第七章 热力学基础 习题课

合集下载

大学物理参考答案(白少民)第7章 热力学基础

大学物理参考答案(白少民)第7章 热力学基础

γ =
(P 1 −P 0 )V0 (V2 − V0 ) P0
由题知 Q1 = Q2
证明: Q1 =ν CV ,m (T1 −T0 ), Q2 =ν C P ,m (T2 −T0 )
∴ 有 CV , m (T1 −T0 ) = C P , m (T2 −T0 )

γ =
C P ,m CV ,m
=
T1 − T0 T2 − T0
c V
o V2
V1 7.23 题示图
1 P2 C P ,m (V1 − V2 ) Q2 P (V − V2 ) V P R η =1− =1− =1 −γ 2 1 = 1 − γ ( 1 −1) /( 1 −1) 1 Q1 V2 ( P V2 P2 1 −P 2) CV ,mV2 ( P 1 −P 2) R
8 V0 = 27
1 / 1. 5
4 V0 = V0 9
14 V0 9
则左侧终态体积
V1 = V0 + (V0 −V2 ) = 2V0 −V2 =
由理想气体状态方程
P0V0 PV = 1 1 T0 T1

T1 =
P1V1 27 14 21 T0 = × T0 = T0 P0V0 8 9 4
7.23 设有以理想气体为工质的热机,其循环如图所示,试证明其效率。
V1 P 1 η =1 −γ V − 1 / P − 1 2 2
证明:在等体过程 ab 中,从外界吸收热量
P P1 P2 a
b
绝热
1 Q1 = ∆U =ν CV , m (Tb − Ta ) = CV , m ( P 1V 2 − P 2V 2 ) R 在绝热过程 bc 中与外界不交换热量。在等压过程 ca 中放出热量 1 Q2 =ν C P ,m (Tc −Ta ) = C P ,m P2 (V1 −V2 ) R 则效率

热学第七章课后习题答案

热学第七章课后习题答案

热学第七章课后习题答案热学是物理学中的重要分支,研究的是热现象和热能转化。

在热学的学习过程中,课后习题是巩固知识和检验理解的重要途径。

本文将为大家提供热学第七章课后习题的答案,并结合相关理论进行解析,帮助读者更好地理解和掌握热学知识。

1. 问题:一个物体的质量是10kg,温度为20℃,求它的内能。

答案:内能可以通过公式Q = mcΔT来计算,其中Q表示内能,m表示物体的质量,c表示物体的比热容,ΔT表示温度的变化。

根据题目中的条件,我们可以得知温度变化ΔT = 20℃-0℃=20℃,物体的比热容c可以通过查表得到,假设为c = 4.18J/(g·℃)。

将这些数据代入公式中,可以得到内能Q = 10kg × 4.18J/(g·℃) × 20℃ = 836J。

2. 问题:一个物体的内能为500J,质量为2kg,求它的温度变化。

答案:根据上一题的公式Q = mcΔT,可以得到温度变化ΔT = Q/(mc)。

将题目中的数据代入公式中,可以得到ΔT = 500J/(2kg × 4.18J/(g·℃)) = 59.81℃。

因此,物体的温度变化为59.81℃。

3. 问题:一个物体的质量为5kg,温度由20℃升高到50℃,求它的内能变化。

答案:内能变化可以通过公式ΔQ = mcΔT来计算,其中ΔQ表示内能变化。

根据题目中的条件,我们可以得到温度变化ΔT = 50℃-20℃=30℃,物体的比热容c可以通过查表得到,假设为c =4.18J/(g·℃)。

将这些数据代入公式中,可以得到内能变化ΔQ= 5kg × 4.18J/(g·℃) × 30℃ = 627J。

因此,物体的内能变化为627J。

4. 问题:一个物体的质量为2kg,内能为300J,求它的温度。

答案:根据上一题的公式ΔQ = mcΔT,可以得到温度变化ΔT = ΔQ/(mc)。

CH7题解-热力学基础

CH7题解-热力学基础

2.
M M PV RT PdV VdP RdT (1)等压(dP 0) (2)等容(dV 0) (3)等温(dT 0)
3.
TN2 210K
TO2 240K
4.
x 0
x2
kT m
Physics of universit19. (B)
20. (B)

21. 2d 2 P 不变 P C T kT (B)
22. (D)
23. (C) 24. (B)
大学物理习题_刘晓旭制作
Physics of university_LXX
二、填空题
1.
M P PV RT V RT M (1)成反比地减少 (2)成正比地增大
气体动理论 一、选择题
2 p1V1
1.
T2 V1 p1V1 p2V2 T1 V2 T1 T2

2 p2V2
( B)
2.
m1T1 m2T2 m PV RT M M 1V1 M 2V2
1 M 1 2 M 2
大学物理习题_刘晓旭制作
( A)
Physics of university_LXX
3.
TA : TB : TC 1 : 4 :16 2 2 2 v A : vB : vC 1 : 2 : 4 TA : TB : TC 1 : 4 :16 PA : PB : PC 1 : 4 :16 P nkT 3kT 3RT v m
vp 2 RT 同温度下,v p ~ v p ( H 2 ) 2000m / s v p (o2 ) 500m / s 1

热力学习题课

热力学习题课
P.4/69
2013-9-23
热力学基础
热力学基本计算公式
表 9.3 一些准静态过程的重要计算公式
过程 等体 等压 等温 绝热 多方
特征
dV=0 dp=0 dT=0 dQ=0
过程方程
p C T V C T
热量 Q
m CV T2 T1 M
对外作功 W
0
pV2 V1
内能增量
m CV T2 T1 M m CV T2 T1 M
热力学基础习题课
热力学基础
一、基本要求
1、掌握功、热量和内能的概念,理解平衡 过程。 2、熟练分析、计算理想气体等值过程中功、 热量和内能。 3、理解循环过程和卡诺循环 4、理解热力学第二定律的两种叙述,理解可 逆过程和不可逆过程。
2013-9-23
P.2/69
热力学基础
二、基本内容
1、功、热量、内能 W PdV (过程量)
Q mC T2 T1 (过程量) m E T CVm T2 T1 (状态量) M

2、热力学第一定律及其应用
等值过程中Q,ΔE,W的计算
2013-9-23
P.3/69
热力学基础
3、热循环
Q2 W (1)正循环 1 Q1 Q1 T2 卡诺循环 1 T1 Q2 Q2 (2)逆循环 e W Q1 Q2 T2 卡诺逆循环 e T1 T2
若1→2’→3过程,有
2013-9-23
P.9/69
热力学基础
(2)图示气体经历的各过程,其中a→d为绝 热线,图中两虚线为等温线,试分析各过程 的热容量的正负 讨论:1)a
Q1 E1 W1 dQ 0 dQ1 C 0 dT

7-热力学基础(题库)

7-热力学基础(题库)

三、 简答题
1、卡诺循环的效率与哪些因素有关?试写出其效率表达式。 2、什么是准静态过程?
四、计算题
1、一氧气瓶的容积为 V,充了气未使用时压强为 p1,温度为 T1;使用后瓶内氧气的质量减少为原来 的一半,其压强降为 p2,试求此时瓶内氧气的温度 T2 。
2、理想气体做卡诺循环,设热源温度为 100℃,冷却器温度为0℃时,每一循环做净功 8kJ,今维持
(A) 0.5%
(B)4%
(C)9%
(D )21%
10、一定量的理想气体,分别进行如图所示的两个卡诺循环 abcda 和 abcda。若在 P V 图上这两个循环曲线所围面积相等,则可以由此得知
这两个循环
(A)效率相等。
(B)由高温热源处吸收的热量相等。
(C)在低温热源处放出的热量相等。 (D)在每次循环中对外做的净功相
尔热容 CV ,m 12.46J mol1K 1,CP,m 20.78J mol1K 1 )
4、一定量的某种理想气体进行如图所示的循环过程.已知气体在 状态 A 的温度为 TA=300 K,求
(1) 气体在状态 B、C 的温度;
p (Pa)
300
A
200
100
C
(2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热
7、一卡诺热机低温热源的温度为 27C,效率为 40% ,高温热源的温度 T1 =
.
8、设一台电冰箱的工作循环为卡诺循环,在夏天工作,环境温度在 35C,冰箱内的温度为 0C,这台电冰
箱的理想制冷系数为 e=
.
9、将 1kg 温度为100 C 的水置于 200 C 的恒温热源内,最后水的温度与热源的温度相同,则水的熵变

热力学基础习题课共35页

热力学基础习题课共35页

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
热力学基础习题课
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向ห้องสมุดไป่ตู้暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。

热力学基础习题课-田浩.ppt

热力学基础习题课-田浩.ppt
T2 M CP ln T1
V C T

CP dT

பைடு நூலகம்
M
CV dT
PV C1 绝 Q 0 1 P T C2 热 TV 1 C3
0
M

CV dT

CV dT
0
题 型
1、理想气体各种等值、绝热过程的功、热 量和内能变化的计算。(5道) 2、热机效率及制冷机制冷系数的计算。 (3道) 3、热力学第二定律,及熵变的计算。 (2道)
A
B
VB
(2)B气体对外做功为 A U CV ,m (TB T0 ) 0.55T0
所以A气体对外做功0.55RT0.
(3)对A气体应用热力学第一定律,有
Q U A CV ,m (TA T0 ) A 2.5R(2.78T0 T0 ) 0.55RT 5RT0
热力学基础
一、热力学基本概念:热力学系统、热力学过程、
内能、功、热量、热容
U M
定压摩尔:C p dT p
i 对于理想气体: CV R 2
Q
CV T
A pdV
V1
V2
Q dU 定容摩尔:CV dT dT V V
Q0 A 解:(2)a到b过程,
B
b到c过程,等容降压,放热 Qbc CV ,m (Tc Tb ), CV ,m 2.5R
1 所以 Tb 2 Ta , Tc Ta 273K
V V 1Ta ( ) 1Tb , 1.4 2
所以 Qbc CV ,m (Ta 2 1Ta )
C A B
D
解:(1)由题意可知,A,B两室中气体的变化过程为准静 态过程。且 vA vB v 对于A室气体,经历等容过程,有 QA vCV ,m (TA T0 ) 对于B室气体,经历等压过程,有 QB vC p,m (TB T0 ) 因为 QA QB Q ,所以 C p,m TB T0 7 CV ,m TA T0 5 根据迈耶公式: Cp,m CV ,m R ,所以 CV ,m 5R / 2, Cp,m 7R / 2 (2)B室中气体的做功为 A pV vR(TB T0 ) 所以

《物理学基本教程》课后答案 第七章 热力学基础

《物理学基本教程》课后答案 第七章  热力学基础

第七章 热力学基础7-1 假设火箭中的气体为单原子理想气体,温度为2000 K ,当气体离开喷口时,温度为1000 K ,(1)设气体原子质量为4个原子质量单位,求气体分子原来的方均根速率2v .已知一个原子质量单位=1.6605×10-27 kg ;(2)假设气体离开喷口时的流速(即分子定向运动速度)大小相等,均沿同一方向,求这速度的大小,已知气体总的能量不变.分析 气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度.当气体的内能转化为定向运动的动能时,即表现为平均平动动能的减少,也就是温度的降低.解 (1)由气体动理论的能量公式kT m 23212=v ,得m/s 3530.7m/s 106605.1420001038.13327232=⨯⨯⨯⨯⨯==--m kTv (2)气体总的能量不变,气体内能的减少应等于定向运动动能的增量,就气体分子而言,即分子的平均平动动能的减少应等于定向运动动能的增量.若分子定向运动速度为d v ,则有212d 232321kT kT m -=v m/s 2496.6m/s 106605.14)10002000(1038.13)(3272321d =⨯⨯-⨯⨯⨯=-=--m T T k v7-2 单原子理想气体从状态a 经过程abcd 到状态d ,如图7-2所示.已知Pa 10013.15⨯==d a p p ,Pa 10026.25⨯==c b p p ,L 1=a V ,L 5.1=b V ,L 3=c V ,(1)试计算气体在abcd 过程中作的功,内能的变化和吸收的热量;(2)如果气体从状态d 保持压强不变到a 状态,如图中虚线所示,问以上三项计算变成多少?(3)若过程沿曲线从a 到c 状态,已知该过程吸热257 cal ,求该过程中气体所作的功.分析 理想气体从体积1V 膨胀到体积2V 的过程中所作的功为⎰21d )(V V V V p ,其量值为V p -图上过程曲线下的面积.如果过程曲线下是规则的几何图形,通常可以直接计算面积获得该过程中气体所作的功.解 (1)气体在abcd 过程中作的功应等于过程曲线下的面积,得Pa531.8 Pa 10)5.13(10013121103100131 353514=⨯+⨯⨯⨯+⨯⨯⨯=+=--..S S W adcbda abcd 内能改变为J455.9J )101104(10013.123)(23)(23)(335m V,=⨯-⨯⨯⨯⨯=-=-=-=---a d a a d a d a d V V p T T R M m T T C M m E E应用热力学第一定律,系统吸热为J 987.7J 455.9J 8.531=+=-+=a d abcd E E W Q(2)气体在等压过程da 中作的功为J -303.9J 10)41(10013.1)(35=⨯-⨯⨯=-=-d a a da V V p W0 1 1.5 3 4 V /L图7-2内能改变为 J 455.9-=-a d E E系统吸热为 J 9.875J 455.9-J 9.303-=-=-+=d a da E E W Q(3)若沿过程曲线从a 到c 状态,内能改变为J8.759J 1010013.1)1132(23)(23)(23)(35m V,=⨯⨯⨯⨯-⨯⨯=-=-=-=--a a c c a c a c a c V p V p T T R M m T T C M m E E应用热力学第一定律,系统所作的功为J 5.314J 759.8-J 18.4257=⨯=-+=a c ac ac E E Q W7-3 2 mol 的氮气从标准状态加热到373 K ,如果加热时(1)体积不变;(2)压强不变,问在这两种情况下气体吸热分别是多少?哪个过程吸热较多?为什么?分析 根据热力学第一定律,系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于对外作功.理想气体的内能是温度的单值函数,在常温和常压下氮气可视为理想气体,无论经过什么样的准静态过程从标准状态加热到373 K ,其内能的变化都相同.在等体过程中气体对外不作功,系统从外界吸收的热量,全部用于系统的内能的增加,而在等压过程中,除增加内能外,还要用于系统对外作功,因此吸热量要多些.解 (1)氮气可视为双原子理想气体,5=i .在等体过程中,系统吸热为J 4155J )273373(31.8252)(212V =-⨯⨯⨯=-=T T R i M m Q(2)在等压过程中,系统吸热为J 5817J )273373(31.8272)(2212p =-⨯⨯⨯=-+=T T R i M m Q7-4 10 g 氧在p = 3×105 Pa 时温度为t = C 10︒,等压地膨胀到10 L ,求(1)气体在此过程中吸收的热量;(2)内能的变化;(3)系统所作的功.分析 气体在等压过程中吸收的热量为)(2212p T T R i M m Q -+=,其中1T 已知,2T 可以通过气体状态方程由已知的该状态的压强和体积求出.用同样的方法可以计算内能的变化.再应用热力学第一定律计算出系统所作的功.解 (1)气体在等压过程中吸收的热量为J8792J )28331.832101010103(27 )(22)(22351212p =⨯⨯-⨯⨯⨯⨯=-+=-+=-RT MmpV i T T R i M m Q(2)内能的变化为J5663J )28331.832101010103(25 )(2)(235121212=⨯⨯-⨯⨯⨯⨯=-=-=--RT MmpV i T T R i M m E E(3)应用热力学第一定律,系统所作的功为J 2265J 5663-J 792812==-+=E E Q W7-5 双原子理想气体在等压膨胀过程中吸收了500 cal 的热量,试求在这个过程中气体所作的功.解 双原子理想气体在等压膨胀过程中吸热为)(22)(221212p V V p i T T R i M m Q -+=-+=所作的功为J 597J 18.450025222)(p 12p =⨯⨯+=+=-=Q i V V p W 7-6一定质量的氧气在状态A 时V 1 = 3 L ,p 1 = 8.2×105 Pa ,在状态B 时V 2 = 4.5 L ,p 2 = 6×105 Pa ,分别计算在如图7-6所示的两个过程中气体吸收的热量,完成的功和内能的改变:(1)经ACB 过程;(2)经ADB 过程.分析 在热力学中,应该学会充分利用V p -图分析和解题.从图7-6所示的V p -图可以看出,AC 和DB 过程为等体过程,AD 和CB 过程为等压过程.理想气体的内能是温度的单值函数,在常温和常压下氧气可视为理想气体,只要始末状态相同,无论经过什么样的准静态过程,其内能的变化都相同.但是气体吸收的热量和完成的功则与过程有关,在等压过程中吸收的热量为)(2212p T T R i M m Q -+=,在等体过程中吸收的热量为)(212V T T R iM m Q -=,其中温度值可以利用状态方程代换为已知的压强和体积参量.解 (1)经ACB 过程,即经等体和等压过程,气体吸热为J1500 J103106J 103102.825J 105.4106225 222 )(22)(2353535121122p V =⨯⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯+=--+=-++-=+=---V p V p iV p i V p V p i V p V p i Q Q Q C C B B A A C C ACB 所作的功为J 900J 10)35.4(106)(35122=⨯-⨯⨯=-==-V V p W W CB ACB应用热力学第一定律,系统内能改变为J 600J 900-J 1500==-=-ACB ACB A B W Q E E(2)经ADB 过程,所作的功为J 1230J 10)35.4(102.8)(35121=⨯-⨯⨯=-==-V V p W W AD ADB系统内能改变为 J 600=-A B E Ep pO V 1 V 2 V图7-6应用热力学第一定律,气体吸热为J 1830J 600J 123012=+=-+=E E W Q ADB ADB7-7 1 g 氮气在密封的容器中,容器上端为一活塞,如图7-7所示.求(1)把氮气的温度升高10°C 所需要的热量;(2)温度升高10°C 时,活塞升高了多少?已知活塞质量为1 kg ,横截面积为10 cm 2,外部压强为Pa 10013.15⨯.分析 可以上下自由运动的活塞加在气体上的压强为大气压与气体上表面单位面积上承受的活塞重力之和.利用理想气体状态方程,气体对外所作的功,也可以用温度的变化表示,即T R MmV p ∆=∆. 解 (1)因外部压强和活塞质量不变,系统经历等压过程,压强为Pa 101.111Pa 10108.91Pa 10013.1545⨯=⨯⨯+⨯=-p J 4.10J 1031.822528122p =⨯⨯+⨯=∆+=T R i M m Q(2)系统作功为T R Mmh pS V p W ∆=∆=∆=p 则 m 102.67m 101010111.11031.82812-45⨯=⨯⨯⨯⨯⨯=∆=∆-pS T R m m h 7-8 10 g 某种理想气体,等温地从V 1膨胀到V 2 = 2 V 1,作功575 J ,求在相同温度下该气体的2v .分析 气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度,而且定义了方均根速率2v .只要温度不变,无论经历什么样的过程,方均根速率都不变.本题中,可以通过等温过程中系统所作的功的表达式确定该过程中系统的温度.图7-7解 等温过程中系统所作的功为12T ln V V RT M mW =m/s 499m/s 2ln 10105753ln33312T2=⨯⨯⨯===-V V m W MRTv 7-9 2 m 3的气体等温地膨胀,压强从Pa 10065.551⨯=p 变到Pa 10052.451⨯=p ,求完成的功.解 等温过程中系统所作的功为J 102.26J 10052.410065.5ln210065.5 ln ln 5555121112T ⨯=⨯⨯⨯⨯⨯===p p V p p p RT M mW7-10 在圆筒中的活塞下密闭空间中有空气,如图7-10所示.如果空气柱最初的高度h 0 = 15 cm ,圆筒内外的压强最初均为Pa 10013.150⨯=p ,问如要将活塞提高h = 10 cm ,需作多少功?已知活塞面积S = 10 cm 2,活塞质量可以忽略不计,筒内温度保持不变.分析 因筒内温度保持不变,这是一个等温过程.由于过程必须是准静态过程,则在过程进行中的任一时刻,系统都处于平衡状态.过程进行中,活塞受到向上的拉力F ,筒外空气向下的压力S p 0,筒内气柱向上的压力pS ,在这些力的作用下处于平衡状态.由力的平衡条件,可以确定活塞向上位移外力所作的元功,并联系气体等温过程方程求解.解 取圆筒底面为原点,竖直向上为x 轴正向,如图7-10所示.设活塞位于x 处时,筒内压强为p ,筒内外的压强差为p p -0,在准静态过程中提高活塞O图7-10所需的向上外力为S p p F )(0-=,此时活塞向上位移x d 外力所作的元功为x S p p x F W d )(d d 0-==因等温过程有00V p pV =,Sx V =,则要将活塞提高h ,需作的功为J2.37J )15.015.010.0ln15.010.0(10101.013 )ln (d )1(d )(3500000000=+-⨯⨯⨯=+-=-=-=-++⎰⎰h h h h h S p x x h S p x S p p W h h h h h h7-11 今有温度为27°C ,压强为Pa 10013.15⨯,质量为2.8g 的氮气,首先在等压的情况下加热,使体积增加一倍,其次在体积不变的情况下加热,使压强增加一倍,最后等温膨胀使压力降回到Pa 10013.15⨯,(1)作出过程的p —V 图;(2)求在三个过程中气体吸收的热量,所作的功和内能的改变.分析 本题中涉及到三个等值过程,利用已导出的各等值过程中系统作功、吸热和内能变化表达式和热力学第一定律求解.解 (1)过程的p —V 图如图7-11所示. (2)1~2,等压过程J249J 30031.8288.2 )(111121p =⨯⨯===-=RT MmV p V V p WJ872J 2492252222 )(22)(22p 112112p =⨯+=+=+=-+=-+=W i pV i V V p i T T R i M m QJ 623J 249J 872p p =-=-=∆W Q E2~3,等体过程, 0V =WpppO V 1 V 2 V 4 V图7-11J 1245J 24952)(2)(2p 112121323V =⨯====-=-==∆iW V p i V p iV p p iT T R i M m Q E3~4,等温过程, 0=∆EJ690J 2ln 24942ln 4 2ln 42ln 2lnp 11131333T T =⨯⨯======W V p V p p p V p W Q7-12 双原子气体V 1 = 0.5 L ,Pa 10065.541⨯=p ,先绝热压缩到一定的体积V 2和一定的压强p 2,然后等容地冷却到原来的温度,且压强降到Pa 10013.150⨯=p .(1)作出过程的p -V 图;(2)求V 2 = ?p 2 = ?分析 对于双原子理想气体,热容比4.1=γ.不论经历什么过程,只要初终态气体的温度相同,就可以应用理想气体状态方程,建立类似于等温过程中初态和终态压强和体积之间的关系.解 (1)过程的p —V 图如图7-12所示.(2)因初态和终态温度相同,应用理想气体状态方程,有1120V p V p =L 0.25L 10013.15.010065.5540112=⨯⨯⨯==p V p V 由绝热过程方程γγ1122V p V p =,得Pa 101.337Pa 25.05.010065.554.142112⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛=γVV p p 7-13 推证质量为m ,摩尔质量为M 的理想气体,由初状态(p 1、V 1、T 1)pp p pO V 2 V 1 V图7-12绝热膨胀到p 2、V 2时气体所作的功为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--=-1211221111)(11γγγV V RT M m V p V p W 分析证 对于绝热过程,有⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=--=-=-=∆-=-121121121112211221122112111111 11)(11)(2)(2γγγγγγV VRT M m V V V V RT M mV p V p V p V p V p V p V p iT T R i M m E W7-14 32 g 氧气处于标准状态,后分别经下二过程被压缩至5.6×10-3 m 3,(1)等温压缩;(2)绝热压缩,试在同一个p -V 图上作出两过程曲线,并分别计算两过程最终的温度以及所需要的外功.分析 32 g 氧气恰好为1 mol ,标准状态下体积和温度都有确定值. 解 两过程的p —V 图如图7-14所示. (1)32 g 氧气为 1 mol ,体积为331m 104.22-⨯=V ,温度为K 2731=T ,且等温压缩过程K 27312==T T ,所作的功为J -3146J 4.226.5ln104.2210013.1 ln351211T =⨯⨯⨯⨯==-V V V p W(2)绝热压缩过程γγ1122V p V p =,得K 475K )106.5()104.22(31.810013.14.034.1351211222=⨯⨯⨯⨯===---γγV V R p R V p Tpp 1O V 2 V 1 V图7-14利用上题结果,绝热压缩过程所作的功为J -4204J 6.54.2214.0104.2210013.1 114.03512111=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-⨯⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--γγVV V p W7-15 体积为V 1 = 1 L 的双原子理想气体,压强p 1 =Pa 10013.15⨯,使之在下述条件下膨胀到V 2 = 2 L ,(1)等温膨胀;(2)绝热膨胀,试在同一p -V 图中作出两过程曲线,并分别计算两种情况下气体吸收的热量,所作的功及内能的变化.分析 等温过程中气体内能不变,所吸收的热量等于对外所作的功;绝热过程中气体吸热为零,对外所作的功等于内能的减少.解 两过程的p —V 图如图7-15所示.(1)等温膨胀 0=∆EJ 2.70J 2ln 1010013.1 ln351211T T =⨯⨯⨯===-V V V p W Q(2)绝热膨胀 0=QJ61.3J )5.01(4.01010013.1 114.03512111=-⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--γγV V V p W J 3.61-=-=∆W E7-16 0.1 mol 单原子理想气体,由状态A 经直线AB 所表示的过程到状态B ,如图7-16所示,已知V A = 1 L ,V B = 3 L ,p A =Pa 10039.35⨯,p B =Pa 10013.15⨯。

热力学基础习题课PPT学习教案

热力学基础习题课PPT学习教案
热量Q= 280 J 。
解:Q E W E 350130 220J Q 40 220 260J Q 60 220 280J
第11页/共20页
5.设在某一过程P中,系统由状态A变为状态B,如果 沿相反方 向进行,可以经过与原来一样的那些中间过程,而重新回到初 态,外界未发生任何变化,则过程P称为可逆过程;如果沿相 反方向进行,不能重复与原来一样的那些中间过程回到初态, 或回到初态而外界不能完全恢复,则过程P称为不可逆过程。 6. 一卡诺制冷机,低温热源的温度为300K,高温热源的温度 为450K,每一循环过程从低温热源吸热400J,则每一循环过
Wab
P(Vb
Va )
1.25105 5
(20) 103
2.5103
J
Qab CP (Tb Ta ) 2 8.31 (300) 6232.5 J
b c 等体过程
3 Wbc 0 Qbc CV (Tc Tb ) 2 8.31 300 3739.5 J
c a 等温过程
Wca
WQcWa aRbTlWnbVVacc
程外界必须做功为200 J 。
解: Q2 T2 W T1 T2
第12页/共20页
三、计算题
1. 一定质量的单原子分子理想气体,开始时处于状态a,体积 为1升,压强为3atm,先作等压膨胀至b态,体积为2升,再作 等温膨胀至c态,体积为3升,最后等体降压到1atm的压强, 求:(1)气体在全过程中内能的改变;(2)气体在全过程 中所作的功和吸收的热量。
J
Wadb Qadb 4.54103 J E 0
第16页/共20页
4.如图示,为1摩尔理想气体(其 )。ln 2 0.69
C p 5 )的循环过程(

热力学与统计物理第七章部分习题讲解

热力学与统计物理第七章部分习题讲解

习题解答解:(1)根据电子气体0T K =费米能级的定义式(7.44)求得022/3233422819313()28(6.62610)3 2.610/1.61029.111083.2F h N E m VeVππ---=⨯⎛⎫=⨯⨯⨯ ⎪⨯⨯⎝⎭=温度为室温时, Na 的费米能级的近似值由式(7.55)有00221()12F F F kT E E E π⎡⎤=-⎢⎥⎢⎥⎣⎦0022321925F 3.14 1.38103001()12 3.2 1.6103.14 6.5103.2112E 3.2F F E E eV---⎡⎤⨯⨯=-⎢⎥⨯⨯⎣⎦⎡⎤⨯⨯=⨯-⎢⎥⎣⎦≈= (2) 取1mol 的电子,此时电子比热近似值由(7.57)式有002222319221.381103002 3.2 1.6100.040.33/*v F F kT kT C Nk R E E R R J K molπππ--⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎛⎫⨯⨯=⨯ ⎪⨯⨯⎝⎭≈=解:(1) 单位时间内碰到单位面积的器壁上的电子数,由式(6.87)为(在这儿:v 为电子的平均速率)14nv Γ= (此式适用于一切理想气体)由式(6.20)并考虑到电子的简并度,则在体积V 内,动量绝对值在p 到p dp +范围内电子的状态数为2342V p dp hπ⨯又考虑到绝对零度下电子气体中电子动量的分布为10F F p p f p p f ≤=⎧⎨>=⎩其中F p 为费米动量,也即绝对零度时电子的动量,这样电子的平均动量为330238384FFp Fp V p dph p p V p dph ππ==⎰⎰所以电子的平均速率为34Fp p v m m ==(习题7.5)由式(7.45),费米动量有1/3131382F N N p h h V V ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 所以1/311334432N h N N nv v V m V V π⎛⎫Γ=== ⎪⎝⎭(2) 由内能的热力学微分方程有dU SdT pdV =-由上式可得,在温度不变时,则有T U p V ∂⎛⎫=- ⎪∂⎝⎭由式(7.46)有022/3333()5528F h N U NE N m Vπ==223358T U h N N P V m V V π∂⎛⎫⎛⎫=-= ⎪ ⎪∂⎝⎭⎝⎭解:由式(6.20)并考虑到电子的简并度,在体积V 内,动量绝对值在p 到p dp +范围内,自由粒子的可能的状态数为(参考上题)2342V p dp h π⨯考虑到在相对论下,有E cp =,这样结合上式可得在体积V 内,在E 到E dE +能量范围内量子态数为2342()V E dE hc π⨯ 又考虑到绝对零度下电子气体的分布为0010E f E f μμ≤=⎧⎨>=⎩费米能级0μ由下式决定2308()V E dE N hc μπ=⎰即可得到在绝对零度下相对论理想气体的费米能级为013038F N E hc V μπ⎛⎫== ⎪⎝⎭在绝对零度下相对论理想气体的内能也即总能量为0333834F V U E dE NE h cμπ==⎰解:(1)如果粒子可分辨,令其分别为a 和b 则有()a b aba babE E E E E E E E Z eeeβββ-+--==∑∑∑()2223411232EE E E E E eee e e e ββββββ------=++=++++(2)如果粒子不可分辨,但不受Pauling 原理限制,{}2340,1,2212i iii i i in E E E E En n n Z ee e e e βββββ-----==∑==++++∑∑(对于Bose 分布,粒子数占据能级的可能性有六种(0,0),(0,1),(0,2),(1,1),(1,2),(2,2) )(3)粒子不可分辨且服从Pauling 原理{}230,12i iii i i in E EEEn n n Z eeeeββββ----==∑==++∑∑(对于Fermi 分布,粒子数占据能级的可能性有三种(0,1),(0,2), (1,2))解:在单位体积中其动量在,,p p dp d d θθθϕϕϕ→+→+→+间隔的状态数为231()sin d p p dp d d h θθϕΩ=其中 p m v =,所以323()sin m d p v dv d d h θθϕΩ=当0T K =时3203()sin ,m dN v v dv d d v v hθθϕ=<0()0,dN v v v =>其中,0v =,所以()x x v v dN v =⎰323sin cos sin m v v dv d d hθϕθθϕ=⎰⎰⎰ 0=注:20cos 0d πϕϕ=⎰22201()/()5x x v v dN v dN v v ==⎰⎰解:(1)首先判别该电子气服从哪种统计由第132页式(6.73)可知eα=326212 1.25101mKT n h π⎛⎫≅⨯ ⎪⎝⎭则由第150页式(7.12)和(7.14)可得,当非简并性条件满足时,Bose 分布和Fermi 分布过渡到Boltzmann 分布。

第七章 统计热力学习题及解答

第七章 统计热力学习题及解答

第七章 习题及解答1. 设有一个体系,由三个定位的一维简谐振子所组成,体系能量为νh 211,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数.解 对振动 νυενh )21(+=,在总能量 νενh 211=时,三个一维简谐振子可能有以下四种分布方式:(1)N 0=2, N 4=1, νενh 2120⨯=, νενh 294=, 3!2!1!31==t (2)N 0=1, N 2=2, νενh 2110⨯=, νενh 2522⨯=, 3!2!1!32==t (3)N 0=1, N 1=1, N 3=1, νενh 210=, νενh 231=, νενh 273=, 6!1!1!1!33==t (4)N 1=2, N 2=1, νενh 2321⨯=, νενh 252=, 3!2!1!34==t Ω= t 1+t 2+t 3+t 4=3+3+6+3=152。

当热力学体系的熵函数S 增加0.418J ·K —1时,体系的微观状态数增加多少?用1/∆ΩΩ表示。

解 S 1=kln Ω1, S 2=kln Ω2, S 2—S 1=kln (Ω2/Ω1)ln(Ω2/Ω1)=(S 2—S 1)/k=(0。

418J·K -1)/(1.38×10—23J ·K -1)=3。

03×10221/Ω∆Ω=(Ω2—Ω1)/Ω1=(Ω2/Ω1)-1≈Ω2/Ω1= exp (3。

03×1022)3。

在海平面上大气的组成用体积百分数可表示为:N 2(g )为0.78,O 2(g)为0。

21,其他气体为0。

01。

设大气中各种气体都符合Bolzenmann 分布,假设大气柱在整个高度内的平均温度为220K 。

试求:这三类气体分别在海拔10km ,60km 和500km 处的分压.已知重力加速度为9.8m·s -2。

解 所用公式为p=p 0e —Mgh/RT ,其中M (空气) =29g·mol —1, M(N 2)=28g·mol —1, M (O 2)=32g·mol —1,M (其它)=[M(空气)—0。

大学物理答案第七章热力学基础-习题解答

大学物理答案第七章热力学基础-习题解答

展望
学习方法建议
多做习题,提高解题能力 和综合分析能力。
加强理论学习,深入理解 热力学的物理意义和数学 表达。
关注学科前沿,了解热力 学在最新科研和技术中的 应用。
THANK YOU
感谢聆听
•·
热力学第一定律是能量守恒定律 在热学中的具体表现,它指出系 统能量的增加等于传入系统的热 量与外界对系统所做的功的和。
功的计算:在封闭系统中,外界 对系统所做的功可以通过热力学 第一定律进行计算,这有助于理 解系统能量的转化和利用。
能量平衡:利用热力学第一定律 ,可以分析系统的能量平衡,判 断系统是否处于热平衡状态。
热力学第二定律
热力学第二定律
描述了热力过程中宏观性质的自然方向性,即不可能把热量从低温物体传到高温物体而不引起其它变 化。
表达式
不可能通过有限个步骤将热量从低温物体传到高温物体而不引起其它变化。
03
热力学基础习题解答
热力学第一定律的应用
热量计算:通过热力学第一定律 ,可以计算系统吸收或放出的热 量,进而分析系统的能量变化。
热力学第二定律的应用
01
02
热力学第二定律指出,自
•·
发过程总是向着熵增加的
方向进行,即不可逆过程
总是向着宏观状态更混乱
、更无序的方向发展。
03
04
05
熵增加原理:根据热力学 第二定律,孤立系统的熵 永不减少,即自发过程总 是向着熵增加的方向进行 。
热机效率:利用热力学第 二定律,可以分析热机的 效率,探讨如何提高热机 的效率。
100%
制冷机效率的影响因素
制冷机效率受到多种因素的影响 ,如制冷剂的性质、蒸发温度和 冷凝温度、压缩机和冷却剂的流 量等。

《物理学基本教程》课后答案 第七章 热力学基础

《物理学基本教程》课后答案 第七章  热力学基础

第七章 热力学基础7-1 假设火箭中的气体为单原子理想气体,温度为2000 K ,当气体离开喷口时,温度为1000 K ,(1)设气体原子质量为4个原子质量单位,求气体分子原来的方均根速率2v .已知一个原子质量单位=1.6605×10-27 kg ;(2)假设气体离开喷口时的流速(即分子定向运动速度)大小相等,均沿同一方向,求这速度的大小,已知气体总的能量不变.分析 气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度.当气体的内能转化为定向运动的动能时,即表现为平均平动动能的减少,也就是温度的降低.解 (1)由气体动理论的能量公式kT m 23212=v ,得m/s 3530.7m/s 106605.1420001038.13327232=⨯⨯⨯⨯⨯==--m kTv (2)气体总的能量不变,气体内能的减少应等于定向运动动能的增量,就气体分子而言,即分子的平均平动动能的减少应等于定向运动动能的增量.若分子定向运动速度为d v ,则有212d 232321kT kT m -=v m/s 2496.6m/s 106605.14)10002000(1038.13)(3272321d =⨯⨯-⨯⨯⨯=-=--m T T k v7-2 单原子理想气体从状态a 经过程abcd 到状态d ,如图7-2所示.已知Pa 10013.15⨯==d a p p ,Pa 10026.25⨯==c b p p ,L 1=a V ,L 5.1=b V ,L 3=c V ,(1)试计算气体在abcd 过程中作的功,内能的变化和吸收的热量;(2)如果气体从状态d 保持压强不变到a 状态,如图中虚线所示,问以上三项计算变成多少?(3)若过程沿曲线从a 到c 状态,已知该过程吸热257 cal ,求该过程中气体所作的功.分析 理想气体从体积1V 膨胀到体积2V 的过程中所作的功为⎰21d )(V V V V p ,其量值为V p -图上过程曲线下的面积.如果过程曲线下是规则的几何图形,通常可以直接计算面积获得该过程中气体所作的功.解 (1)气体在abcd 过程中作的功应等于过程曲线下的面积,得Pa531.8 Pa 10)5.13(10013121103100131 353514=⨯+⨯⨯⨯+⨯⨯⨯=+=--..S S W adcbda abcd 内能改变为J455.9J )101104(10013.123)(23)(23)(335m V,=⨯-⨯⨯⨯⨯=-=-=-=---a d a a d a d a d V V p T T R M m T T C M m E E应用热力学第一定律,系统吸热为J 987.7J 455.9J 8.531=+=-+=a d abcd E E W Q(2)气体在等压过程da 中作的功为J -303.9J 10)41(10013.1)(35=⨯-⨯⨯=-=-d a a da V V p W0 1 1.5 3 4 V /L图7-2内能改变为 J 455.9-=-a d E E系统吸热为 J 9.875J 455.9-J 9.303-=-=-+=d a da E E W Q(3)若沿过程曲线从a 到c 状态,内能改变为J8.759J 1010013.1)1132(23)(23)(23)(35m V,=⨯⨯⨯⨯-⨯⨯=-=-=-=--a a c c a c a c a c V p V p T T R M m T T C M m E E应用热力学第一定律,系统所作的功为J 5.314J 759.8-J 18.4257=⨯=-+=a c ac ac E E Q W7-3 2 mol 的氮气从标准状态加热到373 K ,如果加热时(1)体积不变;(2)压强不变,问在这两种情况下气体吸热分别是多少?哪个过程吸热较多?为什么?分析 根据热力学第一定律,系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于对外作功.理想气体的内能是温度的单值函数,在常温和常压下氮气可视为理想气体,无论经过什么样的准静态过程从标准状态加热到373 K ,其内能的变化都相同.在等体过程中气体对外不作功,系统从外界吸收的热量,全部用于系统的内能的增加,而在等压过程中,除增加内能外,还要用于系统对外作功,因此吸热量要多些.解 (1)氮气可视为双原子理想气体,5=i .在等体过程中,系统吸热为J 4155J )273373(31.8252)(212V =-⨯⨯⨯=-=T T R i M m Q(2)在等压过程中,系统吸热为J 5817J )273373(31.8272)(2212p =-⨯⨯⨯=-+=T T R i M m Q7-4 10 g 氧在p = 3×105 Pa 时温度为t = C 10︒,等压地膨胀到10 L ,求(1)气体在此过程中吸收的热量;(2)内能的变化;(3)系统所作的功.分析 气体在等压过程中吸收的热量为)(2212p T T R i M m Q -+=,其中1T 已知,2T 可以通过气体状态方程由已知的该状态的压强和体积求出.用同样的方法可以计算内能的变化.再应用热力学第一定律计算出系统所作的功.解 (1)气体在等压过程中吸收的热量为J8792J )28331.832101010103(27 )(22)(22351212p =⨯⨯-⨯⨯⨯⨯=-+=-+=-RT MmpV i T T R i M m Q(2)内能的变化为J5663J )28331.832101010103(25 )(2)(235121212=⨯⨯-⨯⨯⨯⨯=-=-=--RT MmpV i T T R i M m E E(3)应用热力学第一定律,系统所作的功为J 2265J 5663-J 792812==-+=E E Q W7-5 双原子理想气体在等压膨胀过程中吸收了500 cal 的热量,试求在这个过程中气体所作的功.解 双原子理想气体在等压膨胀过程中吸热为)(22)(221212p V V p i T T R i M m Q -+=-+=所作的功为J 597J 18.450025222)(p 12p =⨯⨯+=+=-=Q i V V p W 7-6一定质量的氧气在状态A 时V 1 = 3 L ,p 1 = 8.2×105 Pa ,在状态B 时V 2 = 4.5 L ,p 2 = 6×105 Pa ,分别计算在如图7-6所示的两个过程中气体吸收的热量,完成的功和内能的改变:(1)经ACB 过程;(2)经ADB 过程.分析 在热力学中,应该学会充分利用V p -图分析和解题.从图7-6所示的V p -图可以看出,AC 和DB 过程为等体过程,AD 和CB 过程为等压过程.理想气体的内能是温度的单值函数,在常温和常压下氧气可视为理想气体,只要始末状态相同,无论经过什么样的准静态过程,其内能的变化都相同.但是气体吸收的热量和完成的功则与过程有关,在等压过程中吸收的热量为)(2212p T T R i M m Q -+=,在等体过程中吸收的热量为)(212V T T R iM m Q -=,其中温度值可以利用状态方程代换为已知的压强和体积参量.解 (1)经ACB 过程,即经等体和等压过程,气体吸热为J1500 J103106J 103102.825J 105.4106225 222 )(22)(2353535121122p V =⨯⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯+=--+=-++-=+=---V p V p iV p i V p V p i V p V p i Q Q Q C C B B A A C C ACB 所作的功为J 900J 10)35.4(106)(35122=⨯-⨯⨯=-==-V V p W W CB ACB应用热力学第一定律,系统内能改变为J 600J 900-J 1500==-=-ACB ACB A B W Q E E(2)经ADB 过程,所作的功为J 1230J 10)35.4(102.8)(35121=⨯-⨯⨯=-==-V V p W W AD ADB系统内能改变为 J 600=-A B E Ep pO V 1 V 2 V图7-6应用热力学第一定律,气体吸热为J 1830J 600J 123012=+=-+=E E W Q ADB ADB7-7 1 g 氮气在密封的容器中,容器上端为一活塞,如图7-7所示.求(1)把氮气的温度升高10°C 所需要的热量;(2)温度升高10°C 时,活塞升高了多少?已知活塞质量为1 kg ,横截面积为10 cm 2,外部压强为Pa 10013.15⨯.分析 可以上下自由运动的活塞加在气体上的压强为大气压与气体上表面单位面积上承受的活塞重力之和.利用理想气体状态方程,气体对外所作的功,也可以用温度的变化表示,即T R MmV p ∆=∆. 解 (1)因外部压强和活塞质量不变,系统经历等压过程,压强为Pa 101.111Pa 10108.91Pa 10013.1545⨯=⨯⨯+⨯=-p J 4.10J 1031.822528122p =⨯⨯+⨯=∆+=T R i M m Q(2)系统作功为T R Mmh pS V p W ∆=∆=∆=p 则 m 102.67m 101010111.11031.82812-45⨯=⨯⨯⨯⨯⨯=∆=∆-pS T R m m h 7-8 10 g 某种理想气体,等温地从V 1膨胀到V 2 = 2 V 1,作功575 J ,求在相同温度下该气体的2v .分析 气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度,而且定义了方均根速率2v .只要温度不变,无论经历什么样的过程,方均根速率都不变.本题中,可以通过等温过程中系统所作的功的表达式确定该过程中系统的温度.图7-7解 等温过程中系统所作的功为12T ln V V RT M mW =m/s 499m/s 2ln 10105753ln33312T2=⨯⨯⨯===-V V m W MRTv 7-9 2 m 3的气体等温地膨胀,压强从Pa 10065.551⨯=p 变到Pa 10052.451⨯=p ,求完成的功.解 等温过程中系统所作的功为J 102.26J 10052.410065.5ln210065.5 ln ln 5555121112T ⨯=⨯⨯⨯⨯⨯===p p V p p p RT M mW7-10 在圆筒中的活塞下密闭空间中有空气,如图7-10所示.如果空气柱最初的高度h 0 = 15 cm ,圆筒内外的压强最初均为Pa 10013.150⨯=p ,问如要将活塞提高h = 10 cm ,需作多少功?已知活塞面积S = 10 cm 2,活塞质量可以忽略不计,筒内温度保持不变.分析 因筒内温度保持不变,这是一个等温过程.由于过程必须是准静态过程,则在过程进行中的任一时刻,系统都处于平衡状态.过程进行中,活塞受到向上的拉力F ,筒外空气向下的压力S p 0,筒内气柱向上的压力pS ,在这些力的作用下处于平衡状态.由力的平衡条件,可以确定活塞向上位移外力所作的元功,并联系气体等温过程方程求解.解 取圆筒底面为原点,竖直向上为x 轴正向,如图7-10所示.设活塞位于x 处时,筒内压强为p ,筒内外的压强差为p p -0,在准静态过程中提高活塞O图7-10所需的向上外力为S p p F )(0-=,此时活塞向上位移x d 外力所作的元功为x S p p x F W d )(d d 0-==因等温过程有00V p pV =,Sx V =,则要将活塞提高h ,需作的功为J2.37J )15.015.010.0ln15.010.0(10101.013 )ln (d )1(d )(3500000000=+-⨯⨯⨯=+-=-=-=-++⎰⎰h h h h h S p x x h S p x S p p W h h h h h h7-11 今有温度为27°C ,压强为Pa 10013.15⨯,质量为2.8g 的氮气,首先在等压的情况下加热,使体积增加一倍,其次在体积不变的情况下加热,使压强增加一倍,最后等温膨胀使压力降回到Pa 10013.15⨯,(1)作出过程的p —V 图;(2)求在三个过程中气体吸收的热量,所作的功和内能的改变.分析 本题中涉及到三个等值过程,利用已导出的各等值过程中系统作功、吸热和内能变化表达式和热力学第一定律求解.解 (1)过程的p —V 图如图7-11所示. (2)1~2,等压过程J249J 30031.8288.2 )(111121p =⨯⨯===-=RT MmV p V V p WJ872J 2492252222 )(22)(22p 112112p =⨯+=+=+=-+=-+=W i pV i V V p i T T R i M m QJ 623J 249J 872p p =-=-=∆W Q E2~3,等体过程, 0V =WpppO V 1 V 2 V 4 V图7-11J 1245J 24952)(2)(2p 112121323V =⨯====-=-==∆iW V p i V p iV p p iT T R i M m Q E3~4,等温过程, 0=∆EJ690J 2ln 24942ln 4 2ln 42ln 2lnp 11131333T T =⨯⨯======W V p V p p p V p W Q7-12 双原子气体V 1 = 0.5 L ,Pa 10065.541⨯=p ,先绝热压缩到一定的体积V 2和一定的压强p 2,然后等容地冷却到原来的温度,且压强降到Pa 10013.150⨯=p .(1)作出过程的p -V 图;(2)求V 2 = ?p 2 = ?分析 对于双原子理想气体,热容比4.1=γ.不论经历什么过程,只要初终态气体的温度相同,就可以应用理想气体状态方程,建立类似于等温过程中初态和终态压强和体积之间的关系.解 (1)过程的p —V 图如图7-12所示.(2)因初态和终态温度相同,应用理想气体状态方程,有1120V p V p =L 0.25L 10013.15.010065.5540112=⨯⨯⨯==p V p V 由绝热过程方程γγ1122V p V p =,得Pa 101.337Pa 25.05.010065.554.142112⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛=γVV p p 7-13 推证质量为m ,摩尔质量为M 的理想气体,由初状态(p 1、V 1、T 1)pp p pO V 2 V 1 V图7-12绝热膨胀到p 2、V 2时气体所作的功为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--=-1211221111)(11γγγV V RT M m V p V p W 分析证 对于绝热过程,有⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=--=-=-=∆-=-121121121112211221122112111111 11)(11)(2)(2γγγγγγV VRT M m V V V V RT M mV p V p V p V p V p V p V p iT T R i M m E W7-14 32 g 氧气处于标准状态,后分别经下二过程被压缩至5.6×10-3 m 3,(1)等温压缩;(2)绝热压缩,试在同一个p -V 图上作出两过程曲线,并分别计算两过程最终的温度以及所需要的外功.分析 32 g 氧气恰好为1 mol ,标准状态下体积和温度都有确定值. 解 两过程的p —V 图如图7-14所示. (1)32 g 氧气为 1 mol ,体积为331m 104.22-⨯=V ,温度为K 2731=T ,且等温压缩过程K 27312==T T ,所作的功为J -3146J 4.226.5ln104.2210013.1 ln351211T =⨯⨯⨯⨯==-V V V p W(2)绝热压缩过程γγ1122V p V p =,得K 475K )106.5()104.22(31.810013.14.034.1351211222=⨯⨯⨯⨯===---γγV V R p R V p Tpp 1O V 2 V 1 V图7-14利用上题结果,绝热压缩过程所作的功为J -4204J 6.54.2214.0104.2210013.1 114.03512111=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-⨯⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--γγVV V p W7-15 体积为V 1 = 1 L 的双原子理想气体,压强p 1 =Pa 10013.15⨯,使之在下述条件下膨胀到V 2 = 2 L ,(1)等温膨胀;(2)绝热膨胀,试在同一p -V 图中作出两过程曲线,并分别计算两种情况下气体吸收的热量,所作的功及内能的变化.分析 等温过程中气体内能不变,所吸收的热量等于对外所作的功;绝热过程中气体吸热为零,对外所作的功等于内能的减少.解 两过程的p —V 图如图7-15所示.(1)等温膨胀 0=∆EJ 2.70J 2ln 1010013.1 ln351211T T =⨯⨯⨯===-V V V p W Q(2)绝热膨胀 0=QJ61.3J )5.01(4.01010013.1 114.03512111=-⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--γγV V V p W J 3.61-=-=∆W E7-16 0.1 mol 单原子理想气体,由状态A 经直线AB 所表示的过程到状态B ,如图7-16所示,已知V A = 1 L ,V B = 3 L ,p A =Pa 10039.35⨯,p B =Pa 10013.15⨯。

热力学基础习题课共35页文档

热力学基础习题课共35页文档
热力学基础习题课
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 3

热力学基础习题课

热力学基础习题课

解:两种气体经历等容过程,升高相同温度 Q2 CV2 ,m 5 对于氦气 对于氢气 3 Q C 1 V , m 1 Q2 CV2 ,m 2 RT Q1 CV1 ,m 1 RT, 由于两种气体初始状态 pV RT 具有完全相同的p,V,T
1 2
4. 如图,一定质量的理想气体,其状态在p-T图上沿着 一条直线从平衡态a变到平衡态b,下列说法正确的是:
p
b
80 C
20 C
a
V1
c
d
2V1 V
解:初态:1mol氢气, p=1atm,20C
对abc过程:
p
5 E CV ,m T R(80 20) 150R 2 2V W RT1 ln 1 (273 80)R ln 2 353R ln 2 V1
b
80 C
20 C
a
V1
c
d
Q E W 150R 353R ln2
2V1 V
对adc过程:
E CV ,m T 5 R(80 20) 150R 2
2V1 W RT2 ln (273 20)R ln 2 293R ln 2 V1
Q E W 150 R 293R ln 2
(2)等压过程
(4)绝热过程
2
E
解:理想气体的内能 E i RT 理想气体状体方程 pV RT
i E pV 2
O
V
因此,在E~V中p表示直线的 斜率,即在该过程p保持恒量
6. 处于平衡态A的一定量的理想气体,若经准静态等 体过程变到平衡态B,将从外界吸收热量416J,若经 准静态等压过程变到与平衡态B有相同温度的平衡态 C,将从外界吸收热量582J,所以,从平衡态A变到 平衡态C的准静态等压过程中气体对外界所作的功为 166 J 解:题设包括两个的过程T相同E相同 AB,等容过程 AC,等压过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1) E 0
Wab Qab
Vb PV ln 3.14 103 J 1 Va
Wac 0
0
2
a
d
b
c
(2) a c等体,
Qac
M 5 5 RT ( PcVc PaVa ) 5.67 103 J 2 2
22.4
44.8
V (l )
3 c b 等压过程 Wcb P(Vb Vc ) 2.27 10 J M 7 7 Qcb RT P(Vb Vc ) 7.94 103 J 2 2 Wacb Qacb 2.27 103 J E 0
Wab P(Vb Va ) 1.25 105 ( 20) 103 2.5 103 J 5 Qab CP (Tb Ta ) 8.31 ( 300) 6232.5 J 2 b c 等体过程 3 Qbc CV (Tc Tb ) 8.31 300 3739.5 J Wbc 0 2 c a 等温过程 Va 40 Wca Qca RT ln 8.31 600 ln 3440 J Vc 20 W Wab Wbc Wca 940 13.1% Q吸 Qbc Qca 7179.5
M 7 Q CP T RT 700 J 解: 2 Q E W W 200 J M M 5 E CV T RT 500 J 2
M
7.设高温热源的热力学温度是低温热源的热力学温度的n倍, 则理想气体在一次卡诺循环中,传给低温热源的热量是从高 温热源吸取的热量的 [ ] C 1 n 1 (A) n倍 (B) n-1倍 (C) n 倍 (D) 倍
WDA P(VA VD ) 1200 J
Q WACB WBD WDA 1000 J
3. 右图,一定量的理想气体分别由初态a经①过程ab和由初态a 经②过程acb到达相同的终态b,则两个过程中气体从外界吸收 的热量Q1,Q2的关系为: [ B ] p b A:Q1<0, Q1>Q2 B:Q1>0, Q1>Q2 ① C:Q1<0, Q1>Q2 D:Q1>0, Q1<Q2 解: a b 等体降压 Q1 Eab a a cb Q2 Qac Qcb Eac Qcb Eab Qcb c b 等温压缩 Qcb< 0 Q2 < Q1 O
Va Vb 解: (1)等压 Ta Tb
Vb Tb Ta 2Ta Pa Pb 3 atm Va Vb 2 等温 P Pc Pa Pb 2 atm bVb P cVc Vc 3 Pc Pd Pd Td Tc Ta E 0 等体 Tc Td Pc
Q E W E 350130 220 J 解: Q 40 220 260 J Q 60 220 280 J
5.设在某一过程P中,系统由状态A变为状态B,如果 沿相反方 向进行,可以经过与原来一样的那些中间过程,而重新回到初 态,外界未发生任何变化,则过程P称为可逆过程;如果沿相 反方向进行,不能重复与原来一样的那些中间过程回到初态, 或回到初态而外界不能完全恢复,则过程P称为不可逆过程。
6. 一卡诺制冷机,低温热源的温度为300K,高温热源的温度 为450K,每一循环过程从低温热源吸热400J,则每一循环过 200 J 。 程外界必须做功为 解: Q2
W
T2 T1 T2
三、计算题 1. 一定质量的单原子分子理想气体,开始时处于状态a,体积 为1升,压强为3atm,先作等压膨胀至b态,体积为2升,再作 等温膨胀至c态,体积为3升,最后等体降压到1atm的压强, 求:(1)气体在全过程中内能的改变;(2)气体在全过程 中所作的功和吸收的热量。
第7章 热力学基础 习题课
一、选择题 答案:1、B;2、B;3、B;4、D;5、D;6、D;7、C。
二、填空题
5 答案:1、等温 ;2、 绝热 ;3、 0.75810 Pa 60.5 J
4、260 J -280J ; 5、沿反方向进行,可以经过和原来一 样的那些状态,而又重新回到初态,外界未发生任何变化 沿过程反方向进行,不能重复原来所有状态或重新回到初 态而外界不能完全恢复 ; 6、200J 。
3.某理想气体在P——V图上其等温线的斜率与绝热线的斜率 5 之比为0.714,当此理想气体由压强 2 10 帕,体积0.5升之状态 5 绝热膨胀到体积增大一倍时,气体压强为0.758 10 Pa ,此过 程中所作的功为 60.5 J 。 解: P
5 7 P 0.714 V V 7 5 P 1V1 P 1V1 P 2V2 P 2 V2
Vc P(Vb Va ) PV ln 550 J Vb
(2)W Q Wa b Wbc
2.如图示,1mol氧气,由状态a变化到状态b,试求下列三种情 况下,气体内能的改变、所作的功和吸收的热量: (1)由a等温变化到b;(2)由a等体变化到c,再由c等压变化到b; (3)由a等压变化到d,再由等体变化到b。 p(atm)
5 )的循环过程 4.如图示,为1摩尔理想气体(其 Cv 3 ( ln 2 0.69 )。 V ( L)
Cp
(1)求a状态的状态参量; 5 (2)求循环效率。 p 10 pa
2.5
40 20
a
b
解:
1.25
c
b
c
600 T ( K )
a
V L
0
300
20
40
(1) Ta 600 K Va 40 L Pa
c a’ ②
T
4.根据热力学第二定律可知: [ D] A:功可以全部转换为热,但热不能全部转换为功。 B:热可以从高温物体传到低温物体 但不能从低温物体传到高温物体 C:不可逆过程就是不能向相反方向进行的过程 D:一切自发过程都是不可逆的 解:A不正确,热可以全部转化为功,只是会引起其他变化。 例如等温膨胀时气体吸热全部转化成功,不过体积改变了。 B不正确,热量可以从低温物体传到高温物体,不过外界会有 变化,要有外界做功。
一、选择题 1. 理想气体经历如图所示的abc平衡过程,则该系统对外做功 W,从外界吸收热量Q和内能的增量△E的正负情况 [ B] A:△E>0,Q>0,W<0 B:△E>0,Q>0,W>0 C:△E>0,Q<0,W<0 D:△E<0,Q<0,W>0 P c b 解:Q=△E+W
a
V
2.如图,一定量的理想气体经历acb过程时吸热200J,则经 历acbda过程时,吸热为 [ B] (A)-1200J (B)-1000 J (C) -700J (D) 1000J PV C Ta Tb Ea Eb 解: Q E W T 其中: Q 200 J E 0 J WACB Q 200 J
(3) a d 等压过程
Qad
Wad P(Vd Va ) 4.54 103 J M 7 7 RT P(Vd Va ) 15.88 103 J 2 2
d b 等体, Wd b 0
M 5 5 Qd b RT ( PbVb PdVd ) 11.34 103 J 2 2 Wad b Qad b 4.54 103 J E 0
M RTa 1.25 105 Pa Va p 105 pa Tb 300 K Vb 20 L Pb 1.25 105 Pa2.5 c 5 Tc 600 K Vc 40 L Pc 2.5 10 Pa
1.25
b
a
V L
20
40
(2) a b 等压过程
n
Q2 T2 1 解:卡诺循环 1 Q1 T1
Q2 T2 1 Q1 T1 n
二、填空题
1.理想气体 等温 过程中,系统吸收的热量可用P-V上过程曲 线下的面积表示。 2.一定质量的理想气体经压缩后,体积减小为原来的一半,这 个过程可能是绝热、等温或等压过程,如果要使外界做的功最 大,那么,这个过程应该是 绝热 过程图,一理想气体系统由状态a沿acb到达状态b,有350J的 热量传入系统,而系统做功130J,(1)经过adb过程,系统 作功40J,传入系统的热量Q= 260 J (2)当系统由状态b 沿曲线ba返回状态a时,外界对系统作功60J,则系统吸收的 热量Q= 280 J 。
5.对于室温下的双原子分子理想气体,在等压膨胀的情况下, 系统对外所作的功与从外界吸收的热量之比W/Q等于 [ D ] A:1/3 B:1/4 C:2/5 D:2/7
解:W PV
M

RT Q
M

CP T
W R 2 Q CP 7
6.双原子的理想气体做等压膨胀,若气体在膨胀过程中,从 外界吸收的热量为700J,则该气体对外做功为 [ D] A:350J B:300J C:250J D:200J
相关文档
最新文档