最新极坐标练习题(含详细答案)
极坐标练习题(含详细答案)
极坐标练习题(含详细答案)1.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧ x ′=5x ,y ′=3y后,曲线C 变为曲线x ′2+y ′2=1,则曲线C 的方程为( )A .25x 2+9y 2=1 B .9x 2+25y 2=1 C .25x +9y =1 D.x 225+y 29=12.极坐标方程ρ=cos θ化为直角坐标方程为( ) A .(x +12)2+y 2=14B .x 2+(y +12)2=14C .x 2+(y -12)2=14D .(x -12)2+y 2=14答案 D解析 由ρ=cos θ,得ρ2=ρcos θ,∴x 2+y 2=x .选D. 3.极坐标方程ρcos θ=2sin2θ表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆 答案 C4.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A .(1,π2)B .(1,-π2)C .(1,0)D .(1,π) 答案 B解析 由ρ=-2sin θ,得ρ2=-2ρsin θ,化为普通方程x 2+(y +1)2=1,其圆心坐标为(0,-1),所以其极坐标为(1,-π2),故应选B.5.设点M 的直角坐标为(-1,-3,3),则它的柱坐标为( ) A .(2,π3,3)B .(2,2π3,3) C .(2,4π3,3) D .(2,5π3,3) 答案 C6.(2013·安徽)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2B.θ=π2(ρ∈R)和ρcosθ=2C.θ=π2(ρ∈R)和ρcosθ=1D.θ=0(ρ∈R)和ρcosθ=1答案 B解析由题意可知,圆ρ=2cosθ可化为普通方程为(x-1)2+y2=1.所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方程化为极坐标方程分别为θ=π2(ρ∈R)和ρcosθ=2,故选B.7.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是()A.ρ=cosθB.ρ=sinθC.ρcosθ=1 D.ρsinθ=1答案 C解析过点(1,0)且与极轴垂直的直线,在直角坐标系中的方程为x=1,所以其极坐标方程为ρcosθ=1,故选C.8.(2013·天津)已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,π3),则|CP|=________.答案2 3解析由圆的极坐标方程为ρ=4cosθ,得圆心C的直角坐标为(2,0),点P 的直角坐标为(2,23),所以|CP|=2 3.9.(2014·唐山一中)在极坐标系中,点P(2,-π6)到直线l:ρsin(θ-π6)=1的距离是________.答案3+1解析依题意知,点P(3,-1),直线l为x-3y+2=0,则点P到直线l 的距离为3+1.10.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.答案 x 2+y 2-4x -2y =0解析 由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ⇒cos θ=x ρ,sin θ=yρ,ρ2=x 2+y 2,代入ρ=2sin θ+4cos θ,得ρ=2y ρ+4xρ⇒ρ2=2y +4x ⇒x 2+y 2-4x -2y =0.11.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.答案 4 3解析 直线ρsin(θ+π4)=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式,得2r 2-d 2=242-(222)2=4 3.12.在极坐标系中,圆ρ=2cos θ的圆心的极坐标是________,它与方程θ=π4(ρ>0)所表示的图形的交点的极坐标是________. 答案 (1,0) (2,π4)解析 ρ=2cos θ表示以点(1,0)为圆心,1为半径的圆,故圆心的极坐标为(1,0).当θ=π4时,ρ=2,故交点的极坐标为(2,π4).13.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.答案 (2,3π4) 解析 ρ=2sin θ的直角坐标方程为x 2+y 2-2y =0,ρcos θ=-1的直角坐标方程为x =-1.联立方程,得⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x =-1,解得⎩⎪⎨⎪⎧x =-1,y =1,即两曲线的交点为(-1,1).又0≤θ<2π,因此这两条曲线的交点的极坐标为(2,3π4). 14.在极坐标系中,直线ρ(cos θ-sin θ)+2=0被曲线C :ρ=2所截得弦的中点的极坐标为________.答案 ⎝ ⎛⎭⎪⎫2,3π4解析 直线ρ(cos θ-sin θ)+2=0化为直角坐标方程为x -y +2=0,曲线C :ρ=2化为直角坐标方程为x 2+y 2=4.如图,直线被圆截得弦AB ,AB 中点为M ,则|OA |=2,|OB |=2,从而|OM |=2,∠MOx =3π4. ∴点M 的极坐标为⎝ ⎛⎭⎪⎫2,3π4.15.已知点M 的极坐标为(6,11π6),则点M 关于y 轴对称的点的直角坐标为________.答案 (-33,-3) 解析 ∵点M 的极坐标为(6,11π6), ∴x =6cos11π6=6cos π6=6×32=33, y =6sin 11π6=6sin(-π6)=-6×12=-3.∴点M 的直角坐标为(33,-3).∴点M 关于y 轴对称的点的直角坐标为(-33,-3).16.在极坐标系中,点P (2,3π2)到直线l :3ρcos θ-4ρsin θ=3的距离为________.答案 1解析 在相应直角坐标系中,P (0,-2),直线l 方程为3x -4y -3=0,所以P 到l 的距离d =|3×0-4×(-2)-3|32+42=1.17.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12.(1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,试求|RP |的最小值. 答案 (1)ρ=3cos θ (2)1解析 (1)设动点P 的坐标为(ρ,θ), M 的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程.(2)由(1)知P 的轨迹是以(32,0)为圆心,半径为32的圆,易得|RP |的最小值为1.18.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标. 答案 (1)x 2+y 2-x -y =0,x -y +1=0 (2)(1,π2)解析 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x 2+y 2-x -y =0.直线l :ρsin(θ-π4)=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1.故直线l 与圆O 公共点的极坐标为(1,π2).。
高二数学极坐标试题答案及解析
高二数学极坐标试题答案及解析1.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcos θ=2B.θ=(ρ∈R)和ρcos θ=2C.θ=(ρ∈R)和ρcos θ=1D.θ=0(ρ∈R)和ρcos θ=1【答案】B【解析】圆的方程可化为,垂直与x轴的两直线方程为与,极坐标方程为与,答案为B.【考点】极坐标与直角坐标的转化2.极坐标系中,以(9,)为圆心,9为半径的圆的极坐标方程为( )A.B.C.D.【答案】A【解析】将原极坐标点(9,),化成直角坐标,∴圆的直角坐标方程为:,即x2+y2-9x-9y=0∴圆的极坐标方程是ρ=18cos(-θ).故选:A.【考点】点的极坐标和直角坐标的互化.3.曲线关于直线对称的曲线的极坐标方程是【答案】【解析】曲线关于直线对称的曲线的极坐标方程是:,即,故答案为:【考点】简单曲线的极坐标方程.4.在平面直角坐标系中,以原点为极点,轴为极轴建立极坐标系,曲线的方程为(为参数),曲线的极坐标方程为,若曲线与相交于、两点.(1)求的值;(2)求点到、两点的距离之积.【答案】(1);(2).【解析】(1)将参数方程转化为直角坐标系下的普通方程;(2)掌握常见的将参数方程转化为直角坐标系下的普通方程;(3)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:解(1) 曲线的普通方程为,,则的普通方程为,则的参数方程为: 2分代入得,. 6分(2) . 10分【考点】(1)参数方程的应用;(2)直线与椭圆相交的综合问题.5.已知直线(为参数),(为参数), 若,则实数.【答案】-1.【解析】直线(为参数)的普通方程为,即;直线(为参数)的普通方程为,即;因为,所以,得.【考点】直线的参数方程、直线的垂直关系.6.在极坐标系中,圆的垂直于极轴的两条切线方程分别为().A.和B.和C.和D.和【答案】B【解析】圆的普通方程为,即;圆的与轴垂直的直线方程为或;所以切线方程的极坐标方程为或.【考点】极坐标方程与普通方程的互化、圆的切线方程.7.在平面直角坐标系中,已知曲线: ,在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为.(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、倍后得到曲线,试写出直线的直角坐标方程和曲线的参数方程;(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.【答案】(1),;(2)当时.【解析】解题思路:(1)利用直线与椭圆的参数方程与普通方程的互化公式求解即可;(II)利用点到直线的距离公式转化从三角函数求最值即可求解.规律总结:参数方程与普通方程之间的互化,有公式可用,较简单;往往借助参数方程研究直线与椭圆的位置关系或求最值.试题解析:(1)由题意知,直线的直角坐标方程为,由题意知曲线的直角坐标方程为,∴曲线的参数方程为(为参数).(2)设,则点到直线的距离,当时,即点的坐标为时,点到直线的距离最大,此时.【考点】1.参数方程与普通方程的互化;2.点到直线的距离公式.8.已知两曲线参数方程分别为和,它们的交点坐标为____________.【答案】【解析】将两曲线方程化为一般方程为与,联立两曲线方程,解得,即交点坐标为.【考点】曲线的参数方程.9.在极坐标系中,直线的方程为,则点M到直线的距离为.【答案】2【解析】直线方程为,点M坐标为,即,所以点M到直线的距离为.【考点】1.极坐标;2.点到直线的距离.10.在极坐标中,圆的圆心C到直线的距离为____【答案】【解析】极坐标系与平面直角坐标系的变换公式为,所以极坐标系中的圆的方程可化为,直线方程可化为,所以圆心到直线的距离.【考点】1.极坐标方程与平面直角坐标方程的转化;2.点到直线的距离公式.11.在直角坐标系xOy中,直线l的方程为x-y+2=0,曲线C的参数方程为(α为参数).(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.【答案】(1)点P在直线l上;(2).【解析】(1)点极坐标系下的点P化为直角坐标,即可判断点P与直线l的关系;(2)点Q是曲线C上的动点,∴可设Q(cosα,sinα),利用点到直线的距离公式,可以将Q到l的距离表示为,利用三角恒等变形,即可求得Q到直线l的最大距离.(1)把极坐标系下的点P化为直角坐标,得P(0,2). 3分因为点P的直角坐标(0,4)满足直线l的方程x-y+2=0,所以点P在直线l上. 4分(2)因为点Q在曲线C上,故可设点Q的坐标为(cosα,sinα),从而点Q到直经l的距离为9分由此得,当时,d取得最大值,且最大值为. 12分.【考点】 1、极坐标与直角坐标的互化;2、点到直线距离公式;3、三角恒等变形.12.在极坐标系(ρ,θ)(0 ≤θ<2π)中,曲线=与的交点的极坐标为______.【答案】【解析】=与联立方程得,极坐标为【考点】极坐标方程点评:有关于极坐标的问题常考极坐标与直角坐标的互化:极坐标与直角坐标的互化13.极坐标方程表示的曲线为()A.两条直线B.一条射线和一个圆C.一条直线和一个圆D.圆【答案】C【解析】方程可化为或,所以表示的曲线为一条直线和一个圆.【考点】本小题主要考查极坐标的应用.点评:解决本小题时,不要忘记造成漏解.14.下列在曲线上的点是()A.B.C.D.【答案】B【解析】曲线化普通方程,代入点的坐标验证可知点成立【考点】参数方程化普通方程点评:参数方程化为普通方程主要是消去参数,常用代入法加减法消参,本题借助了三角函数公式15.圆的圆心坐标是()A.B.C.D.【答案】A【解析】根据题意,由于圆,两边同时乘以ρ,可知其直角坐标方程为,可知圆心,根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2,得到圆心坐标为,选A。
高中极坐标试题及答案
高中极坐标试题及答案一、选择题1. 在极坐标系中,点P的极坐标为(ρ,θ),则点P的直角坐标为:A. (ρcosθ, ρsinθ)B. (ρsinθ, ρcosθ)C. (ρcosθ, -ρsinθ)D. (-ρcosθ, ρsinθ)答案:A2. 极坐标方程ρ = 2cosθ表示的曲线是:A. 圆B. 椭圆C. 双曲线D. 抛物线答案:A二、填空题3. 已知点A的极坐标为(3, π/3),求点A的直角坐标。
答案:(3/2, 3√3/2)4. 将极坐标方程ρ= 4sinθ转化为直角坐标方程。
答案:x² + (y - 2)² = 4三、解答题5. 已知极坐标方程ρ = 6cosθ,求该曲线的圆心和半径。
答案:圆心为(3, 0),半径为3。
6. 将极坐标方程ρ = 2θ转换为直角坐标方程,并说明其代表的图形。
答案:直角坐标方程为x² + y² - 2y = 0,代表的图形是一个圆心在(0, 1),半径为1的圆。
四、计算题7. 已知点P的极坐标为(5, π/4),求点P到原点O的距离。
答案:58. 已知极坐标方程ρ = 4sinθ + 2cosθ,求该曲线与极坐标轴的交点。
答案:交点为(2, π/4)和(2, 5π/4)。
五、证明题9. 证明极坐标方程ρ² = 2ρcosθ表示的曲线是一条直线。
答案:将极坐标方程ρ² = 2ρcosθ转换为直角坐标方程,得到x²+ y² = 2x,即(x - 1)² + y² = 1,这是一个以(1, 0)为圆心,半径为1的圆的方程,因此原极坐标方程表示的曲线是一条直线。
六、应用题10. 一个圆的极坐标方程为ρ = 4,求该圆的面积。
答案:圆的面积为16π。
极坐标参数方程经典练习题带详细解答
1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为1222x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。
(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。
5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值. 6.(本小题满分10分) 选修4-4坐标系与参数方程 在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数)M 是曲线1C 上的动点,点P 满足OM OP 2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程.8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为1221122x t x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A的极坐标为24π⎛⎫⎪ ⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t=⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。
极坐标系 作业
一、选择题1.在极坐标系中,点M ⎝⎛⎭⎫-2,π6的位置,可按如下规则确定的是( ) A .作射线OP ,使∠xOP =π6,再在射线OP 上取点M ,使|OM |=2B .作射线OP ,使∠xOP =7π6,再在射线OP 上取点M ,使|OM |=2 C .作射线OP ,使∠xOP =7π6,再在射线OP 的反向延长线上取点M ,使|OM |=2 D .作射线OP ,使∠xOP =-π6,再在射线OP 上取点M ,使|OM |=2解析:由极坐标的概念知B 正确. 答案:B2.在极坐标系中,与点M ⎝⎛⎭⎫5,π6重合的点的极坐标是( ) A .⎝⎛⎭⎫-5,π6+2k π( ∈ ) B .⎝⎛⎭⎫5,π6+2k π( ∈ ) C .⎝⎛⎭⎫-5,π6+k π( ∈ ) D .⎝⎛⎭⎫5,π6+k π( ∈ ) 解析:与点M ⎝⎛⎭⎫5,π6重合的点的极坐标可表示为⎝⎛⎭⎫5,π6+2k π( ∈ ). 答案:B3.在极坐标系中,点A 的极坐标为⎝⎛⎭⎫4,π3,则点A 关于直线θ=π2(ρ∈R )的对称点的极坐标是( )A .⎝⎛⎭⎫-4,2π3 B .⎝⎛⎭⎫-4,π3 C .⎝⎛⎭⎫4,2π3 D .⎝⎛⎭⎫4,π3 解析:由对称性,得点A 关于直线θ=π2(ρ∈R )的对称点的极径ρ=4,极角θ=π-π3=2π3.故对称点的极坐标为⎝⎛⎭⎫4,2π3. 答案:C4.在极坐标系中,点O 为极点,已知点A ⎝⎛⎭⎫2,π6,B ⎝⎛⎭⎫6,-π6,则△AOB 的面积为( ) A .3B .0C .33D .6 3解析:由已知得∠AOB =π3.所以S △AOB =12|OA |·|OB |sin ∠AOB=12×2×6×sin π3=3 3. 答案:C 二、填空题5.在极坐标系中,已知A ⎝⎛⎭⎫1,3π4,B ⎝⎛⎭⎫2,π4两点,则|AB |=________. 解析:在△AOB 中,|OA |=1,|OB |=2,∠AOB =π2,则|AB |=12+22= 5.答案: 56.在极坐标系中,点P 的极坐标为⎝⎛⎭⎫4,π4,则它关于射线θ=π3的对称点的极坐标为________.解析:由对称性知所求点的极径为4.设极角为θ,则有π4+θ=2×π3,即θ=5π12.答案:⎝⎛⎭⎫4,5π12 三、解答题7.在极坐标系中,求点M ⎝⎛⎭⎫3,π12关于直线θ=π4(ρ∈R )的对称点的极坐标(ρ≥0,0≤θ<2π).解:如图,设点M 关于直线θ=π4(ρ∈R )的对称点为N ,则|ON |=|OM |,∠xON =π4+π4-π12=5π12.所以点N 的极坐标为⎝⎛⎭⎫3,5π12.8.在极坐标系中,求在极轴上,且与点A ⎝⎛⎭⎫42,π4的距离为5的点M 的坐标. 解:设M (r,0). ∵A (42,π4),∴由余弦定理,得|AM |=(42)2+r 2-82r ·cos π4=5,即r 2-8r +7=0. 解得r =1或r =7.∴点M 的坐标为(1,0)或(7,0).一、选择题1.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点(ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称.答案:A2.在极坐标系中,若等边三角形ABC 的两个顶点是A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,5π4,那么可能为顶点C 的坐标的是( )A .⎝⎛⎭⎫4,3π4 B .⎝⎛⎭⎫23,3π4 C .(23,π)D .(3,π)解析:如图,由题设,可知A ,B 两点关于极点O 对称,即O 是AB 的中点.又|AB |=4,△ABC 为正三角形,∴|OC |=23,∠AOC =π2,点C 的极角θ=π4+π2=3π4或5π4+π2=7π4.故点C 的极坐标为⎝⎛⎭⎫23,k π+34π( ∈ ). 答案:B 二、填空题3.已知A ,B 两点的极坐标分别为⎝⎛⎭⎫3,π2和⎝⎛⎭⎫3,π6,则|AB |=____________,AB 与极轴正方向所成的角为________.解析:根据极坐标的定义,可得|AO |=|BO |=3,∠AOB =π3,即△AOB 为等边三角形.所以|AB |=3.易得AB 与极轴正方向所成的角为5π6.答案:35π64.在极坐标系中,已知P ⎝⎛⎭⎫2,π6,Q ⎝⎛⎭⎫2,2π3,则线段PQ 的中点M 的极坐标(ρ≥0,0≤θ<2π)为________.解析:极坐标系如图, ∵2π3-π6=π2, ∴△POQ 为等腰直角三角形. ∴OM =2,∠MOx =π4+π6=3π+2π12=5π12.∴点M 的极坐标为⎝⎛⎭⎫2,5π12. 答案:⎝⎛⎭⎫2,5π12 三、解答题5.在极坐标系中,点A 和点B 的极坐标分别为⎝⎛⎭⎫2,π3和(3,0),O 为极点. (1)求|AB |; (2)求S △AOB .解:(1)|AB |=ρ21+ρ22-2 ρ1ρ2cos (θ1-θ2)=22+32-2×2×3×cos ⎝⎛⎭⎫π3-0=4+9-6=7.(2)S △AOB =12|OA |·|OB |·sin ∠AOB=12×2×3×sin ⎝⎛⎭⎫π3-0=332.6.下图是某校园的平面示意图.假设某同学在教学楼A 处,请回答下列问题:(1)试建立适当的极坐标系,写出体育馆B 、图书馆C 、实验楼D 、办公楼E 的极坐标. (2)如果有人询问体育馆和办公楼的位置,他应如何描述?解:(1)如题图,以A 为极点,AB 所在射线为极轴,建立极坐标系,则各点的极坐标分别为B (60,0),C ⎝⎛⎭⎫120,π3,D ⎝⎛⎭⎫603,π2,E ⎝⎛⎭⎫50,3π4. (2)从教学楼向东走60 m 到达体育馆,从教学楼向西北方向走50 m 到达办公楼.。
极坐标与参数方程测试题(有详解答案)
极坐标与参数方程测试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫⎝⎛3,2π B 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2πD 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )A.-6B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.已知二面角l αβ--的平面角为θ,P 为空间一点,作PA α⊥,PB β⊥,A ,B 为垂足,且4PA =,5PB =,设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时,点(,)x y 的轨迹是下列图形中的12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。
极坐标练习题
一、选择题1.将曲线y =sin 2x 按照伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后得到的曲线方程为( )A.y =3sin xB.y =3sin 2xC.y =3sin 12xD.y =13sin 2x2.极坐标方程sin θ=12(ρ∈R ,ρ≥0)表示的曲线是( ) A.两条相交直线 B.两条射线 C.一条直线 D.一条射线 3.极坐标方程ρ=cos θ化为直角坐标方程为( )A.⎝ ⎛⎭⎪⎫x +122+y 2=14B.x 2+⎝ ⎛⎭⎪⎫y +122=14C.x 2+⎝ ⎛⎭⎪⎫y -122=14D.⎝ ⎛⎭⎪⎫x -122+y 2=144.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A.x 2+y 2=3 B.x 2+2xy =1(x ≠±1) C.y =1-x 2D.x 2+y 2=9(x ≠0)5.如图1,已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线的极坐标方程是( ) A.ρ=1 B.ρ=cos θC.ρ=-1cos θD.ρ=1cos θ6.圆ρ=4cos θ的圆心到直线tan θ=1的距离为( ) A.22 B.2 C.2D.2 27.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R )的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3C.⎝ ⎛⎭⎪⎫1,π3D.⎝ ⎛⎭⎪⎫1,-7π6 8.极坐标方程ρcos θ=2sin 2θ表示的曲线为( )A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆 9.圆ρ=r 与圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4(r >0)的公共弦所在直线的方程为( )A.2ρ(sin θ+cos θ)=rB.2ρ(sin θ+cos θ)=-rC.2ρ(sin θ+cos θ)=rD.2ρ(sin θ+cos θ)=-r 10.圆ρ=2a sin θ关于极轴对称的圆的方程为( )A.ρ=2a cos θB.ρ=-2a cos θC.ρ=-2a sin θD.ρ=2a sin θ 11.直线θ=α和直线ρsin (θ-α)=1的位置关系是( ) A.垂直 B.平行 C.相交但不垂直 D.重合 二、填空题12.在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.13.已知极坐标系中,极点为O ,将点A ⎝ ⎛⎭⎪⎫4,π6绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.三、解答题14.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y 后,曲线C 变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状.15.已知⊙C :ρ=cos θ+sin θ, 直线l :ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4.求⊙C 上点到直线l 距离的最小值.16.(1)在极坐标系中,求以点(1,1)为圆心,半径为1的圆C 的方程; (2)将上述圆C 绕极点逆时针旋转π2得到圆D ,求圆D 的方程.17.在极坐标系中,极点为O ,已知曲线C 1:ρ=2与曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4=2交于不同的两点A ,B .(1)求|AB |的值;(2)求过点C (1,0)且与直线AB 平行的直线l 的极坐标方程. 一、选择题1.将曲线y =sin 2x 按照伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后得到的曲线方程为( )A.y =3sin xB.y =3sin 2xC.y =3sin 12xD.y =13sin 2x【解析】 由伸缩变换,得x =x ′2,y =y ′3. 代入y =sin 2x ,有y ′3=sin x ′,即y ′=3sin x ′. ∴变换后的曲线方程为y =3sin x . 【答案】 A2.极坐标方程sin θ=12(ρ∈R ,ρ≥0)表示的曲线是( ) A.两条相交直线 B.两条射线 C.一条直线 D.一条射线【解析】 ∵sin θ=12,所以θ=π6(ρ≥0)和θ=56π(ρ≥0),故其表示两条射线. 【答案】 B3.极坐标方程ρ=cos θ化为直角坐标方程为( )A.⎝ ⎛⎭⎪⎫x +122+y 2=14B.x 2+⎝ ⎛⎭⎪⎫y +122=14C.x 2+⎝ ⎛⎭⎪⎫y -122=14D.⎝ ⎛⎭⎪⎫x -122+y 2=14 【解析】 由ρ=cos θ,得ρ2=ρcos θ,所以x 2+y 2=x ,即⎝ ⎛⎭⎪⎫x -122+y 2=14.故选D.【答案】 D4.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A.x 2+y 2=3 B.x 2+2xy =1(x ≠±1) C.y =1-x 2D.x 2+y 2=9(x ≠0)【解析】 设P (x ,y ),则k P A =y x +1(x ≠-1),k PB =yx -1(x ≠1). 又k P A +k PB =-1,即y x +1+y x -1=-1,得 x 2+2xy =1(x ≠±1),故选B. 【答案】 B5.如图1,已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线的极坐标方程是( )A.ρ=1B.ρ=cos θC.ρ=-1cos θD.ρ=1cos θ【解析】 由题图可知ρcos(π-θ)=1, 即ρ=-1cos θ,故选C. 【答案】 C6.圆ρ=4cos θ的圆心到直线tan θ=1的距离为( ) A.22 B.2 C.2D.2 2【解析】 圆ρ=4cos θ的圆心C (2,0),如图,|OC |=2, 在Rt △COD 中, ∠ODC =π2,∠COD =π4, ∴|CD |= 2.即圆ρ=4cos θ的圆心到直线tan θ=1的距离为 2. 【答案】 B7.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R )的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3C.⎝ ⎛⎭⎪⎫1,π3D.⎝ ⎛⎭⎪⎫1,-7π6 【解析】 点M ⎝ ⎛⎭⎪⎫1,7π6的直角坐标为⎝ ⎛⎭⎪⎫cos 7π6,sin 7π6=⎝ ⎛⎭⎪⎫-32,-12,直线θ=π4(ρ∈R ),即直线y =x ,点⎝ ⎛⎭⎪⎫-32,-12关于直线y =x 的对称点为⎝ ⎛⎭⎪⎫-12,-32,再化为极坐标,即⎝ ⎛⎭⎪⎫1,4π3.【答案】 A8.极坐标方程ρcos θ=2sin 2θ表示的曲线为( ) A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆【解析】 方程ρcos θ=2sin 2θ可化为ρcos θ=4sin θcos θ,即cos θ=0或ρ=4sin θ,方程cos θ=0即θ=k π+π2,表示y 轴,方程ρ=4sin θ即x 2+y 2=4y ,表示圆,故选C.【答案】 C9.圆ρ=r 与圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4(r >0)的公共弦所在直线的方程为( )A.2ρ(sin θ+cos θ)=rB.2ρ(sin θ+cos θ)=-rC.2ρ(sin θ+cos θ)=rD.2ρ(sin θ+cos θ)=-r 【解析】 圆ρ=r 的直角坐标方程为 x 2+y 2=r 2,① 圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4=-2r ⎝ ⎛⎭⎪⎫sin θcos π4+cos θsin π4=-2r (sin θ+cos θ).两边同乘以ρ得ρ2=-2r (ρsin θ+ρcos θ). ∵x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2, ∴x 2+y 2+2rx +2ry =0.②①-②整理得2(x +y )=-r ,即为两圆公共弦所在直线的普通方程.再将直线2(x +y )=-r 化为极坐标方程为2ρ(cos θ+sin θ)=-r .【答案】 D10.圆ρ=2a sin θ关于极轴对称的圆的方程为( )A.ρ=2a cos θB.ρ=-2a cos θC.ρ=-2a sin θD.ρ=2a sin θ 【解析】 法一:根据对称规律,把⎩⎪⎨⎪⎧θ′=-θ,ρ′=ρ代入原方程,可得原方程表示的曲线关于极轴对称的曲线方程.∴ρ=2a sin θ关于极轴对称的曲线方程为ρ′=2a sin (-θ),即ρ=-2a sin θ. 法二:因为圆ρ=2a sin θ的圆心是⎝ ⎛⎭⎪⎫a ,π2,半径为a ,该圆关于极轴对称的圆的圆心应为⎝ ⎛⎭⎪⎫a ,3π2,半径仍为a , 其方程应为:ρ=2a cos ⎝ ⎛⎭⎪⎫θ-3π2,即ρ=-2a sin θ. 【答案】 C11.直线θ=α和直线ρsin (θ-α)=1的位置关系是( ) A.垂直 B.平行 C.相交但不垂直 D.重合【解析】 直线θ=α化为直角坐标方程为y =x tan α,ρsin (θ-α)=1化为ρsin θcos α-ρcos θsin α=1,即y =x tan α+1cos α.所以两直线平行. 【答案】 B 二、填空题12.在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.【解析】 点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1),直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1化为ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=1,32y -12x =1,12x -32y +1=0,点(3,1)到直线12x -32y +1=0的距离为⎪⎪⎪⎪⎪⎪12×3-32×1+1⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-322=1.【答案】 113.已知极坐标系中,极点为O ,将点A ⎝ ⎛⎭⎪⎫4,π6绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.【解析】 依题意,点B 的极坐标为⎝ ⎛⎭⎪⎫4,5π12,∵cos 5π12=cos ⎝ ⎛⎭⎪⎫π4+π6=cos π4cos π6-sin π4sin π6=22·32-22·12=6-24, sin 5π12=sin ⎝ ⎛⎭⎪⎫π4+π6=sin π4cos π6+cos π4sin π6=22·32+22·12=6+24,∴x =ρcos θ=4×6-24=6-2,∴y =ρsin θ=4×6+24=6+2, ∴点B 的直角坐标为(6-2,6+2). 【答案】 (6-2,6+2) 三、解答题14.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y 后,曲线C 变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状. 【解】 将⎩⎪⎨⎪⎧x ′=2x ,y ′=2y 代入(x ′-5)2+(y ′+6)2=1,得(2x -5)2+(2y +6)2=1, 即⎝ ⎛⎭⎪⎫x -522+(y +3)2=14, 故曲线C 是以⎝ ⎛⎭⎪⎫52,-3为圆心,半径为12的圆.15.已知⊙C :ρ=cos θ+sin θ, 直线l :ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4.求⊙C 上点到直线l 距离的最小值.【解】 ⊙C 的直角坐标方程是x 2+y 2-x -y =0, 即⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=12.又直线l 的极坐标方程为ρ(cos θ-sin θ)=4, 所以直线l 的直角坐标方程为x -y -4=0.设M ⎝ ⎛⎭⎪⎫12+22cos θ,12+22sin θ为⊙C 上任意一点,M 点到直线l 的距离d =⎪⎪⎪⎪⎪⎪12+22cos θ-⎝ ⎛⎭⎪⎫12+22sin θ-42=4-cos ⎝ ⎛⎭⎪⎫θ+π42,当θ=7π4时,d min =32=322.16.(1)在极坐标系中,求以点(1,1)为圆心,半径为1的圆C 的方程; (2)将上述圆C 绕极点逆时针旋转π2得到圆D ,求圆D 的方程. 【解】 (1)设M (ρ,θ)为圆上任意一点,如图,圆C 过极点O ,∠COM =θ-1,作CK ⊥OM 于K , 则|OM |=2|OK |=2cos(θ-1), 故圆C 的极坐标为ρ=2cos(θ-1).(2)将圆C :ρ=2cos(θ-1)按逆时针旋转π2得到圆D :ρ=2cos ⎝ ⎛⎭⎪⎫θ-1-π2,即ρ=-2sin(1-θ),故ρ=2sin(θ-1)为所求.17.在极坐标系中,极点为O ,已知曲线C 1:ρ=2与曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4=2交于不同的两点A ,B .(1)求|AB |的值;(2)求过点C (1,0)且与直线AB 平行的直线l 的极坐标方程. 【解】 (1)法一:∵ρ=2,∴x 2+y 2=4. 又∵ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,∴y =x +2. ∴|AB |=2r 2-d 2=24-⎝ ⎛⎭⎪⎫222=2 2. 法二:设A (ρ,θ1),B (ρ,θ2),θ1,θ2∈[0,2π), 则sin ⎝ ⎛⎭⎪⎫θ1-π4=22,sin ⎝ ⎛⎭⎪⎫θ2-π4=22.∵θ1,θ2∈[0,2π),∴|θ1-θ2|=π2,即∠AOB =π2, 又|OA |=|OB |=2, ∴|AB |=2 2.(2)法一:∵曲线C 2的斜率为1,∴过点(1,0)且与曲线C 2平行的直线l 的直角坐标方程为y =x -1,∴直线l 的极坐标为ρsin θ=ρcos θ-1, 即ρcos ⎝ ⎛⎭⎪⎫θ+π4=22.法二:设点P (ρ,θ)为直线l 上任一点,因为直线AB 与极轴成π4的角, 则∠PCO =3π4或∠PCO =π4, 当∠PCO =3π4时,在△POC 中,|OP |=ρ,|OC |=1,∠POC =θ,∠PCO =3π4,∠OPC =π4-θ, 由正弦定理可知:1sin ⎝ ⎛⎭⎪⎫π4-θ=ρsin 34π, 即ρsin ⎝ ⎛⎭⎪⎫π4-θ=22, 即直线l 的极坐标方程为:ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.同理,当∠PCO =π4时,极坐标方程也为 ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.当P 为点C 时显然满足ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.综上,所求直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.。
极坐标练习题
极坐标练习题极坐标是一种描述平面上点位置的坐标系统,它使用极径和极角来表示点的位置。
在极坐标系统中,每个点由一个非负的极径和一个以极轴正向为起点的极角唯一确定。
极坐标与直角坐标之间的转换关系可以用以下公式表示:x = r * cosθy = r * sinθ其中,(x, y)为点的直角坐标,r为点到极轴的距离(极径),θ为点与极轴的夹角(极角)。
为了加深对极坐标的理解,下面给出一些极坐标的练习题,供读者练习和思考。
练习题一:给定极坐标(r, θ) = (3, π/6),请将其转换为直角坐标。
解析:根据转换公式可得,x = 3 * cos(π/6)y = 3 * sin(π/6)计算得出,x ≈ 2.598y ≈ 1.5所以,极坐标(3, π/6) 对应的直角坐标为 (2.598, 1.5)。
练习题二:给定直角坐标 (x, y) = (4, -2),请将其转换为极坐标。
解析:根据转换公式可得,r = √(x^2 + y^2)θ = arctan(y/x)计算得出,r ≈ √(4^2 + (-2)^2) ≈ √20 ≈ 4.472θ = arctan((-2)/4) ≈ -0.464所以,直角坐标 (4, -2) 对应的极坐标为 (4.472, -0.464)。
练习题三:给定一点在极坐标系下的表示为(5, 3π/4),请将该点表示在极坐标系中。
解析:该点的极径为 5,极角为3π/4。
在极坐标系中,从极轴正向开始逆时针旋转3π/4 的角度,然后向外延伸 5 的距离,即可标示出该点。
练习题四:给定一点在直角坐标系下的表示为 (-1, -1),请将该点表示在极坐标系中。
解析:该点的直角坐标为 (-1, -1)。
首先,计算出该点到原点的距离:r = √((-1)^2 + (-1)^2) ≈ √2 ≈ 1.414然后,计算出该点与极轴的夹角:θ = arctan((-1)/(-1)) = arctan(1) ≈ 0.785所以,直角坐标 (-1, -1) 对应的极坐标为 (1.414, 0.785)。
极坐标参数方程高考练习含答案解析(非常好的练习题)
2
4
轴建立平面直角坐标系,斜率是 1的直线 l 经过点 M .
(1)写出直线 l 的参数方程和曲线 C 的直角坐标方程;
(2)求证直线 l 和曲线 C 相交于两点 A、 B ,并求| MA | | MB |的值.
专业知识分享
WORD 格式可编辑
4.已知直线 l 的参数方程是 x
y
2t 2 2t4 2
(t是参数 )
,圆
C
的极坐标方程为
2 cos(
4
)
.
2
(1)求圆心 C 的直角坐标;(2)由直线 l 上的点向圆 C 引切线,求切线长的最小值.
5.在直角坐标系 xOy
中,直线
l
的参数方程为
x
a
3t, t为参数 .在极坐标系(与直角坐标系 xOy 取相同的长度
y t
单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,圆 C 的方程为 4cos 。
cos( ) 4
2
,曲线 C
的参数方程为
x
y
2 cos sin
(
为对数),求曲线 C
截直线 l
所得的弦长.
x 2cos,
x 3t 1,
26.已知曲线
C1:
y
2
sin
( 为参数),曲线 C2: y
3t
(t 为参数).
(1)指出 C1,C2 各是什么曲线,并说明 C1 与 C2 公共点的个数;
32.已知 A,B 两点是椭圆 x 2 y 2 1与坐标轴正半轴的两个交点. 94
(1)设 y 2sin, 为参数,求椭圆的参数方程;(2)在第一象限的椭圆弧上求一点 P,使四边形 OAPB 的面积最大,
极坐标参数方程全套试题
极坐标与参数方程单元练习1一、选择题(每小题5分,共25分)1、已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。
A. 53,-⎛⎝ ⎫⎭⎪πB. 543,π⎛⎝ ⎫⎭⎪C. 523,-⎛⎝ ⎫⎭⎪πD. ⎪⎭⎫ ⎝⎛-355π, 2、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3、在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )4、曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( )A 、线段B 、双曲线的一支C 、圆D 、射线 5、实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( )A 、27 B 、4 C 、29D 、5二、填空题(每小题5分,共30分)1、点()22-,的极坐标为 。
2、若A 33,π⎛⎝ ⎫⎭⎪,B ⎪⎭⎫ ⎝⎛-64π,,则|AB|=___________,S AOB ∆=___________。
(其中O 是极点)3、极点到直线()cos sin 3ρθθ+=的距离是________ _____。
4、极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是_______ _____。
5、圆锥曲线()为参数θθθ⎩⎨⎧==sec 3tan 2y x 的准线方程是 。
6、直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM 的长为 。
三、解答题(第1题14分,第2题16分,第3题15分;共45分)1、求圆心为C 36,π⎛⎝ ⎫⎭⎪,半径为3的圆的极坐标方程。
2、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。
极坐标参数方程大题(含答案)
1、在直角坐标系中,圆的方程为,以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程; (2与圆交于点,求线段的长.2、在直角坐标系中,以原点为极点,点的,点,曲线.(1和直线的极坐标方程;(2)过点的射线交曲线于点,交直线于点,若,求射线所在直线的直角坐标方程.3、在平面直角坐标系中,直线(为参数).在以原点为极点,轴正半轴为极轴的极坐标中,圆的方程为 (1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求xOy C O xC C ,M N MN O A B 22:(1)1C x y -+=AB O l C M AB N ||||2OM ON =l xOy l t O x C l C P C l B A ,4、在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为(1)求直线和曲线的普通方程; (2)已知点,且直线和曲线交于两点,求的值5、在平面直角坐标系中,直线经过点,倾斜角为在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为. (1)写出直线的参数方程和曲线的直角坐标方程; (2)设直线与曲线相交于两点,求.6、在平面直角坐标系中,直线(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为.(1)求直线的极坐标方程及曲线C 的直角坐标方程;(2)若是直线C最大值.xOy C 244x k y k ⎧=⎨=⎩k x l l C (2,0)P l C A B ,||||||PA PB -l ()0,1P x C 4sin ρθ=l C l C A B 、xoy l t x 2sin ρθ=l ()1,A ρθl参考答案1、【答案】(1(2试题分析:(1)由,得到圆的极坐标方程;(2)将直线的极坐标代入,得到,所以试题解析: (1(2得,∴,,∴2、【答案】(1),;(2).试题分析:(1)将代入化简得.同理求出点,的直角坐标分别为,,所以的直角坐标方程为,极坐标方程为;(2)设射线,代入曲线得,代入直线得:,代入求得,即方程为. 试题解析:(1)点,的直角坐标分别为,,所以直线的极坐标方程为;曲线化为极坐标为(2)设射线,代入曲线得,代入直线得:所以射线所在直线的直角坐标方程为 考点:坐标系与参数方程.cos ,sin x y ρθρθ==2250ρρ--=2250ρρ--=122ρρ+=125ρρ=-2cos ρθ=sin 3ρθ=3y x =cos ,sin x y ρθρθ==22(1)1x y -+=2cos ρθ=A B (0,3)A AB 3y =sin 3ρθ=:l θα=C 2cos M ρα=AB ||||2OM ON =tan 3α=3y x =A B (0,3)A AB sin 3ρθ=C 2cos ρθ=:l θα=C 2cos M ρα=AB l 3y x =3、【答案】(1(2试题分析:(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若有范围限制,要标出的取值范围;(2)直角坐标方程化为极坐标方程,只需把公式及直接代入并化简即可;而极坐标方程化为极坐标方程要通过变形,构造形如,,的形式,进行整体代换,其中方程的两边同乘以(或同除以)及方程的两边平方是常用的变形方法.试题解析:(1得直线得圆的直角坐标方程为把直线的参数方程代入圆的直角坐标方程,得故可设,又直线l ,两点对应的参数分别为,,考点:1、参数方程与普通方程的互化;2、直线与圆的综合问题.4、【答案】(1)(2试题分析:(1)消去曲线C 中的参数可得C 的普通方程,利用极坐标与直角坐标的互化公式可得直线的普通方程.(2)由直线的普通方程可知直线过P ,写出直线的参数方程,与曲线C 的普通方程联立,利用直线参数的几何意义及韦达定理可得结果. 【详解】(1)因为曲线的参数方程为(为参数),所以消去参数,得曲线的普通方程为y x ,y x ,θρcos =x θρsin =y θρcos θρsin 2ρρl C l C 1t 2t B A ,1t 2t 24y x =l l l C 244x k y k ⎧=⎨=⎩k k C 24y x =因为直线所以直线(2)因为直线经过点,所以得到直线(为参数)把直线的参数方程代入曲线的普通方程,得【点睛】本题考查了直角坐标方程与极坐标方程及参数方程的互化,考查了直线参数方程及参数的几何意义,属于中档题.5、【答案】(1)直线(为参数);曲线的直角坐标方程为;(2试题分析:(1)先根据直线参数方程标准式写直线的参数方程,利用化简极坐标方程为直角坐标方程;(2)将直线参数方程代入圆方试题解析:(1)直线(为参数). ∵,∴,∴,即, 故曲线的直角坐标方程为.l l l 20P (,)l t l C l t C ()2224x y +-=l y sin ,x cos ρθρθ==l t 4sin ρθ=24sin ρρθ=224x y y +=()2224x y +-=C ()2224x y +-=(2)将的参数方程代入曲线的直角坐标方程,得,显然,∴,∴6、【答案】(1,曲线;(2)2试题分析:(1)消去参数可得直线的普通方程,利用公式可把极坐标方程与直角坐标方程互化;(2这个最大值易求.【详解】(1)∵直线(为参数),∴消去参数,得直线由,得直线C的极坐标方程为,即,∴由,,得曲线C的直角坐标方程为.(2)∵在直线C上,l C230t t--=∆>2121,3lt t t t+==-2220x y y+-=cos,sinx yρθρθ==l tlcos,sinx yρθρθ==l2sinρθ=22sinρρθ=222x yρ=+sin yρθ=2220x y y+-=()1,Aρθl2【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,掌握公是解题基础,在求论易得,学习时应注意体会.cos,sinx yρθρθ==。
极坐标概念及互化练习(含答案)
高二文科数学极坐标练习一一、选择题1、在极坐标系中,以极点为坐标原点,极轴为X 轴正半轴,建立直角坐标系,点M(2,-)的直6 角坐标是OA.[2,1)B.(√3,1)C.(1,√3)D.[1,2)2、点M 的宜角坐标是那么点M 的极坐标为( )A.(2,—)B.(2,——)C.(2,——)D.(2,2^+—),(^∈Z)3 3 3 3π1∖τr3、点A,B 的极坐标分别为(3,I )和(3,五),那么A 和B 之间的距离为( )A.2√3B.3√2C.3>ΛD .274、点M 的极坐标是(3,3〕,那么点M 的直角坐标为( )A.Qp,4+e )B 、(p,-O)C ∖<p,万一0)D 、(P,2π-Θ)6、设点P 对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,那么点P 的极坐标为( ) A.(3√2,-π)B.(-3√2,-π)C.(3,-π)D.(-3,-π)44447、将点的直角坐标(一2,2石)化为极径「是正值,极角在。
到24之间的极坐标是( )A.(4,—)B.(4,—)C.(4√3,-)D.(4√3,-)3 66 38、在极坐标系中与点A(6,空)重合的点是()3A.(6,¾B.(6,¾C.(-6,¾D.(-6,¾3 3 3 3Tr29、在极坐标系中,点M(3,])和点N(—3,§乃)的位置关系是( )A.关于极轴所在直线对称B.重合C.关于直线。
=](p ∈R)对称D.关于极点对称 10、点A (-2-yj B (√Σ,¥),0(0,0)那么ΔA3O 为 A 、正三角形B 、直角三角形C 、锐角等腰三角形D 、直角等腰三角形二、填空题Ik 直角坐标(2,-2)化为极坐标可以是.A.(雷,B.(4f ”亭亭-以上都不对5、点 M (P 、6), 则M 点关于极点对称的点N 的极坐标是( )12、在极坐标系中,两点4(5,5)、3(8,菖),那么IABI=.JT JT13、定点M(3,-),极点不变,将极轴逆时针转动石,得到点M的新坐标为.3 614、点M(∕x6),则M点关于过极点且垂直于极轴的直线的对称点N的极坐标是.三、解答题15.(1)把点M的极坐标(8,2卫),(4,空),(2,-乃)化成直角坐标3 6(2)把点P的直角坐标(后,-五),(-2,-2)和(0,-15)化成极坐标16、ΔA3C的两个顶点的极坐标分别为B(2,意)顶点C和顶点B关于极点对称.(1)求点C的极坐标;(2)求AABC的面积。
极坐标与参数方程经典题型(附含详细解答)
专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
高三数学极坐标试题
高三数学极坐标试题1.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),l与C分别交于M,N.(1)写出C的平面直角坐标系方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.【答案】(1)x-y-2=0;(2)1.【解析】(1)利用极坐标与普通方程的关系式,可得C为抛物线方程,消去参数t,可得直线l的方程;(2)由|PM|=|t1|,|MN|=|t1-t2|,|PN|=|t2|成等比数列,可转化为关于a的等量关系求解.试题解析:(Ⅰ)曲线C的直角坐标方程为y2=2ax(a>0);直线l的普通方程为x-y-2=0. 4分(Ⅱ)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a) t+8(4+a)=0 (*)△=8a(4+a)>0.设点M,N分别对应参数t1,t2,恰为上述方程的根.则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0,则有(4+a)2-5(4+a)=0,得a=1,或a=-4.因为a>0,所以a=1. 10分考点:参数方程与极坐标2.已知曲线的直角坐标方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.是曲线上一点,,将点绕点逆时针旋转角后得到点, ,点的轨迹是曲线.(Ⅰ)求曲线的极坐标方程.(Ⅱ)求的取值范围.【答案】(Ⅰ)=+,(Ⅱ)[2,4]【解析】(Ⅰ)先将曲线的直角坐标方程化为极坐标方程,设M(ρ,θ),根据知,Q (,θ),由是曲线上一点,,将点绕点逆时针旋转角后得到点知,P(,),代入曲线的极坐标方程即得到曲线的极坐标方程;(Ⅱ)由(Ⅰ)知曲线的极坐标方程为)=+,所以== (1+3sin2),先求的取值范围,利用不等式的性质,即可求出|OM|的取值范围.试题解析:(Ⅰ)曲线C1的极坐标方程为+ρ2sin2θ=1,即+sin2θ=.在极坐标系中,设M(ρ,θ),P(ρ1,α),则题设可知,ρ1=,α=. ①因为点P在曲线C1上,所以+sin2α=②由①②得曲线C的极坐标方程为=+. 6分2(Ⅱ)由(Ⅰ)得= (1+3sin2).因为的取值范围是[,],所以|OM|的取值范围是[2,4]. 10分【考点】直角坐标方程与极坐标方程互化,相关点法求曲线方程,函数的值域3.在平面直角坐标系中,为原点,,,,动点满足,则的取值范围是()A.B.C.D.【答案】D【解析】因为坐标为且,所以动点的轨迹为以为圆心的单位圆,则满足参数方程(为参数且),所以设的坐标为为,则,因为的取值范围为且,,所以的取值范围为,故选D.【考点】参数方程圆三角函数4.(5分)(2011•广东)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为.【答案】(1,)【解析】利用同角三角函数的基本关系及代入的方法,把参数方程化为普通方程,再利用消去参数t化曲线的参数方程为普通方程,最后解方程组求得两曲线的交点坐标即可.解:曲线参数方程(0≤θ<π)的直角坐标方程为:;曲线(t∈R)的普通方程为:;解方程组:得:∴它们的交点坐标为(1,).故答案为:(1,).点评:本题考查同角三角函数的基本关系,参把数方程化为普通方程的方法,以及求两曲线的交点坐标的方法,考查运算求解能力.属于基础题.5.在平面直角坐标系中,已知曲线(为参数),将曲线上的所有点的横坐标、纵坐标分别伸长为原来的、倍后得到曲线的直角坐标方程为 .【答案】.【解析】易得曲线的普通方程为,在曲线,在曲线上任取一点,经过坐标变换后对应的点坐标为,则有,由于点在曲线,则有,于是有,化简后得,即曲线的方程为.【考点】1.参数方程;2.坐标变换6.在极坐标系中,与的交点的极坐标为.【答案】【解析】由题意,故其交点极坐标为.【考点】曲线的交点坐标.7.在极坐标系中,圆C的方程为ρ=2sin,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的方程为y=2x+1,判断直线l和圆C的位置关系.【答案】直线l和圆C相交【解析】ρ=2sin即ρ=2(sinθ+cosθ),两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ),得圆C 的直角坐标方程为(x-1)2+(y-1)2=2,圆心C到直线l的距离d=,所以直线l和圆C相交.8.在极坐标系中,求曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离.【答案】【解析】联立方程组得ρ(ρ-1)=1ρ=.又ρ≥0,故所求为.9.在平面直角坐标系中,已知直线的参数方程是(为参数);以为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为.(1)写出直线的普通方程与圆的直角坐标方程;(2)由直线上的点向圆引切线,求切线长的最小值.【答案】(1),曲线C:(2).【解析】先将圆的极坐标方程化为直角坐标方程,再把直线上的点的坐标(含参数)代入,化为求函数的最值问题,也可将直线的参数方程化为普通方程,根据勾股定理转化为求圆心到直线上最小值的问题.试题解析:(1),曲线C: 4分(2)因为圆的极坐标方程为,所以,所以圆的直角坐标方程为,圆心为,半径为1, 6分因为直线的参数方程为(为参数),所以直线上的点向圆C引切线长是,所以直线上的点向圆C引的切线长的最小值是. 10分【考点】参数方程与极坐标,直线与圆的位置关系.10.(坐标系与参数方程选做题)已知直线(为参数且)与曲线(是参数且),则直线与曲线的交点坐标为.【答案】.【解析】将直线的方程化为斜截式得,由于,对于曲线的参数方程,则有,因此曲线的普通方程为,联立直线与曲线的方程得,解得或,由于故直线与曲线的交点坐标为.【考点】1.参数方程;2.直线与曲线交点的求解11.在平面直角坐标系中,曲线的参数方程为(为参数).以为极点,射线为极轴的极坐标系中,曲线的方程为,曲线与交于两点,则线段的长度为___________.【答案】【解析】由题意,的参数方程转化为直角坐标方程为,的极坐标方程转化为直角坐标方程为,即,圆心到直线的距离为,所以.【考点】1.参数方程、极坐标方程与直角坐标方程的转化;2.圆中弦长的求解.12.已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的直角坐标方程;(2)若是直线与圆面≤的公共点,求的取值范围.【答案】(1);(2)【解析】(1)根据公式将极坐标方程转化为直角坐标方程。
高三数学极坐标系试题答案及解析
高三数学极坐标系试题答案及解析1.曲线关于曲线(为参数)的准线对称,则.【答案】2【解析】曲线的直角坐标方程为,其圆心;消去得曲线的方程为,其准线方程为由题意知,在直线上,所以,解得故答案为2【考点】曲线的参数方程和极坐标方程.2.在极坐标系中,过点引圆的一条切线,则切线长为 .【答案】.【解析】点的直角坐标为,将圆的极坐标方程化为普通方程得,圆心到点的距离为,因此切线长为.【考点】1.极坐标与直角坐标的转化;2.勾股定理3.在直角坐标系中,曲线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为,则与的两个交点间的距离为 .【答案】.【解析】曲线表示的是以点为圆心,以为半径的圆,将曲线的极坐标方程化为普通方程得,圆心到此直线的距离为,因此与的两个交点间的距离为.【考点】1.极坐标方程、参数方程与直角坐标方程之间的转化;2.直线与圆的位置关系4.极坐标方程为的圆与参数方程的直线的位置关系是 .【答案】相交【解析】试题分析:圆的直角坐标方程为,直线的普通方程为,故圆心在直线上,所以直线和圆相交.【考点】1、圆的极坐标方程;2、直线的参数方程.5.已知圆的极坐标方程为,直线的参数方程为(为参数),点的极坐标为,设直线与圆交于点、.(1)写出圆的直角坐标方程;(2)求的值.【答案】(1);(2).【解析】(1)在极坐标方程的两边同时乘以,然后由,即可得到圆的直角坐标方程;(2)将直线的标准参数方程代入圆的直角坐标方程,消去、得到有关的参数方程,然后利用韦达定理求出的值.(1)由,得,,即,即圆的直角坐标方程为;(2)由点的极坐标得点直角坐标为,将代入消去、,整理得,设、为方程的两个根,则,所以.【考点】1.圆的极坐标方程与直角坐标方程之间的转化;2.韦达定理6.已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别是、,直线与曲线相交于、两点,射线与曲线相交于点,射线与曲线相交于点,求的值.【答案】(1):,;(2).【解析】(1)题中参数方程化为普通方程只要消去参数,极坐标系与直角坐标系的互化公式为:;(2)首先明确是什么?可把点坐标化为直角坐标,发现就是圆心,从而线段是圆的直径,因此题中有,即,我们在极坐标系中证明本题结论较方便,因为可设,代入的极坐标方程,可得,代入即可求得. 试题解析:(1)曲线的普通方程为 1分化为极坐标方程为: 3分曲线的普通方程为: 5分(2)在直角坐标系下,,线段是是圆的一条直径,∴,由,有 6分是椭圆上的两点,在极坐标系下,设分别代入,有, 8分解得:,.则 9分即. 10分【考点】(1)参数方程,极坐标方程与普通方程的互化;(2)极径的计算.7.在直角坐标系中,以O为极点,x轴正半轴为极轴建立极坐标系.曲线C的极坐标方程为,M,N分别为C与x轴,y轴的交点.(Ⅰ)写出C的直角坐标方程,并求M,N的极坐标;(Ⅱ)设MN的中点为P,求直线OP的极坐标方程.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)将展开得,则转化成直角坐标方程为,那么M,N的极坐标时,,所以,时,,所以;(Ⅱ)先将MN的极坐标转化成直角坐标点的直角坐标为(2,0),点的直角坐标为,从而点的直角坐标为,则点的极坐标为,所以直线的极坐标方程为.试题解析:(Ⅰ)由得.从而的直角坐标方程为,即.时,,所以.时,,所以.(Ⅱ)点的直角坐标为(2,0),点的直角坐标为.所以点的直角坐标为,则点的极坐标为.所以直线的极坐标方程为.【考点】1.极坐标方程和直角坐标方程之间的转化.8.已知曲线C的极坐标方程为,直线的参数方程为(t为参数,0≤<). (Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线经过点(1,0),求直线被曲线C截得的线段AB的长.【答案】(Ⅰ),曲线C是顶点为,焦点为的抛物线;(Ⅱ)8.【解析】(Ⅰ)根据极坐标和直角坐标的关系得直角坐标方程;(Ⅱ)方法1:由已知条件求直线的参数方程,代入曲线C的方程,得关于参数的二次方程,可利用求得长度;方法2:先把直线的方程化为普通方程,再与曲线C联立求交点坐标,既得所求.试题解析:(Ⅰ)方程两边同乘,得,把代入上式,得,这就是曲线C的直角坐标方程,曲线C是顶点为,焦点为的抛物线. 3分(Ⅱ)方法1:直线(为参数,)经过点,若直线又经过点,则,直线的参数方程为(为参数),代入曲线C的方程,得整理得. ①设直线与曲线C的交点A、B对应的参数分别为,则是方程①的两个实根,于是,直线被曲线C截得的线段AB的长为. 7分方法2:设直线的普通方程为,若直线经过点,则,即,的方程为,解方程组,得或,即A、B两点的坐标分别为,于是直线被曲线C截得的线段AB的长为. 7分【考点】1、极坐标与直角坐标的互化;2、参数方程;3、直线被曲线所截线段的求法.9.(坐标系与参数方程选做题)设点的极坐标为,直线过点且与极轴所成的角为,则直线的极坐标方程为.【答案】或或或【解析】略10.15.选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)A.(选修4—4坐标系与参数方程)已知点是曲线上任意一点,则点到直线的距离的最小值是 .B.(选修4—5不等式选讲)不等式的解集是.C.(选修4—1几何证明选讲)如图所示,和分别是圆的切线,且,,延长到点,则的面积是 .【答案】A . B . C .【解析】略11. (坐标系与参数方程选讲选做题)在直角坐标系中曲线的极坐标方程为,写出曲线的直角坐标方程.【答案】(或【解析】略12.(坐标系与参数方程选做题)同时给出极坐标系与直角坐标系,且极轴为ox,则极坐标方程化为对应的直角坐标方程是。
最新经典高三极坐标练习题
师道教育高三极坐标练习题一.解答题(共30小题)1.在平面直角坐标系中,已知曲线C的参数方程方程为(α为参数),在极坐标系中,点M的极坐标为(,π).(I)写出曲线C的普通方程并判断点M与曲线C的位置关系;(Ⅱ)设直线l过点M且与曲线C交于A、B两点,若|AB|=2|MB|,求直线l的方程.2.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.3.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.4.已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数).(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求的最小值.5.已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.6.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.7.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.8.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.9.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.10.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.11.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.12.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.13.将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.14.(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)15.选修4﹣4:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上.(Ⅰ)求a的值及直线l的直角坐标方程;(Ⅱ)圆C的参数方程为,试判断直线l与圆C的位置关系.16.选修4﹣﹣4;坐标系与参数方程已知动点P,Q都在曲线C:上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.17.在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.18.在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.19.在直角坐标系xOy中,直线C1的参数方程为(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C2的方程为ρ=﹣2cosθ+2sinθ.(Ⅰ)求直线C1的普通方程和圆C2的圆心的极坐标;(Ⅱ)设直线C1和圆C2的交点为A,B,求弦AB的长.20.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.21.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点P是曲线C上的动点,求P到直线l的距离的最小值,并求出P点的坐标.23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.24.在平面直角坐标系xOy中,已知C1:(θ为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O 为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ+sinθ)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.25.选修4﹣4:坐标系与参数方程已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(Ⅰ)写出直线l与曲线C的直角坐标系下的方程;(Ⅱ)设曲线C经过伸缩变换得到曲线C′设曲线C′上任一点为M(x,y),求的取值范围.26.已知曲线C1的极坐标方程是,曲线C2的参数方程是是参数).(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;(2)求t的取值范围,使得C1,C2没有公共点.27.已知平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1方程为ρ=2sinθ;C2的参数方程为(t为参数).(Ⅰ)写出曲线C1的直角坐标方程和C2的普通方程;(Ⅱ)设点P为曲线C1上的任意一点,求点P 到曲线C2距离的取值范围.28.已知直线l的参数方程:(t为参数),曲线C的参数方程:(α为参数),且直线交曲线C于A,B两点.(Ⅰ)将曲线C的参数方程化为普通方程,并求θ=时,|AB|的长度;(Ⅱ)已知点P:(1,0),求当直线倾斜角θ变化时,|PA|•|PB|的范围.29.在平面直角坐标系中,曲线C1的参数方程为(ϕ为参数),以O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线与曲线C2交于点.(1)求曲线C1,C2的普通方程;(2)是曲线C1上的两点,求的值.30.己知圆C1的参数方程为(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2cos(θ﹣).(Ⅰ)将圆C1的参数方程他为普通方程,将圆C2的极坐标方程化为直角坐标方程;(Ⅱ)圆C1,C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.20161105高三极坐标练习题参考答案与试题解析一.解答题(共30小题)1.(2016•江西校级二模)在平面直角坐标系中,已知曲线C的参数方程方程为(α为参数),在极坐标系中,点M的极坐标为(,π).(I)写出曲线C的普通方程并判断点M与曲线C的位置关系;(Ⅱ)设直线l过点M且与曲线C交于A、B两点,若|AB|=2|MB|,求直线l的方程.【分析】(I)利用同角三角函数的关系消参数得出曲线C的普通方程,将M点坐标代入曲线C的方程即可判断点M与曲线C的位置关系;(II)由|AB|=2|MB|,可知M为AB的中点,将直线l的参数方程代入曲线的方程则方程有两个互为相反数的实根,根据根与系数的关系求出l的斜率,得出l方程.【解答】解:(I)由(α为参数)消α得:,将化成直角坐标得M(﹣1,1),∵,故点M在曲线C内.(Ⅱ)设直线l的参数方程为(t为参数,α为l的倾斜角).代入得:(3+sin2α)t2+(8sinα﹣6cosα)t﹣5=0.∵|AB|=2|MB|,∴M为AB的中点,即t1+t2=0.∴8sinα﹣6cosα=0,∴tanα=.∴l的方程为:,即3x﹣4y+7=0.2.(2016•鹰潭一模)已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.3.(2016•洛阳二模)已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.【分析】(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,利用可得直角坐标方程.直线L的参数方程是(t为参数),把t=2y代入+m消去参数t即可得出.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA|•|PB|=t1t2,即可得出.【解答】解:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.直线L的参数方程是(t为参数),消去参数t可得.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,解得﹣1<m<3.∴t1t2=m2﹣2m.∵|PA|•|PB|=1=|t1t2|,∴m2﹣2m=±1,解得,1.又满足△>0.∴实数m=1,1.4.(2016•汕头模拟)已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数).(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求的最小值.【分析】(1)利用ρ2=x2+y2,将ρ=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x﹣1)代入下式消去参数t即可;(2)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出最小值.【解答】解:(1)直线l的参数方程为为参数).由上式化简成t=2(x﹣1)代入下式得根据ρ2=x2+y2,进行化简得C:x2+y2=1(2分)(2)∵代入C得∴(5分)设椭圆的参数方程为参数)(7分)则(9分)则的最小值为﹣4.(10分)5.(2016•邯郸二模)已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.【分析】(1)利用公式x=ρcosθ,y=ρsinθ即可把曲线C的极坐标方程化为普通方程;消去参数t即可得到直线l的方程;(2)利用弦长|PQ|=2和圆的内接矩形,得对角线是圆的直径即可求出圆的内接矩形的面积.【解答】解:(1)对于C:由ρ=4cosθ,得ρ2=4ρcosθ,进而x2+y2=4x;对于l:由(t为参数),得,即.(5分)(2)由(1)可知C为圆,且圆心为(2,0),半径为2,则弦心距,弦长,因此以PQ为边的圆C的内接矩形面积.(10分)6.(2016•太原三模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.【分析】(Ⅰ)曲线C1:(t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:(θ为参数),利用cos2θ+sin2θ=1化为普通方程.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C1:(t为参数),化为(x+4)2+(y﹣3)2=1,∴C1为圆心是(﹣4,3),半径是1的圆.C2:(θ为参数),化为.C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,M到C3的距离d==|5sin(θ+φ)+13|,从而当cossinθ=,sinθ=﹣时,d取得最小值.7.(2016•漳州二模)极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.【分析】(1)将极坐标方程两边同乘ρ,进而根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可求出C 的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值.【解答】解:(1)∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)∴ρ2=2ρcosθ+2ρsinθ∴x2+y2=2x+2y即(x﹣1)2+(y﹣1)2=2﹣﹣﹣﹣﹣﹣(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2﹣t﹣1=0,所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)8.(2016•梅州二模)在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.【分析】(1)利用点在直线上,代入方程求出a,利用极坐标与直角坐标的互化,求出直线的直角坐标方程.(2)化简圆的参数方程与直角坐标方程,求出圆心与半径,利用圆心到直线的距离与半径比较即可得到直线与圆的位置关系.【解答】解:(1)点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.可得:cos(﹣)=a,解得a=.直线l的极坐标方程为ρcos(θ﹣)=,即:ρcosθ+ρsinθ=2,直线l的直角坐标方程为:x+y﹣2=0.(2)圆C的参数方程为(α为参数),可得圆的直角坐标方程为:(x﹣1)2+y2=1.圆心(1,0),半径为:1.因为圆心到直线的距离d==<1,所以直线与圆相交.9.(2016•开封四模)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.【分析】(Ⅰ)把曲线C的极坐标方程、直线l的参数方程化为普通方程即可;(Ⅱ)把直线l的参数方程代入曲线C的直角坐标方程中,得关于t的一元二次方程,由根与系数的关系,求出t1、t2的关系式,结合参数的几何意义,求出a的值.【解答】解:(Ⅰ)曲线C的极坐标方程ρsin2θ=acosθ(a>0),可化为ρ2sin2θ=aρcosθ(a>0),即y2=ax(a>0);(2分)直线l的参数方程为(t为参数),消去参数t,化为普通方程是y=x﹣2;(4分)(Ⅱ)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a>0)中,得;设A、B两点对应的参数分别为t1,t2,则;(6分)∵|PA|•|PB|=|AB|2,∴t1•t2=,∴=+4t1•t2=5t1•t2,(9分)即;解得:a=2或a=﹣8(不合题意,应舍去);∴a的值为2.(12分)10.(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,【分析】即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.【解答】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.11.(2014•新课标I)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.12.(2014•新课标II)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C 的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).13.(2014•辽宁)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.【分析】(Ⅰ)在曲线C上任意取一点(x,y),再根据点(x,)在圆x2+y2=1上,求出C的方程,化为参数方程.(Ⅱ)解方程组求得P1、P2的坐标,可得线段P1P2的中点坐标.再根据与l垂直的直线的斜率为,用点斜式求得所求的直线的方程,再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程.【解答】解:(Ⅰ)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(Ⅱ)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+=0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.14.(2013•新课标Ⅰ)(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)【分析】(Ⅰ)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(Ⅱ)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.【解答】解:(Ⅰ)曲线C1的参数方程式(t为参数),得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,即x2+y2﹣8x﹣10y+16=0.将x=ρcosθ,y=ρsinθ代入上式,得.ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;(Ⅱ)曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴C1与C2交点的极坐标分别为(,),(2,).15.(2013•福建)选修4﹣4:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上.(Ⅰ)求a的值及直线l的直角坐标方程;(Ⅱ)圆C的参数方程为,试判断直线l与圆C的位置关系.【分析】(Ⅰ)根据点A在直线l上,将点的极坐标代入直线的极坐标方程即可得出a值,再利用极坐标转化成直角坐标的转换公式求出直线l的直角坐标方程;(Ⅱ)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.【解答】解:(Ⅰ)点A在直线l上,得,∴a=,故直线l的方程可化为:ρsinθ+ρcosθ=2,得直线l的直角坐标方程为x+y﹣2=0;(Ⅱ)消去参数α,得圆C的普通方程为(x﹣1)2+y2=1圆心C到直线l的距离d=<1,所以直线l和⊙C相交.16.(2013•新课标Ⅱ)选修4﹣﹣4;坐标系与参数方程已知动点P,Q都在曲线C:上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(I)根据题意写出P,Q两点的坐标:P(2cosα,2sinα),Q(2cos2α,2sin2α),再利用中点坐标公式得PQ的中点M的坐标,从而得出M的轨迹的参数方程;(II)利用两点间的距离公式得到M到坐标原点的距离d==,再验证当α=π时,d=0,故M的轨迹过坐标原点.【解答】解:(I)根据题意有:P(2cosα,2sinα),Q(2cos2α,2sin2α),∵M为PQ的中点,故M(cosα+cos2α,sin2α+sinα),∴求M的轨迹的参数方程为:(α为参数,0<α<2π).(II)M到坐标原点的距离d==(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.17.(2013•江苏)在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.【分析】运用代入法,可将直线l和曲线C的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标.【解答】解:直线l的参数方程为(为参数),由x=t+1可得t=x﹣1,代入y=2t,可得直线l的普通方程:2x﹣y﹣2=0.曲线C的参数方程为(t为参数),化为y2=2x,联立,解得,,于是交点为(2,2),.18.(2011•辽宁)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.【分析】(I)有曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数),消去参数的C1是圆,C2是椭圆,并利用.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合,求出a及b.(II)利用C1,C2的普通方程,当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,利用面积公式求出面积.【解答】解:(Ⅰ)C1是圆,C2是椭圆.当α=0时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3当时,射线l与C1,C2交点的直角坐标分别为(0,1)(0,b),因为这两点重合所以b=1.(Ⅱ)C1,C2的普通方程为x2+y2=1和.当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为.当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形.故四边形A1A2B2B1的面积为.19.(2016•离石区二模)在直角坐标系xOy中,直线C1的参数方程为(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C2的方程为ρ=﹣2cosθ+2sinθ.(Ⅰ)求直线C1的普通方程和圆C2的圆心的极坐标;(Ⅱ)设直线C1和圆C2的交点为A,B,求弦AB的长.【分析】(Ⅰ)把参数方程化为直角坐标方程,求出圆心的直角坐标,再把它化为极坐标.(Ⅱ)由(Ⅰ)求得(﹣1,)到直线x﹣y+1=0 的距离d,再利用弦长公式求得弦长.【解答】解:(Ⅰ)由C1的参数方程消去参数t得普通方程为x﹣y+1=0,圆C2的直角坐标方程(x+1)2+=4,所以圆心的直角坐标为(﹣1,),所以圆心的一个极坐标为(2,).(Ⅱ)由(Ⅰ)知(﹣1,)到直线x﹣y+1=0 的距离d==,所以AB=2=.20.(2016•焦作一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.【分析】(Ⅰ)利用极坐标方程的定义即可求得;(Ⅱ)数形结合:作出图象,根据图象即可求出有两交点时a的范围.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ(sinθ+cosθ)=a,∴曲线C1的直角坐标方程为x+y﹣a=0.(Ⅱ)曲线C2的直角坐标方程为(x+1)2+(y+1)2=1(﹣1≤y≤0),为半圆弧,如图所示,曲线C1为一族平行于直线x+y=0的直线,当直线C1过点P时,利用得a=﹣2±,舍去a=﹣2﹣,则a=﹣2+,当直线C1过点A、B两点时,a=﹣1,∴由图可知,当﹣1≤a<﹣2+时,曲线C1与曲线C2有两个公共点.21.(2016•衡水校级一模)已知曲线C1:(t为参数),C2:(θ为参数).。
极坐标(含答案 )
极坐标x cos sin y ρθρθ=⎧⎨=⎩ 222x y ρ+= 考点一。
直角坐标化极坐标(1)点M 的直角坐标是(1-,则点M 的极坐标为______. 解:点M 极坐标为:2(2,2),()3k k Z ππ+∈. (2)求直线3x-2y+1=0的极坐标方程。
解:极坐标方程为01sin 2cos 3=+-θρθρ。
(3)在极坐标系中,圆心在π)且过极点的圆的极坐标方程为______.解:圆心:)02(,-,22(2x y +=。
圆的极坐标方程为ρθ。
考点二。
极坐标化直角坐标(1)求普通方程)3R ∈=ρπθ(。
解:y=kx,且k=33tan=π,则直线方程为x 3y =。
(2)将曲线的极坐标方程ρ=4sin θ化 成直角坐标方程。
解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.(3)求过圆4cos =ρθ的圆心,且垂直于极轴的直线极坐标方程.解:由θρcos 4=得θρρcos 42=.所以x y x 422=+,22(2)4x y -+=圆心坐标(2,0)直线方程为2=x .直线的极坐标方程为2cos =θρ。
(4)将极坐标方程4sin 2θ=3化为普通方程。
解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3. (5)化极坐标方程24sin 52θρ⋅=为普通方程。
解:21cos 4sin422cos 522θθρρρρθ-⋅=⋅=-=,即25x =,化简22554y x =+.表示抛物线.(6)求点 (,)π23到圆2cos ρθ= 的圆心的距离。
解:)3,2(π化为)3,1(,圆θρcos 2=化为0222=-+x y x ,圆心的坐标是)0,1(,故距离为3。
(7)求点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离.(8)已知21,C C 极坐标方程分别为θρθρcos 4,3cos ==(20,0θρ<≤≥),求曲线1C 与2C 交点极坐标.解:21,C C 分别为4)2(,322=+-=y x x ,且0≥y ,两曲线交点为(3,3). 所以,交点的极坐标为⎪⎭⎫⎝⎛6,32π。
高三数学极坐标系试题答案及解析
高三数学极坐标系试题答案及解析1.在极坐标系中,点和圆的圆心的距离为( )A.B. 2C.D.【答案】A【解析】在极坐标系中,点,在直角坐标系下的坐标为;在极坐标系中的圆在直角坐标系下的方程为,圆心坐标为,点到圆心的距离为,故选A.【考点】1、极坐标的概念;极坐标与直角坐标的转换;2、圆的方程;3、平面直角坐标系两点间的距离公式.2.已知在平面直角坐标系中圆的参数方程为:,(为参数),以为极轴建立极坐标系,直线极坐标方程为:,则圆截直线所得弦长为 .【答案】.【解析】圆(为参数)表示的曲线是以点为圆心,以为半径的圆,将直线的方程化为直角坐标方程为,圆心到直线的距离,故圆截直线所得弦长.【考点】1.极坐标方程、参数方程与直角坐标方程的转化;2.点到直线的距离;3.勾股定理3.在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆的极坐标方程;(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.【答案】(Ⅰ);(Ⅱ)线段的长为2.【解析】(Ⅰ)求圆的极坐标方程,首先得知道圆的普通方程,由圆的参数方程为参数),可得圆的普通方程是,由公式,,,可得圆的极坐标方程,值得注意的是,参数方程化极坐标方程,必须转化为普通方程;(Ⅱ)求线段的长,此问题处理方法有两种,一转化为普通方程,利用普通方程求出两点的坐标,有两点距离公式可求得线段的长,二利用极坐标方程求出两点的极坐标,由于,所以,所以线段的长为2.试题解析:(Ⅰ)圆的普通方程是,又;所以圆的极坐标方程是.(Ⅱ)设为点的极坐标,则有解得,设为点的极坐标,则有解得,由于,所以,所以线段的长为2.【考点】参数方程,普通方程,极坐标方程之间的转化,考查学生的转化与化归能力及运算能力.4.选修4-4:坐标系与参数方程已知直线的参数方程是,圆C的极坐标方程为.(1)求圆心C的直角坐标;(2)由直线上的点向圆C引切线,求切线长的最小值.【答案】(I),,…………(2分),…………(3分)即,.…………(5分)(II)方法1:直线上的点向圆C引切线长是,…………(8分)∴直线上的点向圆C引的切线长的最小值是…………(10分)方法2:,…………(8分)圆心C到距离是,∴直线上的点向圆C引的切线长的最小值是【解析】略5.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线的参数方程为.在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为. (Ⅰ)求圆C在直角坐标系中的方程;(Ⅱ)若圆C与直线相切,求实数a的值.【答案】(Ⅰ)由得,…………2分结合极坐标与直角坐标的互化公式得,即…………5分(Ⅱ)由直线的参数方程化为普通方程,得,. …………7分结合圆C与直线相切,得,解得.【解析】略6.在极坐标系中,若过点且与极轴垂直的直线交曲线于A、B两点,则____ _【答案】【解析】略7.极坐标方程和参数方程(为参数)所表示的图形分别是A.圆、直线B.直线、圆C.圆、圆D.直线、直线【答案】A【解析】略8.(坐标系与参数方程选做题)极点到直线的距离是 .【答案】【解析】略9.极坐标方程(p-1)()=(p0)表示的图形是A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线【答案】C【解析】略10.C.选修4-4:坐标系与参数方程在极坐标系下,已知圆O:和直线,(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标. D.选修4-5:不等式证明选讲对于任意实数和,不等式恒成立,试求实数的取值范围.【答案】【解析】∵,当且仅当时取等号∴的最小值等于2.…∴x的范围即为不等式|x-1|+|x-2|≤2的解…解不等式得………11.(理)在极坐标系中,直线与圆的交点坐标是__________.【答案】(1,)(【解析】略12.在极坐标系中,由三条直线,,围成图形的面积是________【答案】【解析】三个极坐标方程化为直角坐标方程依次为,,,三条直线的交点坐标,,,三条直线围成的图形为,其面积为13.(10分)已知直线的极坐标方程为,圆的参数方程为(其中为参数)(1)将直线的极坐标方程化为直角坐标方程;(2)求圆上的点到直线的距离的最小值【答案】(1)(2)【解析】(1),即,故为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在同一平面直角坐标系中,经过伸缩变换⎩⎨
⎧ x ′=5x ,y ′=3y
后,曲线C 变为曲线
x ′2+y ′2=1,则曲线C 的方程为( )
A .25x 2
+9y 2
=1 B .9x 2
+25y 2
=1 C .25x +9y =1 D.x 225+y 2
9=1
2.极坐标方程ρ=cos θ化为直角坐标方程为( ) A .(x +12)2+y 2=1
4 B .x 2+(y +12)2=1
4 C .x 2+(y -12)2=1
4 D .(x -12)2+y 2=1
4
答案 D
解析 由ρ=cos θ,得ρ2=ρcos θ,∴x 2+y 2=x .选D. 3.极坐标方程ρcos θ=2sin2θ表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆 答案 C
4.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A .(1,π
2) B .(1,-π
2) C .(1,0) D .(1,π) 答案 B
解析 由ρ=-2sin θ,得ρ2=-2ρsin θ,化为普通方程x 2+(y +1)2=1,其圆心坐标为(0,-1),所以其极坐标为(1,-π
2),故应选B.
5.设点M 的直角坐标为(-1,-3,3),则它的柱坐标为( ) A .(2,π
3,3) B .(2,2π
3,3) C .(2,4π
3,3) D .(2,5π
3,3) 答案 C
6.(2013·安徽)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( )
A.θ=0(ρ∈R)和ρcosθ=2
B.θ=π
2(ρ∈R)和ρcosθ=2
C.θ=π
2(ρ∈R)和ρcosθ=1
D.θ=0(ρ∈R)和ρcosθ=1
答案 B
解析由题意可知,圆ρ=2cosθ可化为普通方程为(x-1)2+y2=1.
所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方
程化为极坐标方程分别为θ=π
2(ρ∈R)和ρcosθ=2,故选B.
7.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是()
A.ρ=cosθB.ρ=sinθ
C.ρcosθ=1 D.ρsinθ=1
答案 C
解析过点(1,0)且与极轴垂直的直线,在直角坐标系中的方程为x=1,所以其极坐标方程为ρcosθ=1,故选C.
8.(2013·天津)已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标
为(4,π
3),则|CP|=________.
答案2 3
解析由圆的极坐标方程为ρ=4cosθ,得圆心C的直角坐标为(2,0),点P 的直角坐标为(2,23),所以|CP|=2 3.
9.(2014·唐山一中)在极坐标系中,点P(2,-π
6)到直线l:ρsin(θ-π
6)=1的
距离是________.
答案3+1
解析依题意知,点P(3,-1),直线l为x-3y+2=0,则点P到直线
l 的距离为3+1.
10.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.
答案 x 2+y 2-4x -2y =0
解析 由⎩⎪⎨⎪⎧
x =ρcos θ,y =ρsin θ⇒cos θ=x ρ,sin θ=y ρ,ρ2=x 2+y 2
,代入ρ=2sin θ+4cos θ,
得ρ=2y ρ+4x
ρ⇒ρ2=2y +4x ⇒x 2+y 2-4x -2y =0.
11.在极坐标系中,直线ρsin(θ+π
4)=2被圆ρ=4截得的弦长为________. 答案 4 3
解析 直线ρsin(θ+π
4)=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式,得
2
r 2-d 2=2
42-(222
)2
=4 3.
12.在极坐标系中,圆ρ=2cos θ的圆心的极坐标是________,它与方程θ=π
4(ρ>0)所表示的图形的交点的极坐标是________.
答案 (1,0) (2,π
4)
解析 ρ=2cos θ表示以点(1,0)为圆心,1为半径的圆,故圆心的极坐标为(1,0). 当θ=π4时,ρ=2,故交点的极坐标为(2,π4).
13.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.
答案 (2,3π
4)
解析 ρ=2sin θ的直角坐标方程为x 2+y 2-2y =0, ρcos θ=-1的直角坐标方程为x =-1.
联立方程,得⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x =-1,解得⎩⎪⎨⎪⎧
x =-1,
y =1,
即两曲线的交点为(-1,1).又0≤θ<2π,因此这两条曲线的交点的极坐标为(2,3π
4).
14.在极坐标系中,直线ρ(cos θ-sin θ)+2=0被曲线C :ρ=2所截得弦的中点的极坐标为________.
答案 ⎝ ⎛
⎭
⎪⎫2,3π4
解析 直线ρ(cos θ-sin θ)+2=0化为直角坐标方程为x -y +2=0,曲线C :ρ=2化为直角坐标方程为x 2+y 2=4.如图,直线被圆截得弦AB ,AB 中点为M ,则|OA |=2,|OB |=2,从而|OM |=2,∠MOx =3π
4.
∴点M 的极坐标为⎝ ⎛
⎭
⎪⎫2,3π4.
15.已知点M 的极坐标为(6,11π
6),则点M 关于y 轴对称的点的直角坐标为________.
答案 (-33,-3)
解析 ∵点M 的极坐标为(6,11π
6), ∴x =6cos 11π6=6cos π6=6×3
2=33, y =6sin 11π6=6sin(-π6)=-6×1
2=-3. ∴点M 的直角坐标为(33,-3).
∴点M 关于y 轴对称的点的直角坐标为(-33,-3).
16.在极坐标系中,点P (2,3π
2)到直线l :3ρcos θ-4ρsin θ=3的距离为________.
答案 1
解析 在相应直角坐标系中,P (0,-2),直线l 方程为3x -4y -3=0,所
以P 到l 的距离d =|3×0-4×(-2)-3|
32
+4
2
=1.
17.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12.
(1)求点P 的轨迹方程;
(2)设R 为l 上的任意一点,试求|RP |的最小值.
答案 (1)ρ=3cos θ (2)1
解析 (1)设动点P 的坐标为(ρ,θ),
M 的坐标为(ρ0,θ),则ρρ0=12.
∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程.
(2)由(1)知P 的轨迹是以(32,0)为圆心,半径为3
2的圆,易得|RP |的最小值为1.
18.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=2
2. (1)求圆O 和直线l 的直角坐标方程;
(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标. 答案 (1)x 2+y 2-x -y =0,x -y +1=0 (2)(1,π
2)
解析 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x 2+y 2-x -y =0.
直线l :ρsin(θ-π4)=2
2,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.
(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧
x =0,
y =1.
故直线l 与圆O 公共点的极坐标为(1,π2).。