数字电路实验-光电计数器

合集下载

数电 计数器 实验报告

数电 计数器 实验报告

数电计数器实验报告
《数电计数器实验报告》
实验目的:通过实验,掌握计数器的工作原理及其应用。

实验仪器:数电实验箱、示波器、计数器芯片、电源等。

实验原理:计数器是一种能够记录输入脉冲信号次数的电子设备,它能够实现数字信号的计数功能。

在实验中,我们将使用计数器芯片来实现二进制计数器的功能,通过观察输出信号的变化来了解计数器的工作原理。

实验步骤:
1. 将计数器芯片连接到数电实验箱上,并接入示波器以观察输出信号。

2. 将电源接通,调节示波器参数,观察计数器的输出波形。

3. 输入不同的脉冲信号,观察计数器的计数变化。

4. 通过改变输入信号的频率和幅度,观察计数器的响应情况。

实验结果:通过实验观察,我们发现计数器能够准确地记录输入脉冲信号的次数,并且能够按照二进制的方式进行计数。

当输入信号的频率增加时,计数器的计数速度也相应增加,而当输入信号停止时,计数器的计数也停止。

实验结论:计数器是一种非常重要的数字电路元件,它在数字系统中具有广泛的应用。

通过本次实验,我们深入了解了计数器的工作原理及其特性,为今后的数字电路设计和应用打下了坚实的基础。

总结:本次实验通过实际操作,让我们对计数器有了更深入的了解,同时也增强了我们对数字电路的理解和应用能力。

希望通过今后的实验和学习,我们能够更加熟练地掌握数字电路的相关知识,为今后的工程实践打下坚实的基础。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告数电计数器实验报告引言:数电计数器是数字电路中常见的一种组合逻辑电路,用于计数和记录输入脉冲的次数。

本实验旨在通过搭建一个基本的二进制计数器电路,探究计数器的工作原理,并验证其计数功能的正确性。

实验装置和步骤:实验中所用的装置包括集成电路、数字示波器、电源等。

首先,我们按照电路原理图搭建计数器电路,并连接相应的输入和输出信号线。

然后,我们通过给计数器电路提供时钟信号,观察输出信号的变化情况。

最后,我们通过改变输入信号的频率和幅度,测试计数器的稳定性和可靠性。

实验结果:在实验中,我们观察到计数器电路的输出信号随着时钟信号的输入而变化。

当时钟信号的边沿触发计数器时,计数器按照设定的计数规则进行计数,并输出相应的二进制码。

例如,当计数器为4位二进制计数器时,输入一个时钟脉冲,计数器的输出变化为0001、0010、0011、0100,依次类推。

当计数器达到最大计数值时,会自动归零重新计数。

实验分析:通过实验我们发现,计数器的计数规则是按照二进制码进行计数的。

每一位计数器都有两种状态,0和1,通过时钟信号的输入,计数器的状态会发生变化。

当计数器达到最大计数值时,会自动归零,这是因为计数器的位数是有限的,无法继续计数。

计数器的位数越多,能够计数的范围就越大。

此外,我们还发现计数器的计数速度与输入时钟信号的频率有关。

当时钟信号的频率较高时,计数器的计数速度也会相应增加。

然而,当时钟信号的频率过高时,计数器可能无法跟上时钟信号的输入,导致计数器的计数出错。

因此,在实际应用中,我们需要根据具体的需求来选择合适的计数器和时钟频率。

实验总结:通过本次实验,我们深入了解了数电计数器的工作原理和计数功能。

计数器作为一种常见的组合逻辑电路,广泛应用于各种计数和测量系统中。

在实际应用中,我们需要根据具体的需求选择合适的计数器和时钟频率,以确保计数器的稳定性和可靠性。

未来展望:随着科技的不断发展,计数器的功能和性能也在不断提升。

光电计数器设计报告

光电计数器设计报告

前言随着大规模、自动化的生产不断发展,很多企业在生产的过程中,大量使用各种智能化的产品,提高生产管理水平;采用红外线遮光方式的光电计数器,抗干扰性好,可靠性高;可用于测量宾馆、饭店、商场、超市、博物馆、展览馆、车站、码头、银行等场所的人员数量及人员流通数量,同时丝毫不会侵犯到被测人员的个人隐私;该产品应用广泛,也可以测量流水线上的产品的数量,以及可检查产品有无缺损;适用于各种环境对产品的成品或者是半成品进行计数,以满足现代生产的适时管理和需要,实现了智能控制;本人根据了光电计数器的工作原理,再结合了刚学过的模拟电子技术、数字电子技术、光电传感技术等电子类专业知识,制作了一个简易的红外光电计数器,本课题设计是对自己所学知识的一个综合运用和检验;同时也是自己走向社会前对产品的制作工艺以及产品生产流程的了解;该电路的指导思想是利用红外发光管发射红外线,红外接收管接收此红外线,并将其放大、整流转换成高低电平信号,驱动计数器计数,并经译码驱动电路使数码管显示数值;该电路还设计了一个报警电路,当计数器计数到上限时即99时,产生一个进位脉冲来驱动555产生延时信号使蜂鸣器报警;由于本人经验不足,且实验器材精确度不高,故设计还有很多不足和缺陷,需做进一步的改进和完善;第一章设计内容及要求1.设计主要内容该设计以红外发射及接收管为主要元器件产生光电脉冲,该脉冲通过双十进制加法计数器计数,4-8译码器译码,7段数码显示管显示来实现系统0-99光电计数及显示;当计数到99时计数暂停并报警;启动清零开关可重新计数;2.设计要求设计主要包含基本和提高要求两层次基本要求:利用红外发射接收管作为光电计数器的传感器进行计数,用数码管显示计数值,当数码管显示值与设定值相同时报警,此外计数器停止计数,手动清除报警后可重新工作;提高要求:l发光器件和光接收器之间的距离大于lM提示:生于距离较远;需要增大发光二极管的电流,这种情况下只能采用脉冲供电方法,此时有物体和无物体其输出频率会产生变化;2有抗干扰技术,防止背景光和瓶子抖动产生计数误差3每计数100,用灯闪烁2S指示一下;第二章系统设计方案选择方案一图方案一电路原理设计图该电路采用遮光式红外管触发计数器计数,当计数器递增计时到99即定时时间到时,显示器上显示99,同时发出光电报警信号;译码显示电路由74LS48和共阴极七段LED显示器以及1K电阻排组成;报警电路主要由555定时器脉冲控制;秒脉冲发生器产生的信号是电路的时钟脉冲和定时标准,但本设计对此信号要求并不是太高;主要是利用555产生一个延时信号使蜂鸣器扬声报警,此时可按下复位开关是电路重新从00开始计数;方案二图方案二电路原理设计图方案比较1.光电转换部分方案一设计简单,原理清晰,对负载及红外信号的发射强度未予考虑;方案二红外接收管的负载能力得以提高,但实现光电脉冲对电阻及三极管的开关参数有一定的要求,红外接收管还会受到三极管作用下的外围负载影响,不易于实现标准的高低电平转化;2.计数显示部分由于两种方案在计数部分所用的芯片不同,因此在芯片的个数选择和各引角连接方面就存在明显的差异;其一74LS192多了清零端方便清零功能的实现;74LS190就需在置数端实现置数功能基础上做点改进,这里通过一双向开关实现硬件复位;其二是进制设置:74LS192采用的是S9=1001,74LS190采用的是S10=1010;都需要使用与非门实现置数,但是74LS192是同步置数,74LS190是异步置数,74LS192当一有进位信号时就开始置数,而74LS190置数信号有延迟;这是两者最主要的区别,也是方案设计选择前者的主要原因;3.译码部分都采用4输入8输出译码方式,实现功能相同,两者没有明显的优劣差异;4.显示部分都采用共阴极七断数码驱动显示管,此部分没有区别;5.报警设置若实现99报时,方案一设计更简单,直接从CO端引出报警信号,通过555定时器产生一定频率的脉冲驱动报警电路;方案二报警设计具有通用性,能设置0-99范围内任意数值显示时的报警,但设置报警数值时较为不便;考虑实际应用采用方案一;总上所述,方案一更简易、经济,更可行;图系统原理组成框图工作原理该计数器采用了遮光式红外发射与接收管来产生脉冲信号,当没有遮光物时,红外接收管产生低电平信号,再经过三极管信号放大反向后变为高电平信号,最后经过74LS14反向器又变为低电平,同理,当有遮光物挡住对管时,接收管产生高电平信号,在经过放大反向后,作用在74LS192计数器上一个高电平信号,这样就有一个正跳沿脉冲使计数器开始进行加计数,并且通过74LS48译码电路在两个共阴极数码管上显示计数值,计数部分采用了同步时序逻辑电路设计,当计数器递增计数到99即计数最大值时,两计数器开始同步置数,同时高位计数器产生进位脉冲信号驱动报警电路报警,报警电路采用的是NE555构成的多谐振荡器,振荡频率 f0=1/R1+2R2CLn2=R1+2R2C,其输出信号经三极管推动蜂鸣器工作;PR未控制信号,当PR为高电平时,多谐振荡器工作;反之,电路停振;此时可以用复位开关使其清零,当再有脉冲信号时,计数器又开始循环计数;第四章单元电路设计、参数计算、器件选择光电转换模块光电转换的电路见图由于发光二极管的工作电压大约在左右,工作电流大约在4mA到10mA左右,并且电源电压为5V,所以R3=/4mA~10mA=250Ω~625Ω,因此选择470的电阻作为发光管的限流电阻;三极管有放大作用,所以集电极的电流较大,所以要加一个阻值较大的电阻作为限流电阻,因此选择了10KΩ电阻;当接通电源的时候,红外发射管发光,红外接收管反向导通,相当于短路,所以A点的电压为低电平,基极电流降低,发射结的电压降低,所以发射结反向截止,根据三极管基极电压与集电极电压反向的特性,所以集电极电压为高电平,当一旦有东西遮在发光管和光敏三极管中间时,红外接收管正向截止,即A点电位为高电平,当之超过三极管的导通电压一般为硅管为,锗管为左右时,三极管就会导通,当基极电流继续增加时,三极管会饱和导通,此时三极管相当于工作在开关的闭合状态,发射极相当于直接接地,所以集电极输出为低电平;再经过一个反向器后变为高电平,这样就可以给后面计数器一个上升沿脉冲;使其触发开始工作;图光电转换电路计数显示模块4.2.1 数码管译码:编码的逆过程,即将输入代码“翻译”成特定的输出信号;译码器:实现译码功能的数字电路;七段数字显示器原理按内部连接数字显示器分为共阴极和共阳极两种(a)管脚排列图; b共阴极接线图; c 共阳级接线图图数码管内部电路4.2.2 显示译码器74LS48图 74LS48的管脚排列图和其逻辑符号图4.3 A 0 =0时,/ LT =1时,若七段均完好,显示字形是“8”,该输入端常用于检查74LS48显示器的好坏; 当 A 1=1时,译码器方可进行译码显示; 用来动态灭零,当A 2= 1时, 且A 3 =0, 输入A3A2A1A0=0000时,则/ I BR =0使数字符的各段熄灭; / LT为灭灯输入/灭灯输出,当 V CC =0时不管输入如何, 数码管不显示数字; 为控制低位灭零信号,当A 3=1时, 说明本位处于显示状态;若 A 3 =0, 且低位为零, 则低位零被熄灭;图 译码显示电路 根据设计要求由于数码管是由发光二极管构成的,所以要在译码器与数码管之间加1K 的电阻保护,因为选择的是共阴的数码管,数码管的两个公共端与地端相接;4.2.3 十进制计数器74LS19274LS192是双时钟方式的十进制可逆计数器; CPU 为加计数时钟输入端,CPD 为减计数时钟输入端;LD 为预置输入控制端,异步预置;CR 为复位输入端,高电平有效,异步清除;CO 为进位输出:1001状态后负脉冲输出, BO 为借位输出:0000状态后负脉冲输出;图 a74ls192引脚图 b74LS192逻辑符号图表 74LS192的真值表工作原理:当LD =1,CR=0时,若时钟脉冲加入到U CP 端,且D CP =1,则计数器在预置数的基础上完成加计数功能,当加计数到9时,CO 端发出进位下跳脉冲;若时钟脉冲加入到D CP 端,且U CP =1,则计数器在预置数的基础上完成减计数功能,当减计数到0时,BO 端发出借位下跳变脉冲;由74LS192组成的一百进制递加计数器如下图,其预置数为N=1001 10018421BCD=99;它的计数原理是:只有当低位CO 端发出进位脉冲时,高位计数器才作加计数;当高、低位计数器处于99,且置数端LD =0,计数器完成并行置数,此计数器的置数值为99,当置数到99时可用复位端使其清零,在U CP 端的输入时钟脉冲作用下,计数器再次进入下一循环加计数;图 计数器计数置位部分声光报警模块由555定时器和三极管构成的报警电路如图所示;其中,555构成多谐振荡器,振荡频率 f0=1/R1+2R2CLn2=R1+2R2C,其输出信号经三极管推动扬声器;PR 未控制信号,当PR 为高电平时,多谐振荡器工作;反之,电路停振;图 报警工作电路555电路的工作原理555电路的内部电路方框图如图所示;它含有两个电压比较器,一个基本RS 触发器,一个放电开关管T,比较器的参考电压由三只 5K Ω的电阻器构成的分压器提供;它们分别使高电平比较器A 1 的同相输入端和低电平比较器A 2的反相输入端的参考电平为CC V 32和CC V 31;A 1与A 2的输出端控制RS 触发器状态和放电管开关状态;当输入信号自6脚,即高电平触发输入并超过参考电平CC V 32时,触发器复位,555的输出端3脚输出低电平,同时放电开关管导通;当输入信号自2脚输入并低于CC V 31时,触发器置位,555的3脚输出高电平,同时放电开关管截止;D R 是复位端4脚,当D R =0,555输出低电平;平时D R 端开路或接V CC ,V C 是控制电压端5脚,平时输出CC V 32作为比较器A 1 的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个μf 的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定;T 为放电管,当T 导通时,将给接于脚7的电容器提供低阻放电通路;图 555电路的内部电路方框图本电路由555定时器和外接元件R 1、R 2、C 构成多谐振荡器,脚2与脚6直接相连;电路没有稳态,仅存在两个暂稳态,电路亦不需要外加触发信号,利用电源通过R 1、R 2向C 充电,以及C 通过R 2向放电端 C t 放电,使电路产生振荡;电容C 在CC V 31和CC V 32之间充电和放电,其波形如图b 所示;输出信号的时间参数是T =t w1+t w2, t w1=R 1+R 2C, t w2=2C 555电路要求R 1 与R 2 均应大于或等于1K Ω ,但R 1+R 2应小于或等于Ω;图 多谐振荡器结构及工作电压波形第五章 实验、调试及测试结果与分析·调试电路板焊接好后,先不能急着通电,先要检查硬件线路,其步骤如下:1检查连线是否正确根据电路原理图连线,按一定顺序一一检查安装好线路,这样可以比较容易查出错线或少线;为了防止出错,对于已查过的线路在电路图上做出标记 ;2元器件的安装情况检查元器件引脚之间有无短路;连接处有无接触不良,有无虚焊,假焊情况;二极管的极性和集成元件的引脚是否连接有误;这样检查无误后就开始通电,通电后发现十位数码管中e 极二极管不亮,找出其连接译码器的15脚,发现是虚焊了,重新焊了下,通上电数码管正常工作;当我们把遮光物放在对管再抽出的过程中,数码管没变化,还是显示00,通过用数字万用表检测后,发现红外接收管内阻很大,已经烧坏了,可能是在焊接的过程中,温度过高散热不当所致,后又换了个红外接收管;当再次通电后,在用同样的方法发现数码管还是不计数,我们用万用表检查了以下,发现当没有遮住红外管时,红外接收管的电压为本应该在左右,当遮住了红外管后,电压变为,总结下低电平电压过高,不能使反向器反向,也就不能使计数器计数,我们把红外管对折后重新焊接,在通上电,这次把电源电压改小了,改为原来是,结果板子正常工作了,能实现00-99计数了,而且比较稳定;结果与分析通过调试以后,电路板可以按照预定的要求实现功能;刚开始通电,数码管显示00,当有遮光物挡住又拔出时,计数器进行加1,这样能完成00—99计数,通过检测我们发现红外管需要对折焊接后才会更加灵敏,这样才能使脉冲信号更加稳定,计数更准确,还有板子的工作电压要调好,不能过高也不能太低,要让板子能正常工作即可,在焊接时一定注意温度控制好,可以先把一些敏感元件引脚留长些,这样可以方便散热,以免烧坏元件;总结为期一周的电子课题设计终于落下帷幕了,我和我的搭档经过这一周的辛苦努力,终于得到了收获,完成了我们的电子设计---光电计数器;因为以前动手很少,对做电子线路板经验不足,所以刚开始有点不知所措,但我们没有放弃这次难得的动手机会,通过查阅相关资料,把原理图画好,经过仿真确定其可行性,然后就开始焊接电路板,在焊接电路板的过程中,我们从中发现了许多问题,也遇到了不少难题,不过我们没有退却,在指导老师的帮助下,把问题给逐一解决了,而且在动手操作的过程中,也领悟到了许多焊接技巧,方法,增强了实践动手能力,当我和搭档把电路板成功焊接完成后,非常兴奋,很有成就感,更增加了我们以后动手操作的信心,在后期调试过程中,通过数字万用表,示波器等相关测量工具获得了计数器的一些工作参数,在结合实验现象和结果分析,更加懂得了该光电计数器的工作原理;感谢学校给我们提供了这次宝贵的动手实践机会,通过动手操作,我们学到了许多书本上没有的知识,而且更加巩固了所学知识,真正做到了所学即所用;经过这次电子设计,我从中收获了很多,更加懂得了理论联系实际的重要性,让我们对电子设计这门科目有了更深一层次的了解;我相信我能在以后的电子设计中做的更好,会有更多新的发现;参考文献1 梁宗善. 电子技术基础与课程设计.华东理工大学出版社. 1994.2 郁汉琪. 数字电子技术实验及课题设计.高等教育出版社.3 梁廷贵、王裕琛.译码器编码器数据选择器电子开关电源分册.科学技术文献出版社.4 杨志忠、卫桦林. 数字电子技术. 高等教育出版社.5 杜虎林.数字万用表使用测量技法与故障检修.人民邮电出版社.6 吴运昌.模拟集成电路原理与应用.华南理工大学出版社.7 黄智伟. 全国大学生电子设计竞赛技能训练.北京航空航天大学出版社.8 刘守义.数字电子技术基础.清华大学出版社.附录1电路原理总图附录2电路元器清单。

数电实验报告计数器

数电实验报告计数器

数电实验报告计数器计数器是数字电路中常见的一种电路元件,用于计数和显示数字。

在数电实验中,我们通常会设计和实现各种类型的计数器电路,以探究其工作原理和性能特点。

本文将介绍数电实验中的计数器的设计和实验结果,并探讨其应用和改进。

一、设计和实现在数电实验中,我们通常使用逻辑门和触发器来实现计数器电路。

逻辑门用于控制计数器的输入和输出,而触发器则用于存储和更新计数器的状态。

以4位二进制计数器为例,我们可以使用四个触发器和适当的逻辑门来实现。

触发器的输入端连接到逻辑门的输出端,而逻辑门的输入端连接到触发器的输出端。

通过适当的控制信号,我们可以实现计数器的正向计数、逆向计数、清零和加载等功能。

在实验中,我们需要根据设计要求选择适当的逻辑门和触发器,并将其连接起来。

然后,通过给逻辑门和触发器提供适当的输入信号,我们可以观察计数器的输出结果,并验证其正确性和稳定性。

二、实验结果在实验中,我们设计了一个4位二进制计数器,并通过适当的输入信号进行了测试。

实验结果表明,计数器能够正确地进行正向计数和逆向计数,并能够在达到最大计数值或最小计数值时自动清零。

此外,我们还观察到计数器的输出信号在计数过程中保持稳定,并且能够及时响应输入信号的变化。

这说明计数器具有较高的稳定性和响应速度,适用于各种计数应用场景。

三、应用和改进计数器在数字电路中有广泛的应用,例如频率分频、时序控制、计时器等。

通过适当的设计和连接,我们可以实现各种复杂的计数功能,满足不同的应用需求。

在实验中,我们还可以对计数器进行改进和优化,以提高其性能和功能。

例如,我们可以增加计数器的位数,以扩大计数范围;我们还可以添加输入输出接口,以实现与其他电路元件的连接和通信。

此外,我们还可以使用更高级的计数器电路,如同步计数器、环形计数器等,以实现更复杂的计数功能。

这些改进和扩展将进一步提高计数器的灵活性和实用性。

总结:通过数电实验,我们了解了计数器的设计和实现原理,并验证了其在实际应用中的性能和功能。

光电计数器课程设计实验报告

光电计数器课程设计实验报告

皖 西 学 院 课程设计报告书系别:机械与电子工程系专业:电子信息科学与技术学生姓名:学号:课程设计题目:光电计数器起迄日期: 12月10日~12 月22日课程设计地点:教学实验楼B楼指导教师:张斌前言计数器对某物件进行自动计数,在实际生产生活中具有广泛的应用,对通过的物体进行计数,实现统计数据的搜集,如在生产流水线包装数量控制等领域的应用,能节省劳动力有能高效地完成任务。

光电计数器采用光电传感器构成的广电门实现对通过光电门的物体进行计数,是一种非接触式计数,在部分场合有着其无比的优越性,从而使其广泛应用于工业生产、实时监测、自动化控制等领域。

本作品为实现光电计数器的功能,采用模数结合的电路,以红外对射光电传感器为传感器件。

电路主要分为信号采集电路、两位十进制计数电路、数码显示电路三个模块,分别实现对通过光电门的物体感应,计数,显示。

计数范围为一百,可以预设计数数目,当计数达到设定后,闪灯报警两秒。

在光电计数部分我们考虑到脉冲信号的稳定度、方便检测是否能够产生脉冲信号,因此在电压比较器和NE555之间我们选择了NE555,又要利用遮断式红外控制原理对通过的物件计数,为了感应良好,我们使红外发光管与光电接收管相对安放。

本计数器可实现0~99的计数显示。

每当物件通过一次,红外光被遮挡一次,光电接收管的输出电压发生一次变化,这个变化的电压信号通过放大和处理后,形成计数脉冲,去触发一个十进制计数器,便可实现对物件的计数统计。

作品电路主要采用常用分立元件和小规模集成电路,结构简单可靠,能够提供准确的统计值,成本低廉,实用性强,二次开发性高目录前言 (2)第一章设计内容及要求 (4)1.1 本次课程设计应达到的目的 (4)1.2 本课程设计课题任务的内容和要求 (4)第二章设计方案 (5)2.1 设计思路 (4)2.2 方案选择 (4)第三章系统组成 (6)3.1 系统框图 (6)3.2 单元电路介绍 (6)3.2.1 信号采集电路 (6)3.2.2 计数电路 (7)3.2.3 数码显示电路 (9)3.2.4 满百报警电路 (11)3.3 调试与测试结果 (12)第四章实验总结 (13)第五章参考文献 (14)附录一电路原理总图 (15)第一章设计内容及要求1.1 本次课程设计应达到的目的1、综合运用相关课程中所学到的理论知识去独立完成某一设计课题;2、通过查阅手册和相关文献资料,培养学生独立分析和解决问题的能力;3、进一步熟悉常用芯片和电子器件的类型及特性,并掌握合理选用器件的原则;4、学会电路的安装与调试;5、进一步熟悉电子仪器的正确使用;6、学会撰写课程设计的总结报告;7、培养严肃认真的工作作风和严谨的科学态度。

数字电路 实验 计数器及其应用 实验报告

数字电路 实验 计数器及其应用 实验报告

实验六计数器及其应用一、实验目的1.学习用集成触发器构成计数器的方法2.掌握同步计数的逻辑功能、测试方法及功能扩展方法3.掌握构成任意进制计数器的方法二、实验设备和器件1.+5V直流电源2.双踪示波器3.连续脉冲源4.单次脉冲源5.逻辑电平开关6.逻辑电平显示器7.译码显示器8.CC4013×2(74LS74)CC40192×3(74LS192)CC4011(74LS00)CC4012(74LS20)三、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多。

计数器计数时所经历的独立状态总数为计数器的模(M)。

计数器按模可分为二进计数器(M=2n)、十进计数器(M=10n)和任意进制计数器(M≠2n、M≠10n)。

按计数脉冲输入方式不同,可分为同步计数和异步计数。

按计数值增减趋势分为:加法计数器、减法计数器和可逆(加/减)计数器。

1.用D触发器构成异步二进制加/减计数器图6-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T 触发器,再由低位触发器的Q端和高一位的CP端相连接。

若将图6-1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器。

2.中规模十进制计数器、十六进制计数器(1)CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能。

当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。

当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3置入计数器。

当CR为低电平,LD为高电平时,执行计数功能。

执行加计数时,减计数端CP D接高电平,计数脉冲由CP U输入;在计数脉冲上升沿进行8421码十进制加法计数。

执行减计数时,加计数端CP U接高电平,计数脉冲由减计数端CP D 输入,表6-2为8421码十进制加、减计数器的状态转换表。

数电实验报告计数器

数电实验报告计数器

数电实验报告计数器《数电实验报告:计数器》实验目的:本实验旨在通过搭建和测试计数器电路,加深对数电原理的理解,掌握计数器的工作原理和应用。

实验器材:1. 74LS76触发器芯片2. 74LS00与非门芯片3. 74LS08与门芯片4. 电源5. 示波器6. 万用表7. 逻辑开关8. 连接线实验原理:计数器是一种能够对输入的脉冲信号进行计数并输出相应计数结果的电路。

在本实验中,我们将使用74LS76触发器芯片搭建一个4位二进制同步计数器。

该计数器能够对输入的脉冲信号进行计数,并通过LED灯显示计数结果。

实验步骤:1. 根据74LS76触发器芯片的引脚图和真值表,搭建4位二进制同步计数器电路。

2. 将74LS00与非门芯片连接到计数器电路中,用于产生时钟信号。

3. 将74LS08与门芯片连接到计数器电路中,用于控制LED灯的显示。

4. 接通电源,使用逻辑开关产生输入脉冲信号。

5. 使用示波器和万用表对计数器电路的各个部分进行测试和调试。

实验结果:经过调试和测试,我们成功搭建了一个4位二进制同步计数器电路。

当输入脉冲信号时,LED灯能够正确显示计数结果,符合预期。

实验分析:通过本次实验,我们深入理解了计数器的工作原理和应用。

计数器是数字电路中常用的基本模块,广泛应用于各种计数和计时场合。

掌握计数器的原理和搭建方法,对于进一步学习和应用数字电路具有重要意义。

结论:本次实验通过搭建和测试计数器电路,加深了我们对数电原理的理解,掌握了计数器的工作原理和应用。

同时,我们也学会了使用示波器和万用表对数字电路进行测试和调试,为今后的实验和工作打下了坚实的基础。

数字电路实验计数器

数字电路实验计数器

实验八计数器一、实验目的1.熟悉由集成触发器构成的计数器电路及其工作原理。

2.熟悉掌握常用中规模集成电路计数器及其应用方法。

二、实验原理和电路所谓计数,就是统计脉冲的个数,计数器就是实现“计数”操作的时序逻辑电路。

计数器的应用十分广泛,不仅用来计数,也可用作分频、定时等。

计数器种类繁多。

根据计数体制的不同,计数器可分成二进制(即2”进制)计数器和非二进制计数器两大类。

在非二进制计数器中,最常用的是十进制计数器,其它的一般称为任意进制计数器。

根据计数器的增减趋势不同,计数器可分为加法计数器—随着计数脉冲的输入而递增计数的;减法计数器—随着计数脉冲的输入而递减的;可逆计数器—既可递增,也可递减的。

根据计数脉冲引入方式不同,计数器又可分为同步计数器—计数脉冲直接加到所有触发器的时钟脉冲(CP)输入端;异步计数器—计数脉冲不是直接加到所有触发器的时钟脉冲(CP)输入端。

1.异步二进制加法计数器异步二进制加法计数器是比较简单的。

图是由4个JK(选用双JK74LS112)触发器构成的4位二进制(十六进制)异步加法计数器,图和(c)分别为其状态图和波形图。

对于所得状态图和波形图可以这样理解:触发器FF O(最低位)在每个计数沿(CP)的下降沿(1 → 0)翻转,触发器FF1的CP端接FF0的Q0端,因而当FF O(Q O)由1→ 0时,FF1翻转。

类似地,当FF1(Q1)由1→0时,FF2翻转,FF2(Q2)由1→0时,FF3翻转。

4位二进制异步加法计数器从起始态0000到1111共十六个状态,因此,它是十六进制加法计数器,也称模16加法计数器(模M=16)。

从波形图可看到,Q0 的周期是CP周期的二倍;Q1 是Q0的二倍,CP的四倍;Q2是Q1 的二倍,Q0的四倍,CP的八倍;Q3是Q2的二倍,Q1的四倍,Q0的八倍,CP的十六倍。

所以Q0 、Q1、Q2、Q3分别实现了二、四、八、十六分频,这就是计数器的分频作用。

数电实验报告:计数器及其应用-计数器应用实验报告

数电实验报告:计数器及其应用-计数器应用实验报告

数字电子技术实验报告实验四:计数器及其应用一、实验目的:1、熟悉常用中规模计数器的逻辑功能。

2、掌握二进制计数器和十进制计数器的工作原理和使用方法。

二、实验设备:1、数字电路实验箱;2、74LS90。

三、实验原理:1、计数是一种最简单基本运算,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时具有分频功能。

计数器按计数进制分有:二进制计数器,十进制计数器和任意进制计数器;按计数单元中触发器所接收计数脉冲和翻转顺序分有:异步计数器,同步计数器;按计数功能分有:加法计数器,减法计数器,可逆(双向)计数器等。

2、74LS90是一块二-五-十进制异步计数器,外形为双列直插,NC表示空脚,不接线,它由四个主从JK触发器和一些附加门电路组成,其中一个触发器构成一位二进制计数器;另三个触发器构成异步五进制计数器。

在74LS90计数器电路中,设有专用置“0”端R0(1),R0(2)和置“9”端S9(1)S9(2)。

其中前两个为异步清0端,后两个为异步置9端。

CP1, CP2为两个时钟输入端;Q0~Q3为计数输出端。

当R1=R2=S1=S2=0时,时钟从CP1引入,Q0输出为二进制;从CP2引入,Q3输出为五进制。

时钟从CP1引入,二Q0接CP1,则Q3Q2Q1Q0输出为十进制(8421码);时钟从CP2引入,而Q3接CP1,则Q0Q3Q2Q1输出为十进制(5421码)。

四、实验原理图及实验结果:1、实现0~9十进制计数。

1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~9十个数字。

2、实现六进制计数。

1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~5六个数字。

3、实现0、2、4、6、8、1、3、5、7、9计数。

1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0、2、4、6、8、1、3、5、7、9十个数字。

光电测速(基于计数)系统+完成的C程序和电路图

光电测速(基于计数)系统+完成的C程序和电路图

光电计数器设计班级学号姓名指导老师2011-07-01光电计数器实验报告摘要光电计数器有直观和计数精确的优点,目前已在各种行业中普遍使用。

光电计数器有多种计数触发方式,它是由实际使用条件和环境决定的。

有采用机械方式的接触式触发的,有采用电子传感器的非接触式触发的,光电式传感器是其中之一,它是一种非接触式电子传感器。

这种计数器在工厂的生产流水线上作产品统计,有着其他计数器不可取代的优点。

本文针对光电计数器的设计要求,在实现了基本要求的基础上改加了测物体转速的功能。

内容简介光电计数器是通过光电耦合器OPTOISO1发光二极管一端在加电压的条件下发出红外光,红外光照射光电耦合器的光敏三极管一端是光敏三级管导通,从而使光敏三级管集电极一端产生低电平。

当有物体遮住红外光时,光敏三极管截止从而产生高低电平的跳变。

并通过74LS14反相器整形送入单片机进行处理。

本设计计数器可将机械或人工计数方式变为电子计数形式,并且采用8*8戴南镇显示屏来计数显示。

一、方案设计和论证采用单片机控制模块提供电源。

改方案的优点是系统简明扼要,节约成本;缺点是输出功率不高。

1.2、技术传感器部分根据老师要求我们一律采用光电耦合器进行计数1.3、显示部分根据实验要求我们一律采用8*8点阵进行计数显示。

系统硬件图2.1 复位电路为确保微机系统中电路稳定可靠工作,复位电路是必不可少的一部分,复位电路的第一功能是上电复位。

一般微机电路正常工作需要供电电源为5V±5%,即4.75~5.25V。

由于微机电路是时序数字电路,它需要稳定的时钟信号,因此在电源上电时,只有当VCC超过4.75V低于5.25V以及晶体振荡器稳定工作时,复位信号才被撤除,微机电路开始正常工作。

电路图如下:上电自动复位是通过外部复位电路的电容充电来实现的。

只要Vcc的上升时间不超过1ms,就可以实现自动上电复位。

2.2 时钟电路时钟电路可以简单定义如下: 1.就是产生象时钟一样准确的振荡电路。

数电 计数器 实验报告

数电 计数器 实验报告

数电计数器实验报告数电计数器实验报告引言:计数器是数字电路中常见的一种组合逻辑电路,它可以实现对输入信号进行计数的功能。

在本次实验中,我们将通过搭建一个4位二进制计数器的电路,深入了解计数器的工作原理和应用。

一、实验目的本次实验的目的是通过搭建一个4位二进制计数器的电路,学习计数器的基本原理,掌握计数器的设计和应用方法。

二、实验原理计数器是由触发器和逻辑门组成的组合电路。

触发器是一种存储器件,可以存储一个比特的数据。

逻辑门则负责对输入信号进行处理和控制。

在计数器中,触发器的输出被连接到逻辑门的输入,逻辑门的输出又反馈到触发器的输入,形成了一个闭环。

当输入信号发生变化时,逻辑门会根据其输入信号的状态改变输出信号的状态,从而实现计数器的计数功能。

三、实验材料本次实验所需的材料如下:1. 电路板2. 74LS74触发器芯片3. 74LS08与门芯片4. 74LS32或门芯片5. 连线材料6. 电源四、实验步骤1. 将74LS74触发器芯片插入电路板上的指定位置,并连接电源。

2. 使用连线材料将74LS74触发器芯片的引脚与74LS08与门芯片和74LS32或门芯片的引脚相连,按照电路图进行正确的连接。

3. 检查电路连接是否正确,确保没有短路或接触不良的情况。

4. 打开电源,观察计数器的输出情况。

5. 将输入信号接入计数器,观察计数器的计数变化。

五、实验结果与分析通过实验,我们成功搭建了一个4位二进制计数器的电路。

当输入信号发生变化时,计数器能够按照二进制方式进行计数。

例如,当输入信号从0变为1时,计数器的输出会从0000变为0001;当输入信号再次变为0时,计数器的输出会继续递增,变为0010,0011,0100,以此类推。

实验结果表明,计数器能够准确地对输入信号进行计数,并按照预期的方式输出计数结果。

六、实验总结本次实验通过搭建一个4位二进制计数器的电路,深入了解了计数器的工作原理和应用。

我们学习了计数器的基本原理,掌握了计数器的设计和应用方法。

led计数电路实验总结

led计数电路实验总结

led计数电路实验总结一、背景与目的本次实验的背景是学习数字电路中的计数器电路,掌握LED计数电路的设计与实现方法。

本次实验旨在通过实践操作,加深对计数器电路原理和应用的理解,同时提高学生的动手能力和创新意识。

二、实验原理1. 计数器电路计数器是一种能够对输入信号进行计数并输出相应状态的数字电路。

常见的计数器有二进制、十进制和BCD码等类型。

其中,二进制计数器最为常见,其可以将输入信号转换成二进制码,并根据规定递增或递减输出。

2. LED显示LED是一种半导体发光元件,其具有低功耗、长寿命、高亮度等优点,在数字电路中广泛应用于显示元件。

LED可以通过控制其通断状态来显示不同的数字或字母。

3. 计数器与LED显示结合将计数器与LED显示结合起来,可以构成一种简单而有效的数字计数显示系统。

当输入信号触发时,计数器开始递增或递减,并将当前状态通过LED灯进行展示。

三、实验步骤1. 硬件设计:根据课程要求和自己的想法,设计出符合要求的LED计数电路。

2. 电路搭建:根据设计图纸,选用合适的元器件进行电路搭建,并进行必要的接线和调试。

3. 软件编程:使用VHDL语言编写计数器程序,并将其下载到FPGA芯片中。

4. 实验测试:对搭建好的LED计数电路进行实验测试,检查其是否满足预期功能和性能。

四、实验结果经过反复调试和实验测试,本次LED计数电路实验取得了良好的效果。

在输入信号触发后,LED灯递增或递减显示当前状态,并能够正确地进行数据转换和显示。

同时,该电路具有稳定性好、响应速度快等优点,在数字计数显示方面具有广泛的应用前景。

五、总结与展望本次LED计数电路实验通过理论学习、硬件设计、软件编程和实验测试等环节,全面提高了学生对数字电路计数器原理和应用的认识。

同时,也锻炼了学生的动手能力和创新意识,在未来的学习和工作中将具有重要意义。

在今后的学习中,我们还需要进一步深入研究数字电路技术,并结合实际应用进行创新和探索,为推动数字化时代的发展做出更大的贡献。

数字电路技术实验之计数器

数字电路技术实验之计数器

实验七计数器一、实验目的1. 熟悉中规模集成计数器的逻辑功能及使用方法。

2. 掌握用中规模集成计数器构成任意进制计数器的方法。

3. 学习用集成触发器构成计数器的方法。

二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可以用来对脉冲计数,还常用作数字系统的定时、分频和执行数字运算以及其他特定的逻辑功能。

计数器是由基本的计数单元和一些控制门所组成,计数单元则由一系列具有存储信息功能的各类触发器构成,这些触发器有RS触发器、T触发器、D触发器及JK触发器等。

计数器在数字系统中应用广泛,如在电子计算机的控制器中对指令地址进行计数,以便顺序取出下一条指令,在运算器中作乘法、除法运算时记下加法、减法次数,又如在数字仪器中对脉冲的计数等等。

计数器种类很多,按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数进制的不同,分为二进制计数器、十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器;如按预置和清除方式来分,则有并行预置、直接预置、异步清除和同步清除等;按权码来分,则有“8421”码,“5421”码、余“3”码等计数器及可编程序功能计数器等等。

目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数电路。

使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。

1.十进制计数器74LS90(二、五分频)74LS90是模二-五-十异步计数器。

具有计数、清除、置9功能。

74LS90包含M=2和M=5两个独立的下降沿触发计数器,清除端和置9端两计数器公用,没有预置端。

模2计数器的时钟输入端为A(CP1),输出端为Q A;模5计数器的时钟输入端为B(CP2)。

输出端由高位到低位为Q D、Q C、Q B;异步置9端为S91和S92,高电平有效。

即只要S91·S92=1,则输出Q D Q C Q B Q A为1001;异步清除端为R01和R02,当R01·R02=1,且S91·S92=0时,输出Q D Q C Q B Q A=0000;只有R01·R02=0,S91·S92=0,即两者全无效时,74LS90才能执行计数操作。

数电实验7——计数器. 报告docx

数电实验7——计数器. 报告docx

深圳大学实验报告课程名称:数字电子技术实验项目名称:计数器学院:光电工程学院专业:光源与照明指导教师:**报告人:黄学号:2016 班级:实验时间:2018年12月19日实验报告提交时间:教务处制三、实验原理:计数器器件是应用较广的器件之一,它有很多型号,各自完成不同的功能,可根据不同的需要选用。

本实验选用74LS162做实验器件。

74LS162引脚图见图1。

74LS162是十进制BCD同步计数器。

Clock是时钟输入端,上升沿触发计数触发器翻转。

允许端P和T都为高电平时允许计数,允许端T为低时禁止Carry产生。

同步预置端Load加低电平时,在下一个时钟的上升沿将计数器置为预置数据端的值。

清除端Clear为同步清除,低电平有效,在下一个时钟的上升沿将计数器复位为0。

74LS162的进位位Carry在计数值等于9时,进位位Carry为高,脉宽是1个时钟周期,可用于级联。

四、实验内容与步骤:(一)实验内容:1、用1片74LS162和1片74LS00采用复位法构一个模7计数器。

用单脉冲做计数时钟,观测计数状态,并记录。

用连续脉冲做计数时钟,观测并记录Q D,Q C,Q B,Q A的波形。

2、用1片74LS162和1片74LS00采用置位法构一个模7计数器。

用单脉冲做计数时钟,观测并记录Q D,Q C,Q B,Q A的波形。

3、用2片74LS162和1片74LS00构成一个模60计数器。

2片74LS162的Q D,Q C,Q B,Q A分别接两个译码显示的D,B,C,A端。

用单脉冲做计数时钟,观测数码管数字的变化,检验设计和接线是否正确。

(二)实验接线及测试结果:1、复位法构成的模7计数器接线图及测试结果(1)复位法构成的模7计数器接线图图9.1 复位法7进制计数器接线图1 图9.2 复位法7进制计数器接线图2 图中,AK1是按单脉冲按钮,LED0,LED1,LED2和LED3是逻辑状态指示灯,100kHz 是连续脉冲源。

计数器数电实验报告

计数器数电实验报告

计数器数电实验报告计数器数电实验报告引言:计数器是数字电路中常见的一个模块,用于计算和记录输入信号的脉冲数。

本次实验旨在通过设计和实现一个4位二进制计数器,加深对计数器原理和数电实验的理解。

一、实验目的本实验的目的是通过设计和实现一个4位二进制计数器,加深对计数器原理和数电实验的理解。

二、实验器材1. 数字逻辑实验箱2. 7400、7402、7404、7476、7490等集成电路芯片3. 连线和电源线三、实验原理计数器是一种用于记录输入脉冲数量的电子电路。

常见的计数器有二进制计数器、BCD计数器等。

本实验中,我们将设计一个4位二进制计数器,即计数范围为0-15。

四、实验步骤1. 按照电路原理图连接实验箱中的集成电路芯片,确保连接正确。

2. 将电源线接入实验箱,确保电路正常供电。

3. 通过按下实验箱上的开关,给计数器输入脉冲信号。

4. 通过观察计数器输出端的LED灯亮灭情况,判断计数器是否正常工作。

5. 调整输入脉冲信号的频率,观察计数器的计数变化情况。

五、实验结果与分析经过实验,我们成功地设计和实现了一个4位二进制计数器。

当输入脉冲信号的频率较低时,我们可以清晰地观察到计数器的计数变化,LED灯依次亮起。

当输入脉冲信号的频率较高时,我们可以看到LED灯快速闪烁,但我们无法逐个数清楚。

这是因为计数器的计数速度跟不上输入脉冲信号的频率。

六、实验总结通过本次实验,我们深入了解了计数器的原理和工作方式。

计数器作为数字电路中常见的模块,广泛应用于各个领域。

通过设计和实现一个4位二进制计数器,我们不仅加深了对计数器的理解,还掌握了实验中常用的集成电路芯片的连接方法。

然而,本次实验还存在一些问题。

首先,计数器的计数范围仅为0-15,无法满足更大范围的计数需求。

其次,计数器的计数速度受限于输入脉冲信号的频率,当频率过高时无法逐个数清楚。

对于这些问题,我们可以进一步改进和优化设计,以满足不同的应用需求。

在今后的学习和实践中,我们将继续深入研究和应用计数器的原理,探索更多的应用场景和设计方法。

光电人体计数器课程设计

光电人体计数器课程设计

光电人体计数器课程设计一、课程目标知识目标:1. 让学生理解光电人体计数器的基本工作原理,掌握其电路组成及功能。

2. 让学生掌握计数器在数字电路中的应用,了解计数器的基本操作和计数过程。

3. 使学生了解光电传感器在人体计数器中的作用,认识其优缺点。

技能目标:1. 培养学生动手搭建光电人体计数器的能力,提高实践操作技能。

2. 培养学生运用所学知识解决实际问题的能力,如设计简单的计数器应用电路。

3. 培养学生分析实验数据,得出结论的能力。

情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发他们探索科学技术的热情。

2. 培养学生团队合作精神,提高沟通与协作能力。

3. 培养学生严谨的科学态度,树立安全意识和环保意识。

课程性质分析:本课程为电子技术及应用领域的一节实践性较强的课程,旨在让学生通过动手实践,掌握光电人体计数器的原理和应用。

学生特点分析:初中年级的学生对电子技术有一定的了解,具备基本的电路知识,喜欢动手实践,但可能对光电传感器等新技术了解较少。

教学要求:1. 结合课本知识,注重理论联系实际,提高学生的实践操作能力。

2. 通过小组合作,培养学生的团队合作精神和沟通能力。

3. 注重安全教育,培养学生安全意识。

4. 以学生为主体,关注个体差异,激发学生学习兴趣。

二、教学内容1. 光电传感器原理:介绍光电传感器的工作原理,包括光源、光电二极管、光敏电阻等基本元件的功能和特性。

- 教材章节:第三章第二节《光电器件》- 内容列举:光源的种类、光电效应、光电元件的应用。

2. 计数器电路组成:讲解计数器的基本电路组成,包括触发器、时钟信号、计数器逻辑等。

- 教材章节:第四章第三节《触发器与计数器》- 内容列举:触发器的种类、时钟信号的生成、计数器逻辑电路。

3. 光电人体计数器设计:结合光电传感器和计数器电路,设计简单的光电人体计数器。

- 教材章节:第五章《数字电路设计》- 内容列举:设计原理、电路图绘制、元器件选型、组装调试。

Multisim 数字电路仿真实验(计数器)

Multisim 数字电路仿真实验(计数器)

Multisim 数字电路仿真实验1.实验目的用Multisim 的仿真软件对数字电路进行仿真研究。

2.实验内容实验19.1 交通灯报警电路仿真交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯同时指示,而其他情况下均属于故障状态。

出故障时报警灯亮。

设字母R、Y、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮,低电平表示灯灭。

字母Z 表示报警灯,高电平表示报警。

则真值表如表19.1 所示。

逻辑表达式为:Z = R Y G + RG + RY若用与非门实现,则表达式可化为:Z = R Y G ⋅RG ⋅RYMultisim 仿真设计图如图19.1 所示:图19.1 的电路图中分别用开关A、B、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。

用发光二极管LED1 的亮暗模拟报警灯的亮暗。

另外用了一个5V直流电源、一个7400 四2 输入与非门、一个7404 六反相器、一个7420 双4 输入与非门、一个500欧姆电阻。

图19.1 交通灯报警电路原理图在仿真实验中可以看出,当开关A、B、C 中只有一个拨向高电平,以及B、C 同时拨向高电平而A 拨向低电平时报警灯不亮,其余情况下报警灯均亮。

实验19.2 数字频率计电路仿真数字频率计电路的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。

如果用2 位数码管,则测量的最大频率是99Hz。

数字频率计电路Multisim 仿真设计图如图19.2 所示。

其电路结构是:用二片74LS90(U1 和U2)组成BCD 码100 进制计数器,二个数码管U3 和U4 分别显示十位数和个位数。

四D 触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0 信号。

信号发生器XFG1 产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2 产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程综合设计课程名称:《数字电路实验》实验名称:《光电计数器》学院:应用科技学院专业:电子信息工程年级:2012级学号:____________姓名:____________设计意义及实现功能:工厂生产线或某些设备上(如打印机)常装有自动计数器,以便计算产量或为生产过程自动化合计算机管理系统提供数据,计数器种类很多,光电计数器是常见的一种。

设计并制作一个光电计数器,要求如下:(1)光源采用聚焦白炽灯,电压为6.3V,自行选择光敏器件。

当有光照到光敏器件上时,计数器不计数,当光照有亮突变到暗的一瞬间,产生一个脉冲沿,对这个脉冲沿进行技术,光照由暗突变到亮不计数。

(2) 计数器范围:00~99。

用两只LED数码管作显示组件,可显示00~99。

(3)定数控制功能:当需要定数时,事先预置一个定数值,显示器同时显示这个定数值。

每光照一次,计数器减“1”,当定数值减至:“00”,发出声、光报警。

(4)当计数器作“累加”功能时,需先清零。

计数器从“00”累加到“99”。

当光照次数大于99次时,发出声,光报警。

实验原理CD4511引脚图及功能CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点如下:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS 电路能提供较大的拉电流。

可直接驱动LED显示器。

器中的字形消隐。

其功能介绍如下:BI:4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭(消隐)状态,不显示数字。

LT:3脚是测试输入端,当BI=1,LT=0 时,译码输出全为1,不管输入DCBA 状态如何,七段均发亮,显示“8”。

它主要用来检测数码管是否损坏。

LE:锁定控制端,当LE=0时,允许译码输出。

LE=1时译码器是锁定保持状态,译码器输出被保持在LE=0时的数值。

A1、A2、A3、A4、为8421BCD码输入端。

a、b、c、d、e、f、g:为译码输出端,输出为高电平1有效。

CD4511的内部有上拉电阻,在输入端与数码管笔段端接上限流电阻就可工作。

1. CD4511的引脚CD4511具有锁存、译码、消隐功能,通常以反相器作输出级,通常用以驱动LED。

其引脚图如3-2所示。

各引脚的名称:其中7、1、2、6分别表示A、B、C、D;5、4、3分别表示LE、BI、LT;13、12、11、10、9、15、14分别表示 a、b、c、d、e、f、g。

左边的引脚表示输入,右边表示输出,还有两个引脚8、16分别表示的是VDD、VSS。

2. CD4511的工作原理1.CD4511的工作真值表如表2.锁存功能译码器的锁存电路由传输门和反相器组成,传输门的导通或截止由控制端LE的电平状态。

当LE为“0”电平导通,TG2截止;当LE为“1”电平时,TG1截止,TG2导通,此时有锁存作用。

如图3-3(3)译码CD4511译码用两级或非门担任,为了简化线路,先用二输入端与非门对输入数据B、C进行组合,得出、、、四项,然后将输入的数据A、D一起用或非门译码。

(4)消隐BI为消隐功能端,该端施加某一电平后,迫使B端输出为低电平,字形消隐。

消隐控制电路如图所示。

不考虑消隐BI项,便得J=(B+C)D据上式,当输入BCD代码从1010---1111时,J端都为“1”电平,从而使显示器中的字形消隐。

4510芯片的结构以及功能进行了解(1)4510引脚图(2):CD4510简单功能:CC4510为可预置BCD可逆计数器,该器件主要由四位具有同步时钟的D 型触发器(具有选通结构,提供T 型触发器功能)构成。

具有可预置数、加减计数器和多片级联使用等功能。

CD4510 具有复位CR,置数控制LD、并行数据D0~D3、加减控制U/ D 、时钟CP 和进位CI 等输入。

CR 为高电平时,计数器清零。

当LD 为高电平时,D0~D3 上的数据置入计数器中,CI 控制计数器的计数操作,CI =0 时,允许计数。

此时,若U/ D 为高电平,在CP 时钟上升沿计数器加1 计数;反之,在CP 时钟上升沿减1 计数。

除了四个Q 输出外,还有一个进位/错位输出CO/ BO表3-1 CD4510逻辑功能表表3-1为CD4510的逻辑功能表,通过上表可以得到加减不循环控制的原理。

当~输出为“9”,接高电平时,通过与非门和或非门的控制,反馈为高电平,此时停止加法计数。

同理,当~输出为“0”,接低电平时,反馈为高电平,此时停止减法计数。

只有BCD 计数功能,故无B/D (二进制/十进制)控制脚。

具有清除控制功能,故多了一只清除控制端R 。

清除端R 在使用上具有最高 优 先权,及当R=1,则Q 不论其它输入为何,其输出QDQcQBQA 必皆被清 除为0,令R=0,正常计数,,Ci :进位输入端,当其为1,则clock 输入都无效,只有在Ci=0 时,clock 的正缘触发才能使计数器计数。

Co :进位输出端,平常输出都保持在1,只有在上数计数到9,或下数计数到0 时才会变为0 输出,以作为进位或借位之准备,直到下一个时序信号的正缘输入后才转为1。

因此做计数器串联时,需将个位数Ci 接地,而将其Co 接到十位数计数的Ci 中, 1、555定时器内部结构555定时器是一种模拟电路和数字电路相结合的中规模集成电路,其内部结构如图(A )及管脚排列如图(B )所示。

它由分压器、比较器、基本R--S 触发器和放电三极管等部分组成。

分压器由三个5K 的等值电阻串联而成。

分压器为比较器1A 、2A 提供参考电压,比较器1A 的参考电压为23cc V ,加在同相输入端,比较器2A 的参考电压为13cc V ,加在反相输入端。

比较器由两个结构相同的集成运放1A 、2A 组成。

高电平触发信号加在1A 的反相输入端,与同相输入端的参考电压比较后,其结果作为基本R--S 触发器_D R 端的输入信号;低电平触发信号加在2A 的同相输入端,与反相输入端的参考电压比较后,其结果作为基本R —S 触发器_D S 端的输入信号。

基本R--S 触发器的输出状态受比较器1A 、2A 的输出端控制。

2、 多谐振荡器工作原理由555定时器组成的多谐振荡器如图(C)所示,其中R 1、R 2和电容C 为外接元件。

其工作波如图(D)所示。

设电容的初始电压c U =0,t =0时接通电源,由于电容电压不能突变,所以高、低触发端TH V =TL V =0<13VCC,比较器A1输出为高电平,A2输出为低电平,即_1D R =,_0D S =(1表示高电位,0表示低电位),R S -触发器置1,定时器输出01u =此时_0Q =,定时器内部放电三极管截止,电源cc V 经1R ,2R 向电容C充电,c u 逐渐升高。

当c u 上升到13cc V 时,2A 输出由0翻转为1,这时__1D D R S ==,R S -触发顺保持状态不变。

所以0<t<1t 期间,定时器输出0u 为高电平1。

1t t =时刻,c u 上升到23cc V ,比较器1A 的输出由1变为0,这时_0D R =,_1D S =,R S -触发器复0,定时器输出00u =。

12t t t <<期间,_1Q =,放电三极管T导通,电容C通过2R 放电。

c u 按指数规律下降,当c u <23cc V 时比较器1A 输出由0变为1,R-S触发器的_D R =_1D S =,Q的状态不变,0u 的状态仍为低电平。

2t t =时刻,c u 下降到13cc V ,比较器2A 输出由1变为0,R---S 触发器的_D R =1,_D S =0,触发器处于1,定时器输出01u =。

此时电源再次向电容C 放电,重复上述过程。

通过上述分析可知,电容充电时,定时器输出01u =,电容放电时,0u =0,电容不断地进行充、放电,输出端便获得矩形波。

多谐振荡器无外部信号输入,却能输出矩形波,其实质是将直流形式的电能变为矩形波形式的电能。

电路组成:为了实现光电计数器电路功能,本设计由数码管显示电路、计数电路、报警电路、脉冲产生电路组成。

电路组成系统框图显示电路:显示电路采用CD4511来驱动共阴极 LED (数码管),cc4511是 BCD 码—七段码译码器,特点如下:具有BCD 转换、消隐和锁存控制、七段译码及驱动功能的CMOS 电路能提供较大的拉电流。

可直接驱动LED 显示器。

器中的字形消隐。

计数电路计数器计数采用CC4510,CC4510为可预置BCD可逆计数器,该器件主要由四位具有同步时钟的D 型触发器(具有选通结构,提供T 型触发器功能)构成。

具有可预置数、加减计数器和多片级联使用等功能。

CD4510 具有复位CR,置数控制LD、并行数据D0~D3、加减控制U/ D 、时钟CP 和进位CI 等输入。

CR 为高电平时,计数器清零。

当LD 为高电平时,D0~D3 上的数据置入计数器中,CI 控制计数器的计数操作,CI =0 时,允许计数。

此时,若U/ D为高电平,在CP 时钟上升沿计数器加1 计数;反之,在CP 时钟上升沿减 1 计数。

除了四个Q 输出外,还有一个进位/错位输出CO/ BO报警电路报警电路由74ls02或非门带动三极管,当74LS02两个输入端同时输入0,输出端输出1,带动LED灯,导通NPN三极管,蜂鸣器报警。

脉冲产生电路脉冲电路由555振荡,跟光敏电阻提供,NE555构成双稳态电路,产生一个1hz的方波信号。

光敏电阻根据有光无光阻值变化,使三极管作为开关管来用,提供高低电平。

工作原理:在电路里,采用开关S5来选择脉冲发生器电路的信号,一个是来着NE555振荡电路。

另一个是光敏二极管控制电路。

开关S5选择其一电路所产生的信号给U2DE CC4510芯片的时钟引脚(15脚)。

电路的功能:开关S2是作为选择电路作累加计数或递减计数的选择控制开关。

当S2为1时(S2打到VCC)为累加计数功能,U1,U2的CC4510的10脚为1,U2的CC4510的15脚得到时钟信号,经内部计数,U2的CC4510的Q1~Q3输出1001时,U2的CC4510的7脚(进位标志脚)C0产生信号给U1的CC4510的15脚,经内部计数,U1的CC4510的Q1~Q3输出为1001时,U1,U2的7脚都输出低电平时,用或非门处理,产生高电平,并导通三极管,使LED发光,蜂鸣器报警。

当S2为0时(S2打到GND)为递减计数功能,U1,U2的CC4510的10脚为1,U2的CC4510的15脚得到时钟信号,经内部计数,U2的CC4510的Q1~Q3输出0000时,U2的CC4510的7脚(进位标志脚)C0产生信号给U1的CC4510的15脚,经内部计数,U1的CC4510的Q1~Q3输出为0000时,U1,U2的7脚都输出低电平时,用或非门处理,产生高电平,并导通三极管,使LED发光,蜂鸣器报警。

相关文档
最新文档