逆矩阵的求法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.求具体矩阵的逆矩阵
求元素为具体数字的矩阵的逆矩阵时,常采用如下一些方法.
方法1伴随矩阵法:.
注1对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意元素的位置及符号.特别对于2阶方阵,其伴随矩阵,即伴随矩阵具有“主对角元互换,次对角元变号”的规律.
注2对分块矩阵不能按上述规律求伴随矩阵.
方法2 初等变换法:
注对于阶数较高()的矩阵,采用初等变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.
方法3 分块对角矩阵求逆:对于分块对角(或次对角)矩阵求逆可套用公式
其中均为可逆矩阵.
例1已知,求.
解将分块如下:
其中,
而
,
从而
例2已知,且,试求.
解由题设条件得
例3 设4阶矩阵
且矩阵满足关系式,试将所给关系式化简,并求出矩阵.解由所给的矩阵关系式得到
,即
故.利用初等变换法求.由于
故
例4 设,则_________.
应填:.
分析在遇到的有关计算时,一般不直接由定义去求,而是利用的重要公式.如此题,由得,而,于是
=
例5已知,试求和.
分析因为,所以求的关键是求.又由知,可见求得和后即可得到.
解对两边取行列式得,于是
即,故
又因为,其中,又,可求得
,
故由得
例6 设,其中(),则____.
应填:.
分析法1.,其中,.
从而.又,,代入即得的逆矩阵.
法2.用初等变换法求逆矩阵.
=
故