函数的最大值与最小值练习题(3)
导数与函数的极值、最值(经典导学案及练习答案详解)
§3.3导数与函数的极值、最值学习目标1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.(×)(2)函数的极小值一定是函数的最小值.(×)(3)函数的极小值一定不是函数的最大值.(√)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.(×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正.2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( )A .(-∞,-6]∪[6,+∞)B .(-∞,-6)∪(6,+∞)C .(-6,6)D .[-6,6]答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________. 答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A .函数f (x )有极大值f (-3)和f (3)B .函数f (x )有极小值f (-3)和f (3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2求已知函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a>0时,f(x)在x=ln a处取得极小值ln a,但是无极大值.命题点3已知极值(点)求参数例3(1)(2022·大庆模拟)函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a+b等于()A .-7B .0C .-7或0D .-15或6答案 A 解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3, 检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时, f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减, 当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( )A .(0,e)B.⎝⎛⎭⎫0,1eC.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝⎛⎭⎫1x -a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x, 设g (x )=ln x +1x, 则g ′(x )=1-(ln x +1)x 2=-ln x x 2.当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,所以g (x )的极大值为g (1)=1,又当x >1时,g (x )>0,当x →+∞时,g (x )→0,当x →0时,g (x )→-∞,所以0<2a <1,即0<a <12. 教师备选 1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1B.m +1m -1C.1-m m +1D.m +11-m 答案 B解析 由f ′(x )=cos x -x sin x =0,得tan x =1x ,所以tan m =1m, 故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( )A .1≤b <aB .b <a ≤1C .a <1≤bD .a <b ≤1 答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析.对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意. 思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极大值为( )A .-1B .-2e -3C .5e -3D .1 答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=e x -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1.此时f ′(x )=e x -1(x 2+x -2)=e x -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1,由f ′(x )>0可得x <-2或x >1;由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝⎛⎭⎫52,103B.⎣⎡⎭⎫52,103C.⎝⎛⎦⎤52,103D.⎣⎡⎦⎤2,103 答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0), ∴f ′(x )=1x+x -a , ∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x+x . 设g (x )=1x +x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增,∴g (x )min =g (1)=2,又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).解 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e. 综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a, 所以当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值,当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值, 即f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ×1a-2 =ln 1a-3=-ln a -3, 因此有-ln a -3>a -4,得ln a +a -1<0,设g (a )=ln a +a -1,则g ′(a )=1a+1>0, 所以g (a )在(0,+∞)上单调递增,又g (1)=0,所以g (a )<g (1),得0<a <1,故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)∵蓄水池的侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.由题意得200πrh +160πr 2=12 000π,∴h =15r (300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3.故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减.由此可知,V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xe x 的极大值点与极小值点分别为a ,b ,则a +b 等于() A .-4 B. 2C .0D .2答案 C解析 f ′(x )=2-x 2e x ,当-2<x <2时,f ′(x )>0;当x <-2或x >2时,f ′(x )<0.故f (x )=x 2+2x ex 的极大值点与极小值点分别为2,-2, 则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3, ∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12, ∴f (x )=2ln x +12x 2-3x , f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( )A .π-2B.π6 C .2D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎡⎦⎤0,π6和⎣⎡⎦⎤5π6,π上时,f ′(x )≥0,f (x )单调递增; 当12<sin x ≤1,即x 在⎝⎛⎭⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝⎛⎭⎫π6=π6+3,有极小值f ⎝⎛⎭⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝⎛⎭⎫π6>f (0)>f (π)>f ⎝⎛⎭⎫5π6, ∴f (x )在[0,π]上的最大值为π6+ 3. 5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1D .0 答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎨⎧ 1+3=-2b 3a ,1×3=-33a,解得a =-13,b =2. 故f (x )=-13x 3+2x 2-3x +k . 易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0, 所以k =0或k =43. 6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( )A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点答案 BD解析 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数,故A 错误;因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确;显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x, 分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022· 潍坊模拟)写出一个存在极值的奇函数f (x )=________.答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________.答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x , 所以f ′(x )=2-2x =2(x -1)x,当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln 1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝⎛⎦⎤0,12上单调递减, 所以f (x )min =f ⎝⎛⎭⎫12=-2ln 12=2ln 2=ln 4>ln e =1.综上,f (x )min =1. 9.已知函数f (x )=ln x -2x -2x +1. (1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+a x +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围. 解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2≥0对任意x ∈(0,+∞)恒成立, 当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -a x +1, 所以g ′(x )=1x +a (x +1)2=x 2+(2+a )x +1x (x +1)2(x >0). 由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解.令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=(2+a )2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4). 10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数.(1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e],∴f ′(x )=1-ax x, 由f ′(1)=0,得a =1.∴f ′(x )=1-x x, ∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0,∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax ,∴f ′(x )=1x -a =1-ax x , ①当a ≤0时,f (x )在(0,e]上单调递增,∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx =0,得x =1a ,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2;当e ≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e ,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x 的两个极值点之积为-3,则f (x )的极大值为() A.6e 3 B .-2eC .-2e D.4e 2答案 A解析 因为f (x )=(x 2-a )e x ,所以f ′(x )=(x 2+2x -a )e x ,由f′(x)=(x2+2x-a)e x=0,得x2+2x-a=0,由函数f(x)=(x2-a)e x的两个极值点之积为-3,则由根与系数的关系可知,-a=-3,即a=3,所以f(x)=(x2-3)e x,f′(x)=(x2+2x-3)e x,当x<-3或x>1时,f′(x)>0;当-3<x<1时,f′(x)<0,故f(x)在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极大值为f(-3)=6 e3.12.函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29(a>0),则a,b的值为()A.a=2,b=-29 B.a=3,b=2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则() A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .图2综上,可知必有ab >a 2成立.14.(2022·河南多校联考)已知函数f (x )=2ln x ,g (x )=x +2,若f (x 1)=g (x 2),则x 1-x 2的最小值为______.答案 4-2ln 2解析 设f (x 1)=g (x 2)=t ,即2ln x 1=t ,x 2+2=t ,解得x 1=2e t ,x 2=t -2,所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1, 令h ′(t )=0,解得t =2ln 2,当t <2ln 2时,h ′(t )<0,当t >2ln 2时,h ′(t )>0,所以h (t )在(-∞,2ln 2)上单调递减,在(2ln 2,+∞)上单调递增,所以h (t )的最小值为h (2ln 2)=e ln 2-2ln 2+2=4-2ln 2,所以x 1-x 2的最小值为4-2ln 2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝⎛⎭⎫1e =2e >0,当x >1e时,f ′(x )>0, ∵当x →0时,f ′(x )→-∞,∴0<x 0<1e,即A 正确,B 不正确; f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0).(1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0, 一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; ②当0<a <12时,令f ′(x )=0, 得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0, 所以当0<x <1-1-2a 2时, f ′(x )>0,f (x )单调递增, 当1-1-2a 2<x <1+1-2a 2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞. (2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a 2,则0<x 1<12<x 2, 由f (x 1)≥mx 2恒成立,得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2,即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2), 记h (x )=x -1x+2(1-x )ln(1-x ), 1>x >12, 则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎫1>x >12, 故h (x )在⎝⎛⎭⎫12,1上单调递增,h ⎝⎛⎭⎫12=-32-ln 2, 故m ≤-32-ln 2.。
二次函数的最大值和最小值
2
4
对称轴为x a
2
xa 2
y
(1) 当 a 1即a 2时
2
1
y x2 ax 3在[1,1]上单调递增 -1 0
x
当x 1时 ymin 4 a 当x 1时 ymax 4 a
(2)当 1 a 2
1
即
2a2
当 x a 时 2
a2 ymin 3 4
0
a 2
1
即
2
y - 01 x 1
例4: 求函数 y x2 2 x 3 在 [t , t 1] 上的最大值
和最小值
解: y x2 2x 3 ( x 1)2 2
对称轴 x 1
(1) 当 t 1 1 即 t 0 时
y
01
t t+1 x
y x2 2x 3 在 [t , t 1] 上单调递减
1 3a
-1
1
0
x
二
次
x=a x=a x=a
函
2. 1 a 1 ymin f ( a ) a a 2
数
3. a 1 ymin f ( 1 ) 1 a
的
y
y
y
最
-1
1
-1
1
-1
1
值
0
x
0
x
0
x
x=a
x=a
x=a
例4:已知函数 y x2 2x 2 x [t,t 1]
当x t 时 ymax t 2 2t 3
当x=t+1时 ymin=t2+2
(2)当t 1 即0 t 1时 t 1 1
1[t , t 1]
当x 1时 ymin 2
当t 1 1即t 1 时
高中数学函数的极值与最大小值第3课时导数在解决实际问题中的应用课后提能训练新人教A版选择性必修第二册
第五章 5.3 5.3.2 第3课时A 级——基础过关练1.将8分为两个非负数之和,使其立方之和为最小,则分法为( ) A .2和6 B .4和4 C .3和5 D .以上都不对【答案】B2.某商品一件的成本为30元,在某段时间内若以每件x 元出售,可卖出(140-x )件,要使利润最大每件定价为( )A .80元B .85元C .90元D .95元 【答案】B3.(2021年合肥期末)设正三棱柱的体积为V ,那么其表面积最小时,底面边长为( ) A .12V B .4V C .23VD .34V【答案】D 【解析】设底面边长为x ,则高为h =4V 3x2,S 表=3×4V 3x2·x +2×34x 2=43V x +32x 2,所以S ′表=-43V x 2+3x ,令S ′表=0,得x =34V ,经检验得,当x =34V时,S 表取得最小值.4.某汽车运输公司,购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x (x ∈N *)满足y =-x 2+12x -25,则每辆客车营运多少年使其营运年平均利润最大( )A .3B .4C .5D .6【答案】C 【解析】由题意得,年平均利润为f (x )=-x 2+12x -25x =-x +12-25x(x >0),f ′(x )=-1+25x2,令f ′(x )=0,得x =5,经检验得,当x =5时,年平均利润最大.5.某商场从生产厂家以每件20元的价格购进一批商品.设该商品零售价定为p 元,销售量为Q 件,且Q 与p 有如下关系:Q =8300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)( )A .30元B .60元C .28000元D .23000元【答案】D 【解析】由题意知,毛利润等于销售额减去成本,即L (p )=pQ -20Q =Q (p -20)=(8300-170p -p 2)(p -20)=-p 3-150p 2+11 700p -166 000,所以L ′(p )=-3p2-300p +11 700.令L ′(p )=0,解得p =30或p =-130(舍去).此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0.所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值.6.现要做一个容积为256m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6m B .8m C .4mD .2m【答案】C 【解析】设底边长为x (x >0),由题意可得,高h =256x2,用料y =x 2+4xh=x 2+4×256x =x 2+512x +512x ≥335122=192,当且仅当x 2=512x即x =8时,取等号,故它的底边长为8,高为4时最省材料.故选C .7.(多选)一艘船的燃料费y (单位:元/时)与船速x (单位:千米/时)的关系是y =1100x 3+x .若该船航行时其他费用为540元/时,航程为100千米,设航行总费用为L (x ),则下列说法正确的是( )A .L (x )=x 2+540x+100(x >0)B .L (x )=x 2+54000x+100(x >0)C .要使得航行的总费用最少,航速应为20千米/时D .要使得航行的总费用最少,航速应为30千米/时 【答案】BD 【解析】由题意可得,航行的总费用L (x )=⎝⎛⎭⎪⎫1100x 3+x +540100x=x 2+54 000x +100(x >0),故A 错误,B 正确;L ′(x )=2x -54 000x2,令L ′(x )=0,得x =30,当0<x <30时,L ′(x )<0,L (x )单调递减,当x >30时,L ′(x )>0,L (x )单调递增,所以当x =30时,L (x )取得极小值,也是最小值,所以要使得航行的总费用最小,航速应为30千米/时,故C 错误,D 正确.故选BD .8.用总长为14.8m 的钢条制作一个长方体容器的框架,若所制作容器的底面一边比高长出0.5m ,则当高为__________m 时,容器的容积最大.【答案】1 【解析】由题意列出函数表达式,再用导数求最值,设高为x m ,则体积V =x (x +0.5)(3.2-2x ),V ′=-6x 2+4.4x +1.6=0,解得x =1或x =-415(舍去).9.某车间要盖一间长方形小屋,其中一边利用已有的墙壁,另三边新砌,现有存砖只够砌20m 长的墙壁,问应围成长为________m ,宽为________m 的长方形才能使小屋面积最大.【答案】10 5 【解析】要使长方形的小屋面积最大,已有的墙壁一定是小屋的长,设小屋宽为x m ,则长为(20-2x )m ,小屋面积S =x (20-2x ),S ′=-4x +20,令S ′=0,解得x =5,∴20-2x =10,∴当小屋长为10 m ,宽为5 m 时,面积最大.10.已知某工厂生产x 件产品的成本(单位:元)为C (x )=25000+200x +140x 2.(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品? 解:(1)设平均成本为y 元,则y =25 000+200x +140x2x =25 000x +200+x 40,所以y ′=-25 000x 2+140.令y ′=0,得x =1000.当在x =1000附近左侧时,y ′<0,在x =1000附近右侧时y ′>0, 故当x =1000时,y 取极小值也是最小值, 所以要使平均成本最低,应生产1000件产品. (2)利润函数为S =500x -⎝⎛⎭⎪⎫25 000+200x +x 240=300x -25 000-x 240.令S ′=300-x20=0,得x =6000.当在x =6000附近左侧时,S ′>0,在x =6000附近右侧时S ′<0,故当x =6000时,S 取极大值也是最大值,所以要使利润最大,应生产6000件产品.B 级——能力提升练11.(2021年长沙期末)一个帐篷,它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如图所示).当帐篷的体积最大时,帐篷的顶点O 到底面中心O 1的距离为( )A .32m B .1m C .3mD .2m【答案】D 【解析】设OO 1为x m(1<x <4),底面正六边形的面积为S m 2,帐篷的体积为V m 3.由题设得正六棱锥底面边长为32-(x -1)2=8+2x -x 2(m),所以底面正六边形的面积为S =6×34(8+2x -x 2)2=332(8+2x -x 2).帐篷的体积V =13×332(8+2x -x 2)(x -1)+332(8+2x -x 2)=32(8+2x -x 2)[(x -1)+3]=32(16+12x -x 3),V ′=32(12-3x 2).令V ′=0,解得x =2或x =-2(不合题意,舍去).当1<x <2时,V ′>0;当2<x <4时,V ′<0,所以当x =2时,V 最大.12.(多选)(2021年北京期中)将一个边长为a 的正方形铁片的四角截去四个边长均为x 的小正方形,做成一个无盖方盒.设方盒的容积为V (x ),则下列结论正确的是( )A .V (x )=(a -2x )2x ,x ∈⎝ ⎛⎭⎪⎫0,a 2B .V ′(x )=12x 2-8ax +a 2C .V (x )在区间⎝ ⎛⎦⎥⎤0,a 4上单调递增D .V (x )在x =a6时取得最大值【答案】ABD 【解析】依题意,折成无盖盒子的底面是边长为a -2x 的正方形,高为x ,则V (x )=(a -2x )2x ⎝ ⎛⎭⎪⎫0<x <a 2,选项A 正确;由V (x )=4x 3-4ax 2+a 2x ,得V ′(x )=12x 2-8ax +a 2,选项B 正确;令V ′(x )>0,解得0<x <a 6,令V ′(x )<0,解得a 6<x <a2,故V (x )在⎝ ⎛⎭⎪⎫0,a 6单调递增,在⎝ ⎛⎭⎪⎫a 6,a 2单调递减,且在x =a 6处取得最大值,选项C 错误,选项D正确.故选ABD .13.某公司规定:对于小于或等于150件的订购合同,每件的收益为200元,对于多于150件的订购合同,每超过1件,则每件的收益比原来减少1元,那么订购________件的合同会使公司的收益最大.【答案】175 【解析】设订购x 件商品,则单件商品的收益为P (x )=⎩⎪⎨⎪⎧200(0≤x ≤150),200-(x -150)(x >150),故总收益R (x )=⎩⎪⎨⎪⎧200x (0≤x ≤150),350x -x 2(x >150).当0≤x ≤150时,x =150,R (x )取得最大值30 000;当x >150时,x =175,R (x )取得最大值30 625.故订购175件的合同会使总收益最大.14.(2022年湖南模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm ,则当圆柱的底面半径r =________时,该容器的容积最大,最大值为________.【答案】8π+2cm 128π(π+2)2cm 3【解析】设圆柱的底面半径为r cm ,圆柱的高为h cm ,则由题意可得πr +2h +2r =12,∴h =12-(π+2)r 2=6-π+22r ,由h >0,得r <12π+2,故容器的容积V =πr 2h =πr 2⎝ ⎛⎭⎪⎫6-π+22·r =6πr 2-(π+2)π2·r 3,其中0<r <12π+2,V ′(r )=12πr -3π(π+2)2·r 2,令V ′(r )=0,得r =0(舍)或r =8π+2,当r ∈⎝ ⎛⎭⎪⎫0,8π+2时,V ′(r )>0,函数单调递增;当r ∈⎝ ⎛⎭⎪⎫8π+2,12π+2时,V ′(r )<0,函数单调递减,∴当r =8π+2时,V 有最大值为128π(π+2)2 cm 3. 15.水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为V (t )=⎩⎪⎨⎪⎧(-t 2+14t -40)e 14t +50,0<t ≤10,4(t -10)(3t -41)+50,10<t ≤12.(1)该水库的蓄水量小于50的时期称为枯水期,以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月份是枯水期?(2)求一年内该水库的最大蓄水量(取e ≈2.7计算). 解:(1)根据t 的范围分段求解. ①当0<t ≤10时,V (t )=(-t 2+14t -40)e 14t +50<50,化简得t 2-14t +40>0,解得t <4或t >10. 又∵0<t ≤10,故0<t <4.②当10<t ≤12时,V (t )=4(t -10)(3t -41)+50<50, 化简得(t -10)(3t -41)<0,解得10<t <413.又∵10<t ≤12,故10<t ≤12. 综上,0<t <4或10<t ≤12.∴枯水期为1月,2月,3月,11月,12月,共5个月. (2)由(1)知V (t )的最大值只能在(4,10)内达到.V ′(t )=e 14t ⎝ ⎛⎭⎪⎫-14t 2+32t +4=-14e 14t (t +2)(t -8).令V ′(t )=0,解得t =8(t =-2舍去). 当t 变化时,V ′(t )与V (t )的变化情况如下表,∴V (t )在t =8时取得最大值V (8)=8e 2+50≈108.32(亿立方米). ∴一年内该水库的最大蓄水量是108.32亿立方米. 函数的极值与最大(小)值综合练习A 级——基础过关练1.函数y =(x +1)e x +1,x ∈[-3,4]的最大值为( )A .2e -2B .5e 5C .4e 5D .-e -1【答案】B 【解析】由y =f (x )=(x +1)e x +1,得y ′=ex +1+(x +1)ex +1=(x +2)ex +1,当-3<x <-2时,y ′<0,当-2<x <4时,y ′>0,所以函数y =(x +1)ex +1在(-3,-2)上单调递减,在(-2,4)上单调递增,因为f (-3)=-2e -2<f (4)=5e 5,所以函数y =(x +1)ex+1,x ∈[-3,4]的最大值为5e 5.故选B .2.如图是函数y =f (x )的导数y =f ′(x )的图象,则下面判断正确的是( )A .在(-3,1)内f (x )是增函数B .在(4,5)内f (x )是减函数C .在x =1时f (x )取得极大值D .在x =2时f (x )取得极大值【答案】D 【解析】由图可知,f (x )在区间⎝⎛⎭⎪⎫-3,-32,(2,4)上f ′(x )<0,f (x )单调递减,在区间⎝ ⎛⎭⎪⎫-32,2,(4,5)上f ′(x )>0,f (x )单调递增,所以x =1不是f (x )的极值点,x =2是f (x )的极大值点,所以A 、B 、C 选项错误,D 选项正确.故选D .3.已知函数f (x )=(x 2+a )e x有最小值,则函数y =f ′(x )的零点个数为( ) A .0 B .1 C .2D .不确定【答案】C 【解析】由题意,f ′(x )=(x 2+2x +a )e x,因为函数f (x )有最小值,且e x>0,所以函数存在单调递减区间,即f ′(x )<0有解,所以x 2+2x +a =0有两个不等实根,所以函数y =f ′(x )的零点个数为2.故选C .4.(2021年河南三模)设函数f (x )=e xx +a ,若f (x )的极小值为e ,则a =( )A .-12B .12C .32D .2【答案】B 【解析】由已知得f ′(x )=e x (x +a -1)(x +a )2(x ≠-a ),令f ′(x )=0,有x =1-a ,且x <1-a 上单调递减,x >1-a 上单调递增,∴f (x )的极小值为f (1-a )=e 1-a=e ,即1-a =12,解得a =12.故选B .5.现需建造一个容积为V 的圆柱形铁桶,它的盖子用铝合金材料,已知单位面积的铝合金的价格是铁的3倍.要使该容器的造价最低,则铁桶的底面半径r 与高h 的比值为( )A .12 B .13 C .23D .14【答案】D 【解析】设单位面积铁的价格为a ,h =Vπr2,则造价w (r )=πr 2·a +2πrh ·a +πr 2·3a =4a πr 2+2aV r ,w ′(r )=8a πr -2aV r 2,取w ′(r )=8a πr -2aVr2=0,得到r=3V4π,当0<r <3V4π时,函数单调递减,当r >3V4π时,函数单调递增,故r =3V4π时,造价最小,此时h =V πr 2=4πr3πr2=4r .6.(多选)(2022年保定开学)已知函数f (x )=13x 3-4x +2,下列说法中正确的有( )A .函数f (x )的极大值为223,极小值为-103B .当x ∈[3,4]时,函数f (x )的最大值为223,最小值为-103C .函数f (x )的单调减区间为[-2,2]D .曲线y =f (x )在点(0,2)处的切线方程为y =-4x +2【答案】ACD 【解析】因为f (x )=13x 3-4x +2,所以f ′(x )=x 2-4,由f ′(x )>0,得x <-2或x >2,由f ′(x )<0,得-2<x <2,所以函数f (x )在(-∞,-2)上单调递增,在[-2,2]上单调递减,在(2,+∞)上单调递增,故选项C 正确;当x =-2时,f (x )取得极大值f (-2)=13×(-2)3-4×(-2)+2=223,在x =2时,f (x )取得极小值f (2)=13×23-4×2+2=-103,故选项A 正确;当x ∈[3,4]时,f (x )为单调递增函数,所以当x =3时,f (x )取得最小值f (3)=13×33-4×3+2=-1,当x =4时,f (x )取得最大值f (4)=13×43-4×4+2=223,故选项B 不正确;因为f ′(0)=-4,所以曲线y =f (x )在点(0,2)处的切线方程为y -2=-4(x -0),即y =-4x +2,故选项D 正确.故选ACD .7.若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是( )A .0B .-2C .-52D .-3【答案】C 【解析】因为不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,所以a ≥-⎝ ⎛⎭⎪⎫x +1x 对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,所以a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎦⎥⎤0,12.又因为f (x )=x +1x 在⎝ ⎛⎦⎥⎤0,12上单调递减,所以f (x )min =f ⎝ ⎛⎭⎪⎫12=52,所以a ≥-52,所以a 的最小值为-52.8.函数f (x )=x sin x +cos x -3x 2的极值点为________.【答案】0 【解析】依题意,f ′(x )=sin x +x cos x -sin x -6x =x cos x -6x ,令f ′(x )=x (cos x -6)=0,解得x =0,符合题意,∴函数f (x )的极值点为0.9.已知函数f (x )=exx,g (x )=a -|x -1|,若∃x 1,x 2∈(0,+∞),使得f (x 1)≤g (x 2)成立,则实数a 的取值范围是________.【答案】[e ,+∞) 【解析】∃x 1,x 2∈(0,+∞),使得f (x 1)≤g (x 2)成立⇔当x ∈(0,+∞)时,f (x )min ≤g (x )max .由题意得f ′(x )=e x(x -1)x2,当x >1时,f ′(x )>0,f (x )单调递增;当0<x <1时,f ′(x )<0,f (x )单调递减,故f (x )=exx在(0,+∞)上的最小值为f (1)=e.又因为函数g (x )在(0,+∞)上的最大值为g (1)=a ,故a ≥e.10.(2022年浦江月考)已知函数f (x )=x 3+x 2+ax , (1)若a =-1,求f (x )的极值;(2)当-83<a <0时,f (x )在[0,2]上的最大值为10,求f (x )在该区间上的最小值.解:(1)当a =-1时,f (x )=x 3+x 2-x ,f ′(x )=3x 2+2x -1=(3x -1)(x +1), 令f ′(x )=0,解得x 1=-1,x 2=13,则x ,f ′(x ),f (x )变化情况如下表,∴f (x )的极大值为f (-1)=1,极小值为f ⎝ ⎛⎭⎪⎫13=127+19-13=-527.(2)∵f ′(x )=3x 2+2x +a ,∴Δ=4-12a . 又-83<a <0,∴Δ>0.令f ′(x )=0,解得x 1=-1-1-3a 3,x 2=-1+1-3a3,则x ,f ′(x ),f (x )变化情况如下表,∴f (x )在(-∞,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. ∵-83<a <0,x 1<0<x 2<2,∴f (x )min =f (x 2).又∵f (0)=0,f (2)=12+2a >0,∴f (x )在[0,2]上的最大值为f (2)=12+2a =10,解得a =-1, ∴f (x )min =f (x 2)=f ⎝ ⎛⎭⎪⎫13=-527. B 级——能力提升练11.(多选)(2022年重庆月考)定义在[-1,5]上的函数f (x )的导函数f ′(x )的图象如图所示,函数f (x )的部分对应值如下表.下列关于函数f (x )的结论正确的是( )A .函数f (x )的极大值点的个数为2B .函数f (x )的单调递增区间为(-1,0)∪(2,4)C .当x ∈[-1,t ]时,若f (x )的最小值为1,则t 的最大值为2D .若方程f (x )=a 有3个不同的实数根,则实数a 的取值范围是(1,2)【答案】AD 【解析】由图知函数f (x )在区间[-1,0]上单调递增,在区间[0,2]上单调递减,在区间[2,4]上单调递增,在区间[4,5]上单调递减,所以在x =0,x =4处有极大值,故A 正确;单调区间不能写成并集,故B 错误;因为函数f (2)=1,f (4)=3,且f (x )在区间[2,4]上单调递增,所以存在x 0∈[2,4]使得f (x 0)=2,易知,当t =x 0时,f (x )在区间[-1,t ]的最小值为1,故C 不正确;由函数值表结合单调性作出函数草图可知D 正确.故选AD .12.(2022年咸阳月考)已知函数y =f (x )在R 上可导且f (0)=1,其导函数f ′(x )满足(x +1)[f ′(x )-f (x )]>0,对于函数g (x )=f (x )ex,下列结论正确的是( )A .函数g (x )在(-∞,-1)上为增函数B .x =-1是函数g (x )的极大值点C .函数g (x )必有2个零点D .e 2f (e)>e ef (2)【答案】D 【解析】因为g (x )=f (x )ex,所以g ′(x )=f ′(x )-f (x )ex.因为(x +1)[f ′(x )-f (x )]>0,所以当x <-1时,f ′(x )-f (x )<0,当x >-1时,f ′(x )-f (x )>0,所以当x <-1时,g ′(x )<0,当x >-1时,g ′(x )>0,所以g (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,故A 错误;x =-1是g (x )的极小值点,故B 错误;当g (-1)>0时,g (x )无零点,故C 错误;由g (x )在(-1,+∞)递增,得g (2)<g (e),即f (2)e2<f (e)ee ,所以e ef (2)<e 2f (e),故D 正确.故选D .13.(2022年遵义开学)已知函数f (x )=⎩⎪⎨⎪⎧1-|2x |-m ,x <12x 3ln x -m ,x ≥12恰有3个零点,则m 的取值范围是________.【答案】⎝ ⎛⎦⎥⎤-13e ,-ln28∪(0,1) 【解析】设函数g (x )=⎩⎪⎨⎪⎧1-|2x |,x <12,x 3ln x ,x ≥12,根据题意函数f (x )恰有3个零点,即为函数g (x )的图象与直线y =m 有3个公共点,当x ≥12时,可得g ′(x )=x 2(3ln x +1),令g ′(x )=0,得x =e -13 >12,当x ∈⎣⎢⎡⎭⎪⎫12,e -13 时,函数g (x )单调递减;当x ∈(e -13 ,+∞)时,函数g (x )单调递增,所以当x =e -13 时,函数g (x )取得极小值,极小值为g (e -13 )=-13e ,又由g ⎝ ⎛⎭⎪⎫12=-18ln2<0,作出g (x )的图象,如图所示,由图可知,实数m 的取值范围是⎝ ⎛⎦⎥⎤-13e ,-ln 28∪(0,1).14.传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12cm 且以每秒1cm 的速率缩短,而长度以每秒20cm 的速率增长.已知神针的底面半径只能从12cm 缩到4cm 为止,已知在这段变形过程中,当底面半径为10cm 时其体积最大.该定海神针原来的长度为__________cm ;假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________cm.【答案】60 4 【解析】设定海神针原来的长度为x cm ,则t 秒后其长度变为(x +20t )cm ,其底面半径变为(12-t )cm ,∴t 秒后定海神针的体积V =πR 2h =π(12-t )2(x +20t ),0≤t ≤8,又V ′=π[(2t -24)(x +20t )+20(12-t )2]=π(t -12)(2x +60t -240),令V ′=0,可得t =12(舍去)或t =4-x30,变形过程中,当底面半径为10 cm 时其体积最大,即t =2时体积最大,∴4-x30=2,解得x =60,∴V ′=60π(t -12)(t -2).当0≤t <2时,V ′>0,函数V =20π(12-t )2(3+t )单调递增,当2<t ≤8时,V ′<0,函数V =20π(12-t )2(3+t )单调递减,又t =0时,V =8640π,t =8时,V =3520π,∴t =8时,定海神针的体积最小,即t =8时形成金箍棒,此时底面半径为4 cm.15.已知函数f (x )=x ln x -ax +2(a 为实数) (1)若a =2,求f (x )在[1,e 2]的最值; (2)若f (x )≥0恒成立,求a 的取值范围.解:(1)当a =2 时,f (x ) =x ln x -2x +2,f ′(x )=ln x -1.由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e ,所以f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增,且f (e) =eln e -2e +2 =2-e ,f (1)=1ln 1-2+2=0,f (e 2)=e 2ln e 2-2e 2+2 =2,则函数f (x )在区间[1,e 2]上的最小值为 2-e ,最大值为2.(2)由题意得函数的定义域为(0,+∞),若f (x )≥0恒成立,则x ln x -ax +2≥0,即ln x +2x≥a 恒成立.令g (x )=ln x +2x,x ∈(0,+∞)则g ′(x )=1x -2x 2=x -2x2.当 0<x <2时,g ′(x )<0; 当x >2时,g ′(x )>0,所以g (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 则g (x )min =g (2)=1+ln 2,所以a ≤1+ln 2 ,故a 的取值范围为(-∞,1+ln 2].。
例说求函数的最大值和最小值的方法
例说求函数的最大值和最小值的方法例1.设x 是正实数,求函数xx x y 32++=的最小值。
解:先估计y 的下界。
55)1(3)1(5)21(3)12(222≥+-+-=+-+++-=xx x x x x x y 又当x =1时,y =5,所以y 的最小值为5。
说明 本题是利用“配方法”先求出y 的下界,然后再“举例”说明这个下界是可以限到的。
“举例”是必不可少的,否则就不一定对了。
例如,本题我们也可以这样估计:77)1(3)1(7)21(3)12(222-≥-++-=-++++-=xx x x x x x y 但y 是取不到-7的。
即-7不能作为y 的最小值。
例2. 求函数1223222++--=x x x x y 的最大值和最小值。
解 去分母、整理得:(2y -1)x 2+2(y +1)x +(y +3)=0. 当21≠y 时,这是一个关于x 的二次方程,因为x 、y 均为实数,所以 ∆=[2(y +1)]2-4(2y -1)(y +3)≥0, y 2+3y --4≤0,所以 -4≤y ≤1 又当31-=x 时,y =-4;x =-2时,y =1.所以y min =-4,y max =1. 说明 本题求是最值的方法叫做判别式法。
例3.求函数152++-=x x y ,x ∈[0,1]的最大值解:设]2,1[1∈=+t t x ,则x =t 2-1y = -2(t 2-1)+5t = -2t 2+5t +1原函数当t =169,45=x 即时取最大值833 例4求函数223,5212≤≤+--=x x x x y 的最小值和最大值 解:令x -1=t (121≤≤t ) 则t t t t y 4142+=+=y min =51,172max =y 例5.已知实数x ,y 满足1≤x 2+y 2≤4,求f (x )=x 2+xy +y 2的最小值和最大值 解:∵)(2122y x xy +≤ ∴6)(23),(2222≤+≤++=y x xy y x y x f 又当2==y x 时f (x ,y )=6,故f (x ,y )max =6 又因为)(2122y x xy +-≥ ∴21)(21),(2222≥+≥++=y x xy y x y x f 又当22,22-==y x 时f (x ,y )=21,故f (x ,y )min =21例6.求函数2224)1(5+++=x x x y 的最大值和最小值 解:原函数即111)1(5222++-+=x x y 令112+=x t (0<t ≤1) 则y =5t 2-t +1 ∴当x =±3时,函数有最小值2019,当x =0时,函数取最大值5 例7.求函数|]211[1|)(+-=x x x f 的最大值 解:设α=+=+}211{,]211[x n x ,则 f (x )=|21|1|-=-αn x 由于 0≤α<1,故f (x )≤21,又当x =122-k (k 为整数)时f (x )= 21, 故f (x )max =21 例8.求函数113632424+-++--=x x x x x y 的最大值 解:原函数即222222)1()0()2()3()(-+---+-=x x x x x f 在直角坐标系中,设点P(x ,x 2),A(3,2),B(0,1),则f (x )=|PA|-|PB|≤|AB|=10 又当6137+-=x 时,f (x )= 10 故f max (x ) = 10例9.设a 是实数,求二次函数y =x 2-4ax +5a 2-3a 的最小值m ,当0≤a 2-4a -2≤10中变动时,求m 的最大值解:y =x 2-4ax +5a 2-3a =(x -2a )2+a 2-3a由0≤a 2-4a -2≤10解得:622-≤≤-a 或62+≤a ≤6 故当a =6时,m 取最大值18例10.已知函数f (x )=log 2(x +1),并且当点(x ,y )在y =f (x )的图象上运动时,点)2,3(y x 在y =g (x )的图象上运动,求函数p (x )=g (x )-f (x )的最大值。
最全二次函数区间的最值问题(中考数学必考题型)
二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。
例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。
2021_2022学年高中数学课时练习11函数的最大值最小值课件新人教A版必修1
【解析】设摊主每天从报社买进 x(180≤x≤400,x∈N)份晚报,每月获利为 y 元,则 有 y = (0.60 - 0.40)(18x + 12×180) - (0.40 - 0.05)×12(x - 180) = - 0.6x + 1 188 , 180≤x≤400,x∈N. 因为函数 y=-0.6x+1 188 在[180,400]上是减函数,所以 x=180 时函数取得最大 值,最大值为 y=-0.6×180+1 188=1 080. 故摊主每天从报社买进 180 份晚报时,每月获得的利润最大,为 1 080 元.
x2+21x+2(15-x)=-x2+19x+30=-x-129 2 +30+3641 ,所以当 x=9 或 10
时,L 最大为 120 万元.
3.当 0≤x≤2 时,a<-x2+2x 恒成立,则实数 a 的取值范围是( ) A.(-∞,1] B.(-∞,0] C.(-∞,0) D.(0,+∞) 【解析】选 C.令 f(x)=-x2+2x, 则 f(x)=-x2+2x=-(x-1)2+1. 又因为 x∈[0,2],所以 f(x)min=f(0)=f(2)=0. 所以 a<0.
=(x2-x1)[3(x1+x2)-x1x2] , (x1-3)(x2-3)
因为 1≤x1<x2≤2, 所以 2<x1+x2<4, 即 6<3(x1+x2)<12, 又 1<x1x2<4,x2-x1>0, 故 f(x1)-f(x2)>0. 所以函数 y= x2 在区间[1,2]上为减函数,
x-3 ymax=f(1)=-12 ,ymin=f(2)=-4.
=4,所以mM2
=166
=83
.
4.函数 f(x)= 6-x -3x 在区间2,4 上的最大值为________.
微积分第三章五节 函数的极值与最大值与最小值.
y
又 f (1) f (1) 0 , 故需用第一判别法判别.
1
机动 目录 上页 下页 返回
1
x
结束
定理3 (判别法的推广)
数,且 则: 1) 当 n 为偶数时,
f
为极值点 , 且
是极小点 ; 是极大点 .
( n)
机动 目录 上页 下页 返回 结束
二、最大值与最小值问题
则其最值只能
在极值点或端点处达到 .
求函数最值的方法: (1) 求 在 内的极值可疑点
(2) 最大值
M max
最小值
f (a ) , f (b)
机动
目录
上页
下页
返回
结束
特别:
•当 在 内只有一个极值可疑点时,
若在此点取极大 (小) 值 , 则也是最大 (小)值 .
x3 不是极值点
o a x1 x2 x3 x4
x5 b
x
机动 目录 上页 下页 返回 结束
定理 1 (极值第一判别法)
设函数 f ( x) 在 x0 的某邻域内连续, 且在空心邻域 内有导数, 当x由小到大通过 x0 时,
(1) f ( x) “左正右 负” , f ( x ) (2) “左负右 正” ,
机动 目录 上页 下页 返回 结束
例2. 求函数 解: 1) 求导数 2 2 f ( x) 6 x ( x 1) ,
的极值 .
2 2 f ( x) 6 ( x 1)(5 x 1)
2) 求驻点 令 f ( x) 0 , 得驻点 x1 1, x2 0 , x3 1
由 f ( x0 ) 0 知, 存在 0 , 当0 x x0 时, f ( x) 0 ; 故当 x0 x x0 时, f ( x) 0 , 当x0 x x0 时, x0 x0 x0 由第一判别法知 f ( x) 在 x0 取极大值. (2) 类似可证 .
函数的最大(小)值-练习题
所以每辆车的月租金为4050元时,租赁公司的月收益最大,最大月收益是307 050元.
2.解:对于二次函数 当 时,函数有最大值
.
对于二次函数 ,在区间 上单增.
所以在 时取得最小值,最小值是0.
3.ห้องสมุดไป่ตู้:
由 得
于是
,
即
.
所以函数 在区间 上单调递减.
因此,函数 在区间 的两个端点上分别取得最大值与最小值.
函数的最大(小)值
课后练习
1.某汽车租赁公司的月收益y(单位:元)与每辆车的月租金x(单位:元)间的关系为 ,那么,每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?
2.已知函数 ,求 的最小值.
3.已知函数 ,求函数在区间 的最大值和最小值.
【答案】
1.解:由二次函数的知识,对于二次函数 ,
在 时取得最大值,最大值是 ;
在 时取得最小值,最小值是 .
数学分析6.4函数的极值与最大(小)值(练习)
第六章微分中值定理及其应用4 函数的极值与最大(小)值(讲义)练习题1、求下列函数的极值.(1)f(x)=2x3-x4; (2)f(x)=; (3)f(x)=; (4)f(x)=arctanx ln(1+x2).解:(1)f在R上连续,当f’(x)=6x2-4x3=0时,x=0或x=.又当x<0时,f’(x)=6x2-4x3>0;当0<x<时,f’(x)=6x2-x3>0;当x>时,f’(x)=6x2-4x3<0. ∴f有极大值f()=2×-=.(2)f在R上连续,当f’(x)===0时,x=0,又x<0时,f’(x)<0;当x>0时,f’(x)>0. ∴f有极小值f(0)=0.(3)f在R+上连续,当f’(x)==0时,x=1或x=e2.又当x<1时,f’(x)<0;当1<x<e2时,f’(x)>0; 当x>e2时,f’(x)<0.∴f有极小值f(1)=0; 极大值f(e2)=4e-2.(4)f在R上连续,当f’(x)===0时,x=1.又当x<1时,f’(x)>0; 当x>1时,f’(x)<0,∴f有极大值f(1)=.2、设f(x)=.(1)证明x=0是函数f的极小值点; (2)说明在f的极小值点x=0处是否满足极值的第一充分条件或第二充分条件.证:(1)∵对任意x≠0,有f(x)=≥0,∴x=0是f的极小值点. (2)f’(x)=,令x n=(2nπ+)-1, y n=(2nπ+)-1, (n=1,2,…),则x n, y n>0且x n=y n=0,又f’(x n)=(2nπ+)-2·[2(2nπ+)-1-1]< 0,f’(y n)=(2nπ+)-2·[4(2nπ+)-1-0]=4(2nπ+)-3>0,即f’在任一U+⁰(0,δ)内变号,∴f不满足第一充分条件.又f”(0)=0,∴f不满足第二充分条件.3、证明:若函数f在x0处有f+’(x0)<0(或>0), f-’(x0)>0(或<0), 则x0为f 的极大(小)值点.证:∵f+’(x0)=<0,∴存在某U⁰+(x0,δ1),使当x∈U⁰+(x0,δ1)时,有<0,∴f(x)<f(x0).又∵f-’(x0)=>0,∴存在某U⁰-(x0,δ2),使当x∈U⁰-(x0,δ2)时,有>0,∴f(x)<f(x0).取δ=min(δ1,δ2),则当x∈U⁰(x0,δ)时有f(x)<f(x0),∴x0为f的极大值点.同理可证若f在x0处有f+’(x0)>0, f-’(x0)<0, 则x0为f的极小值点.4、求下列函数在给定区间上的最大最小值.(1)y=x5-5x4+5x3+1, [-1,2]; (2)y=2tanx-tan2x, 当[0,]; (3)y=lnx, (0,+∞). 解:(1)y在[-1,2]上连续, 当y’=5x4-20x3+15x2=0时, x=0,x=1或x=3(舍去),y(-1)=-10, y(0)=1, y(1)=2, y(2)=-7,∴y在[-1,2]的最大值为y(1)=2,最小值为y(-1)=-10.(2)记u=tanx,则当x∈[0,]时,u∈[0,+∞], y=2u-u2在[0,+∞)连续.当=2-2u=0时,u=1, x=arctan1=, y(0)=0, y()=1,由二次函数的性质知y在[0,]无最小值,最大值为y()=1.(3)y在(0,+∞)连续,当y’=+=0时,x=e-2.y(e-2)=<0, lnx=0, lnx=+∞.∴y在(0,+∞)无最大值,最小值为y(e-2)=.5、设f(x)在区间I连续,并且在I有唯一的极值点x0.证明:若x0是f的极大(小)值点,则x0是f(x)在I上的最大(小)值点. 解:∵f在I连续,∴若x0是f在I唯一的极大值点,则对任意的x∈I有f(x)<f(x0), ∴x0是f在I上的最大值点. 同理可证:若x0是f在I唯一的极小值点,则x0是f在I上的最小值点.6、把长为1的线段截为两段,问怎样截法能使以这两段线为边所组成的矩形的面积为最大?解:设两段线长为x, 1-x,则所求矩形面积为S=x(1-x)=x-x2, x∈(0,1). 当S’=1-2x=0时,x=0.5,又S”=-2<0,∴x=0.5是S唯一的极大值点.∴当两段线长都为0.5时,矩形的面积最大为S(0.5)=0.25.7、一个无盖的圆柱形容器,当给定体积为V时,要使容器的表面积最小,问底的半径与容器的高的比例应该怎样?解:设底的半径为r, 高为h,则V=πr2h, ∴h=.容器的表面积S=πr2+2πrh=πr2+. 当S’=2πr=0时,r==h,∴当底的半径与容器的高的比例为1:1时,容器的表面积最小.8、设用某仪器进行测量时,读得n次实验数据为a1,a2,…,a n. 问:以怎样的数值x表示所要测量的真值,才能使它与这n个数之差的平方和为最小?解:记S=(x-a1)2+(x-a2)2+…+(x-a n)2,当S’=2(x-a1)+2(x-a2)+…2(x-a n)=0时,x=,又S”=2n>0,∴x=是S唯一的极小值点. 又S=+∞,∴以x=表示真值时,它与这n个数之差的平方和最小.9、求正数a,使它与其倒数之和为最小.解:记f(a)=a+, a∈(0,+∞),当f’(a)=1=0时,a=1或a=-1(舍去).f(1)=2, f(a)=+∞, f(a)=+∞. ∴a=1为所求.10、求下列函数的极值.(1)f(x)=|x(x2-1)|; (2)f(x)=; (3)f(x)=(x-1)2(x+1)3.解:(1)f’(x)=(3x2-1)sgn(x3-x), f”(x)=6xsgn(x3-x), (x≠0,±1);当f’=0时,x=, ∵f”()=-6×=-2<0, f”()=6×()=-2<0, ∴f()=f()=是f的极大值.又f(x)≥0,∴f(0)=f(±1)=0是f的极小值.(2)当f’(x)===0时,x=±1. 当x<-1时,f’(x)<0;当1<x<1时,f’(x)>0;当x>1时,f’(x)<0.∴f(-1)=-1是f的极小值,f(1)=2是f的极大值.(3)当f’(x)=2(x-1)(x+1)3+3(x-1)2(x+1)2=(x2-1)(5x-1)(x+1)=0时,x=±1或x=0.2. 当x<-1时,f’(x)>0;当-1<x<0.2时,f’(x)>0;当0.2<x<1时,f’(x)<0;当x>1时,f’(x)>0.∴f(0.2)=1.10592是f的极大值;f(1)=0是f的极小值.11、设f(x)=alnx+bx2+x, 在x1=1,x2=2处都取得极值;试定出a与b的值;并问这时f在x1与x2是取得极大值还是极小值?解1:当f’(x)=+2bx+1==0时,x=,当=1, =2时,解得a=, b=;当=2, =1时,无解.又当0<x<1时,f’(x)>0;当1<x<2时,f’(x)<0;当x>2时,f’(x)>0.∴a=, b=,且f在x1=1取得极小值,在x2=2取得极大值.解2:f’(x)=+2bx+1,∵f在x1=1,x2=2处都取得极值,∴有, 解得:a=, b=; ∴f’(x)= 1.f”(x)=,∵f”(1)=>0,f”(2)=<0.∴f在x1=1取得极小值,在x2=2取得极大值.12、在抛物线y2=2px上哪一点的法线被抛物线所截之线段最短.解:2yy’=2p, y’=,设抛物线上一点(a,b),则过这点的法线方程为:y-b=(x-a),即y=. 代入x=得y=,即by2+2p2y-2pab=0,设另一交点为(a’,b’),则b+b’=,解得b’=, a’==.法线被抛物线所截线段长度的平方为:D(b)=(a’-a)2+(b’-b)2=()2+(b)2=.当D’(b)===0时,b=±p,a==p,∴抛物线在(p,±p)的法线被抛物线所截之线段最短.13、要把货物从运河边上A城运往与运河相距为BC=a千米的B城(如图). AC=d千米. 轮船运费单价是m元/千米. 火车运费单价是n元/千米(n>m). 试求运河边上的一点M,修建铁路MB,使总运费最省.解:设CM=x,则AM=d-x,在Rt△BCM中,BM=. 总运费f(x)=m(d-x)+n当f’(x)=-m=0时,x=.又f(0)=md+na, f(d)= n,f()=md+a< md+na=f(0). 令m=nsinθ, 则md+aθ+nacosθ=n sin(θ+φ)≤n=f(d). (φ=arcsin). ∴f()是f(x)在[0,d]上的最小值,即离C点千米处修铁路运费最省。
最大值和最小值习题及答案(苏教版)
最大值和最小值习题及答案(苏教版)一、填空题。
1.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M 、m ,则M -m =________。
2.函数f (x )=sin 2x 在[-π4,0]上的最大值是________,最小值是________。
3.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值是________,最小值是________。
4.设y =|x |3,那么y 在区间[-3,-1]上的最小值是__________。
5.函数f (x )=3x 2+4x +3x 2+1的值域为________。
6.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a 的值等于________。
7.函数f (x )=x (1-x 2)在[0,1]上的最大值为________。
8.函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________。
9.对于函数f (x )=⎩⎪⎨⎪⎧x 3+32x 2,x ≤0x 2-2x +12,x >0,有下列命题:①过该函数图象上一点(-2,f (-2))的切线的斜率为6;②函数f (x )的最小值等于-12;③该方程f (x )=0有四个不同的实数根;④函数f (x )在(-1,0)以及(1,+∞)上都是减函数.其中正确的命题有________。
二、解答题。
10.设23<a <1,函数f (x )=x 3-32ax 2+b (-1≤x ≤1)的最大值为1,最小值为-62。
求常数a ,b 。
11.已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线l 不过第四象限且斜率为3,坐标原点到切线l的距离为1010,若x=23时,y=f(x)有极值。
大学数学_3_4 函数的最大值与最小值
例5 3 甲船以 20nmile / h 的速度向东行驶,同一时间 乙船在甲船的正北 82nmile 处以16nmile / h 的速度向南行 驶,问经过多少时间,甲乙两船相距最近. y 82 解 设在时刻 t 0 时甲船位于 O 点, 16t 乙船位于甲船正北82nmile 处,在时刻 t B (单位:h)甲船由点 O 出发向东行驶了 20t (单位:nmile)至A点,乙船向南行驶 O 20t A x 了16t (单位:nmile)至B点(图 3-7) 图3-7 甲乙两船的距离为
内容小结
1. 最值点应在极值点和边界点上找
2. 应用题可根据问题的实际意义判别
作业
P134 1(1), (5), 2, 3, 4
由这个例子看出,为什么我们经常用n次测量值的算 术平均值作为所测量值的近似值. 例题中x-xi代表第i次的 测量值xi与真值x的误差,由于x-xi(i=1,2, …,n)可为正 也可为负,不能用它们的和作为n次测量值的总误差,以 免正负误差相抵消,因此一般采用n次测量误差的平方和 作为总误差,寻求如何取近似值能使这个总误差最小. 这 就是通常所谓的最小二乘法.
2 ( x 差平方和 1
x1 x2 n
xn
( x x2 )2 ( x xn ) 2 为最小. 2 2 2 y ( x x ) ( x x ) ( x x ) 证 记 1 2 n . 现求y的最小
值.
y 2[( x x1 ) ( x x2 ) ( x xn )] 2[nx ( x1 x2 xn )]. 令 y 0 得唯一驻点 1 x ( x1 x2 xn ). n 1 又y一定存在最小值,故当x ( x1 x2 xn ).时误差平 n 方和最小.
高中数学选择性必修二 精讲精炼 5 函的极值与最大(小)值(精练)(无答案)
5.3.2 函数的极值与最大(小)值(精练)【题组一 极值(点)】1.(2021·全国高二课时练习)下列函数中存在极值的是( )A .1y x =B .e x y x =-C .2y =D .3y x =2.(2021·全国高二课时练习)函数f (x )=ln x -x 在区间(0,e)上的极大值为( )A .-eB .1-eC .-1D .02.(2021·全国高二单元测试)已知函数()f x 的定义域为(,)a b ,导函数()f x '在区间(,)a b 上的图象如图所示,则函数()f x 在区间(,)a b 上的极大值点的个数为( )A .4B .3C .2D .13.(2021·全国高二课时练习)设函数()f x 在R 上可导,其导函数为()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是( )A .B .C .D .4.(2021·全国高二课前预习)函数321()363f x x x x =--+的极大值为________,极小值为________.5(2021·全国高二课时练习)求下列函数的极值:(1)()e x f x x -=;(2)()2221x g x x =-+.【题组二 已知极值(点)求参数】1.(2021·全国高二课时练习)函数f (x )=ax 3+bx 2+cx 在x =1a 处有极值,则ac +2b 的值为( )A .-3B .0C .1D .32(2021·全国高二单元测试)函数321()213f x x ax x =+-+在()1,3x ∈内存在极值点,则( ) A .7162a -≤≤ B .7162a -<< C .12a ≤-或12a ≥ D .12a <或12a >3.(2021·安徽金安·六安一中高二月考(理))若0a >,0b >,且函数()32422f x x ax bx =--+在1x =处取得极值,则ab 的最大值为( )A .9B .6C .3D .24.(2021·全国高二课时练习)已知函数2()()e ()x f x x mx m m R =--∈在0x =处取得极小值,则m =________,()f x 的极大值是_______.5.(2021·全国高二课时练习)若f (x )=e x -kx 的极小值为0,则k =________.6.(2021·全国高二专题练习)若函数()331f x x ax =-+在区间()0,1内有极小值,则a 的取值范围为________.7.(2021·全国)若函数()2ln 21y x ax a x =+-+,0a >在1x =处取得极小值,则实数a 的取值范围是______.8.(2021·全国)已知函数()1ln x f x x +=在区间()2,03a a a ⎛⎫+> ⎪⎝⎭上存在极值,则实数a 的取值范围是______.9.(2021·全国)若函数()()3213532a f x x x a x =-+-++在定义域内无极值,则实数a 的取值范围为______.10(2021·全国高二课时练习)函数f (x )=ax -1-ln x (a ≤0)在定义域内的极值点的个数为________.11.(2021·全国高二课时练习)已知a 为实数,函数3()3f x x x a =-++.(1)求函数f (x )的极值,并画出其图象(草图);(2)当a 为何值时,方程f (x )=0恰好有两个实数根?12.(2021·全国高二课时练习)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,求常数a ,b 的值.13.(2021·全国高二课时练习)已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),当实数a ≠23时,求函数f (x )的单调区间与极值.14.(2021·全国高二课时练习)已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1.(1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值.【题组三 最值】1.(2021·全国高二课时练习)函数()1f x x =,(]0,5x ∈的最小值为( )A .2B .3C .174D .122.(2021·全国高二课时练习)函数()()()212f x x x =--在[]0,3上的最小值为( ) A .8-B .4-C .0D .4273.(2021·全国高二课前预习)函数321()363f x x x x =--+在[]4,4-上的最大值为________,最小值为________.4.(2021·全国)求下列函数的最值:(1)32()362f x x x x =-+-,[]1,1x ∈-;(2)()241x f x x =+,2,2x ; (3)()1ln x f x x x -=+,1,22x ⎡⎤∈⎢⎥⎣⎦.5.(2021·全国)求下列函数的最值:(1)()3232,[1,1]f x x x x =--∈-; (2)()241x f x x =+,[]2,2x ∈-; (3)()1ln x f x x x -=+,1,22x ⎡∈⎤⎢⎥⎣⎦.【题组四 已知最值求参数】1.(2021·全国)若函数()32231,0e ,0ax x x x f x x ⎧++≤=⎨>⎩在[]22-,上的最大值为2,则实数a 的取值范围是( ) A .1ln 2,2⎡⎫+∞⎪⎢⎣⎭ B .10,ln 22⎡⎤⎢⎥⎣⎦C .(],0-∞D .1,ln 22⎛⎤-∞ ⎥⎝⎦2.(2021·全国高二课时练习)已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值为________.3(2021·全国高二课时练习)已知函数f (x )=ln x +a x ,若函数f (x )在[1,e ]上的最小值是32,求a 的值.4(2021·全国高二课时练习)设函数()()212ln f x x k x =++.(1)若2k =-,求函数的递减区间;(2)当0k >时,记函数()()g x f x '=,求函数()g x 在区间(]0,2上的最小值.5.(2021·全国高二课时练习)已知函数32()39f x x x x c =--+,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围.6.(2021·全国高二课时练习)已知h (x )=x 3+3x 2-9x +1在区间[k ,2]上的最大值是28,求k 的取值范围.7.(2021·全国高二单元测试)已知函数()3212232a f x x x ax +=++. (1)当2a =时,求过坐标原点且与函数()f x 的图象相切的直线方程;(2)当()0,2a ∈时,求函数()f x 在[]2,a a -上的最大值.8.(2021·全国高二课时练习)函数()()()2ln 2f x x ax a x a =-+-∈R ,求函数()f x 在区间2,a a ⎡⎤⎣⎦上的最大值.【题组五 极值最值综合运用 】1.(2021·临海市西湖双语实验学校)若不等式2ln ax x ≥恒成立,则实数a 的取值范围是( )A .1,2e ⎡⎫+∞⎪⎢⎣⎭B .1,2e ⎛⎫+∞ ⎪⎝⎭C .1,2e ⎛⎤-∞ ⎥⎝⎦D .1,2e ⎛⎫-∞ ⎪⎝⎭2.(2021·福建省宁化第一中学高二期中)(多选)已知函数()f x 的导函数()f x '的图象如图所示,则下列选项中正确的是( )A .1x =是函数()f x 的极值点B .()f x 在区间(2,3)-上单调递减C .函数()f x 在1x =-处取得极小值D .()f x 的图象在0x =处的切线斜率小于零3.(2021·全国高二课时练习)已知函数f (x )=-23x 3+2ax 2+3x (a >0)的导数()'f x 的最大值为5,则在函数f (x )图象上的点(1,f (1))处的切线方程是________.4.(2021·全国高二课时练习)已知函数f (x )=x 3+ax 2+b 的图象上一点P (1,0),且在点P 处的切线与直线3x +y =0平行.(1)求函数f (x )的解析式;(2)求函数f (x )在区间[0,t ](0<t <3)上的最大值和最小值;(3)在(1)的结论下,关于x 的方程f (x )=c 在区间[1,3]上恰有两个相异的实根,求实数c 的取值范围.5.(2021·全国高二课时练习)已知函数()32f x x ax bx c =+++在23x =-与1x =处都取得极值. (1)求a ,b 的值;(2)若对任意[]1,2x ∈-,不等式()2f x c <恒成立,求实数c 的取值范围.6.(2021·西藏日喀则区南木林高级中学高二期末(理))已知函数21()(1)ln 12f x x a x a x =-+++. (I)若3x =是()f x 的极值点,求()f x 的单调区间;(II)求a 的范围,使得()1f x ≥恒成立.7.(2021·全国)设函数f (x )=2x 3-9x 2+12x +8c ,(1)若对任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围;(2)若对任意的x ∈(0,3),都有f (x )<c 2成立,求c 的取值范围.8.(2021·全国高二专题练习)设函数3()65f x x x =-+,x ∈R .(1)求函数()f x 的单调区间和极值;(2)若函数()y f x =的图象与函数y a =的图象恰有三个不同的交点,求实数a 的取值范围.9(2021·全国高二专题练习)已知2()2ln()f x x a x x =+--在0x =处取得极值.(1)求实数a 的值.(2)若关于x 的方程()0f x b +=的区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围.。
完整版)导数与极值、最值练习题
完整版)导数与极值、最值练习题三、知识新授一)函数极值的概念函数极值指的是函数在某个点上的最大值或最小值,包括极大值和极小值。
二)函数极值的求法:1)确定函数的定义域,并求出函数的导数f'(x);2)解方程f'(x)=0,得到方程的根x(可能不止一个);3)如果在x附近的左侧f'(x)>0,右侧f'(x)<0,则f(x)是极大值;反之,则f(x)是极小值。
题型一图像问题1、函数f(x)的导函数图像如下图所示,则函数f(x)在图示区间上()第二题图)A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点2、函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图像如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个3、若函数f(x)=x+bx+c的图像的顶点在第四象限,则函数f'(x)的图像可能为()图略)4、设f'(x)是函数f(x)的导函数,y=f'(x)的图像如下图所示,则y=f(x)的图像可能是()图略)A。
B。
C。
D。
5、已知函数f(x)的导函数f'(x)的图像如右图所示,那么函数f(x)的图像最有可能的是()图略)6、f'(x)是f(x)的导函数,f'(x)的图像如图所示,则f(x)的图像只可能是()图略)A。
B。
C。
D。
7、如果函数y=f(x)的图像如图,那么导函数y=f'(x)的图像可能是()图略)ABCD8、如图所示是函数y=f(x)的导函数y=f'(x)图像,则下列哪一个判断可能是正确的()图略)A.在区间(-2,0)内y=f(x)为增函数B.在区间(0,3)内y=f(x)为减函数C.在区间(4,+∞)内y=f(x)为增函数D.当x=2时y=f(x)有极小值9、如果函数y=f(x)的导函数的图像如图所示,给出下列判断:①函数y=f(x)在区间(-3,-1/2)内单调递增;②函数y=f(x)在区间(-1/2,2)内单调递减。
2019-2020学年高中数学(苏教版 选修2-2)教师用书:第1章 1.3.3 最大值与最小值 Word版含答案
1.3.3最大值与最小值1.会求在指定区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(重点) 2.掌握含参数的最值问题的讨论.(难点)3.掌握函数的极值与最值的联系与区别.(易混点)[基础·初探]教材整理函数的最大(小)值与导数阅读教材P32“例1”以上部分,完成下列问题.1.函数的最大值与最小值.(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数f(x)在定义域上的最大值.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数f(x)在定义域上的最小值.函数的最大(小)值是相对函数定义域整体而言的,如果存在最大(小)值,那么函数的最大(小)值惟一.2.利用导数求函数的最值求可导函数f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的极值;(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值.1.判断正误:(1)函数的最大值一定是函数的极大值.( )(2)开区间上的单调连续函数无最值.( )(3)函数f(x)在区间[a,b]上的最大值和最小值一定在两个端点处取得.( )【答案】(1)×(2)√(3)×2.函数f(x)=2x-cos x在(-∞,+∞)上________.(填序号)①无最值;②有极值;③有最大值;④有最小值.【解析】f′(x)=2+sin x>0恒成立,所以f(x)在(-∞,+∞)上单调递增,无极值,也无最值.【答案】①[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_______________________________________________解惑:_______________________________________________疑问2:_______________________________________________解惑:_______________________________________________疑问3:_______________________________________________解惑:_______________________________________________[小组合作型](1)f(x)=x3-12x2-2x+5,x∈[-2,2];(2)f(x)=e-x-e x,x∈[0,1].【精彩点拨】首先利用函数求极值,再比较极值与端点值的大小,确定最值.【自主解答】(1)f′(x)=3x2-x-2=(3x+2)(x-1),令f′(x)=0,得x1=-23,x2=1.当x变化时,f′(x),f(x)变化情况如下表:(2)f ′(x )=⎝ ⎛⎭⎪⎪⎫1ex ′-(e x )′=-1ex -e x=-1+e2x ex .当x ∈[0,1]时,f ′(x )<0恒成立, 即f (x )在[0,1]上是减函数.故当x =1时,f (x )有最小值f (1)=1e -e ;当x =0时,f (x )有最大值f (0)=e -0-e 0=0.求函数最值的四个步骤 (1)求函数的定义域;(2)求f ′(x ),解方程f ′(x )=0; (3)列出关于x ,f (x ),f ′(x )的变化表; (4)求极值、端点值,确定最值.[再练一题]1.(2016·盐城质检)函数y =x +2cos x 在区间⎣⎢⎢⎡⎦⎥⎥⎤0,π2上的最大值是________.【导学号:01580015】【解析】 ∵y ′=1-2sin x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,令y ′=0,得x =π6.由于f (0)=2,f ⎝ ⎛⎭⎪⎪⎫π6=π6+3,f ⎝ ⎛⎭⎪⎪⎫π2=π2,∴函数的最大值为π6+3.【答案】 π6+3已知函数f (x )=ax 3-6ax 2+b ,x∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.【精彩点拨】 首先求出f ′(x ).然后讨论a 的正负,根据函数f (x )的单调性得出用a ,b 表示的函数的最值,从而列出关于a ,b 的方程组,求a ,b .【自主解答】 由题设知a ≠0,否则f (x )=b 为常函数,与题设矛盾. 求导得f ′(x )=3ax 2-12ax =3ax (x -4), 令f ′(x )=0,得x 1=0,x 2=4(舍去).(1)当a >0,且x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减f (0)=b =3. 又f (-1)=-7a +3,f (2)=-16a +3<f (-1), ∴f (2)=-16a +3=-29,解得a =2.(2)当a <0时,同理可得,当x =0时,f (x )取得极小值b ,也就是函数在[-1,2]上的最小值,∴f (0)=b =-29.又f (-1)=-7a -29, f (2)=-16a -29>f (-1),∴f (2)=-16a -29=3,解得a =-2. 综上可得,a =2,b =3或a =-2,b =-29.1.本题的解题关键是利用函数的单调性确定某些极值就是函数的最值,同时由于系数a的符号对函数的单调性有直接的影响,且最值也受a的符号的影响,因此需要对a的符号进行分类讨论.2.已知函数的最值求参数问题属于逆向探究题型,解决该类问题的基本方法是待定系数法,列出关于参数的方程(组),从而求出参数的值,但在用参数表示最值时,需要根据参数的情况分类讨论.[再练一题]2.设23<a<1,函数f(x)=x3-32ax2+b在区间[-1,1]上的最大值为1,最小值为-62,求该函数的解析式.【导学号:01580016】【解】f′(x)=3x2-3ax,令f′(x)=0,得x=0或x=a.当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增当x=a时,f(x)取得极小值-a32+b,而f(0)>f(a),又f(1)>f(-1),故只需比较f(0)与f(1),f(-1)与f(a)的大小.因为f(0)-f(1)=32a-1>0,所以f(x)的最大值为f(0)=b,所以b=1.又因为f (-1)-f (a )=12(a +1)2(a -2)<0,所以f (x )的最小值为f (-1)=-1-32a +b=-32a ,所以-32a =-62,所以a =63.故所求函数的解析式是f (x )=x 3-62x 2+1. [探究共研型]如图1-3-6为y =f (x图1-3-6探究1 观察[a ,b ]上函数y =f (x )的图象,试找出它的极大值、极小值. 【提示】 f (x 1),f (x 3)为函数的极大值,f (x 2),f (x 4)为函数的极小值. 探究2结合图象判断,函数y =f (x )在区间[a ,b ]上是否存在最大值,最小值?若存在,分别为多少?【提示】 存在.f (x )最小值=f (a ),f (x )最大值=f (x 3).探究3 函数y =f (x )在[a ,b ]上的最大(小)值一定是其极值吗? 【提示】 不一定.也可能是区间端点的函数值.设函数f (x )=tx 2+2t 2x +t -1(x ∈R ,t >0). (1)求f (x )的最小值h (t );(2)若h (t )<-2t +m 对t ∈(0,2)恒成立,求实数m 的取值范围.【精彩点拨】(1)利用配方法,即可求出二次函数f(x)的最小值h(t);(2)构造函数g(t)=h(t)-(-2t+m),只需使g(t)在(0,2)上的最大值小于零即可求得m的取值范围.【自主解答】(1)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0),∴当x=-t时,f(x)取最小值f(-t)=-t3+t-1,即h(t)=-t3+t-1.(2)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:单调递增单调递减∴g(t)在(0,2)h(t)<-2t+m在(0,2)内恒成立等价于g(t)<0在(0,2)内恒成立,即等价于1-m<0.∴m的取值范围为(1,+∞).1.涉及到不等式恒成立、不等式能成立的问题时,一般需转化为函数最值来解决.若不等式中含参数,则可考虑分离参数,以求避免分类讨论.2.不等式恒成立、能成立常见的转化策略(1)a>f(x)恒成立⇔a>f(x)最大值,a<f(x)恒成立⇔a<f(x)最小值;(2)f(x)>g(x)+k恒成立⇔k<[f(x)-g(x)]最小值;(3)f(x)>g(x)恒成立⇔f(x)最小值>g(x)最大值;(4)a>f(x)能成立⇔a>f(x)最小值,a<f(x)能成立⇔a<f(x)最大值.[再练一题]3.上例(2)若改为“存在t∈[0,2],使h(t)<-2t+m成立”,则实数m的取值范围如何求解?【解】令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:单调 递增单调递减存在t ∈[0,2],使h (t )<-2t +m 成立, 等价于g (t )的最小值g (2)<0. ∴-3-m <0,∴m >-3,所以实数m 的取值范围为(-3,+∞).[构建·体系]1.函数y =x -sin x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤π2,π的最大值是________.【解析】 ∵y ′=1-cos x ≥0,∴y =x -sin x 在⎣⎢⎢⎡⎦⎥⎥⎤π2,π上是增函数,∴y 最大值=π.【答案】 π2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是________.【导学号:01580017】【解析】 f ′(x )=3x 2-6x =3x (x -2). 令f ′(x )=0得x 1=0,x 2=2(舍去). 当x ∈[-1,0)时,f ′(x )>0,f (x )递增; 当x ∈(0,1],f ′(x )<0,f (x )递减; ∴x =0时,f (x )取最大值2. 【答案】 23.函数f (x )=12e x(sin x +cos x )在区间⎣⎢⎢⎡⎦⎥⎥⎤0,π2上的值域为________ .【解析】 ∵x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,∴f ′(x )=e x cos x ≥0,∴f (0)≤f (x )≤f ⎝ ⎛⎭⎪⎪⎫π2,即12≤f (x )≤12·e π2.【答案】 ⎣⎢⎢⎡⎦⎥⎥⎤12,12e π24.已知函数f (x )=m ⎝ ⎛⎭⎪⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值范围是________.【解析】 由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x ,即m 2<ln xx 在[1,e]上有解,令h (x )=ln xx ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )≥h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,2e .【答案】 ⎝⎛⎦⎥⎥⎤-∞,2e5.已知a 为实数,f (x )=(x 2-4)·(x -a ). (1)求导数f ′(x );(2)若f ′(-1)=0,求f (x )在[-2,2]上的最大值和最小值. 【解】 (1)由原式得f (x )=x 3-ax 2-4x +4a , ∴f ′(x )=3x 2-2ax -4. (2)由f ′(-1)=0,得a =12,此时有f (x )=(x 2-4)·⎝ ⎛⎭⎪⎪⎫x -12,f ′(x )=3x 2-x -4.由f ′(x )=0,得x =43或x =-1.又f ⎝ ⎛⎭⎪⎪⎫43=-5027,f (-1)=92,f (-2)=0,f (2)=0,∴f (x )在[-2,2]上的最大值为92,最小值为-5027.我还有这些不足:(1)_______________________________________________ (2)_______________________________________________ 我的课下提升方案:(1)_______________________________________________ (2)_______________________________________________。
高中数学 3.3.3最大值与最小值同步练习(含解析)苏教版高二选修1-1数学试题
3.3.3 最大值与最小值课时目标 1.理解函数最值的概念.2.了解函数最值与极值的区别和联系.3.会用导数求在给定区间上不超过三次的多项式函数的最大值、最小值.1.最大值:如果在函数定义域I 内存在x 0,使得对任意的x ∈I ,总有_____________,则称f (x 0)为函数在______________的最大值.2.一般地,如果在区间[a ,b ]上的函数的图象是一条连续不断的曲线,那么f (x )必有最大值和最小值.此性质包括两个条件:(1)给定函数的区间是闭区间;(2)函数图象在区间上的每一点必须连续不间断.函数的最值是比较整个定义域的函数值得出的,函数的极值是比较极值点附近的函数值得到的.3.一般地,求f (x )在[a ,b ]上的最大值与最小值的步骤如下: (1)求f (x )在(a ,b )上的________;(2)将(1)中求得的极值与f (a ),f (b )比较,得到f (x )在区间[a ,b ]上的最大值与最小值.一、填空题1.给出下列四个命题:①若函数f (x )在[a ,b ]上有最大值,则这个最大值一定是[a ,b ]上的极大值; ②若函数f (x )在[a ,b ]上有最小值,则这个最小值一定是[a ,b ]上的极小值; ③若函数f (x )在[a ,b ]上有最值,则最值一定在x =a 或x =b 处取得; ④若函数f (x )在(a ,b )内连续,则f (x )在(a ,b )内必有最大值与最小值. 其中真命题共有________个.2.函数f (x )=x (1-x 2)在[0,1]上的最大值为______.3.已知函数f (x )=ax 3+c ,且f ′(1)=6,函数在[1,2]上的最大值为20,则c =________.4.若函数f (x )、g (x )在区间[a ,b ]上可导,且f ′(x )>g ′(x ),f (a )=g (a ),则在区间[a ,b ]上有f (x )与g (x )的大小关系为____________.5.已知函数y =-x 2-2x +3在[a,2]上的最大值为154,则a =________.6.函数f (x )=ln x -x 在(0,e]上的最大值为________.7.函数f (x )=12e x (sin x +cos x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.8.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值、最小值分别为M 、N ,则M -N 的值为________. 二、解答题9.求下列各函数的最值.(1)f (x )=12x +sin x ,x ∈[0,2π];(2)f (x )=x 3-3x 2+6x -2,x ∈[-1,1].10.已知f (x )=x 3-x 2-x +3,x ∈[-1,2],f (x )-m <0恒成立,某某数m 的取值X 围.能力提升11.设函数f (x )=12x 2e x.(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,某某数m 的取值X 围.12.若f (x )=ax 3-6ax 2+b ,x ∈[-1,2]的最大值为3,最小值是-29,求a 、b 的值.1.求闭区间上函数的最值也可直接求出端点函数值和导数为零时x对应的函数值,通过比较大小确定函数的最值.2.在求解与最值有关的函数综合问题时,要发挥导数的解题功能,同时也要注意对字母的分类讨论;而有关恒成立问题,一般是转化为求函数的最值问题.3.可以利用导数的实际意义,建立函数模型,解决实际生活中的最大值最小值问题.3.3.3 最大值与最小值知识梳理1.f(x)≤f(x0) 定义域上3.(1)极值作业设计 1.0解析 因为函数的最值可以在区间[a ,b ]的两端取得,也可以在内部取得,当最值在端点处取得时,其最值就一定不是极值,故命题①与②不真.由于最值可以在区间内部取得,故命题③也不真.对于命题④,我们只要考虑在(a ,b )内的单调函数,它在(a ,b )内必定无最值(也无极值),因此命题④也不真.综上所述,四个命题均不真. 2.239解析 ∵f (x )=x -x 3,∴f ′(x )=1-3x 2,令f ′(x )=0,得x =±33,∵f (0)=0,f (1)=0,f ⎝⎛⎭⎪⎫33=239,f ⎝ ⎛⎭⎪⎫-33=-239. ∴f (x )max =239.3.4解析 ∵f ′(x )=3ax 2,∴f ′(1)=3a =6,∴a =2.当x ∈[1,2]时,f ′(x )=6x 2>0,即f (x )在[1,2]上是增函数,∴f (x )max =f (2)=2×23+c =20,∴c =4. 4.f (x )≥g (x )解析 ∵f ′(x )>g ′(x ),∴f (x )-g (x )单调递增. ∵x ≥a ,∴f (x )-g (x )≥f (a )-g (a ), 即f (x )-g (x )≥0.5.-12解析 y ′=-2x -2,令y ′=0,得x =-1.当a ≤-1时,最大值为f (-1)=4,不合题意.当-1<a <2时,f (x )在[a,2]上单调递减,最大值为f (a )=-a 2-2a +3=154,解得a =-12或a =-32(舍去).6.-1解析 f ′(x )=1x -1=1-xx,令f ′(x )>0得0<x <1,令f ′(x )<0得x <0或x >1,∴f (x )在(0,1]上是增函数,在(1,e]上是减函数. ∴当x =1时,f (x )有最大值f (1)=-1.7. 211,22e π⎡⎤⎢⎥⎣⎦解析 ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴f ′(x )=e xcos x ≥0,∴f (0)≤f (x )≤f ⎝ ⎛⎭⎪⎫π2.即12≤f (x )≤122e π.8.20解析 f ′(x )=3x 2-3,令f ′(x )=0, 得x =1,(x =-1舍去).∵f (0)=-a ,f (1)=-2-a ,f (3)=18-a . ∴M =18-a ,N =-2-a .∴M -N =20.9.解 (1)f ′(x )=12+cos x .令f ′(x )=0,又∵0≤x ≤2π,∴x =2π3或x =4π3.∴f ⎝ ⎛⎭⎪⎫2π3=π3+32,f ⎝ ⎛⎭⎪⎫4π3=2π3-32,又∵f (0)=0,f (2π)=π.∴当x =0时,f (x )有最小值f (0)=0, 当x =2π时,f (x )有最大值f (2π)=π.(2)f ′(x )=3x 2-6x +6=3(x 2-2x +2)=3(x -1)2+3,∵f ′(x )在[-1,1]内恒大于0, ∴f (x )在[-1,1]上为增函数. 故x =-1时,f (x )最小值=-12; x =1时,f (x )最大值=2.即f (x )在[-1,1]上的最小值为-12,最大值为2. 10.解 由f (x )-m <0,即m >f (x )恒成立, 知m >f (x )max ,f ′(x )=3x 2-2x -1,令f ′(x )=0,解得x =-13或x =1.因为f (-13)=8627,f (1)=2,f (-1)=2,f (2)=5. 所以f (x )的最大值为5,故m 的取值X 围为(5,+∞).11.解 (1)f ′(x )=x e x+12x 2e x =e x2x (x +2).由ex 2x (x +2)>0,解得x >0或x <-2, ∴(-∞,-2),(0,+∞)为f (x )的增区间, 由ex 2x (x +2)<0,得-2<x <0, ∴(-2,0)为f (x )的减区间.∴f (x )的单调增区间为(-∞,-2),(0,+∞); 单调减区间为(-2,0).(2)令f ′(x )=0,得x =0或x =-2,∵f (-2)=2e 2,f (2)=2e 2,f (0)=0,∴f (x )∈[0,2e 2],又∵f (x )>m 恒成立,∴m <0. 故m 的取值X 围为(-∞,0).12.解 ∵f (x )=ax 3-6ax 2+b ,∴f ′(x )=3ax 2-12ax .令f ′(x )=0,解得x =0或4. ∵4D ∈/[-1,2],故舍去,∴f (x )取最大值,最小值的点在x =-1、0、2上取得,f (-1)=-7a +b ,f (0)=b , f (2)=-16a +b .当a >0时,最大值为b =3, 最小值为-16a +b =-29,解得⎩⎪⎨⎪⎧a =2,b =3,当a <0时,最大值为-16a +b =3,b =-29, 解得⎩⎪⎨⎪⎧a =-2b =-29,综上所述:⎩⎪⎨⎪⎧a =2b =3或⎩⎪⎨⎪⎧a =-2b =-29.§3.4 导数在实际生活中的应用课时目标 通过用料最省、利润最大、效率最高等优化问题,使学生体会导数在解决实际问题中的作用,会利用导数解决简单的实际生活中的最值问题.1.解决实际应用问题时,要把问题中所涉及的几个变量转化成函数关系,这需通过分析、联想、抽象和转化完成.函数的最值要由极值和端点的函数值确定,当定义域是开区间,而且其上有惟一的极值,则它就是函数的最值. 2.解决优化问题的基本思路是:上述解决优化问题的过程是一个典型的数学建模的过程.一、填空题1.随着人们生活水平的提高,汽车的拥有量越来越多,据有关统计数据显示,从上午6点到9点,车辆通过某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似表示为y =-18t 3-34t 2+36t -6294.则在这段时间内,通过该路段用时最多的时刻是________. 2.若底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为________. 3.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为________ cm.4.某厂生产某种产品x 件的总成本:C (x )=1 200+275x 3,又产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为________件. 5.如图所示,一窗户的上部是半圆,下部是矩形,如果窗户面积一定,窗户周长最小时,x 与h 的比为________.6.某公司生产某种产品,固定成本为20 000元,每生产一件产品成本增加100元,已知总收益R 与年产量x 的关系式为R =⎩⎪⎨⎪⎧400x -12x 2 0≤x ≤400,80 000 x >400.则总利润最大时,每年生产的产品件数是________.7.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元.那么,要使这两项费用之和最小,仓库应建在离车站________千米处.8.做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为________. 二、解答题9.某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因素.记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?10.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,0≤x ≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件. (1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?能力提升 11.某单位用2 160万元购得一块空地,计划在该块地上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)12.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,求产量q 为何值时,利润L 最大.利用导数解决生活中的优化问题的一般步骤.(1)分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)写出答案.§3.4 导数在实际生活中的应用作业设计 1.8解析 由题意知,所求的量为当y 为最大值时的自变量t 的取值,y ′=-38t 2-32t +36,令y ′=0,得3t 2+12t -36×8=0, ∴t 1=8,t 2=-12(舍).当t ∈(6,8)时.y ′>0,t ∈(8,9)时,y ′<0, 所以t =8时,y 有最大值.2.34V解析 设底面边长为a ,直三棱柱高为h .体积V =34a 2h ,所以h =4V3a 2, 表面积S =2·34a 2+3a ·4V 3a2=32a 2+43Va , S ′=3a -43V a2,由S ′=0,得a =34V . 当a =34V 时,表面积最小. 3.2033解析 设高为x cm ,则底面半径为202-x 2cm ,体积V =π3x ·(202-x 2) (0<x <20),V ′=π3(400-3x 2),由V ′=0,得x =2033或x =-2033(舍去).当x ∈⎝ ⎛⎭⎪⎫0,2033时,V ′>0,当x ∈⎝ ⎛⎭⎪⎫2033,20时,V ′<0,所以当x =2033时,V 取最大值. 4.25解析 设产品单价为a 元,又产品单价的平方与产品件数x 成反比,即a 2x =k ,由题知k =250 000,则a 2x =250 000,所以a =500x.总利润y =500x -275x 3-1 200 (x >0),y ′=250x -225x 2,由y ′=0,得x =25,x ∈(0,25)时,y ′>0,x ∈(25,+∞)时,y ′<0,所以x =25时,y 取最大值. 5.1∶1解析 设窗户面积为S ,周长为L ,则S =π2x 2+2hx ,h =S 2x -π4x ,所以窗户周长L =πx +2x +2h =π2x +2x +S x ,L ′=π2+2-Sx 2.由L ′=0,得x =2S π+4,x ∈⎝⎛⎭⎪⎫0, 2S π+4时,L ′<0, x ∈⎝⎛⎭⎪⎫2S π+4,+∞时,L ′>0, 所以当x =2Sπ+4时,L 取最小值, 此时h x =2S -πx 24x 2=2S 4x 2-π4=π+44-π4=1. 6.300解析 设总成本为C ,则C =20 000+100x , 所以总利润 P =R -C =⎩⎪⎨⎪⎧300x -x 22-20 000 0≤x ≤400,60 000-100x x >400.P ′=⎩⎪⎨⎪⎧300-x0≤x ≤400,-100 x >400.令P ′=0,得x =300,易知当x =300时,总利润最大. 7.5解析 依题意可设每月土地占用费y 1=k 1x,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离.于是由2=k 110,得k 1=20;由8=10k 2,得k 2=45.因此两项费用之和为y =20x +4x 5,y ′=-20x 2+45,令y ′=-20x 2+45=0得x =5(x =-5舍去),经验证,此点即为最小值点.故当仓库建在离车站5千米处时,两项费用之和最小. 8.3解析 设半径为r ,则高h =27ππr 2=27r2.∴水桶的全面积S (r )=πr 2+2πr ·27r2=πr 2+54πr.S ′(r )=2πr -54πr2,令S ′(r )=0,得r =3.∴当r =3时,S (r )最小.9.解 (1)设需新建n 个桥墩,则(n +1)x =m ,即n =mx-1 (0<x <m ),所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+mx (2+x )x=256m x+m x +2m -256 (0<x <m ).(2)由 (1)知,f ′(x )=-256m x 2+12m 12x -=m 2x 2(32x -512).令f ′(x )=0,得32x =512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数;当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数,所以f (x )在x =64处取得最小值,此时n =m x -1=64064-1=9. 故需新建9个桥墩才能使y 最小.10.解 (1)设商品降低x 元时,多卖出的商品件数为kx 2,若记商品在一个星期的销售利润为f (x ),则依题意有f (x )=(30-x -9)·(432+kx 2)=(21-x )·(432+kx 2),又由已知条件24=k ·22,于是有k =6,所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,30].(2)根据(1),有f ′(x )=-18x 2+252x -432=-18(x -2)(x -12).当x 变化时,f (x )与f ′(x )的变化情况如下表:故x =12时,f (x )达到极大值.因为f (0)=9 072,f (12)=11 664,所以定价为30-12=18(元)能使一个星期的商品销售利润最大.11.解 设楼房每平方米的平均综合费用为f (x )元,则f (x )=(560+48x )+2 160×10 0002 000x=560+48x +10 800x(x ≥10,x ∈N *), f ′(x )=48-10 800x2,令f ′(x )=0得x =15. 当x >15时,f ′(x )>0;当0<x <15时,f ′(x )<0.因此,当x =15时,f (x )取最小值f (15)=2 000.所以为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.12.解 收入R =q ·p =q ⎝⎛⎭⎪⎫25-18q =25q -18q 2. 利润L =R -C =⎝⎛⎭⎪⎫25q -18q 2-(100+4q ) =-18q 2+21q -100 (0<q <200), L ′=-14q +21, 令L ′=0,即-14q +21=0,解得q =84. 因为当0<q <84时,L ′>0;当84<q <200时,L ′<0,所以当q =84时,L 取得最大值.所以产量q为84时,利润L最大.。
九年级数学最大值、最小值问题
通过代入原题、反证法等方式 检验答案的正确性。
避免常见错误
01
02
忽视题目中的限制条件, 导致答案不符合题意。
计算错误,如加减乘除 运算错误、开方运算错 误等。
03
理解错误,如对题意理 解不准确、对概念理解 模糊等。
04
书写不规范,如步骤跳 跃、缺少必要的说明和 推导等。
05 练习题与答案解析
基础练习题
在一个给定的范围内,一个函数 所能取到的最小的值。
实际问题中求解意义
优化问题
在实际生活中,经常需要找到某个量的最大值或最小值,以达到最优化的目的。 例如,在经济学中,生产者追求成本最小化和利润最大化;在工程学中,设计 师需要确保结构的强度和稳定性等达到最优。
决策依据
通过求解最大值、最小值问题,可以为决策者提供有力的数据支持,帮助他们 做出更加明智的决策。
利用三角形两边之和大于第三边,两 边之差小于第三边的性质求最值。
对称性质
利用对称点的性质求最值,如点到直 线的距离最短时,点关于直线对称。
不等式法
基本不等式
应用算术平均数-几何平均数不等 式(AM-GM不等式)求最值。
柯西不等式
应用柯西不等式求最值,注意等号 成立的条件。
排序不等式
对于两组数,通过排序后应用不等 式求最值。
结合函数图像,利用几何意义(如距离、面积等)来求解最值问 题。
注意定义域和值域
在求解过程中,要特别注意函数的定义域和值域,避免出现不符 合实际情况的解。
实际应用题中最值问题
理解题意并建立数学模型
认真阅读题目,理解题意,将实际问题抽象为数学模型, 明确已知条件和求解目标。
列出方程或不等式
根据已知条件和求解目标,列出相应的方程或不等式。
函数的最大值和最小值(教案与课后反思
函数的最大值和最小值教学内容:本节课主要讲解函数的最大值和最小值的概念,以及如何求解函数的最大值和最小值。
教学目标:1. 理解函数的最大值和最小值的概念。
2. 学会使用图像法求解函数的最大值和最小值。
3. 学会使用导数法求解函数的最大值和最小值。
教学准备:1. 教学课件。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入函数的最大值和最小值的概念。
2. 举例说明函数的最大值和最小值的意义。
二、函数的最大值和最小值的概念(10分钟)1. 讲解函数的最大值和最小值的定义。
2. 给出函数的最大值和最小值的判定条件。
三、图像法求解函数的最大值和最小值(10分钟)1. 讲解图像法求解函数的最大值和最小值的方法。
2. 举例说明图像法求解函数的最大值和最小值的步骤。
四、导数法求解函数的最大值和最小值(10分钟)1. 讲解导数法求解函数的最大值和最小值的方法。
2. 举例说明导数法求解函数的最大值和最小值的步骤。
五、练习题讲解(10分钟)1. 讲解练习题的解题思路。
2. 逐个解答学生提出的疑问。
教学反思:本节课通过讲解函数的最大值和最小值的概念,以及如何求解函数的最大值和最小值,使学生掌握了这一重要知识点。
在教学过程中,采用图像法和导数法两种方法进行讲解,使得学生能够更好地理解和运用。
通过练习题的讲解,巩固了学生所学的知识,并解答了学生提出的疑问。
总体来说,本节课的教学效果较好,学生对函数的最大值和最小值的概念和求解方法有了较为深入的理解。
但在教学过程中,仍需注意引导学生主动思考和探索,提高学生的学习兴趣和参与度。
六、案例分析:实际问题中的最大值和最小值(10分钟)1. 引入实际问题,如成本最小化、收益最大化等。
2. 展示如何将实际问题转化为函数的最大值和最小值问题。
3. 引导学生运用所学的图像法和导数法解决实际问题。
七、练习与讨论:小组合作求解复杂函数的最大值和最小值(15分钟)1. 分配练习题,要求学生以小组合作的形式进行求解。
大学数学习题三答案
习题三1. 确定下列函数的单调区间: (1) 3226187y x x x =---;解:所给函数在定义域(,)-∞+∞内连续、可导,且2612186(1)(3)y x x x x '=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-∞--+∞内,y '分别取+,–,+号,故知函数在(,1],[3,)-∞-+∞内单调增加,在[1,3]-内单调减少. (2) 82 (0)y x x x=+>; 解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x'=-,则函数有驻点2x =,在部分区间(0,2]内,0y '<;在[2,)+∞内y '>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3) ln(y x =+; 解: 函数定义域为(,)-∞+∞,0y '=>,故函数在(,)-∞+∞上单调增加.(4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-∞+∞,22(1)(21)y x x '=+-,则函数有驻点: 11,2x x =-=,在1(,]2-∞内, 0y '<,函数单调减少;在1[,)2+∞内, 0y '>,函数单调增加.(5) e (0,0)n xy x n n -=>≥; 解: 函数定义域为[0,)+∞,11e e e ()n xn x x n y nxx x n x -----'=-=-函数的驻点为0,x x n ==,在[0,]n 上0y '>,函数单调增加;在[,]n +∞上0y '<,函数单调减少.(6) sin 2y x x =+;解: 函数定义域为(,)-∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪-∈-∈⎪⎩Z Z1) 当π[π,π]2x n n ∈+时, 12cos 2y x '=+,则 1π0cos 2[π,π]23y x x n n '≥⇔≥-⇔∈+;πππ0cos 2[π,π]232y x x n n '≤⇔≤-⇔∈++.2) 当π[π,π]2x n n ∈-时, 12cos 2y x '=-,则1ππ0cos 2[π,π]226y x x n n '≥⇔≤⇔∈--1π0cos 2[π,π]26y x x n n '≤⇔≥⇔∈-.综上所述,函数单调增加区间为πππ[,] ()223k k k z +∈, 函数单调减少区间为ππππ[,] ()2322k k k z ++∈. (7) 54(2)(21)y x x =-+. 解: 函数定义域为(,)-∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x '=-++-+⋅=+--函数驻点为123111,,2218x x x =-==, 在1(,]2+∞-内, 0y '>,函数单调增加,在111[,]218-上, 0y '<,函数单调减少,在11[,2]18上, 0y '>,函数单调增加, 在[2,)+∞内, 0y '>,函数单调增加. 故函数的单调区间为: 1(,]2-∞-,111[,]218-,11[,)18+∞. 2. 证明下列不等式:(1) 当π02x <<时, sin tan 2;x x x +> 证明: 令()sin tan 2,f x x x x =--则22(1cos )(cos cos 1)()cos x x x f x x -++'=,当π02x <<时, ()0,()f x f x '>为严格单调增加的函数,故()(0)0f x f >=, 即sin 2tan 2.x x x ->(2) 当01x <<时, 2e sin 1.2xx x -+<+ 证明: 令2()=e sin 12xx f x x -+--,则()=e cos x f x x x -'-+-,()=e sin 1e (sin 1)0x x f x x x --''--=-+<,则()f x '为严格单调减少的函数,故()(0)0f x f ''<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2xx x -+<+3. 试证:方程sin x x =只有一个实根.证明:设()sin f x x x =-,则()c o s 10,f x x =-≤()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根.4. 求下列函数的极值: (1) 223y x x =-+;解: 22y x '=-,令0y '=,得驻点1x =.又因20y ''=>,故1x =为极小值点,且极小值为(1)2y =. (2) 3223y x x =-;解: 266y x x '=-,令0y '=,得驻点120,1x x ==,126y x ''=-,010,0x x y y ==''''<>,故极大值为(0)0y =,极小值为(1)1y =-. (3) 3226187y x x x =--+;解: 2612186(3)(1)y x x x x '=--=-+, 令0y '=,得驻点121,3x x =-=.1212y x ''=-,130,0x x y y =-=''''<>,故极大值为(1)17y -=,极小值为(3)47y =-. (4) ln(1)y x x =-+; 解: 1101y x'=-=+,令0y '=,得驻点0x =. 201,0(1)x y y x =''''=>+,故(0)0y =为极大值. (5) 422y x x =-+;解: 32444(1)y x x x x '=-+=-, 令0y '=,得驻点1231,0,1x x x =-==.210124, 0,0,x x y x y y =±=''''''=-+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6) y x = 解: 1y '=,令0y '=,得驻点13,4x =且在定义域(,1]-∞内有一不可导点21x =,当34x >时, 0y '<;当34x <时, 0y '>,故134x =为极大值点,且极大值为35()44y =. 因为函数定义域为1x ≤,故1x =不是极值点.(7)y =;解:y '=,令0y '=,得驻点125x =.当125x >时, 0y '<;当125x <,0y '>,故极大值为12()5y =(8) 223441x x y x x ++=++;解: 2131x y x x +=+++,22(2)(1)x x y x x -+'=++, 令0y '=,得驻点122,0x x =-=.2223(22)(1)2(21)(2)(1)x x x x x x y x x --+++++''=++ 200,0x x y y =-=''''><,故极大值为(0)4y =,极小值为8(2)3y -=. (9) e cos x y x =; 解: e (cos sin )x y x x '=-, 令0y '=,得驻点ππ (0,1,2,)4k x k k =+=±± . 2e sin x y x ''=-,ππ2π(21)π440,0x k x k y y =+=++''''<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()2k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()2k k y x +++=-.(10) 1xy x =;解: 11211ln (ln )xx xy x x x x x -''==,令0y '=,得驻点e x =.当e x >时, 0y '<,当e x <时, 0y '>, 故极大值为1e(e)e y =. (11) 2e exxy -=+;解: 2e e x xy -'=-,令0y '=,得驻点ln 22x =-. ln 222e e ,0x x x y y -=-''''=+>,故极小值为ln 2()2y -=(12) 232(1)y x =--; 解: y '=,无驻点. y 的定义域为(,)-∞+∞,且y 在x =1处不可导,当x >1时0y '<,当x <1时, 0y '>,故有极大值为(1)2y =.(13) 1332(1)y x =-+; 解: y '=无驻点.y 在1x =-处不可导,但y '恒小于0,故y 无极值.(14) tan y x x =+.解: 21sec 0y x '=+>, y 为严格单调增加函数,无极值点.5. 试证明:如果函数32y ax bx cx d =+++满足条件230b ac -<,那么这函数没有极值. 证明:232y ax bx c '=++,令0y '=,得方程2320ax bx c ++=,由于 22(2)4(3)4(3)0b a c b ac ∆=-=-<,那么0y '=无实数根,不满足必要条件,从而y 无极值.6. 试问a 为何值时,函数1()sin sin 33f x a x x =+在π3x =处取得极值?它是极大值还是极小值?并求此极值. 解:f (x )为可导函数,故在π3x =处取得极值,必有 π3π0()(cos cos3)3x f a x x ='==+,得a =2. 又π3π0()(2sin 3sin 3)3x f x x =''=<=--,所以π3x =是极大值点,极大值为π()3f =7. 求下列函数的最大值、最小值:254(1) (), (,0)f x x x x=-∈-∞; 解:y 的定义域为(,0)-∞,322(27)0x y x +'==,得唯一驻点x =-3 且当(,3]x ∈-∞-时,0y '<,y 单调递减;当[3,0)x ∈-时,0y '>,y 单调递增,因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x →-∞=+∞,故f (x )无最大值.(2) ()[5,1]f x x x =∈-;解:10y '==,在(5,1)-上得唯一驻点34x =,又53,(1)1,(5)544y y y ⎛⎫==-= ⎪⎝⎭ , 故函数()f x 在[-5,1]上的最大值为545. 42(3) 82, 13y x x x =-+-≤≤.解:函数在(-1,3)中仅有两个驻点x =0及x =2,而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11, 故在[-1,3]上,函数的最大值是11,最小值为-14. 8. 设a 为非零常数,b 为正常数,求y =ax 2+bx 在以0和ba为端点的闭区间上的最大值和最小值.解:20y ax b '=+=得2b x a =-不可能属于以0和ba为端点的闭区间上, 而 22(0)0,b b y y a a ⎛⎫==⎪⎝⎭,故当a >0时,函数的最大值为22b b y a a ⎛⎫= ⎪⎝⎭,最小值为(0)0y =;当a <0时,函数的最大值为(0)0y =,最小值为22b b y a a ⎛⎫= ⎪⎝⎭.9.求数列1000n ⎧⎫⎨⎬+⎩⎭的最大的项.解:令1000y x =+,y '=== 令0y '=得x =1000.因为在(0,1000)上0y '>,在(1000,)+∞上0y '<,所以x =1000为函数y的极大值点,也是最大值点,max (1000)2000y y ==.故数列1000n ⎧⎫⎨⎬+⎩⎭的最大项为10002000a =.10. 已知a >0,试证:11()11f x x x a=+++-的最大值为21a a ++. 证明: 11,01111(),01111,11x x x a f x x a x x a x a x x a ⎧+<⎪--+⎪⎪=+≤≤⎨+-+⎪⎪+>⎪++-⎩当x <0时,()()2211()011f x x x a '=+>--+;当0<x <a 时,()()2211()11f x x x a '=-++-+;此时令()0f x '=,得驻点2ax =,且422a f a⎛⎫= ⎪+⎝⎭, 当x >a 时,()()2211()011f x x x a '=--<++-,又lim ()0x f x →∞=,且2(0)()1af f a a+==+. 而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得故 {}max 242(),,0121a af x a a a++==+++. 11. 在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高.解:设圆柱体的高为h ,223πππ4V h r h h =⋅=-令0V '=,得.h =时,其体积为最大. 12. 某铁路隧道的截面拟建成矩形加半圆形的形状(如12题图所示),设截面积为am 2,问底宽x 为多少时,才能使所用建造材料最省? 解:由题设知21π22x xy a ⎛⎫+⋅= ⎪⎝⎭得 21π18π8a x a y x x x -==-截面的周长212112π()2πππ,2424π2()1,4a a l x x y x x x x x x x x al x x=++⋅=+-+=++'=+-令()0l x '=得唯一驻点x =,即为最小值点.即当x =. 13. 甲、乙两用户共用一台变压器(如13题图所示),问变压器设在输电干线AB 的何处时,所需电线最短? 解:所需电线为()(03)()L x x L x =<<'=在0<x <3得唯一驻点x =1.2(km),即变压器设在输电干线离A 处1.2km 时,所需电线最短. 14. 在边长为a 的一块正方形铁皮的四个角上各截出一个小正方形,将四边上折焊成一个无盖方盒,问截去的小正方形边长为多大时,方盒的容积最大? 解:设小正方形边长为x 时方盒的容积最大.232222(2)44128V a x x x ax a x V x ax a=-⋅=-+'=-+令0V '=得驻点2a x =(不合题意,舍去),6a x =. 即小正方形边长为6a时方盒容积最大. 15. 判定下列曲线的凹凸性:(1) y =4x -x 2;解:42,20y x y '''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的.(2) y =sinh x ;解:cosh ,sinh .y x y x '''==由sinh x 的图形知,当(0,)x ∈+∞时,0y ''>,当(,0)x ∈-∞时,0y ''<, 故y =sinh x 的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x x x =+> ;解:23121,0y y x x'''=-=>,故曲线图形在(0,)+∞是凹的.(4) y =x arctan x . 解:2arctan 1x y x x '=++,2220(1)y x ''=>+ 故曲线图形在(,)-∞+∞内是凹的.16. 求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++;解:23103y x x '=-+610y x ''=-,令0y ''=可得53x =. 当53x <时,0y ''<,故曲线在5(,)3-∞内是凸弧;当53x >时,0y ''>,故曲线在5[,)3+∞内是凹弧.因此520,327⎛⎫ ⎪⎝⎭是曲线的唯一拐点.(2) y =x e -x;解:(1)e , e (2)xxy x y x --'''=-=-令0y ''=,得x =2当x >2时,0y ''>,即曲线在[2,)+∞内是凹的; 当x <2时,0y ''<,即曲线在(,2]-∞内是凸的. 因此(2,2e -2)为唯一的拐点.4(3) (1)e x y x =++;解:324(1)e , e 12(1)0x x y x y x '''=++=++> 故函数的图形在(,)-∞+∞内是凹的,没有拐点.(4) y =ln (x 2+1);解:222222(1), 1(1)x x y y x x -'''==++ 令0y ''=得x =-1或x =1.当-1<x <1时,0y ''>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ''<,即在(,1],[1,)-∞-+∞内曲线是凸的. 因此拐点为(-1,ln2),(1,ln2).arctan (5) e x y =;解:arctan arctan 222112e ,e 1(1)x xx y y x x -'''==++ 令0y ''=得12x =. 当12x >时,0y ''<,即曲线在1[,)2+∞内是凸的; 当12x <时,0y ''>,即曲线在1(,]2-∞内是凹的,故有唯一拐点1arctan 21(,e)2. (6) y =x 4(12ln x -7).解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x '''=-=令0y ''=,在(0,+∞),得x =1.当x >1时,0y ''>,即曲线在[1,)+∞内是凹的; 当0<x <1时,0y ''<,即曲线在(0,1]内是凸的, 故有唯一拐点(1,-7).17. 利用函数的图形的凹凸性,证明下列不等式:()1(1) (0,0,,1)22nn n x y x y x y n x y +⎛⎫>>>≠>+ ⎪⎝⎭;证明:令 ()n f x x =12(),()(1)0n n f x nx f x n n x --'''==-> ,则曲线y =f (x )是凹的,因此,x y R +∀∈,()()22f x f y x y f ++⎛⎫<⎪⎝⎭, 即 1()22nn n x y x y +⎛⎫<+ ⎪⎝⎭.2e e (2)e ()2x yx y x y ++>≠ ;证明:令f (x )=ex()e ,()e 0x x f x f x '''==> .则曲线y =f (x )是凹的,,,x y R x y ∀∈≠则 ()()22f x f y x y f ++⎛⎫<⎪⎝⎭即 2e e e2x yx y ++<.(3) ln ln ()ln(0,0,)2x yx x y y x y x y x y ++>+>>≠ 证明:令 f (x )=x ln x (x >0)1()ln 1,()0(0)f x x f x x x'''=+=>> 则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有()()22f x f y x y f ++⎛⎫<⎪⎝⎭即 1ln (ln ln )222x y x y x x y y ++<+, 即 ln ln ()ln 2x yx x y y x y ++>+.18. 求下列曲线的拐点:23(1) ,3;x t y t t ==+解:22223d 33d 3(1),d 2d 4y t y t x t x t +-== 令22d 0d yx=,得t =1或t =-1 则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d yx >,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx<,曲线是凸的,故曲线有两个拐点(1,4),(1,-4).(2) x =2a cot θ, y =2a sin 2θ. 解:32d 22sin cos 2sin cos d 2(csc )y a x a θθθθθ⋅⋅==-⋅- 222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a aθθθθθθ=-+⋅=⋅-- 令22d 0d yx=,得π3θ=或π3θ=-,不妨设a >0tan θ>>ππ33θ-<<时,22d 0d yx >,当tan θ>tan θ<π3θ<-或π3θ>时,22d 0d yx<,故当参数π3θ=或π3θ=-时,都是y 的拐点,且拐点为3,32a ⎛⎫ ⎪⎝⎭及3,32a ⎛⎫- ⎪⎝⎭. 19. 试证明:曲线211x y x -=+有三个拐点位于同一直线上. 证明:22221(1)x x y x -++'=+,y ''=令0y ''=,得1,22x x x =-==当(,1)x ∈-∞-时,0y ''<;当(1,2x ∈-时0y ''>;当(2x ∈时0y ''<;当(2)x ∈+∞时0y ''>,因此,曲线有三个拐点(-1,-1),11(2)44---. 因为111212--+因此三个拐点在一条直线上.20. 问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点?解:y ′=3ax 2+2bx , y ″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得 39,22a b =-=. 21. 试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上.解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0 可解得a =1,b =-3,c =-24,d =16.22. 试决定22(3)y k x =-中的k 的值,使曲线的拐点处的法线通过原点. 解:224(3),12(1)y kx x y k x '''=-=- 令0y ''=,解得x =±1,代入原曲线方程得y =4k , 只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±'=±,那么拐点处的法线斜率等于18k,法线方程为18y x k=. 由于(1,4k ),(-1,4k )在此法线上,因此148k k=±, 得22321, 321k k ==-(舍去) 故k ==. 23. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数,如果00()0,()0f x f x '''==,而0()0f x '''≠,试问x =x 0是否为极值点?为什么?又00(,())x f x 是否为拐点?为什么?答:因00()()0f x f x '''==,且0()0f x '''≠,则x =x 0不是极值点.又在0(,)U x δ中,000()()()()()()f x f x x x f x x f ηη''''''''''=+-=-,故()f x ''在0x 左侧与0()f x '''异号,在0x 右侧与0()f x '''同号,故()f x 在x =x 0左、右两侧凹凸性不同,即00(,())x f x 是拐点.24. 作出下列函数的图形:2(1)()1xf x x =+; 解:函数的定义域为(-∞,+∞),且为奇函数,2222222223121(1)(1)2(3)(1)x x x y x x x x y x +--'==++-''=+令0y '=,可得1x =±, 令0y ''=,得x =0,当→∞时,→0,故=0是一条水平渐近线.函数有极大值1(1)2f =,极小值1(1)2f -=-,有3个拐点,分别为,⎛ ⎝(0,0), 4⎭,作图如上所示.(2) f (x )=x -2arctan x解:函数定义域为(-∞,+∞),且为奇函数,2222114(1)y x xy x '=-+''=+ 令y ′=0,可得x =±1, 令y ″=0,可得x =0. 列表讨论如下:又()2limlim(1arctan )1x x f x x x x→∞→∞=-= 且 lim [()]lim (2arctan )πx x f x x x →+∞→+∞-=-=-故πy x =-是斜渐近线,由对称性知πy x =+亦是渐近线.函数有极小值π(1)12y =-,极大值π(1)12y -=-.(0,0)为拐点.作图如上所示. 2(3) ()1x f x x=+;解:函数的定义域为,1x R x ∈≠-.22232(1)(2)(1)(1)(1)2(1)x x x x x y x x xy x +-+'==≠-++''=+令0y '=得x =0,x =-2当(,2]x ∈-∞-时,0,()y f x '>单调增加; 当[2,1)x ∈--时,0,()y f x '<单调减少; 当(1,0]x ∈-时,0,()y f x '<单调减少; 当[0,)x ∈+∞时,0,()y f x '>单调增加, 故函数有极大值f (-2)=-4,有极小值f (0)=0又211lim ()lim1x x x f x x →-→-==∞+,故x =-1为无穷型间断点且为铅直渐近线. 又因()lim 1x f x x →∞=, 且2lim(())lim 11x x x f x x x x →∞→∞⎡⎤-==--⎢⎥+⎣⎦, 故曲线另有一斜渐近线y =x -1.综上所述,曲线图形为:(4)2(1)e x y --=.解:函数定义域为(-∞,+∞) .22(1)(1)22(1)e e2(241)x x y x y x x ----'=--''=⋅-+令0y '=,得x =1.令0y ''=,得1x =±当(,1]x ∈-∞时,0,y '>函数单调增加; 当[1,)x ∈+∞时,0,y '<函数单调减少;当(,1[1)x ∈-∞++∞ 时,0y ''>,曲线是凹的;当[1x ∈-时,0y ''<,曲线是凸的, 故函数有极大值f (1)=1,两个拐点:1122(1),(1)22A B ---+, 又lim ()0x f x →∞=,故曲线有水平渐近线y =0.图形如下:25. 逻辑斯谛(Logistic)曲线族,,,,01e cxAy x A B C B -=-∞<<+∞>+建立了动物的生长模型.(1) 画出B =1时的曲线()1ecxAg x -=+的图像,参数A 的意义是什么(设x 表示时间,y 表示某种动物数量)?解:2e ()0(1e )cxcx Ac g x --'=>+,g (x )在(-∞,+∞)内单调增加,222244e e 2(1e )e e (1e )()(1e )(1e )cx cx cx cx cx cx cx cx Ac Ac Ac g x ---------+⋅+⋅--''==++ 当x >0时,()0,()g x g x ''<在(0,+∞)内是凸的. 当x <0时,()0,()g x g x ''>在(-∞,0)内是凹的. 当x =0时,()2A g x =.且lim ()0,lim ()x x g x g x A →-∞→+∞==.故曲线有两条渐近线y =0,y =A .且A 为该种动物数量(在特定环境中)最大值,即承载容量.如图:(2) 计算g (-x )+g (x ),并说明该和的意义;解:()()1e 1ecx cxA Ag x g x A --+=+=++. (3) 证明:曲线1e cxAy B -=+是对g (x )的图像所作的平移.证明:∵()1e 1e e c x T cx cTA Ay B B -+--==++取e1cTB -=,得ln BT c=即曲线1e cxA yB -=+是对g (x )的图像沿水平方向作了ln BT c=个单位的平移. 26. 球的半径以速率v 改变,球的体积与表面积以怎样的速率改变? 解: 324d π,π,.3d rV r A r v t=== 2d d d 4πd d d d d d 8πd d d V V r r v t r tA A r r v t r t=⋅=⋅=⋅=⋅27. 一点沿对数螺线e a r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率. 解:d d de e .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅= 28. 一点沿曲线2cos r a ϕ=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率.解: 22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t ty y a a t tϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅-⋅=-=⋅=⋅=29. 椭圆22169400x y +=上哪些点的纵坐标减少的速率与它的横坐标增加的速率相同? 解:方程22169400x y +=两边同时对t 求导,得d d 32180d d x yx y t t⋅+⋅= 由d d d d x y t t -=. 得 161832,9y x y x == 代入椭圆方程得:29x =,163,.3x y =±=±即所求点为1616,3,3,33⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭. 30. 一个水槽长12m ,横截面是等边三角形,其边长为2m ,水以3m 3·min -1的速度注入水槽内,当水深0.5m 时,水面高度上升多快? 解:当水深为h 时,横截面为212s h ==体积为22212V sh '====d d 2d d V h h t t=⋅ 当h =0.5m 时,31d 3m min d Vt-=⋅. 故有d 320.5d ht=⋅,得d d h t =3·min -1). 31. 某人走过一桥的速度为4km ·h -1,同时一船在此人底下以8 km ·h-1的速度划过,此桥比船高200m ,求3min 后,人与船相离的速度. 解:设t 小时后,人与船相距s 公里,则d d s s t ===且120d 8.16d t st ==≈ (km ·h -1)32. 一动点沿抛物线y =x 2运动,它沿x 轴方向的分速度为3 cm ·s -1,求动点在点(2,4)时,沿y 轴的分速度. 解: d d d 236.d d d y y xx x t x t=⋅=⋅= 当x =2时,d 6212d yt=⨯= (cm ·s -1). 33. 设一路灯高4 m ,一人高53m ,若人以56 m ·min -1的等速沿直线离开灯柱,证明:人影的长度以常速增长.证明:如图,设在t 时刻,人影的长度为y m.则 53456yy t=+化简得 d 7280,40,40d yy t y t t===(m ·min -1). 即人影的长度的增长率为常值.34. 计算抛物线y =4x -x 2在它的顶点处的曲率.解:y =-(x -2)2+4,故抛物线顶点为(2,4)当x =2时, 0,2y y '''==- ,故 23/2 2.(1)y k y ''=='+35. 计算曲线y =cosh x 上点(0,1)处的曲率.解:sinh ,cosh .y x y x '''==当x =0时,0,1y y '''== ,故 23/2 1.(1)y k y ''=='+36. 计算正弦曲线y =sin x 上点π,12⎛⎫ ⎪⎝⎭处的曲率.解:cos ,sin y x y x '''==- . 当π2x =时,0,1y y '''==- ,故 23/2 1.(1)y k y ''=='+37. 求曲线y =ln(sec x )在点(x ,y )处的曲率及曲率半径.解:2tan ,sec y x y x '''==故 223/223/2sec cos (1)(1tan )y xk x y x ''==='++1sec R x k ==.38. 求曲线x =a cos 3t ,y = a sin 3t 在t =t 0处的曲率.解: 22d d 3sin cos d tan d d 3cos sin d yy a t tt t x x a t t t===--,22224d d d(tan )1sec 1(tan )d d d d 3cos sin 3sin cos d y t t t x x x t a t t a t t t--=-=⋅==-,故 423/2123sin cos [1(tan )]3sin 2a t t k t a t ==+-且当t =t 0时, 023sin 2k a t =. 39. 曲线弧y =sin x (0<x <π)上哪一点处的曲率半径最小?求出该点的曲率半径. 解:cos ,sin y x y x '''==- .23/223/2(1cos )1sin ,sin (1cos )x x R k x R x +===+ 显然R 最小就是k 最大, 225/22cos (1sin )(1cos )x x k x +'=+ 令0k '=,得π2x =为唯一驻点. 在π0,2⎛⎫ ⎪⎝⎭内,0k '>,在π,π2⎛⎫ ⎪⎝⎭内,0k '<. 所以π2x =为k 的极大值点,从而也是最大值点,此时最小曲率半径为 23/2π2(1cos )1sin x x R x=+==. 40. 求曲线y =ln x 在与x 轴交点处的曲率圆方程.解:由ln 0y x y =⎧⎨=⎩解得交点为(1,0).1112111,1 1.x x x x y x y x ===='==''=-=- 故曲率中心 212(1,0)(1)312x y y x y y y y αβ=⎧''⎡⎤+==-⎪⎢⎥''⎣⎦⎪⎨'⎡⎤+⎪==-+⎢⎥⎪''⎣⎦⎩曲率半径为R =故曲率圆方程为:22(3)(2)8x y -++=.41. 一飞机沿抛物线路径210000x y =( y 轴铅直向上,单位为m )做俯冲飞行,在坐标原点O 处飞机速度v =200 m ·s -1,飞行员体重G =70kg ,求飞机俯冲至最低点即原点O 处时,座椅对飞行员的反力. 解:0010,5000x x y y =='''== , 23/2(1)5000y R y '+==''飞行员在飞机俯冲时受到的向心力22702005605000mv F R ⋅=== (牛顿) 故座椅对飞行员的反力560709.81246F =+⨯= (牛顿).42. 设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡?解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=- 令()0L q '=,得650q =即为获得最大利润时的产量.(3) 盈亏平衡时: R (q )=C (q )即 3.9q -0.003q 2-300=0q 2-1300q +100000=0解得q =1218(舍去),q =82.43. 设生产q 件产品的总成本C (q )由下式给出:C (q )=0.01q 3-0.6q 2+13q .(1)设每件产品的价格为7元,企业的最大利润是多少?(2)当固定生产水平为34件时,若每件价格每提高1元时少卖出2件,问是否应该提高价格?如果是,价格应该提高多少?解:(1) 利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q qL q q q =-+-=-+-'=-+- 令()0L q '=,得 231206000q q -+=即 2402000q q -+=得20q =-舍去) 2034.q =+≈此时, 32(34)0.01340.63463496.56L =-⨯+⨯-⨯=(元)(2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+--=-++令()0L x '=, 得5x =(5)121.5696.56L =>故应该提高价格,且应提高5元.44. 求下列初等函数的边际函数、弹性和增长率:(1) y =ax +b ;(其中a ,b ∈R ,a ≠0)解:y ′=a 即为边际函数.弹性为:1Ey ax a x Ex ax b ax b=⋅⋅=++, 增长率为: y a ax b γ=+. (2) y =a e bx ;解:边际函数为:y ′=ab e bx弹性为: 1e ebx bx Ey ab x bx Ex a =⋅⋅=, 增长率为: e ebxy bx ab b a γ==. (3) y =x a解:边际函数为:y ′=ax a -1.弹性为: 11a a Ey ax x a Ex x-=⋅⋅=, 增长率为: 1.a y a ax a x xγ-== 45. 设某种商品的需求弹性为0.8,则当价格分别提高10%,20%时,需求量将如何变化? 解:因弹性的经济意义为:当自变量x 变动1%,则其函数值将变动%Ey Ex ⎛⎫ ⎪⎝⎭. 故当价格分别提高10%,20%时,需求量将分别提高0.8×10%=8%,0.8×20%=16%.46. 国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少? 解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.。
高中数学函数的最大值与最小值-3
延伸1:大设值32 为a1,最1 ,函小数值为f(x )6 x,3求2 3 常a数2x a,b b( . 1x1)的最
2
解:令 f(x)3x23a x0得x=0或a. 当x变化时, f (x),f(x)的变化情况如下表:
x -1
(-1,0) 0 (0,a) a (a,1) 1
f’(x)
+0-
0
令 f(x)0,解得
2 x10,x21,x32p.
在[0,1]上,有f(0)=0,f(1)=0,
f( 2 )4( p )2p, 2p 2p
故所求最大值是4( p )2 p .
2 p
四、实际应用
1.实际问题中的应用. 在日常生活、生产和科研中,常常会遇到求函数的
最大(小)值的问题.建立目标函数,然后利用导数的方法 求最值是求解这类问题常见的解题思路.
(4)如果函数不在闭区间[a,b]上可导,则在确定函 数的最值时,不仅比较该函数各导数为零的点与端 点处的值,还要比较函数在定义域内各不可导的点 处的值.
(5)在解决实际应用问题中,如果函数在区间内只 有一个极值点(这样的函数称为单峰函数),那么要根 据实际意义判定是最大值还是最小值即可,不必再 与端点的函数值进行比较.
函数的最大值与最 小值
一、复习引入
1.当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的 方法是:
①如果在x0附近的左侧 f/(x)>0 ,右侧f/(x)<0 ,那 么,f(x0)是极大值;
②如果在x0附近的左侧 f/(x)<0, 右侧f/(x)>0 ,那 么,f(x0) 是极小值. 2.导数为零的点是该点为极值点的必要条件,而不是充
+
f(x) -1-3a/2+b ↗ b ↘ -a3/2+b ↗ 1-3a/2+b
高中数学:函数的最大值练习及答案
高中数学:函数的最大值练习及答案1.函数y=kx+b在区间[1,2]上的最大值比最小值大2,则k的值为()A.2B.C.-2或2D.-22.若函数y=x2-3x-4的定义域为[0,m],值域为,则实数m的取值范围是()A. B. C. D.3.函数y=x+的最值的情况为()A.最小值为,无最大值B.最大值为,无最小值C.最小值为,最大值为2D.无最大值,也无最小值4.已知函数y=+的最大值为M,最小值为m,则的值为()A. B. C. D.5.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2-x,则当x∈(-1,0]时,f(x)的最小值为()A.-B.-C.0D.6.若函数f(x)=x+(x>2)在x=a处取得最小值,则a等于()A.1+B.1+C.3D.47.若函数y=f(x),x∈[-2,2]的图象如图所示,则该函数的最大值、最小值分别为()A.f,fB.f(0),fC.f(0),fD.f(0),f(2)8.若函数f(x)=的最小值为f(0),则实数m的取值范围是()A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]9.函数f(x)在区间[-2,5]上的图象如图所示,则此函数的最小值、最大值分别是()A.-2,f(2)B.2,f(2)C.-2,f(5)D.2,f(5)10.下列函数在[1,4]上最大值为3的是()A.y=+2B.y=3x-2C.y=x2D.y=1-x11.已知函数f(x)=,x∈[1,+∞).(1)当a=4时,求f(x)的最小值;(2)当a=时,求f(x)的最小值;(3)若a为正常数,求f(x)的最小值.12.已知函数f(x)=.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[1,4]上的最大值与最小值.13.(1)已知函数f(x)=x2-2x-3,若x∈[0,2],求函数f(x)的最值;(2)已知函数f(x)=x2-2x-3,若x∈[t,t+2],求函数f(x)的最值;(3)已知函数f(x)=x-2-3,求函数f(x)的最值.14.(1)已知函数f(x)=x4-2x2-3,求函数f(x)的最值;(2)求二次函数f(x)=x2-2ax+2在[2,4]上的最小值;(3)如图,某地要修建一个圆形的喷水池,水流在各个方向上以相同的抛物线路径落下,以水池的中央为坐标原点,水平方向为x轴、竖直方向为y轴建立平面直角坐标系.那么水流喷出的高度h(单位:m)与水平距离x(单位:m)之间的函数关系式为h=-x2+2x+,x∈[0,].求水流喷出的高度h的最大值是多少?15.函数f(x)=4x2-4ax+a2-2a+2在区间[0,2]上有最小值3,求a的值.16.函数f(x)=x2-4x-4在闭区间[t,t+1](t∈R)上的最小值记为g(t).(1)试写出g(t)的函数表达式;(2)求g(t)的最小值.17.已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R). (1)求g(a)和h(a);(2)作出g(a)和h(a)的图象,并分别指出g(a)的最小值和h(a)的最大值各为多少?18.某住宅小区为了营造一个优雅、舒适的生活环境,打算建造一个八边形的休闲花园,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成面积为200米2的十字形区域,且计划在正方形MNPK上建一座花坛,其造价为4200元/米2,在四个相同的矩形上(图中的阴影部分)铺花岗岩路面,其造价为210元/米2,并在四个三角形空地上铺草坪,其造价为80元/米2.(1)设AD的长为x米,试写出总造价Q(单位:元)关于x的函数解析式;(2)问:当x取何值时,总造价最少?求出这个最小值.19.已知函数f(x)=(x>0).(1)求证:f(x)在(0,1]上为增函数;(2)求函数f(x)的最大值和最小值.20.已知函数f(x)=+.(1)求函数f(x)的定义域和值域;(2)设F(x)=m+f(x),求函数F(x)的最大值的表达式g(m).21.已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值与最小值.答案1.函数y=kx+b在区间[1,2]上的最大值比最小值大2,则k的值为()A.2B.C.-2或2D.-2【答案】C【解析】当k>0时,y max=2k+b,y min=k+b,∴2k+b-(k+b)=2,∴k=2;当k<0时,y max=k+b,y min=2k+b,∴k+b-(2k+b)=2,∴k=-2.综上k=±2,故选C.2.若函数y=x2-3x-4的定义域为[0,m],值域为,则实数m的取值范围是()A.B.C.D.【答案】A【解析】∵f(x)=x2-3x-4=2-,∴f=-,又f(0)=-4,故由二次函数图象可知(如图):m的值最小为,最大为3,即m的取值范围是.故选A.3.函数y=x+的最值的情况为()A.最小值为,无最大值B.最大值为,无最小值C.最小值为,最大值为2D.无最大值,也无最小值【答案】A【解析】∵y=x+在定义域[,+∞)上是增函数,∴函数的最小值为,无最大值,故选A.4.已知函数y=+的最大值为M,最小值为m,则的值为()A.B.C.D.【答案】C【解析】由得函数的定义域是{x|-3≤x≤1},y2=4+2·=4+2,当x=-1时,y取得最大值M=2;当x=-3或1时,y取得最小值m=2,∴=.5.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2-x,则当x∈(-1,0]时,f(x)的最小值为()A.-B.-C.0D.【答案】A【解析】若x∈(-1,0],则x+1∈(0,1].因为当x∈(0,1]时,f(x)=x2-x,所以f(x+1)=(x+1)2-(x+1)=x2+x.又f(x+1)=2f(x),则f(x)=x2+x=2-,所以当x=-时,f(x)取得最小值-.故选A.6.若函数f(x)=x+(x>2)在x=a处取得最小值,则a等于()A.1+B.1+C.3D.4【答案】C【解析】设2<x1<x2,则f(x1)-f(x2)=-=(x2-x1).∵x2-x1>0,当-1>0时,即当2<x<3时,f(x1)-f(x2)>0,即f(x1)>f(x2),函数f(x)=x+为减函数;当x>3时,f(x1)-f(x2)<0,即f(x1)<f(x2),函数f(x)=x+为增函数,∴函数f(x)=x+在x=3处取得最小值,∴a=3.7.若函数y=f(x),x∈[-2,2]的图象如图所示,则该函数的最大值、最小值分别为()A.f,fB.f(0),fC.f(0),fD.f(0),f(2)【答案】C【解析】函数最大值对应图象中的最高点纵坐标f(0),同理,最小值对应f.8.若函数f(x)=的最小值为f(0),则实数m的取值范围是()A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]【答案】D【解析】当x≤0时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥0.当x>0时,f(x)=x++m≥2+m=2+m,当且仅当x=,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m2≤2+m,所以0≤m≤2.9.函数f(x)在区间[-2,5]上的图象如图所示,则此函数的最小值、最大值分别是()A.-2,f(2)B.2,f(2)C.-2,f(5)D.2,f(5)【答案】C【解析】由函数最值的几何意义知,当x=-2时,有最小值-2;当x=5时,有最大值f(5),故选C.10.下列函数在[1,4]上最大值为3的是()A.y=+2B.y=3x-2C.y=x2D.y=1-x【答案】A【解析】B、C在[1,4]上均为增函数,A、D在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.11.已知函数f(x)=,x∈[1,+∞).(1)当a=4时,求f(x)的最小值;(2)当a=时,求f(x)的最小值;(3)若a为正常数,求f(x)的最小值.【答案】(1)当a=4时,f(x)=x++2,易知,f(x)在[1,2]上是减函数,在[2,+∞)上是增函数,∴f(x)min=f(2)=6.(2)当a=时,f(x)=x++2.易知,f(x)在[1,+∞)上为增函数.∴f(x)min=f(1)=.(3)函数f(x)=x++2在(0,]上是减函数,在[,+∞)上是增函数.当>1,即a>1时,f(x)在区间[1,+∞)上先减后增,∴f(x)min=f()=2+2.当≤1,即0<a≤1时,f(x)在区间[1,+∞)上是增函数,∴f(x)min=f(1)=a+3.12.已知函数f(x)=.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[1,4]上的最大值与最小值.【答案】(1)函数f(x)在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,f(x1)-f(x2)=-=.∵x1-x2<0,(x1+1)(x2+1)>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数f(x)在[1,+∞)上是增函数.(2)由(1)知函数f(x)在[1,4]上是增函数,故最大值f(4)=,最小值f(1)=.13.(1)已知函数f(x)=x2-2x-3,若x∈[0,2],求函数f(x)的最值;(2)已知函数f(x)=x2-2x-3,若x∈[t,t+2],求函数f(x)的最值;(3)已知函数f(x)=x-2-3,求函数f(x)的最值.【答案】(1)∵函数f(x)=x2-2x-3开口向上,对称轴x=1,∴f(x)在[0,1]上单调递减,在[1,2]上单调递增,且f(0)=f(2).∴f(x)max=f(0)=f(2)=-3,f(x)min=f(1)=-4.(2)∵对称轴x=1,①当1≥t+2即t≤-1时,f(x)max=f(t)=t2-2t-3,f(x)min=f(t+2)=(t+2)2-2(t+2)-3=t2+2t-3.②当≤1<t+2,即-1<t≤0时,f(x)max=f(t)=t2-2t-3,f(x)min=f(1)=-4.③当t≤1<,即0<t≤1时,f(x)max=f(t+2)=t2+2t-3,f(x)min=f(1)=-4.④当1<t,即t>1时,f(x)max=f(t+2)=t2+2t-3,f(x)min=f(t)=t2-2t-3.设函数f(x)的最大值为g(t),最小值为φ(t),则有g(t)=φ(t)=(3)设=t(t≥0),则x-2-3=t2-2t-3.由(1)知y=t2-2t-3(t≥0)在[0,1]上单调递减,在[1,+∞)上单调递增.∴当t=1即x=1时,f(x)min=-4,无最大值.14.(1)已知函数f(x)=x4-2x2-3,求函数f(x)的最值;(2)求二次函数f(x)=x2-2ax+2在[2,4]上的最小值;(3)如图,某地要修建一个圆形的喷水池,水流在各个方向上以相同的抛物线路径落下,以水池的中央为坐标原点,水平方向为x轴、竖直方向为y轴建立平面直角坐标系.那么水流喷出的高度h(单位:m)与水平距离x(单位:m)之间的函数关系式为h=-x2+2x+,x∈[0,].求水流喷出的高度h的最大值是多少?【答案】(1)设x2=t(t≥0),则x4-2x2-3=t2-2t-3.y=t2-2t-3(t≥0)在[0,1]上单调递减,在[1,+∞)上单调递增.∴当t=1即x=±1时,f(x)min=-4,无最大值.(2)∵函数图象的对称轴是x=a,∴当a<2时,f(x)在[2,4]上是增函数,∴f(x)min=f(2)=6-4a.当a>4时,f(x)在[2,4]上是减函数,∴f(x)min=f(4)=18-8a.当2≤a≤4时,f(x)min=f(a)=2-a2.∴f(x)min=(3)由函数h=-x2+2x+,x∈[0,]的图象可知,函数图象的顶点就是水流喷出的最高点.此时函数取得最大值.对于函数h=-x2+2x+,x∈[0,],当x=1时,函数有最大值h max=-12+2×1+=.于是水流喷出的最高高度是m.15.函数f(x)=4x2-4ax+a2-2a+2在区间[0,2]上有最小值3,求a的值.【答案】f(x)=4(x-)2-2a+2,①当≤0,即a≤0时,函数f(x)在[0,2]上是增函数.∴f(x)min=f(0)=a2-2a+2.由a2-2a+2=3,得a=1±.∵a≤0,∴a=1-.②当0<<2,即0<a<4时,f(x)min=f()=-2a+2.由-2a+2=3,得a=(0,4),舍去.③当≥2,即a≥4时,函数f(x)在[0,2]上是减函数,f(x)min=f(2)=a2-10a+18.由a2-10a+18=3,得a=5±.∵a≥4,∴a=5+.综上所述,a=1-或a=5+.16.函数f(x)=x2-4x-4在闭区间[t,t+1](t∈R)上的最小值记为g(t).(1)试写出g(t)的函数表达式;(2)求g(t)的最小值.【答案】(1)f(x)=x2-4x-4=(x-2)2-8.当t>2时,f(x)在[t,t+1]上是增函数,∴g(t)=f(t)=t2-4t-4;当t≤2≤t+1,即1≤t≤2时,g(t)=f(2)=-8;当t+1<2,即t<1时,f(x)在[t,t+1]上是减函数,∴g(t)=f(t+1)=t2-2t-7.从而g(t)=(2)g(t)的图象如图所示,由图象易知g(t)的最小值为-8.17.已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R). (1)求g(a)和h(a);(2)作出g(a)和h(a)的图象,并分别指出g(a)的最小值和h(a)的最大值各为多少?【答案】(1)∵f(x)=(x-a)2-(a2+1),又x∈[0,2],∴当a≤0时,g(a)=f(2)=3-4a,h(a)=f(0)=-1;当0<a≤1时,g(a)=f(2)=3-4a,h(a)=f(a)=-(a2+1);当1<a<2时,g(a)=f(0)=-1,h(a)=f(a)=-(a2+1);当a≥2时,g(a)=f(0)=-1,h(a)=f(2)=3-4a.综上可知g(a)=h(a)=(2)g(a)和h(a)的图象分别为:由图象可知,函数y=g(a)的最小值为-1,函数y=h(a)的最大值为-1.18.某住宅小区为了营造一个优雅、舒适的生活环境,打算建造一个八边形的休闲花园,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成面积为200米2的十字形区域,且计划在正方形MNPK上建一座花坛,其造价为4200元/米2,在四个相同的矩形上(图中的阴影部分)铺花岗岩路面,其造价为210元/米2,并在四个三角形空地上铺草坪,其造价为80元/米2.(1)设AD的长为x米,试写出总造价Q(单位:元)关于x的函数解析式;(2)问:当x取何值时,总造价最少?求出这个最小值.【答案】(1)设AM=y,AD=x,则x2+4xy=200,∴y=.故Q=4200x2+210×4xy+80×2y2=38000+4000x2+(0<x<10).(2)令t=x2,则Q=38000+4000(t+),且0<t<200.∵函数u=t+在(0,10]上单调递减,在[10,200)上单调递增,∴当t=10时,u min=20.故当x=时,Q min=118000(元).19.已知函数f(x)=(x>0).(1)求证:f(x)在(0,1]上为增函数;(2)求函数f(x)的最大值和最小值.【答案】(1)证明设x1,x2是区间(0,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=-==.当0<x1<x2≤1时,x2-x1>0,x1x2-1<0,∴f(x1)-f(x2)<0,f(x1)<f(x2),∴f(x)在(0,1]上单调递增.(2)解当1≤x1<x2时,x2-x1>0,x1x2-1>0,f(x1)-f(x2)>0,f(x1)>f(x2),∴f(x)在[1,+∞)上单调递减.∴结合(1)(2)可知,f(x)max=f(1)=,无最小值.20.已知函数f(x)=+.(1)求函数f(x)的定义域和值域;(2)设F(x)=m+f(x),求函数F(x)的最大值的表达式g(m).【答案】(1)要使函数f(x)有意义,需满足得-1≤x≤1.故函数f(x)的定义域是{x|-1≤x≤1}.∵[f(x)]2=2+2,且0≤≤1,∴2≤[f(x)]2≤4,又∵f(x)≥0,∴≤f(x)≤2,即函数f(x)的值域为[,2].(2)令f(x)=t,则t2=2+2,则=-1,故F(x)=m(t2-1)+t=mt2+t-m,t∈[,2],令h(t)=mt2+t-m,则函数h(t)的图象的对称轴方程为t=-.①当m>0时,-<0,函数y=h(t)在区间[,2]上单调递增,∴g(m)=h(2)=m+2.②当m=0时,h(t)=t,g(m)=2;③当m<0时,->0,若0<-≤,即m≤-时,函数y=h(t)在区间[,2]上单调递减,∴g(m)=h()=,若<-≤2,即-<m≤-时,g(m)=h(-)=-m-;若->2,即-<m<0时,函数y=h(t)在区间[,2]上单调递增,∴g(m)=h(2)=m+2.综上,g(m)=21.已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值与最小值.【答案】(1)令x=y=0,得f(0)+f(0)=f(0),∴f(0)=0.令y=-x,得f(x)+f(-x)=f(x-x)=f(0)=0,∴f(-x)=-f(x).对任意x1,x2∈R,且x1<x2,则x2-x1>0,f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1).∵x2-x1>0,且当x>0时,有f(x)<0,∴f(x2-x1)<0,即f(x2)-f(x1)<0,∴f(x2)<f(x1),∴f(x)在R上是减函数.(2)[-3,3]R,由(1),知f(x)在R上是减函数,故f(x)max=f(-3)=-f(3)=-f(2+1)=-[f(2)+f(1)]=-[f(1+1)+f(1)]=-[f(1)+f(1)+f(1)]=-3f(1)=-3×(-)=2;f(x)min=f(3)=f(2+1)=f(2)+f(1)=f(1+1)+f(1)=f(1)+f(1)+f(1)=3f(1)=3×(-)=-2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.3 函数的最大值与最小值练习题
一、选择题(本大题共6小题,每小题3分,共18分)
1.下列说法正确的是
A.函数的极大值就是函数的最大值
B.函数的极小值就是函数的最小值
C.函数的最值一定是极值
D.在闭区间上的连续函数一定存在最值
2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )
A.等于0
B.大于0
C.小于0
D.以上都有可能
3.函数y =
234213141x x x ++,在[-1,1]上的最小值为 A.0 B.-2 C.-1 D.12
13 4.下列求导运算正确的是( ) A .211)1(x
x x +='+ B .2ln 1)(log 2x x =' C .e x x 3log 3)3(⋅=' D .x x x sin 2)cos (2-='
5.设y =|x |3,那么y 在区间[-3,-1]上的最小值是
A.27
B.-3
C.-1
D.1
6.设f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29,且a >b ,则
A.a =2,b =29
B.a =2,b =3
C.a =3,b =2
D.a =-2,b =-3
二、填空题(本大题共5小题,每小题3分,共15分)
7.函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________.
8.已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是 .
9.将正数a 分成两部分,使其立方和为最小,这两部分应分成____和____.
10.使内接椭圆22
22b
y a x +=1的矩形面积最大,矩形的长为_____,宽为______ 11.在半径为R 的圆内,作内接等腰三角形,当底边上高为______时,它的面积最大.
三、解答题(本大题共3小题,每小题9分,共27分)
12.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少?
13.已知:f (x )=log 3x
b ax x ++2,x ∈(0,+∞).是否存在实数a 、b ,使f (x )同时满足下列两个条件:(1)f (x )在(0,1)上是减函数,在[1,+∞)上是增函数;(2)f (x )的最小值是1,若存在,求出a ,b ,若不存在,说明理由.
14.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周l =AB +BC +CD 最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b .
函数的最大值与最小值
一、1.D 2.A 3.A 4.B 5.D 6.B
二、7. -15 8. 1 9.
2a 2a 10.2a 2b 11.2
3R 三、12.解:(1)正方形边长为x ,则V =(8-2x )·(5-2x )x =2(2x 3-13x 2+20x )(0<x <
25) V ′=4(3x 2-13x +10)(0<x <2
5) V ′=0得x =1
根据实际情况,小盒容积最大是存在的,
∴当x =1时,容积V 取最大值为18.
13.解:设g (x )=x
b ax x ++2 ∵f (x )在(0,1)上是减函数,在[1,+∞)上是增函数 ∴g (x )在(0,1)上是减函数,在[1,+∞)上是增函数. ∴⎩⎨⎧==3
)1(0)1('g g ∴⎩
⎨⎧=++=-3101b a b 解得⎩⎨⎧==1
1b a 经检验,a =1,b =1时,f (x )满足题设的两个条件. 14.解:由梯形面积公式,得S =
21 (A D +BC )h 其中AD =2DE +BC ,DE =3
3h ,BC =b ∴AD =3
32h +b ∴S =h b h h b h )3
3()2332(21+=+ ① ∵CD =
h h 3230cos =︒,AB =CD .
∴l =h 32
×2+b ②
由①得b =33
-h S
h ,代入②
∴l =h S
h h h S
h +=-+333
33
4
l ′=23h S
-=0,∴h =43S
当h <43S
时,l ′<0,h >43S
时,l ′>0.
∴h =43S 时,l 取最小值,此时b =S 3324.。