|l |,所以A 0 , 即A 为非奇异.充分性: 设A 为非奇异,存在矩其中a11 a12 ...a 1nA 11 A21...A n1 a 21a22...a2 n1 A 12A22A n2 AB=... ... ...A・・・an1an2...a nnA 1nA2n...A nnA 0...0 1 0=丄oA ...0 =010 = -1=A ... ... A ...1T0 0...A0 01同理可证BA=I.用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有A|2nAiA2 A inAI2A 22A nn证明 因为A =A ii0 0A22其中X A ii A 11A ii0 A 22=A 1i | |A22An 0 0A 22 i0,所以A 可逆.YW ,于是有X Y A ii ZWA22I n 00 I m n, 丫 A22 =0, ZA ii =0,W A 22 I m .又因为A ii 、A 22都可逆,用22 i 分别右乘上面左右两组等式得:规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对 角线的元素变号即可•若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过 AA 1=I 来检验.一 旦发现错误,必须对每一计算逐一排查.4 .分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A il 、A 22都是非奇异矩阵,且A il 为n 阶方阵,A 22为m 阶方阵iiX= A ii ,Y=0,Z=0,W= A 22A 2i =Aii0 A 22 i把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:iA i iA2 A2i42准三角形矩阵求逆命题设A11、A 22都是非奇异矩阵,则有A11 1 1A12 A111A11 A12 A22 10 A22 0 A22 1证明因为A11 A12 I 1A11 A12 =An 0 0 A22 0 I 0 A22两边求逆得I A11 1 1A12 A1 1 A12 1= A11 100 I 0 A22 0 A22 所以A11A12 1 _ I A11 A12 A1 100 A22 0 I 0 A22 1=A11 11 1 A11 A12 A220 A22 1 同理可证A1110 A11 10A21 A221 1A11 A21 A22 A22 1此方法适用于大型且能化成对角子块阵或三角块阵的矩阵•是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用•5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用 AA 1=E,把题目中的逆矩阵化简掉。

(完整word版)逆矩阵的几种求法与解析(很全很经典)

(完整word版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使(1)s p p p Λ21A=I ,用A 1-右乘上式两端,得:(2) s p p p Λ21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

逆矩阵的求法[1]

逆矩阵的求法[1]

2006年6月第20卷 第2期阴山学刊YI NSHAN ACADE MIC JOURNA L Jun.2006Vo1.20 No.2逆矩阵的求法Ξ高 明(包头师范学院数学科学学院,内蒙古包头014030) 摘 要:矩阵的逆问题是矩阵论的重要问题,本文给出了逆矩阵的几种求法。

关键词:初等变换;伴随矩阵;分块矩阵;特征多项式中图分类号:151121 文献标识码:A 文章编号:1004-1869(2006)02-0014-031 伴随矩阵法定理:n 阶矩阵A 可逆ΖdetA ≠0且在A 可逆时A -1=1detA·A 3,其中A 3是A 的伴随矩阵。

例1:A =a b cd,ad -bc =1,求A -1解:∵|A |=a b cd=ad -bc =1≠0∴A 可逆,且A -1=1|A |·A 3=d -b -ca注:此方法适合于二、三阶方阵。

2 初等变换法如果A 可逆,则A 可通过初等行变换化为单位矩阵E ,即存在相应的初等矩阵E 1、E 2……E S 使E S …E 2E 1A =E (1)用A -1右乘上式两端,得E S …E 2E 1E =A-1 (2)比较(1)、(2)两式,可知当A 通过行初等变换化为E 的同时,对单位矩阵E 作同样的行初等变换,就化为A 的逆矩阵A -1。

同样,只用列的初等变换也可以求逆矩阵。

3 分块矩阵求逆法有些阶数较多的矩阵,用分块矩阵求逆较方便,在一般的高等代数教材上,都给出了用待定法或利用分块初等矩阵来求一个可逆分块阵的逆矩阵的方法,但这些方法都比较复杂,文[3]给出了较简便的方法,即(1)对(A ,En )中的子块En 必须进行分块,使En 是一个分块单位矩阵;(2)把“子块作为元素”处理时,必须遵守“左行右列”的规则,即变行必须从左乘,变列必须从右乘。

例3:设下列各方阵的逆矩阵都存在,证明:A B CD-1=A-1+A-1B (D -C A-1B )-1-A-1B (D -C A-1B )-1-(D -C A -1B )-1C A -1(D -C A -1B )-1证:设A 、D 分别是γ阶,S 阶的方阵,则:A B Er O C D O Es→A B ErOOD -C A -1B-C A -1Es→E r O A -1+A -1B (D -C A -1B )-1C A -1-A -1B (D -C A -1B )-1OE s-(D -C A -1B )-1C A-1(D -C A -1B )-1∴A B CD-1=A -1+A -1B (D -C A -1B )-1C A -1-A -1B (D -C A -1B )-1-(D -C A -1B )-1C A-1(D -C A -1B )-1但是,直接运用该方法求分块矩阵的逆,由于这个公式很难记忆,所以使用起来也不很方便,下面给出另一种分块矩阵求逆法,本文暂且称之为化上(下)三角分块求逆法。

总结材料求矩阵的逆矩阵的方法

总结材料求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法课程名称:专业班级:成员组成:联系方式:摘要:矩阵是线性代数的主要容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的容, 逆矩阵的求法自然也就成为线性代数研究的主要容之一.本文将给出几种求逆矩阵的方法.关键词:矩阵逆矩阵方法Method of finding inverse matrixAbstract:Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix.Key words:Matrix inversematrix method正文:1.引言:矩阵是线性代数的主要容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的容, 逆矩阵的求法自然也就成为线性代数研究的主要容之一.本文将给出几种求逆矩阵的方法.2.求矩阵的逆矩阵的方法总结:2.1矩阵的基本概念矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置。

比如,或表示一个矩阵,下标表示元素位于该矩阵的第行、第列。

元素全为零的矩阵称为零矩阵。

特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。

矩阵求逆的几种方法总结(C++)

矩阵求逆的几种方法总结(C++)

矩阵求逆的⼏种⽅法总结(C++)矩阵求逆运算有多种算法:1. 伴随矩阵的思想,分别算出其伴随矩阵和⾏列式,再算出逆矩阵;2. LU分解法(若选主元即为LUP分解法: Ax = b ==> PAx = Pb ==>LUx = Pb ==> Ly = Pb ==> Ux = y,每步重新选主元),它有两种不同的实现;A-1=(LU)-1=U-1L-1,将A分解为LU后,对L和U分别求逆,再相乘;通过解线程⽅程组Ax=b的⽅式求逆矩阵。

b分别取单位阵的各个列向量,所得到的解向量x就是逆矩阵的各个列向量,拼成逆矩阵即可。

下⾯是这两种⽅法的c++代码实现,所有代码均利⽤常规数据集验证过。

⽂内程序旨在实现求逆运算核⼼思想,某些异常检测的功能就未实现(如矩阵维数检测、矩阵奇异等)。

注意:⽂中A阵均为⽅阵。

伴随矩阵法C++程序:1 #include <iostream>2 #include <ctime> //⽤于产⽣随机数据的种⼦34#define N 3 //测试矩阵维数定义56//按第⼀⾏展开计算|A|7double getA(double arcs[N][N],int n)8 {9if(n==1)10 {11return arcs[0][0];12 }13double ans = 0;14double temp[N][N]={0.0};15int i,j,k;16for(i=0;i<n;i++)17 {18for(j=0;j<n-1;j++)19 {20for(k=0;k<n-1;k++)21 {22 temp[j][k] = arcs[j+1][(k>=i)?k+1:k];2324 }25 }26double t = getA(temp,n-1);27if(i%2==0)28 {29 ans += arcs[0][i]*t;30 }31else32 {33 ans -= arcs[0][i]*t;34 }35 }36return ans;37 }3839//计算每⼀⾏每⼀列的每个元素所对应的余⼦式,组成A*40void getAStart(double arcs[N][N],int n,double ans[N][N])41 {42if(n==1)43 {44 ans[0][0] = 1;45return;46 }47int i,j,k,t;48double temp[N][N];49for(i=0;i<n;i++)50 {51for(j=0;j<n;j++)52 {53for(k=0;k<n-1;k++)54 {55for(t=0;t<n-1;t++)56 {57 temp[k][t] = arcs[k>=i?k+1:k][t>=j?t+1:t];58 }59 }606162 ans[j][i] = getA(temp,n-1); //此处顺便进⾏了转置63if((i+j)%2 == 1)64 {65 ans[j][i] = - ans[j][i];66 }67 }68 }69 }7071//得到给定矩阵src的逆矩阵保存到des中。

逆矩阵的十种求法

逆矩阵的十种求法
因 ,所以矩阵A可逆,由 式知
=
方法九 “和化积”法;有时遇到这样的问题:要求判断方阵之和A+B的可逆性并求逆矩阵,此时可将A+B直接化为 ,由此有A+B可逆,且 ,或将方阵之和A+B表为若干个已知的可逆阵之积,再有定理2知A+B可逆,并可得出其逆矩阵。
例证明:若 ,则 是可逆阵,并求 。
证明:
E-A是可逆矩阵且
引言:矩阵是数学中一个极其重要的应用广泛的概念,它是代数,特别是现性代数的一个主要研究对象。其中逆矩阵又是矩阵理论中一个非常重要的概念,逆矩阵的可逆性及其求法自然也就成为要研究的主要内容之一。
本文主要是对课本中关于可逆矩阵判定方法的总结
可逆矩阵的定义:设 是 阶矩阵,如果存在 阶矩阵 ,使得 n,则称 是可逆矩阵(或称 为非奇异矩阵), 是 的逆矩阵。
从这个定义可知,单位矩阵E的可逆矩阵就是其自身
矩阵可逆性的判定:
方法1定义法:设A是数域P上的一个n阶方阵,如果存在P上的n阶方阵B,使得AB = BA = E,则称A是可逆的,又称B为A的逆矩阵.当矩阵A可逆时,逆矩阵由A惟一确定,记为A-1.
例:设A= ,ad-bc;求A-1.
解:因为|A|=ad-bc=1≠0 所以A可逆.
[4] 王莲花,张香伟,李战国,王建平. 求逆矩阵方法的进一步研究[J]. 河南教育学院学报(自然科学版), 2002, (03) .
[5] 王建锋. 求逆矩阵的快速方法[J]. 大学数学, 2004, (01) .
[6] 李桂荣. 关于求逆矩阵方法的进一步探讨[J]. 德州高专学报, 2000, (04) .
(AB)-1=A-1B-1
(AT)-1=(A-1)T
(A*)-1=(A-1)*=A|A|-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且(E-A)1-= E + A + A2+…+A1-K证明因为E 与A 可以交换, 所以(E- A )(E+A + A2+…+ A1-K)= E-A K,因A K= 0 ,于是得(E-A)(E+A+A2+…+A1-K)=E,同理可得(E + A + A2+…+A1-K)(E-A)=E,因此E-A是可逆矩阵,且(E-A)1-= E + A + A2+…+A1-K.同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A2+…+(-1)1-K A1-K.由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使(1)s p p p Λ21A=I ,用A 1-右乘上式两端,得:(2) s p p p Λ21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001 故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111 其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (2122212)12111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00, 其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡221100A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A=⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

例1 计算(A+4E )T (4E-A )1-(16E-A 2)的行列式,其中 A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-141021001 解 令 )16()4()4(21A E A E E A T --+-=DD=)16()4()4(21A E A E E A T --+- =)4)(4()4()4(1A E A E A E A E T +--+-=T A E A E )4)(4(++=2)4(A E +.虽然题目中出现了(4E-A )1-.但是经过化简之后不再出现此式,因此得D=24A E -=22500.例2 已知 n 阶矩阵A 满足A 2+2A-3E=0.求证:A+4E 可逆并求出A+4E 的逆. 证明 把A 2+2A-3E=0变形为A 2+2A-8E=5E ,即(A+4E )(A-2E )=-5E ,可得(A+4E )(-A/5+2E/5)=E ,所以存在一个矩阵B=-A/5+2E/5,使(A+4E )B=E ,由定义得A+4E 可逆,且(A+4E )1-=B=-A/5+2E/5.另外,有些计算命题中虽出现逆矩阵,但通过适当的矩阵运算可消去,因而不必急于求出逆矩阵.6.利用线性方程组求逆矩阵若n 阶矩阵A 可逆,则A A 1-=E ,于是A 1-的第i 列是线性方程组AX=E 的解,i=1,2,…,n,E 是第i 个分量是I 的单位向量.因此,我们可以去解线性方程组AX=B , 其中B=(b 1,b 2,…,b n )T , 然后把所求的解的公式中的b 1,b 2,…,b n 分别用E 1=(1,0,0,…,0), E 2=(0,1,0,…,0),......, E n =(0,0,0, (1)代替,便可以求得A 1-的第1,2,…n 列,这种方法在某些时候可能比初等变换法求逆矩阵稍微简一点.下面例子说明该方法的应用.例 求矩阵A=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡3000013000013000013000013的逆矩阵.解 设X=(x 1,x 2,x 3,x 4,x 5)T ,B=(b 1,b 2,b 3,b 4,b 5)T 解方程组 AX=B ,即:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+=+=+5545434323212133333b x bx x b x x b x x b x x 解得: ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+-=-+-=+-+-=-----51554245432335432234254322314513)3(3)33(3)333(3)3333(3b x b b x b b b x b b b b x b b b b b x 然后把B=(b 1,b 2,…,b n )列,分别用E 1=(1,0,0,…,0), E 2=(0,1,0,…,0),……,E n =(0,0,0, (1)代入,得到矩阵A 1-的第1,2 ,3,4,5列,分别用x 1=(13-,0,0,0,0)T , x 2=(32-,13-,0,0,0)T , x 3=(33-,32-,13-,0,0)T , x 4=(34-,33-,32-,13-,0)T , x 5=(35-,34-,33-,32-,13-)TA 1-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------------1213214321543213000033000333003333033333. 这种方法特别适用于线性方程组AX=B 比较容易求解的情形,也是很多工程类问题的解决方法.以上各种求逆方法只是我的一些粗浅的认识,也许有很多的不当之处,我希望我的这篇文章能给大家带来帮助,能帮助我们更快更准地解决好繁琐的求逆矩阵问题.同时,它还是我们更好的学习线性代数的必备基础知识,认真掌握它,可供我们以后继续在数学方面深造打下坚实的基础.但我很希望各位老师和同学给于指导.能使我的这篇文章更加完善和实用.参 考 文 献[1] 北京大学数学系几何与代数教研室代数小组. 高等代数[M ]. 北京: 高等教育出版社, 2001.[2] 杨明顺. 三角矩阵求逆的一种方法[J ]. 渭南师范学院学报, 2003. [3] 丘维声. 高等代数[M ]. 北京: 高等教育出版社,2001.[4] 杨子胥. 高等代数习题集[M] . 济南:山东科学技术出版社,1984. [5] 赵树原. 线性代数[M] . 北京:中国人民大学出版社,1997. [6] 李宗铎. 求逆矩阵的一个方法[ J ] . 数学通报,1983.[7] 贺福利等. 关于矩阵对角化的几个条件[J ] . 高等函授学报(自然科学版) ,2004 ,(1)[8] 张禾瑞.郝炳新.高等代数[M]. 北京: 高等教育出版社.1999.[9] 王永葆. 线性代数[M].长春:东北大学出版社.2001.[10] 同济大学遍.线性代数(第二版). 北京: 高等教育出版社,1982.[11] 王萼芳,丘维声编,高等代数讲义. 北京大学出版社,1983.[13] 华东师范大学数学系编.数学分析.人民教育出版社,1980[14] 杜汉玲求逆矩阵的方法与解析高等函授学报(自然科学版) 第17卷第4期2004年8月[15] 苏敏逆矩阵求法的进一步研究河南纺织高等专科学校学报,2004 年第16卷第2 期。

相关文档
最新文档