高三第一次月考数学试题及答案文科
阳江高三数学(文科)月考 参考答案及评分标准
阳江一中2010年高三数学(文科)大练习(一)参考答案2009.2.27二、填空题11、3; 12、072=-+y x ; 13、①③; 14、2cos()6πρθ=-; 15、15 三、解答题 16、解:(Ⅰ)2105307⨯=,故已班20个优秀; 非优秀105—30=75,故甲班非优秀45(表格如图)…5’(Ⅱ)根据列联表中的数据,得到2105(10302045)6.109 3.84155503075k ⨯⨯-⨯=≈>⨯⨯⨯因此有95%的把握认为“成绩与班级有关系”。
…..9’(Ⅲ)设“抽到6或10号”为事件A ,先后两次抛掷一枚骰子,出现的点数为(x ,y )所有的基本事件有(1,1)、(1,2)、(1,3)、……、(6,6),共36个。
事件A 包含的基本事件有:(1,5)、(2,4)、(3,3)、(4,2)、(5,1)(4,6)、(5,5)、 (6、4),共8个82()369P A ∴==…………………………………….14’17、解:(Ⅰ)在ABC ∆ 中,根据正弦定理,A BC C AB sin sin =,有 522sin sin ===BC ABCC AB …….4’ (Ⅱ)解:在ABC ∆ 中,根据余弦定理,得AC AB BC AC AB A ∙-+=2cos 222552=于是 A A 2cos 1sin -==55,……..8’ 从而 53s i n c o s 2c o s ,54c o s s i n 22s i n22=-===A A A A A A …10’ 所以 1024sin2cos 4cos2sin )42sin(=-=-πππA A A ………12’ 18、(Ⅰ)证明:在ABD ∆中,2,4,60AB AD DAB ︒==∠= ……..1’BD ∴==..2’222,A B B D AD A B B D∴+=∴⊥…………..3’ 又AB//CD ,故CD ⊥BD ,即DE ⊥BD …………4’又 平面EBD ⊥平面ABD ,平面EBD平面,ABD BD DE =⊂平面BDE DE ∴⊥平面ABD ……………….6’(Ⅱ)解:由(Ⅰ)知DE ABD ⊥平面 故DE 是四面体E-ABD 的高………….7’由(Ⅰ)知AB BD ⊥在Rt ABD ∆中,2,4DB AB AD ===11222ABD S AB BD ∴==⨯⨯= ..10’ 从而112333E ABD ABD V S DE -==⨯=…………..12’ 19、解:(Ⅰ)设轨迹C 上的任意点M 的坐标为(,)x y ,则由题意得:(,0)D x ,则(0,)DM y =,1,(0,2),(,2)2DM DP DP y P x y =∴=∴ ---------4’点P 在圆224x y +=上,22(2)4x y +=,即动点M 的轨迹C 的方程为:2214x y += ------------------------6’(Ⅱ)当直线l 斜率不存在时,即:0l x =,此时(0,1),(0,1),(0,1),(0,3)EF BE BF -∴=-=-不满足2BF BE =,因此直线l 斜率必存在,设直线l 的方程为2y kx =+,代入椭圆方程, 可得:22(14)16120k x kx +++=------------8’ 设1122(,),(,)E x y F x y ,1122(,2),(,2)BE x y BB x y ∴=-=-,由题意知:212x x = --------------------10’,---------------------------------11’解此方程可得:------------------------------13’解得:显然满足上述条件,直线的方程为:-------14’ 20、解(Ⅰ)由条件,因为数列的前n 和是12)1(2-+-=n n S n ,即2n S n =,…………………………1分所以,当2≥n 时,12)1(221-=--=-=-n n n S S a n n n ………………4分 当1=n 时,111==S a 也满足上式……………………5分∴12-=n a n ,所以是以11=a 为首项,公差为2=d 的等差数列……………6分(Ⅱ)令2nn nb c =,则有121121,n n n n a c c c a c c c ++=+++=+++ 两式相减得 11n n n a a c ++-=,由(I )得11=a ,21=-+n n a a ……………………7分 12,2(2)n n c c n +∴==≥,即当2n ≥时,12n n b +=;当1=n 时,1122b a ==12,(1)2,(2)n n n b n +=⎧∴=⎨≥⎩…………………………10分于是154332122222++++++=++++=n n n b b b b T=-4=……14分21、解:(Ⅰ),,设,则且,--------------------------2’(Ⅱ)当时,,要使在区间上恒成立, 即在区间上恒成立,只需小于在上的最小值当且仅当时等号成立当时,--------------------------------------------------------------5’当时,在上单调递增,------------------------------------------------------------------------------------6’综上所述,当时,;当时,-----7’(Ⅲ)()为偶函数,且在单调递增,当时,,要使在时值域也是只能满足或----------------------------------------------------------8’)当时,此时在上单调递增,即方程有两个相异正根,函数的图像与函数()的图像有两个交点,当且仅当时等号成立,--------------------11’)当时,此时在上单调递减,即两式相减,可得:,,代入上式可得:综上所述,当时,应满足条件或--------------------14’。
四川省乐山市市中区海棠实验中学2023届高三上学期第一次月考数学(文科)模拟试题
附:
K
2
a
nad bc2 bc da cb
d
,其中
n
a
b
c
d
.
18.设 n N* ,有以下三个条件:
① an 是 2 与 Sn 的等差中项;② a1 2 , Sn1 a1 Sn 1 ;③ Sn 2n1 2 .在这三个条
件中任选一个,补充在下列问题的横线上,再作答(如果选择多个条件分别作答,按第 一个解答计分).
22.在直角坐标系
xoy
中,曲线
C1
的参数方程为
x
y
2 cos, sin ,
(
为参数).以坐标原点
为极点, x 轴正半轴为极轴建立极坐标系.
(1)求 C1 的极坐标方程;
(2)曲线 C1 上的动点 P 到直线 x 2y 3 2 0 的距离的最大值.
23.已知函数 f (x) x a x 3a .
15.经过 5, 0 , 2,1 两点,且圆心在直线 x 3y 10 0 上的圆的标准方程为______.
16.已知菱形 ABCD 的边长为 2 3 ,BAD ,若沿对角线 BD 将△ BCD 折起,使得 3
AC 3 3 ,则 A, B,C, D 四点所在球的表面积为____________.
的变化规律,指数增长率 r 与 R0 ,T 近似满足 R0 1 rT ,有学者基于已有数据估计出
R0 3.28 ,T =6 .据此,在新冠肺炎疫情初始阶段,累计感染病例数增加 2 倍需要的时
间约为( )(参考数据: ln 3 1.098 )
A.2 天
B.5 天
C.4 天
D.3 天
11.已知函数 f x 是 R 上的偶函数,且 f x 的图象关于点 1,0 对称,当 x 0,1 时,
河北省大名县第一中学2022届高三(实验班)上学期第一次月考数学(文)试题 Word版含答案
高三文科数学月考试题学校:姓名:班级:考号:评卷人得分一、选择题1. [2021·吉大附中高三四模(文)]已知集合A={x|x2+x-2≤0},B={y|y=2x,x∈R},则A∩B等于()A. (0,1]B. [1,+∞)C.(0,2] D.2. [2021·哈三中一模(文)]已知f(x)是定义在R上的偶函数,周期为2,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A. 既不充分也不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件3. [2021·哈三中一模]下列结论中正确的个数是()①“x=”是“”的充分不必要条件;②若a>b,则am2>bm2;③命题“∀x∈R,sin x≤1”的否定是“∀x∈R,sin x>1”;④函数f(x )=-cos x在[0,+∞)内有且仅有两个零点.A. 1B. 2C. 3D. 44. [2021·吉林长春普高高三二模]下列函数中,既是奇函数又在(0,+∞)上单调递增的函数是() A. y=e x+e-x B. y=ln(|x|+1) C.y= D. y=x-5. [2021·吉大附中高三四模(文)]设函数f(x)=ln(1+x2)-,则使得f(x)>f(2x-1)成立的x的取值范围是()A. B. C.D.6. [2021·吉林市普高高三第三次调研]若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)=则此函数的“友好点对”有()A. 3对B. 2对C. 1对 D. 0对7. [2021·河北唐山高三摸底月考]设函数,“是偶函数”是“的图象关于原点对称”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. [2021·吉林长春高三二模(文)]关于函数y=2sin+1,下列叙述有误..的是()A. 其图象关于直线x=-对称B. 其图象可由y=2sin+1图象上全部点的横坐标变为原来的倍得到C. 其图象关于点对称D. 其值域为[-1,3]9. [2022·甘肃省高考诊断(二)(文)]已知△ABC的外接圆半径为1,圆心为O,且=0,则△ABC 的面积为()A. 1+B.C.1+ D.10. [2022·哈尔滨市第六中学高三一模(文)]已知向量a=(cosθ,-sinθ),b=(-cos2θ,sin2θ)(θ∈(π,2π)),若向量a,b的夹角为φ,则有()A. φ=θB. φ=π-θC.φ=θ-π D. φ=θ-2π11. [2021·河北武邑中学高二入学考试]已知数列,都是公差为1的等差数列,是正整数,若,则( )A. 81B. 99C. 108D. 11712. [2021·河南南阳一中高三第三次月考]已知函数,关于的方程R)有四个相异的实数根,则的取值范围是( )A. B. C.D.评卷人得分二、填空题13. [2021·河北五个一名校联盟高三一模(文)]设△的内角,,所对的边长分别为,若,则的值为.14. [2021·河南南阳方城一中高二开学考试]设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sin A=5sin B,则角C= . 15. [2021·河南许昌五校高二第一次联考]已知在中,,,,,,则的值为.16. [2010·高考辽宁卷,16]已知数列{a n}满足a1=33,a n+1-a n=2n,则的最小值为.评卷人得分三、解答题17. [2021·吉林市普高高三第三次调研]已知函数f(x)=cos 2x+2sin2x+2sin x.(1)将函数f(2x)的图象向右平移个单位得到函数g(x)的图象,若x∈,求函数g(x)的值域;(2)已知a,b,c分别为△ABC中角A,B,C的对边,且满足f(A)=+1,A∈,a=2,b=2,求△ABC的面积.18. [2021·吉林长春高三二模(文)]已知数列{a n}满足a1=,a n+1=3a n-1(n∈N*).(1)若数列{b n}满足b n=a n-,求证:{b n}是等比数列;(2)求数列{a n}的前n项和S n.19. [2021·河南八市重点高中高二第一次月考(文)]正项数列满足.(1)求数列的通项公式;(2)令,求数列的前项和为.20. [2021·吉林长春高三二模(文)]已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.(1)求证:平面ABC⊥平面ACD;(2)若E为AB中点,求点A到平面CED的距离.21. [2021·湖南长沙长郡中学高三入学考试]已知椭圆的两个焦点分别为,以椭圆短轴为直径的圆经过点.(1)求椭圆的方程;(2)过点的直线与椭圆相交于两点,设点,直线的斜率分别为,问是否为定值?并证明你的结论.22. [2021·广东省仲元中学、中山一中等七校高三联考(一)]在中,角所对的边分别为,且.(1)求的大小;(2)设的平分线交于,求的值.参考答案1. 【答案】A【解析】本题考查集合的基本运算、解一元二次不等式及求指数函数的值域,属于基础题.由于x2+x-2≤0,所以-2≤x≤1,依据指数函数的性质知y=2x>0,所以集合A =,B =,则A∩B =,故选A.2. 【答案】D【解析】本题考查充分条件与必要条件,函数的奇偶性与周期性,属于中档题.函数在上递增,利用偶函数得函数在上递减,利用周期得函数在上递减,故充分性成立;函数在上递减,利用周期得函数在上递减,利用偶函数得函数在上递增,必要性成立,综上,充分性与必要性均成立,故选D.3. 【答案】A【解析】本题考查充分必要条件、不等式性质、命题的否定及命题真假的判定,属于中档题.对于①,当x=时,sin ,充分性成立;当sin 时,x ++2kπ或x ++2kπ,k∈Z,得x=-+2kπ或x=+2kπ,k∈Z,故必要性不成立,故①正确;对于②,当m=0时,若a>b,am2>bm2不成立,故②不正确;对于③,命题“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”,故③不正确;对于④,函数y =与y=cos x的图象有且只有一个交点,故函数f(x )=-cos x 在内有且仅有一个零点,故④不正确.综上,正确的只有一个,故选A.4. 【答案】D【解析】本题考查函数的单调性与奇偶性学问,属于基础题.A,B选项中的函数为偶函数,排解,C选项中的函数是奇函数,但在(0,+∞)上不是单调递增函数.故选D.5. 【答案】A【解析】本题考查函数的奇偶性及导数在争辩函数中的应用,解一元二次不等式、确定值不等式,属于难题.∵f(-x )= ln =ln =f(x),∴函数f(x)为偶函数.当x≥0时,f(x)=ln (1+x2),求导得f'(x )=恒为正,即函数f(x)在单调递增,∵f(x)是偶函数,∴f(x)在(-∞,0)上单调递减,则f(x)>f(2x-1)等价于f(|x|)>f(|2x-1|),即|x|>|2x-1|,平方得3x2-4x+1<0,解得<x<1,故选A.6. 【答案】C【解析】本题考查新概念和函数的图象与性质,考查了数形结合的数学思想,属于中档题.设f(x )=(x>0)图象上任一点为A(x,y)(x>0,y>0),点A关于原点的对称点A'(-x,-y)在y=x+1上,所以-y=-x+1,即y=x-1,得“友好点对”的个数就是方程组的根的个数,而y=x-1(x>0)的图象与y的图象有且只有一个交点,∴“友好点对”共1对,故选C.7. 【答案】B【解析】本题考查函数的奇偶性,考查图象的对称性.若是偶函数,而不肯定是奇函数,故的图象不肯定关于原点对称;当的图象关于原点对称时,函数是奇函数,则是偶函数,因此“是偶函数”是“的图象关于原点对称”的必要不充分条件.故选B.8. 【答案】C【解析】本题考查三角函数的性质、图象变换,属于中档题.关于函数y =2sin+1,令x=-,求得y=-1,为函数的最小值,故A正确;由y =2sin+1图象上全部点的横坐标变为原来的倍,可得y =2sin+1的图象,故B正确;令x =π,求得y=1,可得函数的图象关于点对称,故C错误;函数的值域为[-1,3],故D正确.故选C.9. 【答案】D【解析】本题考查向量的运算.由=0得=-,两边平方可得·=0,则∠AOB =90°;由=0得=-,两边平方可得·=,则∠AOC=135°;同理可得∠BOC=135°,则△ABC的面积为S△AOB+S△BOC+S△AOC =,故选D.10. 【答案】C【解析】本题考查向量的夹角、向量的坐标运算、二倍角、同角三角函数的基本关系、诱导公式.由题意知cosφ==- () =-cosθ=cos(θ-π).由于θ∈(π,2π),所以θ-π∈(0,π),而φ∈[0,π],所以φ=θ-π,故选C.11. 【答案】D【解析】本题考查等差数列的通项公式与数列求和,考查计算力量.,.故选D. 12. 【答案】A【解析】本题考查分段函数导函数的应用,函数与方程的关系.=,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.13. 【答案】4【解析】本题考查正弦定理与余弦定理、两角和与差公式,考查计算力量.由正弦定理可得=,又由于==,所以=,即, 所以.14. 【答案】【解析】本题考查正弦定理及余弦定理.由正弦定理得, 5b=3a,又b+c=2a,则,由余弦定理得,,又,所以.15. 【答案】【解析】本题主要考查平面对量的线性运算及平面对量数量积.在中,,建立直角坐标系,,,,依题意有D,E(2,0)得,得,故填. 16. 【答案】【解析】由已知可得a n-a n-1=2(n-1),a n-1-a n-2=2(n-2),…,a3-a2=2×2,a2-a1=2×1,左右两边分别相加可得a n-a1=2(1+2+3+…+(n-1)]=n(n-1),∴a n=n2-n+33.=n+-1,令F(n)=n+-1,n≤5时为减函数,n≥6时为增函数且F(5)>F(6),∴F(n)≥F(6)=,故的最小值为.17.(1) 【答案】f(x)=cos 2x+2sin2x+2sin x=cos2x-sin2x+2sin2x+2sin x=cos2x+sin2x+2sin x=1+2sin x,所以f(2x)=1+2sin2x.由于函数f(2x)的图象向右平移个单位得到函数g(x)的图象,所以g(x )=2sin+1,即g(x )=2sin+1.由于x ∈,所以2x ∈所以sin ∈,所以g(x)∈[0,3],所以函数g(x)的值域为[0,3].(2) 【答案】由于f(A )=+1,所以sin A =,由于A ∈,所以cos A=.又cos A =,a =2,b=2,所以c=4.所以△ABC面积S△ABC=bc sin A =2.18.(1) 【答案】由题可知a n+1=3(n∈N*),从而有b n+1=3b n,b1=a1-=1,所以{b n}是以1为首项,3为公比的等比数列.(2) 【答案】由第1问知b n=3n-1,从而a n=3n-1+,有S n=30++3++…+3n-1+=30+31+32+…+3n-1+×n =.19.(1) 【答案】由,得,由于数列是正项数列,所以.(2) 【答案】由第1问得,,所以.20.(1) 【答案】由于AD⊥平面BCD,BC⊂平面BCD,所以AD⊥BC,又由于AC⊥BC,AC∩AD=A, 所以BC⊥平面ACD,BC⊂平面ABC,所以平面ABC⊥平面ACD.(2) 【答案】由已知可得CD =,取CD中点为F,连接EF,由于ED=EC=AB =,所以△ECD为等腰三角形,从而EF =,S△ECD =,由第1问知BC⊥平面ACD,所以E到平面ACD的距离为1,S△ACD =,令A到平面CED的距离为d,由V A-ECD=·S△ECD·d=V E-ACD=·S△ACD·1,解得d =.所以点A到平面CED 的距离为21.(1) 【答案】由题意得,,, 解得,所以椭圆的方程为.(2) 【答案】①当直线的斜率不存在时,由, 解得,设,则.②当直线的斜率存在时,设直线的方程为,代入整理化简,得,依题意,直线与椭圆必相交于两点,设,则, 又,所以====.综上所述,为定值2.(说明:若假设直线为,按相应步骤给分)22.(1) 【答案】,,,,.(2) 【答案】在中,由正弦定理:,得,,.。
2022-2023学年四川省内江市威远中学高三年级下册学期第一次月考数学文试题【含答案】
高三下第一次月考文科数学第I 卷(选择题)一、单选题1.已知全集,集合,则A =( ){62}U x x =-<<∣{}2230A x x x =+-<∣C U A .B .C .D .()6,2-()3,2-()()6,31,2--⋃][()6,31,2--⋃2.已知,则( )()1i 75iz +=+z =A .B .C .D .6i-6i+32i-12i-3.素数对称为孪生素数,将素数17拆分成个互不相等的素数之和,其中任选(,2)p p +n 2个数构成素数对,则为孪生素数的概率为( )A .B .C .D .151314124.《九章算术》是我国古代的数学名著,书中有如下问题:“今有女子善织,日增等尺,三日织9尺,第二日、第四日、第六日所织之和为15尺,则其七日共织尺数为几何?”大致意思是:“有一女子善于织布,每日增加相同的尺数,前三日共织布9尺,第二日、第四日、第六日所织布之和为15尺,问她前七日共织布多少尺?” ( )A .28B .32C .35D .425.设,是两个向量,则“”是“且”的.a b a b = ||a b |=|a b A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知各顶点都在球面上的正四棱锥的高度为,椎体体积为6,则该球的表面积为3( )A .B .C .D .32π16π24π20π7.某程序框图如图所示,则输出的S =( )A .8B .27C .85D .2608.已知直线的斜率为,直线的倾斜角为直线的倾斜角的一1l 2l1l半,则直线的斜率为( )A .. C D .不2l 存在9. 我国著名数学家华罗庚先生曾说,数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,经常用函数的图象研究函数的性质.已知函数的图象可能为sin ()2cos x xf x x =-A.B .C .D .10.函数的图象如图所示,将函数的图象向右平移个()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭()f x π6单位长度,得到函数的图象,则( )()g x A .B .()sin 2g x x=()cos 2g x x=C .D .()2πsin 23g x x ⎛⎫=+ ⎪⎝⎭()2πcos 23g x x ⎛⎫=+ ⎪⎝⎭11.10.设,,,则( )0.302a =.3log 4b =4log 5c =A . B . C .D .a b c <<b a c <<c a b<<a c b <<12.已知函数的定义域为R ,且满足,,()f x ()()110f x f x -+-=()()8f x f x +=,,,给出下列结论:()11f =()31f =-()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩①,;②;③当时,的解集为;1a =-3b =-()20231f =[]4,6x ∈-()0f x <()()2,02,4- ④若函数的图象与直线在y 轴右侧有3个交点,则实数m 的取值范围是()f x y mx m =-.其中正确结论的个数为( )111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭A .4B .3C .2D .1第II 卷(非选择题)二、填空题13.若实数、满足,则的取值范围是_________.x y 430x y y x y +≤⎧⎪≤⎨⎪≥⎩23x y +14.已知定点和曲线上的动点,则线段的中点的轨迹方程为(4,2)A -224x y +=B AB P ___________.15.数列满足,其前项和为若恒成立,则{}n a 1,N (21)(23)n a n n n *=∈++n n S n S M <的最小值为________________________M 16.设函数在区间上的导函数为,在区间上的导函数为()y f x =(),a b ()f x '()f x '(),a b,若在区间上恒成立,则称函数在区间上为“凸函数”;已()f x ''(),a b ()0f x ''<()f x (),a b 知在上为“凸函数”,则实数的取值范围是_____43213()1262m f x x x x =--()1,3m 三、解答题(本大题共5小题,共60分.17题-21题各12分,解答应写出文字说明、证明过程或演算步骤)17.中,sin 2A -sin 2B -sin 2C =sin B sin C .ABC (1)求A ;(2)若BC =3,求周长的最大值.ABC 18.热心网友们调查统计了柳州市某网红景点在2022年6月至10月的旅游收入y (单位:万元),得到以下数据:月份x678910旅游收入y1012111220(1)根据表中所给数据,用相关系数r 加以判断,是否可用线性回归模型拟合y 与x 的关系?若可以,求出y 关于x 之间的线性回归方程;若不可以,请说明理由;(2)为调查游客对该景点的评价情况,网友们随机抽查了200名游客,得到如图列联表,请填写2×2列联表,并判断能否有99.9%的把握认为“游客是否喜欢该网红景点与性别有关联”喜欢不喜欢总计男100女60总计110,3.162≈注:r 与的计算结果精确到0.001.参考公式:相关系数2K r =线性回归方程:,其中,,ˆˆˆybx a =+()()()121ˆniii nii x x y y bx x ==--=-∑∑ˆˆa y bx =-.22()()()()()n ad bc K a b c d a c b d -=++++临界值表:()20P K k ≥0.0100.0050.0010 k 6.6357.87910.82819.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,,45BAD∠=1,AD AB ==是正三角形,平面平面PBD .PADPAD ⊥(1)求证:;PA BD⊥(2)求三棱锥P -BCD 的体积.20.已知椭圆C 的方程为,右焦点为.22221(0)x y a b a b +=>>F (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线与曲线相切.证明:MN 222(0)x y b x +=>M ,N ,F 三点共线的充要条件是.||MN 21.已知函数.()()21ln 2f x x a x a R =-∈(1)若,求函数在处的切线方程;2a =()f x ()()11f ,(2)若函数在上为增函数,求的取值范围;()f x ()1+∞,a (3)若,讨论方程的解的个数,并说明理由.0a ≠()0f x =四、选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.在平面直角坐标系中,曲线C 的参数方程为(为参数),以坐xOy 12cos 22sin x y αα=-+⎧⎨=+⎩α标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是.cos 2sin 40ρθρθ-+=(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)已知,设直线l 和曲线C 交于A ,B 两点,线段的中点为Q ,求的值.(4,0)P -AB ||PQ [选修4—5:不等式选讲]23.已知a ,b ,c 均为正数,且,证明:22243a b c ++=(1);23a b c ++≤(2)若,则.2b c =113a c +≥高2023届第六学期第一次月考试题文科数学参考答案选择题 1-5 DBBCA 6-10 BCCAA 11-12 DC1.D 因为,A=.故选:D.{}}{223031A x x x x x =+-<=-<<∣U ][()6,31,2--⋃2.B 因为,所以.故选:B.()()()()75i 1i 75i 122i6i 1i 1i 1i 2z +-+-====-++-6i z =+3.B 素数,可拆成4个互不相等的素数,在4个互不相等的素数中,任取172357=+++两个的所有情况为共6种,其中为孪生素数的情况有2{}(2,3),(2,5),(2,7),(3,5),(3,7),(5,7)种,分别是,,所以孪生素数的概率为.故选:B .{(3,5)(5,7)}2163=4.C 解:由题知,该女子每日织布的尺数构成等差数列,记为,设其每日增加的尺数{}n a 为,其前项和为,所以,,即,解得,,d n n S 123246915a a a a a a ++=⎧⎨++=⎩113393915a d a d +=⎧⎨+=⎩112d a =⎧⎨=⎩所以,她前七日共织布尺.故选:C71721142135S a d =+=+=5.A 【详解】由“”可推出“且”;但反之不成立.所以“”是“且”a b = ||||a b =a b a b = a b = a b的充分而不必要条件.选.A 6.B 设正四棱锥底面边长为,则()0a a >2136,3a a ⨯⨯==,则,解得,则球的表面积为.r ()2223r r -+=2r =24π16πr =故选:B7.C 由图可知,初始值;第一次循环,,不成2,1S k ==112,3228k S =+==⨯+=23k =>立;第二次循环,,不成立;第三次循环,213,38327k S =+==⨯+=33k =>,成立;退出循环,输出的值为.故选:C.314,327485k S =+==⨯+=43k =>S 858. C 由直线的斜率为,设其倾斜角为,则1l1θ1tan θ=由直线的倾斜角为直线的倾斜角的一半,设直线的倾斜角为,则,2l 1l 2l 2θ212θθ=,,解得212222tan tan tan 21tan θθθθ===-)(221tan 0θθ+=2tan θ=由倾斜角的取值范围为,则故选:C.[)0,p 2tan θ=2l9.A 解:由题意可得,所以函数为偶函数,排()sin()sin ()()2cos()2cos x x x xf x f x x x ---===---()f x 除B 、C 当略大于0时,,,所以,排除D 故选:A.x sin 0x x >2cos 0x ->()0f x >10.A 结合图像,易得,则,所以由得,所以,17πππ41234T =-=πT =2πT ω=2ππω=2ω=又,所以,则,又因为落在上,所以0ω>2ω=()()sin 2f x x ϕ=+7π,112⎛⎫- ⎪⎝⎭()f x ,即,所以,得7πsin 2112ϕ⎛⎫⨯+=- ⎪⎝⎭7πsin 16ϕ⎛⎫+=- ⎪⎝⎭7π3π2π,Z62k k ϕ+=+∈,ππ,Zk k ϕ=+∈23因为,所以当且仅当时,满足要求,所以,π2ϕ<0k =π3ϕ=()πsin 23f x x ⎛⎫=+ ⎪⎝⎭因为将函数的图象向右平移个单位长度,得到函数的图象,()f x π6()g x 所以.故选:A.()ππsin 2sin 263xg x x ⎡⎤⎛⎫-+= ⎪⎢⎥⎣⎦=⎝⎭11.D 因为单调递减,所以,又与均单调递0.2x y =0.3002021..a =<=3log y x =4log y x =增,故,,其中,33log 4log 31b =>=44log 5log 41c =>=3ln 4log 4ln 3b ==,4ln 5log 5ln 4c ==,其中,故,2ln 4ln 5ln 4ln 3ln 5ln 3ln 4ln 3ln 4-⋅-=⋅ln 30,ln 40>>ln 3ln 40⋅>其中,故,2222ln 3ln 5ln15ln16ln 3ln 5ln 4222+⎛⎫⎛⎫⎛⎫⋅<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2ln 4ln 5ln 4ln 3ln 50ln 3ln 4ln 3ln 4-⋅-=>⋅所以,即,故.故选:D ln 4ln 5ln 3ln 4>b c >a c b <<12.C 【详解】因为,所以,所以函数为奇函数,()()110f x f x -+-=()()f x f x -=-()f x .因为,所以的周期为8.又()00f =()()8f x f x +=()f x ,所以,所以,,()()21111f a =-++=10a +=1a =-()3311f b =+-=-所以,故①正确.3b =-因为,,故②错误.()()()()202325381111f f f f =⨯-=-=-=-易知,作出函数在上的图象,()()211,0231,24x x f x x x ⎧--+<≤⎪=⎨--<≤⎪⎩()f x []0,4根据函数为奇函数,及其周期为8,得到函数在R 上的图象,如图所示,()f x ()f x 由的图象知,当时,的解集为,故③正确.()f x []4,6x ∈-()0f x <()()2,02,4- 由题意,知直线恒过点,与函数的图象在y 轴右侧有3个()1y mx m m x =-=-()1,0()f x 交点根据图象可知当时,应有,即,且同时满足,0m >51m m ⨯-<14m <()mx m f x -=无解,即当时,,无解,所[]8,10x ∈[]8,10x ∈()()()108f x x x =--()()108x x mx m--=-以,解得,所以.当时,应有Δ0<1616m -<<+1164m -<<0m <,即,且同时满足,无解,即当时,31m m ⨯->-12m >-()mx m f x -=[]6,8x ∈[]6,8x ∈,()()()68f x xx =--无解,所以,解得,所以()()58x x mx m --=-Δ0<1212m --<<-+综上,或④错误.故选:C.1122m -<<-+1164m -<<1122m -<<-+13.设,作出不等式组所表示的可行域如下图所示:0,11⎡⎤⎣⎦23z x y =+430x y y x y +≤⎧⎪≤⎨⎪≥⎩联立,可得,即点,平移直线,当该直线经过34y x x y =⎧⎨+=⎩13x y =⎧⎨=⎩()1,3A 23z x y =+可行域的顶点时,直线在轴上的截距最大,此时取最大值,A 23z x y =+x z 即,当直线经过原点时,该直线在轴上的截max 213311z =⨯+⨯=23z x y =+x 距最小,此时取最小值,即,因此,的取值范围是.z min 0z =23x y +0,11⎡⎤⎣⎦14.设线段中点为,, 则,22(2)(1)1x y -++=AB (,)P x y (,)B m n 42m x +=22ny-+=即,因为点为圆上的点,所以24m x =-22n y =+B 224x y +=224m n +=所以,化简得:故答案为:22(24)(22)4x y -++=22(2)(1)1x y -++=22(2)(1)1x y -++=15.,()()1111212322123n a n n n n ⎛⎫==-⎪++++⎝⎭则,因为恒成立,所以,1112121111111123557233236n S n n n --++ +⎛⎫⎛⎫=-+-++=<⎪ ⎪⎝⎭⎝⎭ n S M <16M ≥即的最小值为 故答案为:M 161616因为,,由题意在上恒成立,即321()332mf x x x x '=--2()3f x x mx ''=--()0f x ''<()1,3在上恒成立,分离参数,而在上的最大值为2,230x mx --≤()1,33m x x ≥-3y x x =-()1,317.(1)由正弦定理可得:,222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,.()0,A π∈ 23A π∴=(2)由余弦定理得:,2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=即.()29AC AB AC AB +-⋅=(当且仅当时取等号),22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭ AC AB =,()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭解得:(当且仅当时取等号),AC AB +≤AC AB =周长周长的最大值为ABC ∴ 3L AC AB BC =++≤+ABC ∴ 3+18.(1)由已知得,,67891085x ++++==1012111220135y ++++==,,,()52110ii x x =-=∑()52164ii y y =-=∑()()5120iiix y y x =-=-∑所以,0.791r ===≈因为,||0.791[0.75,1]r ≈∈说明y 与x 的线性相关关系很强,可用线性回归模型拟合y 与x 的关系,设线性回归方程为,ˆˆˆybx a =+∴,.2020ˆ1b ==ˆˆ13163a y bx =-=-=-则y 关于x 线性回归方程为;23y x =-(2)由题可得2×2列联表,喜欢不喜欢总计男7030100女4060100总计11090200,()222007060403018.18210.82810010011090K ⨯⨯-⨯=≈>⨯⨯⨯∴有99.9%的把握认为“游客是否喜欢该网红景点与性别有关联”.19.(1)证明:取中点,连接,PD E AE 因为是边长为1正三角形,所以,PAD AE PD ⊥又因为平面平面PBD ,平面平面PBD ,所以平面PAD ⊥PD =PAD ⋂⊥AE PBD ,又因为平面PBD ,所以①,又因为在中,,BD ⊂AE BD ⊥ABD △45BAD∠=,所以1,AD AB ==2222cos 451BD AD AB AD AB =+-⋅⋅⋅︒=,所以②,又因为③,由①②③2222BD AD AB +==AD BD ⊥AE AD A ⋂=可得平面,又因为平面,所以;BD ⊥PADPA ⊂PAD PA BD ⊥(2)解:取中点,连接,AD F PF 因为是边长为1正三角形,所以且(1)可知PAD PF AD ⊥PF =平面,BD ⊥PAD 平面,所以,又因,所以平面,即有PF ⊂PAD BD ⊥PF BD AD D Ç=PF ⊥ABCD 平面,所以为三棱锥P -BCD 的高,又因为ABCD 为平行四边形,所以PF ⊥BCD PF,111122BCD ABD S S ==⨯⨯= 所以111332P BCD BCDV S PF -=⋅=20.(1)由题意,椭圆半焦距,所以c=c e a ==a =2221b a c =-=椭圆方程为;2213x y +=(2)由(1)得,曲线为,当直线的斜率不存在时,直线,221(0)x y x +=>MN :1MN x =不合题意;当直线的斜率存在时,设,MN ()()1122,,,M x y N x y 必要性:若M ,N ,F 三点共线,可设直线即,(:MN y k x =0kx y --=由直线与曲线,解得,MN 221(0)x y x +=>11k =±联立可得,所以,(2213y x x y ⎧=±⎪⎨⎪+=⎩2430x -+=121234x x x x +=⋅==所以必要性成立;充分性:设直线即,():,0MN y kx b kb =+<0kx y b -+=由直线与曲线,所以,MN 221(0)x y x +=>1=221b k =+联立可得,2213y kx b x y =+⎧⎪⎨+=⎪⎩()222136330k x kbx b +++-=所以,2121222633,1313kb b x x x x k k -+=-⋅=++==化简得,所以,()22310k -=1k =±所以或,所以直线或,1k b =⎧⎪⎨=⎪⎩1k b=-⎧⎪⎨=⎪⎩:MNy x =y x =-所以直线过点,M ,N ,F 三点共线,充分性成立;MN F 所以M ,N ,F 三点共线的充要条件是||MN =21(1) 时,, , ,2a =()212ln 2f x x x =-()'2f x x x ∴=-()'11k f ∴==-又,函数在处的切线方程为:;()112f =∴()f x ()()11f ,2230x y +-=(2)函数在上为增函数,则 在恒成立,()f x ()1+∞,()'0a f x x x =-≥()1x ∈+∞,即在恒成立,故,经检验,符合题意,2a x ≤()1x ∈+∞,1a ≤;1a ∴≤(3),()'af x x x =-时, 在上恒成立,在是增函数,0a <①()'0f x >()0+∞,()f x \()0+∞,取,,11x =212eax =由, ,()10f >11121121111e e ln e e e 102222a a a aa f a ⎛⎫⎛⎫=-=-=-< ⎪ ⎪⎝⎭⎝⎭所以在时存在唯一零点,即时,方程有唯一解;12e ,1a x ⎛⎫∈ ⎪⎝⎭0a <()0f x =时,,0a >②()'af x x x =-=在递减,在递增,()f x\(0)+∞ ,()min 1()1ln 2fx fa a ∴==- 时,,此时方程无解,0e a <<0f>()0f x = 时, , 时方程存在一个解,e a >()110,02f f =><(x ∴∈()0f x =又 ,()211e e e e e 22a a a a a f a a ⎛⎫=-=- ⎪⎝⎭令 ,即 是增函数,()()'e 1111e ,e 1,e,e 1e 102222a a a p a a p a a =-=->∴->-> ()p x ,即 ,即 时,()()e e 121111e e e e e 1e e 10222p a p --⎛⎫⎛⎫>=-=->-> ⎪ ⎪⎝⎭⎝⎭()e 0a f >)ax ∈方程存在一个解;()0f x =所以: 时,无解,0e a <<()0f x =或 时,有唯一解,0a <e a =()f x时,有个解;e a >()0f x =2综上, 时,无解,或 时,有唯一解, 时,0e a <<()0f x =0a <e a =()f x e a >有个解;()0f x =222.(1)由(为参数),得,故曲线C 的普通方程为12cos ,22sin x y αα=-+⎧⎨=+⎩α22(1)(2)4x y ++-=.由,得,故直线l 的直角坐标方程22(1)(2)4x y ++-=cos 2sin 40ρθρθ-+=240x y -+=为;240x y -+=(2)由题意可知点P 在直线l 上,则直线l 的参数方程为(t 为参数),4,x y ⎧=-⎪⎪⎨⎪=⎪⎩将直线l 的参数方程代入曲线C 的普通方程,整理得,25450t -+=,(245453800∆=-⨯⨯=>设A ,B 对应的参数分别为,则12,t t 12t t+=故122t t PQ +==23.(1)由柯西不等式有,()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦所以,当且仅当时,取等号,所以.23a b c ++≤21a b c ===23a b c ++≤(2)证明:因为,,,,由(1)得,2b c =0a >0b >0c >243a b c a c ++=+≤即,所以,043a c <+≤1143a c ≥+由权方和不等式知,()22212111293444a c a c a c a c ++=+≥=≥++当且仅当,即,时取等号,124a c =1a =12c =所以.113a c +≥所以实数的取值范围是.m [)2,+∞。
贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案
江西省贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案贵溪市实验中学高中部2019-2020学年第一学期第一次月考高三(文科)数学试卷考试时间:120分钟 总分:150 命题人:第Ⅰ卷(选择题 共60分)一、 选择题:本大题共12小题.每小题5分,共60分。
在每个小题给出的四个选项中 ,只有一项是符合题目要求的。
1.已知集合{}31|<<-=x x A ,(){}1lg |-==x y x B ,则()=⋂B C A R ( )A 。
()3,1B 。
()3,1- C.()1,1- D.(]1,1-2.已知命题:p x R ∀∈,1sin x e x ≥+。
则命题p ⌝为( ) A .x R ∀∈,1sin x e x <+ B .x R ∀∈,1sin x e x ≤+ C .0x R∃∈,001sin x e x ≤+D .0x R∃∈,001sin x e x <+3.下列哪一组函数相等( ) A 。
()()xx x g x x f 2==与B.()()()42x x g x x f ==与C.()()()2x x g x x f ==与D.()()362x x g x x f ==与 4. = 255tan ( )A .3-2- B .32-+C .3-2D .32+5.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的() A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.()的图像为函数R x x y x ∈-=22( ) A.B.C 。
D 。
7.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )①f (b )>f (a )>f (c );②函数f (x )在x =c 处取得极小值在x =e 处取得极大值;③函数f (x )在x =c 处取得极大值在x =e 处取得极小值;④函数f (x )的最小值为f (d ).A.③ B 。
深圳市布吉高级中学高三文科数学第一学期第一次月考(附答案)
布吉高级中学2013--2014学年度第一学期月考试卷高三(文科)数学满分:150分 时间:120分钟考生注意:客观题请用2B 铅笔填涂在答题卡上,主观题用黑色的水笔书写在答题卡上。
一、选择题:(本大题共10小题,每小题5分,共50分。
) 1. 已知全集{}1,2,3,4U =,集合{}{}1,3,4,2,3A B ==,则图中阴影部分表示的集合为A .{2}B .{3}C .{1,4}D .{1,2,3,4}2. 已知i 是虚数单位,则复数1-2i 的虚部为A .2B .1C .1-D .2-3. 已知曲线281x y =的一条切线的斜率为12,则切点的横坐标为A .4B .3C .2 D.124. 函数lg(1)()1x f x x +=-的定义域是A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞D .[1,1)(1,)-+∞ 5. 已知51)2cos(=+απ,那么=αsin A .25- B .15- C .15 D .256. 某程序框图如图所示,该程序运行后,输出s 的值是A .10B .15C .20D .307. 将函数y=sinx 图象上所有的点向左平移3π个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象 的函数解析式为A .)(32sin π+=x yB .)(62sin π+=x yC .)(32sinπ+=x y D .)(32sin π-=x y 8.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则a+b 等于A .2B .3C .6D .99. 已知函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩,则[(1)]f f -=A .2-B .1-C .1D .210. 设函数()fx 的定义域为D ,如果x D y D ,∀∈∃∈,使()()2f x fy C C (+= 为常数)成立,则称函数()fx 在D 上的均值为C . 给出下列四个函数:①3yx =;②12xy ⎛⎫= ⎪⎝⎭;③y x ln =;④21y x sin =+, 则满足在其定义域上均值为1的函数的个数是A .1B .2C .3D .4二、填空题:(本大题共5小题.考生作答4小题.每小题5分,满分20分.)(一)必做题(11~13题) 11. =32sinπ12. cos 25cos35sin 25sin35-=_____________13. 函数()y f x =的图象在点(1,(1))M f 处的切线方程是y ex e =-,则(1)f '= (二)选做题(14、15题,考生只能从中选做一题;两道题都做的,只记第一题的分) 14.(坐标系与参数方程选做题)过点(2,)3π且平行于极轴的直线的极坐标方程为________.15.(几何证明选讲选做题) 已知PA 是圆O 的切线,切点为A , 直线PO 交圆O 于,B C 两点,2AC =,120PAB ∠=, 则圆O 的面积为 .三、解答题:(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)16. (本小题满分12分)已知54sin =α,),2(ππ∈α.试求:(1)αtan 的值;(2)sin2α的值;PABOC17.(本小题满分12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.18.(本小题满分14分)已知函数a x x x x f +++-=93)(23. (1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值19.(本小题满分14分)已知函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.20.(本小题满分14分)数列{}n a 的前n 项和为22n n S a =-,数列{}n b 是首项为1a ,公差不为零的等差数列,且1311,,b b b 成等比数列. (1)求123,,a a a 的值;(2)求数列{}n a 与{}n b 的通项公式; (3)求证:3121235n nb b b b a a a a ++++< .21. (本小题满分14分)已知函数3211()(,)32a f x x x bx a ab +=-++∈R ,且其导函数()f x '的图像过原点.(1)当1a =时,求函数()f x 的图像在3x =处的切线方程; (2)若存在0x <,使得()9f x '=-,求a 的最大值; (3)当0a >时,求函数()f x 的零点个数。
安徽省黄山市田家炳实验中学2021届高三上学期第一次月考数学(文)试卷 Word版含解析
2022-2021学年安徽省黄山市田家炳试验中学高三(上)第一次月考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分1.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)2.若a、b为实数,则“0<ab<1”是“a <”或“b >”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.下列函数中既是奇函数,又在区间(﹣1,1)上是增函数的为()A. y=|x| B. y=sinx C. y=e x+e﹣x D. y=﹣x34.若函数f(x)=log a(2﹣ax)(a>0a≠1)在区间(1,3)内单调递增,则a的取值范围是() A. [,1) B.(0,] C.(1,) D. [)5.奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1﹣x),则在(﹣∞,0)上f(x)的函数解析式是()A. f(x)=﹣x(1﹣x) B. f(x)=x(1+x) C. f(x)=﹣x(1+x) D. f(x)=x(x﹣1)6.函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x﹣1)是奇函数,若f(0.5)=9,则f(8.5)等于()A.﹣9 B. 9 C.﹣3 D. 07.定义两种运算:a⊕b=,a⊗b=,则f(x)=是()函数. A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()A. B. C . D.9.若log a(a2+1)<log a2a<0,则a的取值范围是()A.(0,1) B.(0,) C.(,1) D.(0,1)∪(1,+∞)10.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(a>1)恰有3个不同的实根,则a 的取值范围是()A.(1,2) B.(2,+∞) C.(1,) D.(,2)二、填空题:本大题共5小题,每小题5分,共25分.11.命题“∃x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,则m 的取值范围是.12.函数f(x)=lg|x+m|关于直线x=1对称,则m= .13.已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是.14.定义在R上的偶函数y=f(x),当x>0时,y=f(x)是单调递增的,f(1)•f(2)<0.则函数y=f (x)的图象与x轴的交点个数是.15.已知函数f(x)=(a∈R),若对于任意的X∈N*,f(x)≥3恒成立,则a的取值范围是.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.设集合,B={x|x2﹣3mx+2m2﹣m﹣1<0}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.17.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)求函数g(x)的解析式;(Ⅱ)解不等式g(x)≥f(x)﹣|x﹣1|.18.某单位用2160万元购得一块空地,方案在该地块上建筑一栋至少10层、每层2000平方米的楼房.经测算,假如将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)19.已知函数(a为常数).(1)若常数a<2且a≠0,求f(x)的定义域;(2)若f(x)在区间(2,4)上是减函数,求a的取值范围.20.定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.21.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=x0,则称x0是f(x)的一个不动点,也称f(x)在区间D上有不动点.(1)证明f(x)=2x﹣2x﹣3在区间(1,4)上有不动点;(2)若函数在区间[1,4]上有不动点,求常数a的取值范围.2022-2021学年安徽省黄山市田家炳试验中学高三(上)第一次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分1.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)考点:交、并、补集的混合运算.专题:集合.分析:由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规章解出A∩(∁R B)即可得出正确选项解答:解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x>3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B点评:本题考查交、并、补的混合运算,属于集合中的基本计算题,娴熟把握运算规章是解解题的关键2.若a、b为实数,则“0<ab<1”是“a <”或“b >”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断;不等关系与不等式.专题:简易规律.分析:由于“0<ab<1”⇒“a <”或“b >”.“a <”或“b >”不能推出“0<ab<1”,所以“0<ab<1”是“a <”或“b >”的充分而不必要条件.解答:解:∵a、b为实数,0<ab<1,∴“0<a <”或“0>b >”∴“0<ab<1”⇒“a <”或“b >”.“a <”或“b >”不能推出“0<ab<1”,所以“0<ab<1”是“a <”或“b >”的充分而不必要条件.故选A.点评:本题考查充分分条件、必要条件和充要条件,解题时要留意基本不等式的合理运用.3.下列函数中既是奇函数,又在区间(﹣1,1)上是增函数的为()A. y=|x| B. y=sinx C. y=e x+e﹣x D. y=﹣x3考点:奇偶性与单调性的综合.专题:探究型;函数的性质及应用.分析:对于A,C均是偶函数;对于B,C均是减函数,B在区间(﹣1,1)上是增函数,D在区间(﹣1,1)上是减函数.解答:解:对于A,C均是偶函数,故不满足题意对于B,C均是减函数,B在区间(﹣1,1)上是增函数,D在区间(﹣1,1)上是减函数所以B满足题意故选B.点评:本题考查函数的奇偶性与函数的单调性,考查同学分析解决问题的力量,属于中档题.4.若函数f(x)=log a(2﹣ax)(a>0a≠1)在区间(1,3)内单调递增,则a的取值范围是() A. [,1) B.(0,] C.(1,) D. [)考点:对数函数的单调性与特殊点.专题:计算题.分析:先将函数f(x)=log a(2﹣ax)转化为y=log a t,t=2﹣ax,两个基本函数,再利用复合函数求解.解答:解:令y=log a t,t=2﹣ax,∵a>0∴t=2﹣ax在(1,3)上单调递减∵f(x)=log a(2﹣ax)(a>0,a≠1)在区间(1,3)内单调递增∴函数y=log a t是减函数,且t(x)>0在(1,3)上成立∴∴0<a ≤故选B.点评:本题主要考查复合函数,关键是分解为两个基本函数,利用同增异减的结论争辩其单调性,再求参数的范围.本题简洁忽视t=2﹣ax>0的状况导致出错.5.奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1﹣x),则在(﹣∞,0)上f(x)的函数解析式是()A. f(x)=﹣x(1﹣x) B. f(x)=x(1+x) C. f(x)=﹣x(1+x) D. f(x)=x(x﹣1)考点:函数奇偶性的性质.专题:计算题.分析:把x∈(﹣∞,0)的函数解析式通过函数是奇函数的性质转化求出函数f(x)在(0,+∞)上的解析式.解答:解:当x∈(﹣∞,0)时,﹣x∈(0,+∞),由于函数f(x)是奇函数,故f(x)=﹣f(﹣x)=x(1+x).故选B点评:已知函数的奇偶性和函数在一个区间上的解析式求这个函数在其关于坐标原点对称的区间上的函数解析式,就是依据函数的奇偶性进行转化的,这类试题重点考查化归转化思想是运用.6.函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x﹣1)是奇函数,若f(0.5)=9,则f(8.5)等于()A.﹣9 B. 9 C.﹣3 D. 0考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由f(x﹣1)是奇函数、f(x)是偶函数,可得f(x)=f(x﹣4),从而求得f(8.5)=f(0.5),即可得到答案.解答:解:∵f(x﹣1)是奇函数,故有f(﹣x﹣1)=﹣f(x﹣1),即f(﹣x)=﹣f(x﹣2).又∵f(x)是偶函数,得f(x)=﹣f(x﹣2),f(x﹣4)=f(x)对任意x∈R恒成立,可得f(x)的最小正周期为4,∴f(0.5)=f(8.5)=9.故选:B.点评:本题综合考查抽象的函数奇偶性、周期性的应用,属于基础题.7.定义两种运算:a⊕b=,a⊗b=,则f(x)=是()函数. A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数考点:函数奇偶性的推断;进行简洁的合情推理.专题:新定义;函数的性质及应用.分析:先利用新定义把f(x)的表达式找出来,在利用函数的定义域把函数化简,最终看f(x)与f(﹣x)的关系得结论.解答:解:由定义知f(x)==,由4﹣x2≥0且|x﹣2|﹣2≠0,得﹣2≤x<0或0<x≤2,所以f(x)==,则f(﹣x)==﹣()=﹣f(x),故f(﹣x)=﹣f(x),即f(x)是奇函数.故选 A.点评:本题是对函数新定义与奇偶性的综合考查,关于新定义的题,关键在于理解新定义,并会用新定义解题,属于易错题题.8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()A. B. C. D.考点:指数函数的图像变换.专题:数形结合.分析:由已知中函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象,我们易推断出a,b与0,±1的关系,依据指数函数的图象的性质及指数函数图象的平移变换,我们分析四个答案中函数的图象,即可得到结论.解答:解:由已知中函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象可得b<﹣1<0<a<1则函数g(x)=a x+b为减函数,即函数的图象从左到右是下降的且与Y轴的交点在X轴下方分析四个答案只有A符合故选A点评:本题考查的学问点是指数函数的图象变换,其中依据已知推断出a,b与0,±1的关系,进而分析出函数图象的单调性及特殊点是解答本题的关键.9.若log a(a2+1)<log a2a<0,则a的取值范围是()A.(0,1) B.(0,) C.(,1) D.(0,1)∪(1,+∞)考点:对数函数的单调性与特殊点.专题:计算题;转化思想;对应思想.分析:由题意,可得出a2+1>1,结合log a(a2+1)<0,可得出a∈(0,1),再由log a2a<0得出2a>1,即可解出a的取值范围,选出正确选项解答:解:∵log a(a2+1)<log a2a<0,a2+1>1∴a∈(0,1),且2a>1∴a ∈(,1)故选C点评:本题考查对数函数的单调性,考察了对数数符合与真数及底数取值范围的关系,解题的关键是确定出a2+1>1,由此打开解题的突破口,本题考察了观看推理的力量,题目虽简,考查学问的方式很奇妙.10.设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(a>1)恰有3个不同的实根,则a 的取值范围是()A.(1,2) B.(2,+∞) C.(1,) D.(,2)考点:函数的零点与方程根的关系.专题:作图题;函数的性质及应用.分析:作出在区间(﹣2,6]内函数f(x)的图象,将方程的根的个数化为函数图象交点的个数.解答:解:∵f(x)是定义在R上的偶函数,∴f(x)的图象关于y轴对称,∵对x∈R,都有f(x﹣2)=f(x+2),∴f(x)是周期函数,且周期为4;∵当x∈[﹣2,0]时,f(x)=()x﹣1,∴其在区间(﹣2,6]内的图象如右图,∴在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0(a>1)恰有3个不同的实根可转化为,函数f (x)的图象与y=log a(x+2)的图象有且只有三个不同的交点,则log a(2+2)<3,且log a(6+2)>3解得,a ∈(,2).故选D.点评:本题通过分析可得函数f(x)的性质,并由这些性质依据图象变换作出其图象,将方程问题化为图象交点问题,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.命题“∃x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,则m 的取值范围是(﹣∞,﹣5] .考点:命题的真假推断与应用.专题:综合题;转化思想.分析:写出命题的否命题,据已知命题为假命题,得到否命题为真命题;分别出﹣m;通过导函数求出不等式右边对应函数的在范围,求出m的范围.解答:解:∵命题“∃x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,∴命题“∀x∈(1,2)时,满足不等式x2+mx+4<0”是真命题,∴在(1,2)上恒成立令x∈(1,2)∵∴f(x)<f(1)=5,∴﹣m≥5,∴m≤﹣5.故答案为:(﹣∞,﹣5]点评:将问题等价转化为否命题为真命题即不等式恒成立,进一步将不等式恒成立转化为函数的最值.12.函数f(x)=lg|x+m|关于直线x=1对称,则m= ﹣1 .考点:奇偶函数图象的对称性.专题:计算题;转化思想.分析:本题争辩的是一个对数型的函数,其可以看作是由函数g(x)=lg|x|图象向右平移了一个单位而得到,由同一性的思想方法就可以求出m的值.解答:解:由于函数g(x)=lg|x|图象关于直线x=0对称,函数g(x)=lg|x|图象向右平移一个单位后所得函数为r(x)=lg|x﹣1|,其对称轴方程为x=1由题设条件知f(x)=r(x)=lg|x﹣1|,故m=﹣1故答案为﹣1点评:本题考点是函数图象的对称性,考查函数图象本身的对称性及图象变换后所得函数图象的对称性,及利用变换规章求参数,本题旧考点新考法,较好.13.已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是[0,1]∪[9,+∞).考点:函数的值域;一元二次不等式的应用.专题:计算题.分析:当m=0时,检验合适; m<0时,不满足条件; m>0时,由△≥0,求出实数m的取值范围,然后把m的取值范围取并集.解答:解:当m=0时,f(x)=,值域是[0,+∞),满足条件;当m<0时,f(x)的值域不会是[0,+∞),不满足条件;当m>0时,f(x)的被开方数是二次函数,△≥0,即(m﹣3)2﹣4m≥0,∴m≤1或 m≥9,综上,0≤m≤1或 m≥9,∴实数m的取值范围是:[0,1]∪[9,+∞);故答案为[0,1]∪[9,+∞).点评:本题考查函数的值域及一元二次不等式的应用.14.定义在R上的偶函数y=f(x),当x>0时,y=f(x)是单调递增的,f(1)•f(2)<0.则函数y=f (x)的图象与x 轴的交点个数是 2 .考点:函数零点的判定定理;奇偶性与单调性的综合.专题:函数的性质及应用.分析:函数的单调性和奇偶性、函数零点的判定定理,可得函数y=f(x)在(0,+∞)上有唯一零点,在(﹣∞,0)上有唯一零点,可得函数f(x)在R上有2个零点,从而得出结论.解答:解:依据当x>0时,y=f(x )是单调递增的,f(1)•f(2)<0,∴函数y=f(x)在(0,+∞)上有唯一零点.又∵函数f(x)时R 上的偶函数,图象关于y轴对称,∴函数y=f(x)在(﹣∞,0)上有唯一零点.综上可得,函数f(x)在R上有2个零点,即函数y=f(x)的图象与x轴的交点个数是2.故答案为:2.点评:本题主要考查函数的单调性和奇偶性的应用,函数零点的判定定理、函数的零点与方程的根的关系,属于中档题.15.已知函数f(x)=(a∈R ),若对于任意的X∈N*,f(x)≥3恒成立,则a的取值范围是a ≥﹣.考点:函数恒成立问题.专题:计算题;综合题.分析:由于x∈N *,可将f(x)=≥3转化为a≥﹣﹣x+3,再令g(x)=﹣﹣x+3(x∈N*),利用其单调性可求得g(x)max,从而可得答案.解答:解:∵x∈N *,∴f(x)=≥3恒成立⇔x2+ax+11≥3x+3恒成立,∴ax≥﹣x2﹣8+3x,又x∈N*,∴a≥﹣﹣x+3恒成立,∴a≥g(x)max,令g(x)=﹣﹣x+3(x∈N*),再令h(x)=x+(x∈N*),∵h(x)=x+在(0,2]上单调递减,在[2,+∞)上单调递增,而x∈N*,∴h(x)在x取距离2较近的整数值时达到最小,而距离2较近的整数为2和3,∵h(2)=6,h(3)=,h(2)>h(3),∴当x∈N*时,h(x)min=.又g (x)=﹣﹣x+3=﹣h(x)+3,∴g(x)max=﹣+3=﹣.∴a≥﹣.点评:本题考查函数恒成立问题,依题意得到a≥﹣﹣x+3是关键,考查转化思想,构造函数的思想,考查函数的单调性的应用,综合性强,思维度深,属于难题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.设集合,B={x|x2﹣3mx+2m2﹣m﹣1<0}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.考点:子集与真子集;集合的包含关系推断及应用.专题:计算题;函数的性质及应用.分析:(1)由x∈Z,知={﹣2,﹣1,0,1,2,3,4,5}.由此能求出A的非空真子集的个数.(2)由A={x|﹣2<x<5},B={x|x2﹣3mx+2m2﹣m﹣1<0}={x|(x﹣2m﹣1)(x﹣m+1)=0}.A⊇B,知,或,由此能求出m的取值范围.解答:解:(1)∵={x|﹣2≤x≤5},∵x∈Z,∴A={﹣2,﹣1,0,1,2,3,4,5}.∴A的非空真子集的个数为28﹣2=254.(2)∵A={x|﹣2<x<5},B={x|x2﹣3mx+2m2﹣m﹣1<0}={x|(x﹣2m﹣1)(x﹣m+1)=0}.A⊇B,∴,或,解得﹣1≤m≤2,或m不存在.故m的取值范围{m|﹣1≤m≤2}.点评:本题考查集合的真子集个数的求数,考查满足条件的实数的取值范围的求法,是基础题.解题时要认真审题,认真解答.17.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)求函数g(x)的解析式;(Ⅱ)解不等式g(x)≥f(x)﹣|x﹣1|.考点:确定值不等式的解法;函数解析式的求解及常用方法.专题:计算题;分类争辩.分析:(Ⅰ)设函数y=f(x)的图象上任意一点Q(x0,y0)关于原点的对称点为P(x,y),则P在g(x)的图象上,由线段的中点公式解出 x0和y0 的解析式,代入函数y=f(x)可得g(x)的解析式.(Ⅱ)不等式可化为 2x2﹣|x﹣1|≤0,分类争辩,去掉确定值,求出不等式的解集.解答:解:(Ⅰ)设函数y=f(x)的图象上任意一点Q(x0,y0)关于原点的对称点为P(x,y),则P在g (x)的图象上,且,即∵点Q(x0,y0)在函数y=f(x)的图象上,∴﹣y=x2﹣2x,即y=﹣x2+2x,故,g(x)=﹣x2+2x.(Ⅱ)由g(x)≥f(x)﹣|x﹣1|,可得2x2﹣|x﹣1|≤0当x≥1时,2x2﹣x+1≤0,此时不等式无解.当x<1时,2x2+x﹣1≤0,解得﹣1≤x ≤.因此,原不等式的解集为[﹣1,].点评:本题考查求函数的解析式的方法以及解确定值不等式的方法,体现了分类争辩的数学思想,属于基础题.18.某单位用2160万元购得一块空地,方案在该地块上建筑一栋至少10层、每层2000平方米的楼房.经测算,假如将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)考点:导数在最大值、最小值问题中的应用;实际问题中导数的意义.专题:计算题;应用题.分析:先设楼房每平方米的平均综合费为f(x)元,依据题意写出综合费f(x)关于x的函数解析式,再利用导数争辩此函数的单调性,进而得出它的最小值即可.解答:解:方法1:导数法设楼房每平方米的平均综合费为f(x)元,则(x≥10,x∈Z+),令f'(x)=0得x=15当x>15时,f'(x)>0;当0<x<15时,f'(x)<0因此当x=15时,f(x)取最小值f(15)=2000;答:为了楼房每平方米的平均综合费最少,该楼房应建为15层.方法2:(本题也可以使用基本不等式求解)设楼房每平方米的平均综合费为f(x)元,则,当且进行,即x=15时取等号.答:为了楼房每平方米的平均综合费最少,该楼房应建为15层.点评:本小题主要考查应用所学导数的学问、思想和方法解决实际问题的力量,建立函数式、解方程、不等式、最大值等基础学问.19.已知函数(a为常数).(1)若常数a<2且a≠0,求f(x)的定义域;(2)若f(x)在区间(2,4)上是减函数,求a的取值范围.考点:对数函数的定义域;函数单调性的性质.专题:计算题;综合题.分析:(1)由对数函数的性质知其真数必需大于0,对字母a进行分类争辩:当0<a<2时,当a<0时,即可求得求f(x)的定义域;(2)由题意知函数f(x)是由y=和复合而来,由复合函数单调性结论,只要u(x)在区间在(2,4)上为增且为正即可.解答:解:(1)由,当0<a<2时,解得x<1或,当a<0时,解得.故当0<a<2时,f(x)的定义域为{x|x<1或}当a<0时,f(x)的定义域为{x|}.(2)令,由于为减函数,故要使f(x)在(2,4)上是减函数,则在(2,4)上为增且为正.故有.故a∈[1,2).点评:本题主要考查对数函数的定义域、复合函数的单调性和一元二次方程根的分布,整体思想是解决本类问题的根本.20.定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.考点:抽象函数及其应用;函数单调性的性质;函数奇偶性的推断.专题:计算题;证明题.分析:(1)欲证f(x)为奇函数即要证对任意x都有f(﹣x)=﹣f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=﹣x可得f(0)=f(x)+f(﹣x)于是又提出新的问题,求f(0)的值.令x=y=0可得f (0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明.(2)先将不等关系f(k•3x)+f(3x﹣9x﹣2)<0转化成f(k•3x)<f(﹣3x+9x+2),再结合函数的单调性去掉“f”符号,转化为整式不等关系,最终利用分别系数法即可求实数k的取值范围.解答:解:(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即f(0)=0.令y=﹣x,代入①式,得f(x﹣x)=f(x)+f(﹣x),又f(0)=0,则有0=f(x)+f(﹣x).即f(﹣x)=﹣f(x)对任意x∈R成立,所以f(x)是奇函数.(2)解:f(3)=log23>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.f(k•3x)<﹣f(3x﹣9x﹣2)=f(﹣3x+9x+2),k•3x<﹣3x+9x+2,令t=3x>0,分别系数得:,问题等价于,对任意t>0恒成立.∵,∴.点评:本题主要考查了抽象函数及其应用,考查分析问题和解决问题的力量,属于中档题.说明:问题(2)本题解法:是依据函数的性质.f(x)是奇函数且在x∈R上是增函数,把问题转化成二次函数f(t)=t2﹣(1+k)t+2对于任意t>0恒成立.对二次函数f(t)进行争辩求解.21.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=x0,则称x0是f(x)的一个不动点,也称f(x)在区间D上有不动点.(1)证明f(x)=2x﹣2x﹣3在区间(1,4)上有不动点;(2)若函数在区间[1,4]上有不动点,求常数a的取值范围.考点:函数与方程的综合运用;函数零点的判定定理;导数在最大值、最小值问题中的应用.专题:计算题;证明题;压轴题.分析:(1)依据“f(x)在区间D上有不动点”当且仅当“F(x)=f(x)﹣x在区间D上有零点”,令F (x)=f(x)﹣x=2x﹣3x﹣3在区间[1,4]上是一条连续不断的曲线,利用F(1)•F(4)<0可确定函数F (x)=f(x)﹣x在区间(1,4)内有零点,从而得到结论;(2)依题意,存在x∈[1,4],使,争辩将a分别出来,利用导数争辩出等式另一侧函数的取值范围即可求出a的范围.解答:解:(1)依题意,“f(x)在区间D上有不动点”当且仅当“F(x)=f(x)﹣x在区间D上有零点”(2分),F(x)=f(x)﹣x=2x﹣3x﹣3在区间[1,4]上是一条连续不断的曲线(3分),F(1)•F(4)=﹣4×1<0(4分),所以函数F(x)=f(x)﹣x在区间(1,4)内有零点,f(x)=2x﹣2x﹣3在区间(1,4)上有不动点(5分).(2)依题意,存在x∈[1,4],使当x=1时,使(6分);当x≠1时,解得(8分),由(9分),得x=2或(,舍去)(10分),x (1,2) 2 (2,4)a′ + 0 ﹣a ↗最大值↘(12分),当x=2时,(13分),所以常数a 的取值范围是(14分).点评:本题主要考查了函数与方程的综合运用,以及函数零点和利用导数争辩最值等有关学问,属于中档题.。
银川一中2014届高三年级第一次月考文科数学
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设},0)2(|{},1|{,<-=>==x x x Q x x P R U ,则=⋃)(Q P C UA .1|{≤x x 或}2≥xB .}1|{≤x xC .}2|{≥x xD .}0|{≤x x 2.函数)2sin(sin )(π+=x x x f 的最小正周期为A .4πB .2πC .πD .2π 3.函数)(x f y =的图象如图所示,则导函数)('x f y =的 图象的大致形状是4. 已知复数,321iiz -+=i 是虚数单位,则复数的虚部是 A .i 101 B .101 C .107D .i 1075. 下列大小关系正确的是 A. 3log 34.044.03<< B. 4.03434.03log <<C. 4.04333log 4.0<< D. 34.044.033log <<6. 下列说法正确的是 A. “1>a ”是“)1,0(log )(≠>=a a x x f a 在),0(+∞上为增函数”的充要条件 B. 命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ”C. “1-=x ”是“0322=++x x ”的必要不充分条件D. 命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题7. 函数)2||,0)(sin()(πϕωϕω<>+=x x f 的部分图像如图所示,如果)3,6(,21ππ-∈x x ,且)()(21x f x f =, 则=+)(21x x f A .21B .22C .23D .18. 已知),0(πα∈,且,21cos sin =+αα则α2cos 的值为A .47±B .47C .47-D .43- 9. 函数ax x x f +=ln )(存在与直线02=-y x 平行的切线,则实数a 的取值范围是A. ]2,(-∞B. )2,(-∞C. ),2(+∞D. ),0(+∞ 10. 已知函数)2cos()(ϕ+=x x f 满足)1()(f x f ≤对R x ∈恒成立,则A. 函数)1(+x f 一定是偶函数B.函数)1(-x f 一定是偶函数C. 函数)1(+x f 一定是奇函数D.函数)1(-x f 一定是奇函数11. 已知函数),1,0(,,ln )(21ex x x x f ∈=且21x x <则下列结论正确的是 A .0)]()()[(2121<--x f x f x x B .2)()()2(2121x f x f x x f +<+C .)()(1221x f x x f x >D .)()(1122x f x x f x >12. 已知函数)(x f 满足)()1(x f x f -=+,且)(x f 是偶函数,当]1,0[∈x 时,2)(x x f =,若在区间[-1,3]内,函数k kx x f x g --=)()(有4个零点,则实数的取值范围是 A .)31,41[B .)21,0(C .]41,0(D .)21,31(第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13. 已知函数x a x f 2log )(-=的图象经过点A (1,1),则不等式1)(>x f 的解集为______.14. 已知α为钝角,且53)2cos(-=+απ,则 。
2021-2022学年山西省朔州市怀仁一中高三(上)第一次月考数学试卷(文科)(解析版)
2021-2022学年山西省朔州市怀仁一中高三(上)第一次月考数学试卷(文科)一、选择题(共12小题,每小题5分,共60分).1.设集合P={x|x>﹣1},集合Q={x|x2<4},则P∩Q=()A.{x|x>﹣1}B.{x|﹣2<x<﹣1}C.{x|﹣2<x<2}D.{x|﹣1<x<2} 2.已知集合M⊆{4,7,8},且M中至多有一个偶数,则这样的集合共有()A.3个B.4个C.5个D.6个3.“|x﹣1|<1”是”log2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知p,q是两个命题,若(¬p)∨q是假命题,那么()A.p是真命题且q是假命题B.p是真命题且q是真命题C.p是假命题且q是真命题D.p是假命题且q是假命题5.已知函数,则f(f(﹣3))等于()A.1B.2C.3D.46.已知a=π﹣2,b=﹣log25,c=log2,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c7.若函数y=x2+2mx+1在[2,+∞)上单调递增,则实数m的取值范围是()A.[﹣2,+∞)B.[2,+∞)C.(﹣∞,2)D.(﹣∞,2] 8.函数f(x)=的图象大致为()A.B.C.D.9.已知f(x)是定义在R上的奇函数,且满足5f(1﹣x)=f(1+x),当x∈(0,1]时,f (x)=log2(x+1),则f(2021)等于()A.1B.﹣1C.0D.log2310.已知函数,且f(a2)+f(3a﹣4)>2,则实数a的取值范围是()A.(﹣4,1)B.(﹣∞,﹣4)∪(1,+∞)C.(﹣∞,﹣1)∪(4,+∞)D.(﹣1,4)11.已知f(x)=(x2+ax+b)•lnx,(a,b∈R),当x>0时,f(x)≥0,则实数a的取值范围为()A.﹣2≤a<0B.a≥﹣1C.﹣1<a≤0D.0≤a≤112.已知函数f(x)=,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则t的取值范围是()A.(﹣∞,﹣2]B.[1,+∞)C.[﹣2,1]D.(﹣∞,﹣2]∪[1,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A={x|2<x≤11},B={x|2x﹣a>0}.若A⊆B,则实数a的取值范围为.14.若函数f(x)=(m+2)x a是幂函数,且其图象过点(2,4),则函数g(x)=log a(x+m)的单调增区间为.15.已知f(x)=是(﹣∞,+∞)上的减函数,那么实数a的取值范围是.16.在下列命题中,正确命题的序号为(写出所有正确命题的序号).①函数的最小值为;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)=0;④已知函数f(x)=x﹣sin x,若a+b>0,则f(a)+f(b)>0.三、解答题(本大题共6小题,共70分)17.已知集合A={x|﹣2<x+1<3},集合B为整数集,令C=A∩B.(1)求集合C;(2)若集合D={1,a},C∪D={﹣2,﹣1,0,1,2},求实数a的值.18.函数f(x)=lg(x2﹣2x﹣3)的定义域为集合A,函数g(x)=2x﹣a(x≤2)的值域为集合B.(Ⅰ)求集合A,B;(Ⅱ)已知命题p:m∈A,命题q:m∈B,若¬p是¬q的充分不必要条件,求实数a的取值范围.19.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=﹣x2+2x.(1)求函数f(x)在R上的解析式;(2)解关于x的不等式f(x)<3.20.设二次函数f(x)=ax2+2x+c(a,c∈R),并且∀x∈R,f(x)≤f(1).(1)求实数a的值;(2)若函数g(x)=f(e x)在x∈[0,1]的最大值是1,求实数c的值.21.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为24m2,三月底测得凤眼莲的覆盖面积为36m2,凤眼莲的覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4711).22.若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)•f(x2)=1成立,则称该函数为“依赖函数”.(1)判断函数g(x)=2x是否为“依赖函数”,并说明理由;(2)若函数在定义域[m,n](m,n∈N,且m>1)上为“依赖函数”,求m+n的取值范围.(3)已知函数在定义域上为“依赖函数”.若存在实数,使得对任意的t∈R,有不等式f(x)≥﹣t2+(s﹣t)x+8都成立,求实数s的取值范围.参考答案一、选择题1.设集合P={x|x>﹣1},集合Q={x|x2<4},则P∩Q=()A.{x|x>﹣1}B.{x|﹣2<x<﹣1}C.{x|﹣2<x<2}D.{x|﹣1<x<2}解:∵P={x|x>﹣1},Q={x|﹣2<x<2},∴P∩Q={x|﹣1<x<2}.故选:D.2.已知集合M⊆{4,7,8},且M中至多有一个偶数,则这样的集合共有()A.3个B.4个C.5个D.6个解:由题意:M=∅,{7},{4,7},{7,8},{4},{8},六个故选:D.3.“|x﹣1|<1”是”log2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:∵|x﹣1|<1⇒0<x<2.log2x<1⇒0<x<2,∴“|x﹣1|<1”是”log2x<1”的充要条件.故选:C.4.已知p,q是两个命题,若(¬p)∨q是假命题,那么()A.p是真命题且q是假命题B.p是真命题且q是真命题C.p是假命题且q是真命题D.p是假命题且q是假命题解:结合复合命题的真假关系,由(¬p)∨q是假命题可知¬p为假,q是假,故p真q假,故选:A.5.已知函数,则f(f(﹣3))等于()A.1B.2C.3D.4解:∵函数,∴依题意得f(﹣3)=1,f(f(﹣3))=f(1)=log2(3+1)=2.故选:B.6.已知a=π﹣2,b=﹣log25,c=log2,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c 解:∵a=π﹣2=,∴0<a<1,∵b=﹣log25=log2,c=log2,<,∴log2<log2,即b<c<0.∴a>c>b,故选:C.7.若函数y=x2+2mx+1在[2,+∞)上单调递增,则实数m的取值范围是()A.[﹣2,+∞)B.[2,+∞)C.(﹣∞,2)D.(﹣∞,2]解:根据题意,函数y=x2+2mx+1为开口向上的抛物线,对称轴为x=﹣m,函数y=x2+2mx+1在[2,+∞)上单调递增,则﹣m≤2,解得m≥﹣2,即m的取值范围为[﹣2,+∞);故选:A.8.函数f(x)=的图象大致为()A.B.C.D.解:函数的定义域为{x|x≠0},f(x)>0恒成立,排除C,D,当x>0时,f(x)==xe x,当x→0,f(x)→0,排除B,故选:A.9.已知f(x)是定义在R上的奇函数,且满足5f(1﹣x)=f(1+x),当x∈(0,1]时,f (x)=log2(x+1),则f(2021)等于()A.1B.﹣1C.0D.log23解:因为f(x)是定义在R上的奇函数,且满足f(1﹣x)=f(1+x),所以f(1+x)=f(1﹣x)=﹣f(x﹣1),则f(2+x)=﹣f(x),所以f(4+x)=﹣f(x+2)=f(x),故f(x)的周期为4,则f(2021)=f(505×4+1)=f(1),而当x∈(0,1]时,f(x)=log2(x+1),所以f(1)=log2(1+1)=1,则f(2021)=1.故选:A.10.已知函数,且f(a2)+f(3a﹣4)>2,则实数a的取值范围是()A.(﹣4,1)B.(﹣∞,﹣4)∪(1,+∞)C.(﹣∞,﹣1)∪(4,+∞)D.(﹣1,4)解:令g(x)=,则f(x)=g(x)+1,∵f(a2)+f(3a﹣4)>2,∴g(a2)+g(3a﹣4)>0,∵g(﹣x)==﹣(),∴g(x)是R上的奇函数,∴g(a2)+g(3a﹣4)>0可化为g(a2)>g(4﹣3a),又∵g(x)==1﹣+3x,g′(x)=,所以g(x)在R上是增函数,∴a2>4﹣3a,解得,a<﹣4或a>1,故选:B.11.已知f(x)=(x2+ax+b)•lnx,(a,b∈R),当x>0时,f(x)≥0,则实数a的取值范围为()A.﹣2≤a<0B.a≥﹣1C.﹣1<a≤0D.0≤a≤1解:设g(x)=x2+ax+b,h(x)=lnx,则h(x)在(0,+∞)上为增函数,且h(1)=0,若当x>0时f(x)≥0,则满足当x>1时,g(x)≥0,当0<x<1时,g(x)≤0,即g(x)必需过点(1,0)点,则g(1)=1+a+b=0,即b=﹣1﹣a,此时函数g(x)与h(x)满足如图所示:此时g(x)=x2+ax﹣1﹣a=(x﹣1)[x+(a+1)],则满足函数g(0)=﹣a﹣1≤0,即a≥﹣1,故选:B.12.已知函数f(x)=,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则t的取值范围是()A.(﹣∞,﹣2]B.[1,+∞)C.[﹣2,1]D.(﹣∞,﹣2]∪[1,+∞)解:设m=f(x),作出函数f(x)的图象如图:则m≥1时,m=f(x)有两个根,当m<1时,m=f(x)有1个根,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则等价为m2+m+t=0有2个不同的实根,且m≥1或m<1,当m=1时,t=﹣2,此时由m2+m﹣2=0得m=1或m=﹣2,满足f(x)=1有两个根,f(x)=﹣2有1个根,满足条件当m≠1时,设h(m)=m2+m+t,则h(1)<0即可,即1+1+t<0,则t<﹣2,综上t≤﹣2,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A={x|2<x≤11},B={x|2x﹣a>0}.若A⊆B,则实数a的取值范围为(﹣∞,4].解:由已知可得,因为A⊆B,所以,即a≤4,故答案为:(﹣∞,4].14.若函数f(x)=(m+2)x a是幂函数,且其图象过点(2,4),则函数g(x)=log a(x+m)的单调增区间为(1,+∞).解:∵函数f(x)=(m+2)x a是幂函数,且其图象过点(2,4),∴m+2=1,且2α=4,求得m=﹣1,α=2,可得f(x)=x2,则函数g(x)=log a(x+m)=log2(x﹣1)的单调增区间为(1,+∞),故答案为:(1,+∞).15.已知f(x)=是(﹣∞,+∞)上的减函数,那么实数a的取值范围是[,).解:∵f(x)是减函数,∴函数在(﹣∞,1)和[1,+∞)上都是减函数,且满足条件,得,得≤a<,即实数a的取值范围是[,).故答案为:[,).16.在下列命题中,正确命题的序号为②③④(写出所有正确命题的序号).①函数的最小值为;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)=0;④已知函数f(x)=x﹣sin x,若a+b>0,则f(a)+f(b)>0.解:①,函数f(x)=x+(x>0)中,当a≤0时,在f(x)在(0,+∞)为单调递增函数,不存在最小值,故①错误;②,∵f(2﹣x)=f(2+x),∴f(4﹣x)=f(x),又f(x)为定义在R上周期为4的函数,∴f(x)=f(4﹣x)=f(﹣x),∴f(x)为偶函数,故②正确;③,∵定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,∴f(4)=f(0)=0;f(7)=f(8﹣1)=f(﹣1)=﹣f(1),∴f(1)+f(4)+f(7)=f(1)+0﹣f(1)=0,故③正确;④,∵f(x)=x﹣sin x,∴f′(x)=1﹣cos x≥0,∴f(x)=x﹣sin x为R上的增函数,又f(﹣x)=﹣x+sin x=﹣(x﹣sin x)=﹣f(x),∴f(x)=x﹣sin x为R上的奇函数;∴若a+b>0,即a>﹣b时,f(a)>f(﹣b=﹣f(b),∴f(a)+f(b)>0,故④正确.综上所述,正确的命题序号为:②③④.故答案为:②③④.三、解答题(本大题共6小题,共70分)17.已知集合A={x|﹣2<x+1<3},集合B为整数集,令C=A∩B.(1)求集合C;(2)若集合D={1,a},C∪D={﹣2,﹣1,0,1,2},求实数a的值.解:(1)∵A={x|﹣3<x<2},B=Z,∴C=A∩B={﹣2,﹣1,0,1};(2)∵C={﹣2,﹣1,0,1},D={1,a},C∪D={﹣2,﹣1,0,1,2},∴a=2.18.函数f(x)=lg(x2﹣2x﹣3)的定义域为集合A,函数g(x)=2x﹣a(x≤2)的值域为集合B.(Ⅰ)求集合A,B;(Ⅱ)已知命题p:m∈A,命题q:m∈B,若¬p是¬q的充分不必要条件,求实数a的取值范围.解:(Ⅰ)A={x|x2﹣2x﹣3>0}={x|(x﹣3)(x+1)>0}={x|x<﹣1,或x>3},B={y|y=2x﹣a,x≤2}={y|﹣a<y≤4﹣a}.(Ⅱ)∵¬p是¬q的充分不必要条件,∴q是p的充分不必要条件,∴B⊆A,∴4﹣a<﹣1或﹣a≥3,∴a≤﹣3或a>5,即a的取值范围是(﹣∞,﹣3]∪(5,+∞).19.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=﹣x2+2x.(1)求函数f(x)在R上的解析式;(2)解关于x的不等式f(x)<3.解:(1)由题意,当x<0时,﹣x>0,则f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x,由f(x)是定义在R上的奇函数,得f(x)=﹣f(﹣x)=x2+2x,且f(0)=0,综上:.(2)(i)当x>0时,﹣x2+2x<3恒成立;(ii)当x=0时,0<3显然成立;(iii)当x<0时,x2+2x<3,即x2+2x﹣3<0,解得﹣3<x<1,此时﹣3<x<0,综上x>﹣3,综上:不等式的解集为(﹣3,+∞).20.设二次函数f(x)=ax2+2x+c(a,c∈R),并且∀x∈R,f(x)≤f(1).(1)求实数a的值;(2)若函数g(x)=f(e x)在x∈[0,1]的最大值是1,求实数c的值.解:(1)根据题意,二次函数f(x)=ax2+2x+c(a,c∈R),并且∀x∈R,f(x)≤f(1),则二次函数f(x)开口向下,其对称轴为x=1,则有﹣=1,解可得a=﹣1;(2)函数g(x)=f(e x),设t=e x,若x∈[0,1],则1≤t≤e,函数g(x)=f(e x)在x∈[0,1]的最大值是1,且∀x∈R,f(x)≤f(1).则x=0时,g(x)取得最大值1,即g(0)=f(1)=﹣1+2+c=1,解可得c=0;故c=0,21.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为24m2,三月底测得凤眼莲的覆盖面积为36m2,凤眼莲的覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4711).解:(1)函数y=ka x(k>0,a>1)与在(0,+∞)上都是增函数,随着x的增加,函数y=ka x(k>0,a>1)的值增加的越来越快,而函数的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型y=ka x(k>0,a>1)符合要求.根据题意可知x=2时,y=24;x=3时,y=36,∴,解得.故该函数模型的解析式为,1≤x≤12,x∈N*;(2)当x=0时,,元旦放入凤眼莲的覆盖面积是m2,由>10•,得>10,∴x>=≈5.9,∵x∈N*,∴x≥6,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.22.若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)•f(x2)=1成立,则称该函数为“依赖函数”.(1)判断函数g(x)=2x是否为“依赖函数”,并说明理由;(2)若函数在定义域[m,n](m,n∈N,且m>1)上为“依赖函数”,求m+n的取值范围.(3)已知函数在定义域上为“依赖函数”.若存在实数,使得对任意的t∈R,有不等式f(x)≥﹣t2+(s﹣t)x+8都成立,求实数s的取值范围.解:(1)对于函数g(x)=2x的定义域R内任意的x1,取x2=﹣x1,则g(x1)g(x2)=1,且由g(x)=2x在R上单调递增,可知x2的取值唯一,故g(x)=2x是“依赖函数”;(2)因为m>1,f(x)=(x﹣1)2在[m,n]递增,故f(m)f(n)=1,即(m﹣1)2•(n﹣1)2=1,由n>m>1,得(m﹣1)(n﹣1)=2,故n=,故m+n=m+=m﹣1++2≥2+2=2(+1),(当且仅当m=1+时“=”成立),故m+n的取值范围是[2(+1),+∞);(3)因a<,故f(x)=(x﹣a)2在[,4]上单调递增,从而f()•f(4)=1,即(﹣a)2(4﹣a)2=1,进而(﹣a)(4﹣a)=1,解得a=1或a=(舍),从而存在x∈[,4],使得对任意的t∈R,有不等式(x﹣1)2≥﹣t2+(s﹣t)x+8都成立,即t2+xt+x2﹣(2+s)x﹣7≥0恒成立,由△=x2﹣4(x2﹣(2+s)x﹣7)≤0恒成立,故2+s≤(x﹣)max,x∈[,4],由y=x﹣在[,4]递增,故x=4时,y取最大值,y的最大值是,故2+s≤,故s≤﹣,即s的取值范围是(﹣∞,﹣].。
黑龙江省哈尔滨市第一中学校2022届高三上学期第一次月考+文数答案
哈一中2021—2022学年度上学期第一次月考高三文科数学参考答案一.选择题(本大题共12小题,每题4分)1. C2. A3. A 【解析】因为为角终边上的一点,所以,,,所以.4. B5. D【解析】从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为,则第八个单音的频率为:.6. B 【解析】向右平移个单位后,得到函数,当时,,即,当时,.7. B 【解析】因为,,为等差数列,则为等差数列,公差,.8. D 【解析】由的图象可知,在,上,在上.由,得或即或所以不等式的解集为.9. B 【解析】①、在中,若,则,由正弦定理得正确,故正确.②、若,,则,,故正确;③、若为真命题,可知,真命题至少一个为真命题,故可以一真一假,故错误;④、若为假命题,则,中至少有一个为假命题,不一定均为假命题,故正确.10. C【解析】由,得.又,11. C 【解析】,由得,再由正弦定理可得,所以的外接圆面积为.12. A 【解析】作出的图象如下:若有四个不同的零点,则有四个根,即与有四个交点,直线过原点,当时,与有两个交点,当时,直线与相切时,不妨设切点为,则,所以由①②③得,,所以切线的斜率为,若与有四个交点,则,综上,的取值范围为.二.填空题(本大题共4小题,每题4分)13.【解析】设,则由,得,即解得14.【解析】.15.【解析】因为,所以当时,,且,当时,,且,所以当时,取得最小值.16. ②③【解析】在中,,,对于①,当时,,所以,角只有个解,①错误;,所以,所以;所以的面积为,所以,则,②正确;对于③,;所以,因为,所以,所以,所以,所以,即不可能是,③正确.综上,正确的命题的序号是②③.三.解答题(本大题共4小题,每题9分)17. (1)因为,所以当时,,又满足上式,所以.(2)因为,所以,所以.因为,所以,即.18. (1)所以在上单调递增,在上单调递减,因为,,,所以,.(2)因为,所以,因为,所以,所以,因为,所以,所以,所以.19. (1)因为曲线的参数方程为(为参数),所以曲线的普通方程为,将代入并化简得:,即曲线的极坐标方程为.(2)在极坐标系中,:,所以由得到,同理.又因为,所以.即的面积为.20. (1).因为曲线在点处的切线为,所以切点为即由,得.因为是函数的一个极值点,所以联立①②得,.所以,,.(2)由()得,则,当时,或;当.所以在处取得极大值即.由得,所以,即或.要使函数在区间上存在最大值,则,即.。
湖南省长沙市第一中学2021届高三上学期第一次月考数学(文科)试题 Word版含答案
长沙市一中2020届高三月考试卷(一)
数学(理科)
长沙市一中高三文数备课组组稿
时量:120分钟 满分:150分
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知i 为虚数单位,若复数2
)1(1i z -+=,则=||z
A. 1
B. 2
C. 2
D. 5 2.已知集合A={21|≤≤-x x },B={2,1,0},则=B A
A. 21|≤≤-x x
B. {2,1,0}
C. {2,1-}
D. {1,0}
3. 通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如下的列联表:
附表:
随机变量:))()()(()(2
2
d b c a d c b a bc ad n K ++++-= 经计算,统计量K 2的观测值4.762,参照附表,得到的正确结论是
A.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”
C.有97.5%以上的把握认为“爱好该项运动与性别有关"
D.有97.5%以上的把握认为“爱好该项运动与性别无关”
4. 已知向量b a b k a +=-=),2,2(),2,(为非零向量,若)(b a a +⊥,则实数k 的值为
A.0
B.2
C.-2
D.1。
高三数学上学期第一次月考试题 文扫描 试题
HY中学2021届高三数学上学期第一次月考试题文〔扫描版〕创作人:历恰面日期:2020年1月1日一中第一期联考文科数学答案命题、审题组老师 杨昆华 彭力 杨仕华 王佳文 张波 毛孝宗 丁茵 易孝荣 江明 李春宣一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBCDADDCAAB1. 解析:由题意,因为集合{}1>=x x A ,所以=B A {}31<<x x ,选B . 2. 解析:因为2i 12i i i)i)(1(1i)i(1i 1i 2+=-=-+-=+,选C . 3. 解析:18=0.4540,选B . 4. 解析:由得54)cos(-=--αβα,即54cos )cos(-==-ββ,又πβ(∈,)23π,所以0sin <β,且53cos 1sin 2-=--=ββ,选C .5. 解析:在长、宽、高分别为2,1,1的长方体中截得该三棱锥A DBC -,那么最长棱为2222116AB =++=,选D .6. 解析:对于B ,函数的周期是π,不是π4;对于C ,函数在3π=x 时不取最值;对于D ,当∈x 65(π-,)6π时,34(32ππ-∈+x ,)32π,函数不是单调递增,选A . 7. 解析:因为()()11f x f x -=+,所以()f x 的图象关于直线1x =对称,选D .8. 解析:由垂径定理可知直线CM 的斜率为2-,所以直线CM 的方程是)2(21--=+x y ,即032=-+y x ,选D .9. 解析:设外接球的半径为R ,因为PA ⊥平面ABC ,所以BC PA ⊥,又BC AB ⊥,所以BC PB ⊥,设PC 的中点为O ,易知:OA OB OC OP ===,故O 为四面体P ABC -的外接球的球心,又2PA AB BC ===,所以22AC =,23PC =,半径3R =,四面体P ABC -的外接球的外表积为()24312ππ=,选C .10. 解析:由()y f x =,()01f =-排除B ,()f x 是偶函数排除C,()20f =和()40f =排除D ,选A .11. 解析:由题设得3=ab,2)(12=+=a b e ,所以b e a +2362322323322=≥+=+=aa a a ,选A . 12. 解析:由余弦定理及22b ac a -=得,22222cos b a c ac B a ac =+-=+,所以有2cos c a B a =+,因此sin 2sin cos sin C A B A =+,故有()sin 2sin cos sin A B A B A +=+,即()sin sin A B A =-,因为三角形ABC 为锐角三角形,所以A B A =-,即2B A =,所以022A π<<,所以04A π<<,又3B A A +=,所以32A ππ<<,所以63A ππ<<,综上,64A ππ⎛⎫∈ ⎪⎝⎭, 所以()sin sin 22cos 2,3sin sin B At A A A===∈,选B .二、填空题13. 解析:由22a b a b -=+解得0a b ⋅=,所以向量a 与b 夹角为90︒. 14. 解析:N=126+146+96+136=288⨯⨯⨯⨯.15. 解析:由图知,直线4z y x =-过()1,0时,4y x -有最小值1-. 16. 解析:由得()()22log 1933f x x x -=+++,所以()()6f x f x +-=,因为2lg 3⎛⎫ ⎪⎝⎭与3lg 2⎛⎫⎪⎝⎭互为相反数,所以23lg lg 632f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以3lg 22f ⎛⎫=- ⎪⎝⎭. 三、解答题〔一〕必考题17. 解:〔1〕证明:设1122n n nn a a d ---=那么122n n n a a d --= 所以1122n n n a a d ++-=,11122222n n n n n n a a da a d++--==-所以}{12n na a +-是首项为4,公比为2的等比数列. ………6分〔2〕因为{}2n n a 是等差数列,所以1221122=-=a a d ,所以11(1)22n n a a n d =+-⨯ , 所以1()22nn a n =-所以123113531222...()2()222222n n n S n n -=⨯+⨯+⨯++-+-① 2311333222...()2()22222n n n S n n +=⨯+⨯++-+-②由①-②得23111=2+2+2...2()222n n n S n +-⨯++-- 13=(n-)232n n S ++. ………12分18. 解:〔1〕 选派B 同学参加比拟适宜.理由如下:1(7580808385909295)858A x =+++++++=,1(7879818284889395)858B x =+++++++=,22222221[(7885)(7985)(8185)(8285)(8485)(8885)8B S =-+-+-+-+-+-+22(9385)(9585)]35.5-+-=,22222221[(7585)(8085)(8085)(8385)(8585)(9085)8A S =-+-+-+-+-+-+22(9285)(9585)]41-+-=,从A B x x =,22B A S S <可以看出:A ,B 两位同学的平均程度一样而B 的成绩较稳定,所以选派B 参加比拟适宜. ………7分〔2〕任选派两人有(,)A B ,(,)A C ,(,)A D ,(,)A E ,(,)B C ,(,)B D ,(,)B E ,(,)C D ,(,)C E ,(,)D E 一共10种情况;所以A ,B ,C 三人中至多有一人参加英语口语竞赛有7种情况; 所以710P =. ………12分19. 解:〔1〕在直角梯形ABCD 中,2BC AD AB ⋅=,即AB ADBC AB=, 因为90DAB PBC ∠=∠=, 所以tan AB ACB BC ∠=,tan ADABD AB∠=, 所以ABD ACB ∠=∠,又因为90ACB BAC ∠+∠=, 所以90ABD BAC ∠+∠=,即AC BD ⊥图2的四棱锥1P ABCD -中,1P A AB ⊥,由题知1P A AD ⊥,那么1P A ⊥平面ABCD , 所以1BD P A ⊥,又1P AAC A =所以BD ⊥平面1P AC . ………6分(2)在图1中,因为AB =,1AD =,2BC AD AB ⋅=,所以3BC =因为PAD ∆∽PBC ∆,所以13PA AD PA PB BC ==⇒=,即1P A = 由〔1〕知1P A ⊥平面ABCD ,那么1C P BD V -1P CBD V -=1P CBD V -=111111133332324CBD S P A BC AB P A ∆⋅⋅=⨯⋅⋅=⨯⨯=. ………12分20. 解:〔1〕由椭圆定义知,224AF BF AB a ,又222AF BF AB ,得43ABa ,l 的方程为y x c ,其中22c a b .设11(,)A x y ,22(,)B x y ,将y x c 代入22221x y a b 得,2222222()2()0a b x a cx a c b . 那么212222-a c x x a b ,2221222)a cb x x a b (.因为直线AB 的倾斜角为4π,所以212122()4ABx x x x ,由43AB a 得,222443a ab a b ,即222a b .所以C的离心率2222c a b e a a. ………6分 (2) 设AB 的中点为0,0()N x y ,由〔1〕知,2120222--23x x a c c x a b ,003cy x c .由PA PB 得,PN 的斜率为-1,即001-1y x ,解得,3c ,32a ,3b .所以椭圆C 的方程为221189x y . ………12分21. 解:〔1〕()f x 的定义域为(,)-∞+∞,因为()e x f x a '=+,由(0)0f '=,得1a =-, 所以()e 2x f x x =--,由()e 10x f x '=->得0x >,由()e 10x f x '=-<得0x <,所以()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞. ………6分 (2) 因为0x >,所以()e 1e 1xxm x -<+可化为e 1e 1x x x m +<-,令e 1()e 1x x x F x +=-,那么()2e (e 2)()e 1x x x x F x --'=-, 由〔1〕得()e 2x f x x =--在(0,)+∞上单调递增,而(1)e 30f =-<,2(2)e 40f =->,所以()f x 在(1,2)上存在唯一的0x , 使0()0f x =,所以()F x 在0(0,)x 上单调递减,在0(,)x +∞上单调递增, 所以0()F x 是()F x 00e 20x x --=得00e 2x x =+, 所以00000000e 1(2)1()11e 1x x x x x F x x x +++===++-, 又因为012x <<,所以02()3F x <<,所以[]max 2m =. ………12分 〔二〕选考题:第22、23题中任选一题做答。
山东省邹平双语学校二区2022届高三上学期第一次月考数学(文)试题 Word版含答案
邹平双语学校2021—2022第一学期第一次月考试题(1、2区) 高三 班级 数学(文科)试题(时间:120分钟,分值:150分)一.选择题(每题5分,共12小题)1.设集合A={1,2,3},B={2,3,4},则A ∪B=( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4} 2.已知cosα=﹣,α是第三象限的角,则sinα=( ) A .﹣B .C .﹣D .3.命题p :“∃x 0∈R“,x 02﹣1≤0的否定¬p 为( ) A .∀x ∈R ,x 2﹣1≤0 B .∀x ∈R ,x 2﹣1>0 C .∃x 0∈R ,x 02﹣1>0 D .∃x 0∈R ,x 02﹣1<0 4.函数y=sin2x +cos2x 的最小正周期为( )A .B .C .πD .2π5.已知函数f (x )=a x (a >0,a ≠1)在[1,2]上的最大值和最小值的和为6,则a=( ) A .2B .3C .4D .56.设非零向量,满足|+|=|﹣|则( ) A .⊥B .||=||C .∥D .||>||7.已知函数f (x )=3x ﹣()x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 8.设函数f (x )=cos (x +),则下列结论错误的是( )A .f (x )的一个周期为﹣2πB .y=f (x )的图象关于直线x=对称C .f (x +π)的一个零点为x=D .f (x )在(,π)单调递减9.已知函数f (x )=sinx ﹣cosx ,且f′(x )=2f (x ),则tan2x 的值是( ) A .﹣B .C .﹣D .10.已知曲线C 1:y=cosx ,C 2:y=sin (2x +),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 211.函数y=f (x )的导函数y=f′(x )的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .12.函数y=的部分图象大致为( )A .B.C .D .二.填空题(每题5分,共4小题)13.已知集合A={1,2},B={a ,a 2+3}.若A ∩B={1},则实数a 的值为 . 14.设f (x )=xlnx ,若f′(x 0)=2,则x 0的值为 .15.函数f (x )=sin 2x +cosx ﹣(x ∈[0,])的最大值是 .班级:____________ 姓名:_____________ 考号:________________________16.A:x1,x2是方程ax2+bx+c=0(a≠0)的两实数根;B:x1+x2=﹣,则A是B的条件.三.解答题(共6小题,70分)17.(10分))已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.18.(12分))已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(12分)已知直线l是曲线y=x3在点(1,1)处的切线,(1)求l的方程;(2)求直线l与x轴、直线x=2所围成的三角形的面积.20.(12分).在△ABC中,角A,B,C的对边分别是a、b、c,已知,,且.(Ⅰ)求角A 的大小;(Ⅱ)若b=3,△ABC的面积,求a的值.21.(12分))某厂生产产品x件的总成本c(x)=1200+x3(万元),已知产品单价P(万元)与产品件数x满足:p2=,生产100件这样的产品单价为50万元.(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).22.(12分))已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.邹平双语学校2021—2022第一学期第一次月考试题(1、2区) 高三班级数学(文科)试题答案一.选择题(共12小题)1.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}【分析】集合A={1,2,3},B={2,3,4},求A∪B,可并集的定义直接求出两集合的并集.【解答】解:∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4}故选A.【点评】本题考查并集及其运算,解题的关系是正确理解并集的定义及求并集的运算规章,是集合中的基本概念型题.2.已知cosα=﹣,α是第三象限的角,则sinα=()A .﹣B .C .﹣D .【分析】利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值.【解答】解:∵cosα=﹣,α是第三象限的角,则sinα=﹣=﹣,故选:C.【点评】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.3.命题p:“∃x0∈R“,x02﹣1≤0的否定¬p为()A.∀x∈R,x2﹣1≤0 B.∀x∈R,x2﹣1>0C.∃x0∈R,x02﹣1>0 D.∃x0∈R,x02﹣1<0【分析】直接写出特称命题的否定得答案.【解答】解:命题p:“∃x0∈R“,x0﹣1≤0为特称命题,其否定为全称命题,∴¬p为∀x∈R,x2﹣1>0.故选:B.【点评】本题考查特称命题的否定,留意命题的否定的格式是关键,是基础题.4.函数y=sin2x+cos2x的最小正周期为()A .B .C.πD.2π【分析】利用帮助角公式,化简函数的解析式,进而依据ω值,可得函数的周期.【解答】解:∵函数y=sin2x+cos2x=2sin(2x +),∵ω=2,∴T=π,故选:C【点评】本题考查的学问点是三角函数的周期性及其求法,难度不大,属于基础题.5.已知函数f(x)=a x(a>0,a≠1)在[1,2]上的最大值和最小值的和为6,则a=()A.2 B.3 C.4 D.5【分析】依据指数函数的单调性在定义域是要么递增,要么递减,即看求解.【解答】解:依据指数函数的性质:当x=1时,f(x)取得最大值,那么x=2取得最小值,或者x=1时,f(x)取得最小值,那么x=2取得最大值.∴a+a2=6.∵a>0,a≠1,∴a=2.故选:A.【点评】本题考查了指数函数的性质的运用,属于基础题.6.设非零向量,满足|+|=|﹣|则()A .⊥B.||=||C .∥D.||>||【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.【点评】本题考查两个向量的关系的推断,是基础题,解题时要认真审题,留意向量的模的性质的合理运用.【点评】本题考查对数的运算法则,解题时要认真审题,认真解答.7.已知函数f(x)=3x ﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f (x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x ﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x ﹣()x为增函数,故选:A.【点评】本题考查的学问点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.8.设函数f(x)=cos(x +),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x )在(,π)单调递减【分析】依据三角函数的图象和性质分别进行推断即可.【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x +)=cos (+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f (+π)=cos (+π+)=cos=0,则f(x+π)的一个零点为x=,故C 正确,D .当<x<π时,<x +<,此时函数f(x)不是单调函数,故D错误,故选:D【点评】本题主要考查与三角函数有关的命题的真假推断,依据三角函数的图象和性质是解决本题的关键.9.已知函数f(x)=sinx﹣cosx,且f′(x)=2f(x),则tan2x的值是()A .﹣B .C .﹣D .【分析】求出f(x)的导函数,依据f′(x)=2f(x)列出关系式,计算即可求出tan2x的值.【解答】解:求导得:f′(x)=cosx+sinx,∵f′(x)=2f(x),∴cosx+sinx=2(sinx﹣cosx),即3cosx=sinx,∴tanx=3,则tan2x===﹣.故选C【点评】此题考查了三角函数的化简求值,以及导数的运算,娴熟把握求导公式是解本题的关键.10.已知曲线C1:y=cosx,C2:y=sin(2x +),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x +)=cos(2x +)=sin(2x +)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算力量.11.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A .B .C .D .【分析】依据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,依据函数图象,即可推断函数的单调性,然后依据函数极值的推断,即可推断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最终单调递增,排解A,C,且其次个拐点(即函数的极大值点)在x轴上的右侧,排解B,故选D【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的推断,考查数形结合思想,属于基础题.12.函数y=的部分图象大致为()A . B .C D .【分析】推断函数的奇偶性排解选项,利用特殊值推断即可.【解答】解:函数y=,可知函数是奇函数,排解选项B,当x=时,f ()==,排解A,x=π时,f(π)=0,排解D.故选:C.【点评】本题考查函数的图形的推断,三角函数化简,函数的奇偶性以及函数的特殊点是推断函数的图象的常用方法.二.填空题(共4小题)13.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,留意交集定义及性质的合理运用.14.设f(x)=xlnx,若f′(x0)=2,则x0的值为e.【分析】先依据乘积函数的导数公式求出函数f(x)的导数,然后将x0代入建立方程,解之即可.【解答】解:f(x)=xlnx∴f'(x)=lnx+1则f′(x0)=lnx0+1=2解得:x0=e故答案为:e【点评】本题主要考查了导数的运算,以及乘积函数的导数公式的运用,属于基础题之列.15.函数f(x)=sin2x +cosx ﹣(x∈[0,])的最大值是1.【分析】同角的三角函数的关系以及二次函数的性质即可求出.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:1【点评】本题考查了同角的三角函数的关系以及二次函数的性质,属于基础题16.A:x1,x2是方程ax2+bx+c=0(a≠0)的两实数根;B:x1+x2=﹣,则A是B的充分条件.【分析】A⇒B验证充分性x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,可推出x1+x2=﹣,而必要性不肯定成立,故得是充分条件【解答】解:由题意若x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,由根与系数的关系肯定可以得出x1+x2=﹣,故A⇒B成立;若x1+x2=﹣,成立,不能得出x1,x2是方程ax2+bx+c=0(a≠0)的两实数根,由于此方程有根与否要用推断式进行推断,须考虑a,b,c三个字母,故B⇒A不肯定成立;故可得,A是B的充分条件故答案为充分【点评】本题考查必要条件充分条件充要条件的推断,求解的关键是正确理解充分条件与必要条件的定义,以及二次方程有根的条件.三.解答题(共6小题)17.已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.【分析】(Ⅰ)把集合B化简后,由A∩B=∅,A∪B=R,借助于数轴列方程组可解a的值;(Ⅱ)把p 是q的充分条件转化为集合A和集合B之间的关系,运用两集合端点值之间的关系列不等式组求解a的取值范围.【解答】解:(Ⅰ)B={x|x2﹣4x+3≥0}={x|x≤1,或x≥3},A={x|a﹣1<x <a+1},由A∩B=∅,A∪B=R ,得,得a=2,所以满足A∩B=∅,A∪B=R的实数a的值为2;(Ⅱ)因p 是q的充分条件,所以A ⊆B,且A ≠∅,所以结合数轴可知,a+1≤1或a﹣1≥3,解得a≤0,或a≥4,所以p是q的充分条件的实数a的取值范围是(﹣∞,0]∪[4,+∞).【点评】本题考查了充分条件,考查了集合关系的参数取值问题,集合关系的参数取值问题要转化为两集合端点值的大小比较,是易错题.18.已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【分析】利用二倍角公式及帮助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)依据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin(2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.【点评】本题考查的学问点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.已知直线l是曲线y=x3在点(1,1)处的切线,(1)求l的方程;(2)求直线l与x轴、直线x=2所围成的三角形的面积.【分析】(1)求出导数,求出切线的斜率,由点斜式方程,即可得到曲线在点P(1,1)处的切线方程;(2)y=0时,x=;x=2时,y=4,即可求直线l与x轴、直线x=2所围成的三角形的面积.【解答】解:(1)y=x3的导数为y′=3x2,则曲线在点P(1,1)处的切线斜率为3,即有曲线在点P(1,1)处的切线方程为y﹣1=3(x﹣1),即3x﹣y﹣2=0;(2)y=0时,x=;x=2时,y=4,∴直线l与x轴、直线x=2所围成的三角形的面积为=.【点评】本题考查导数的几何意义:曲线在该点处的切线的斜率,考查直线方程的求法,考查运算力量,属于基础题.20.在△ABC中,角A,B,C的对边分别是a、b、c ,已知,,且.(Ⅰ)求角A的大小;(Ⅱ)若b=3,△ABC 的面积,求a的值.【分析】(Ⅰ)利用向量平行,列出方程,通过两角和与差的三角函数,化简求解角A的大小;(Ⅱ)利用三角形的面积,求出c,然后利用余弦定理求解a即可.【解答】解:(Ⅰ)∵,∴(2c﹣b)•cosA﹣a•cosB=0,∴cosA•(2sinC﹣sinB)﹣sinA•cosB=0,即2cosAsinC﹣cosAsinB﹣sinA•cosB=0,∴2cosAsinC=cosAsinB+sinA•cosB,∴2cosAsinC=s in(A+B),即2cosAsinC=sinC,∵sinC≠0∴2cosA=1,即又0<A<π∴,(Ⅱ)∵b=3,由(Ⅰ)知∴,,∴c=4,由余弦定理有a2=b2+c2﹣2bccosA=,∴.【点评】本题考查向量与三角函数相结合求解三角形的几何量,考查余弦定理的应用,是基础题.21.某厂生产产品x件的总成本c(x)=1200+x3(万元),已知产品单价P(万元)与产品件数x满足:p2=,生产100件这样的产品单价为50万元.(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).【分析】(1)由题可知生产100件这样的产品单价为50万元,所以把x=100,P=50代入到p2=中求出k的值确定出P的解析式,然后依据总利润=总销售额﹣总成本得出L(x)即可;(2)令L′(x)=0求出x的值,此时总利润最大,最大利润为L(25).【解答】解:(1)由题意有,解得k=25×104,∴,∴总利润=;(2)由(1)得,令,令,得,∴t=5,于是x=t2=25,则x=25,所以当产量定为25时,总利润最大.这时L(25)≈﹣416.7+2500﹣1200≈883.答:产量x定为25件时总利润L(x)最大,约为883万元.【点评】考查同学依据实际问题选择函数关系的力量,及利用导数求函数最值的方法的力量.22.已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.【分析】(I)将a的值代入f(x),求出f(x)的导函数;,将∃x0∈[1,e]使不等式f(x0)≤m 转化为f(x)的最小值小于等于m,利用[1,e]上的函数递增,求出f(x)的最小值,令最小值小于等于m即可.(II)将图象的位置关系转化为不等式恒成立;通过构造函数,对新函数求导,对导函数的根与区间的关系进行争辩,求出新函数的最值,求出a的范围.【解答】解:(I)当a=1时,,可知当x∈[1,e]时f(x)为增函数,最小值为,要使∃x0∈[1,e]使不等式f(x0)≤m,即f(x)的最小值小于等于m,故实数m 的取值范围是(2)已知函数.若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,等价于对任意x∈(1,+∞),f(x)<2ax,即恒成立.设.即g(x)的最大值小于0.(1)当时,,∴为减函数.∴g(1)=﹣a ﹣≤0∴a ≥﹣∴(2)a≥1时,.为增函数,g(x)无最大值,即最大值可无穷大,故此时不满足条件.(3)当时,g(x )在上为减函数,在上为增函数,同样最大值可无穷大,不满足题意.综上.实数a 的取值范围是.【点评】解决不等式恒成立及不等式有解问题一般都转化为函数的最值问题,通过导数求函数的最值,进一步求出参数的范围.第页,共页第页,共页。
【附加15套高考模拟试卷】新疆乌鲁木齐一中2019-2020下学期高三数学(文科)第一次月考考试试卷含答案
新疆乌鲁木齐一中2019-2020下学期高三数学(文科)第一次月考考试试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设变量,x y 满足约束条件10,20,240.x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩若目标函数z ax y =+取得最大值时的最优解不唯一,则实数a 的值为 A .1- B .2C .1-或2D .1或2-2.已知数列{}n a 满足121111111n n a a a a ⎛⎫⎛⎫⎛⎫--⋅⋅⋅-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,*n N ∈,记52n n nba =-,则数列nb 的最大项是( ) A .8b B .7b C .6b D .5b3.若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x -的取值范围是( )A .10,2⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦ C .[]0,2 D .[]1,24.设双曲线的左、右焦点分别为,是双曲线上一点,点到坐标原点的距离等于双曲线焦距的一半,且,则双曲线的离心率是( )A .B .C .D .5.如图画出的是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为( )A .253πB .263πC .223πD .233π6.已知椭圆22221(0)x ya ba b+=>>的左、右焦点分别为12,FF,点P在椭圆上,O为坐标原点,若121||||2OP F F=,且212||||PF PF a=,则该椭圆的离心率为()A.34B.32C.12D.227.已知ABC△是边长为a的正三角形,且,(,,1)AM AB AN AC Rλμλμλμ==∈+=.设函数()f BN CMλ=⋅,当函数()fλ的最大值为2-时,a=()A.42B.423C.43D.4338.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.362π-B.364π-C.482π-D.484π-9.在ABC∆中,三内角A、B、C对应的边分别为a、b、c,且cos cos2cosa Bb A C+=,1c=,则角C=()A.6πB.3πC.23πD.56π10.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且tan2θ=,若在大正方形内随机取一点,则该点取自小正方形区域的概率为()A.14B.15C.25D.3511.等边ABC∆的边长为1,,D E是边BC的两个三等分点,则AD AE⋅u u u r u u u r等于()A .1318 B .34 C .13 D.212.设函数()3,3,x x af x x x x a-≥⎧=⎨-+<⎩,其中2a ≤-,则满足()()13f x f x +-<的x 取值范围是( )A .()1,-+∞ B.()+∞C .()2,-+∞D .()0,∞+二、填空题:本题共4小题,每小题5分,共20分。
新人教版2高三数学上学期第一次月考试题文科版
数学(文)一.选择题:本大共10小题,每小题5分,共50分;在每个小题所给出的四个选项中,只有一项是符合题目要求的1.已知集合2{1},{M x y x N y y ==+==,则M N =( )A. {(0,1)}B. {1}x x ≥-C. {0}x x ≥D. {1}x x ≥2、复数31i z i=-(其中i 为虚数单位),则下列说法中正确的是( )A .在复平面内复数z 对应的点在第一象限B .复数z 的共轭复数122i z =-- C .若复数1()z z b b R =+∈为纯虚数,则12b =-D .复数z 的模1||2z = 3. 设,a b R ∈,则“()20a b a -<”是“a b <”的 条件 A.充要B.充分而不必要C.必要而不充分D.既不充分也不必要4.已知双曲线22221x y a b-=的渐近线方程为y =,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于A.1B.2D.125.右图是函数y =A sin(ωx +φ)(00A ω>>,,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R)的图像上所有的点( )A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变. B .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变. C .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D .向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.6. 三棱锥S ABC -及其三视图中的正(主)视图和侧(左)视图如图所示,则棱SB 的长为A. B.7. 在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,若()222tan a c b B +-=,则角B 的值为 A.6πB.3πC. 566ππ或D.233ππ或8.已知函数()()1ln 1f x y f x x x ==--,则的图象大致为9.已知函数2()ln(1)f x a x x =+-在区间(0,1)内任取两个实数p ,q ,且p ≠q ,不等式(1)(1)1f p f q p q+-+>-恒成立,则实数a 的取值范围为A .[15,)+∞B .](,15-∞C .](12,30D .](12,15-10.若实数a ,b ,c ,d 满足222(3ln )(2)0b a a c d +-+-+=,则22()()a c b d -+-的最小值为( )A B .8C .D .2二.填空题:本大题共5个小题,每小题5分,共25分。
高三第一次月考文科数学试卷
高三第一次月考文科数学试卷一、选择题:本大题共10小题,每小题5分,共50分. 1.222()22i -=( ) A .1B .-1C .iD .-i2.函数(21)y f x =-的定义域为[0,1] ,则()y f x =的定义域为( )A .[1,1]-B .1[,1]2C .[0,1]D .[1,0]-3.一组数据1x 、2x 、3x 、4x 、5x 、6x 的方差为1,则121x -、221x -、321x -、421x -、521x -、621x -的方差为( )A .1B .2C .3D .44.若函数2()sin 22sin sin 2f x x x x =-⋅,则()f x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数5.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的体积是( )A .14πB .12πC .8πD .16π6.满足()f x x '=的()f x ( )A .存在且有无限个B .存在且只有有限个C .存在且唯一D .不存在7.若等比数列{}n a 公比为q ,其前n 项和为n S ,若3S 、9S 、6S 错误!未找到引用源。
成等差数列,则3q 等于( )A .1错误!未找到引用源。
B . 12- C .错误!未找到引用源。
或1 D .错误!未找到引用源。
8.面积为1的正方形ABCD 内部随机取一点P ,则PAB ∆的面积不小于14的概率是( )A .错误!未找到引用源。
15B .12C .13D .14错误!未找到引用源。
9.已知双曲线方程:C 22221x y a b-= (0)b a >>的离心率为1e ,其实轴与虚轴的四个顶点和椭圆G 的四个顶点重合,椭圆G 的离心率为2e ,一定有( ) A .22122e e += B .2212112e e += C .222212122e e e e +=+ D .12122e e e e +=+ 10.如图,已知正方体1111D C B A ABCD -上、下底面中心分别为21,O O ,将正方体绕直线21O O 旋转一周,其中由线段1BC 旋转所得图形是( )二、填空题:本大题共5小题,每小题5分,共25分.11.设(2,4)a = ,(1,1)b = ,若()b a mb ⊥+,则实数m =________. 12.执行如图所示的程序框图所表示的程序,则所得的结果为 .13.记不等式2y x xy x ⎧≥-⎨≤⎩所表示的平面区域为D ,直线1()3y a x =+与D 有公共点,则a 的取值范围是________14.已知定义在R 上的奇函数()f x 满足()()4f x f x -=-,且[]0,2x ∈时,()()2log 1f x x =+,有下列结四个论:① ()31f =;②函数()f x 在[]6,2--上是增函数;③函数()f x 关于直线4x =对称;④若()0,1m ∈,则关于x 的方程()0f x m -= 在[]8,8-上所有根之和为-8,其中正确的是________(写出所有正确命题的序号) 15.若关于实数x 的不等式2|1||2|3x x a a ---≤--的解集是空集, 则实数a 的取值范围是____________.三、解答题:本大题共6题,共75分,解答应写出文字说明、证明过程或演算步骤.DC B A O 2O 1C 1D 1C B 1A 1A BD16.(本小题满分12分)已知函数()4cos sin()6f x x x a π=++的最大值为2.(1)求a 的值及()f x 的最小正周期; (2)在坐标纸上做出()f x 在[0,]π 上的图像.17.(本小题满分12分)某种产品按质量标准分为1,2,3,4,5五个等级.现从一批该产品中 随机抽取20个,对其等级进行统计分析,得到频率分布表如下:等级 12 3 45频率0.05m0.150.35n(1)在抽取的20个产品中,等级为5的恰有2个,求m ,n ;(2)在(1)的条件下,从等级为3和5的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.18.(本小题满分12分)已知数列{}n a 各项均为正数,满足22(1)0n n na n a n +--=.(1)计算12,a a ,并求数列{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .19.(本小题满分12分)如图,已知四棱锥P ABCD PA -,⊥平面ABCD , 底面ABCD 为直角梯形,90BAD ∠=,且AB CD ∥,12AB CD =. (1)点F 在线段FC 上运动,且设PF FCλ=,问当λ为何值时,BF ∥平面PAD ,并证明你的结论;(2)当BF ∥面PAD ,且4PDA π∠=,23AD CD ==,求四棱锥F BCD -的体积.20.(本小题满分13分)已知椭圆C 的中心在原点,焦点F 在x 轴上,离心率32e =,点2(2)2Q ,在椭圆C 上. (1)求椭圆C 的标准方程;(2)若斜率为k (0)k ≠的直线n 交椭圆C 与A 、B 两点,且OA k 、k 、OB k 成等差数列, 点M (1,1),求ABM S ∆的最大值.21.(本小题满分14分)设321()2x e f x x ax e=++.(1)若3(,)2x ∈ +∞时,()f x 单调递增,求a 的取值范围; (2)讨论方程()|ln |0f x x ax b +--=的实数根的个数.参考答案 题号 1 2 3 4 5 6 7 8 9 10 答案DADACABBCD11. 3- 12. 43- 13. 16[]37- , 14. 15.12a -<< 解答题16.解:(1)()2sin(2)16f x x a π=+++ 最大值为2∴1a =- T π=(2)如右图 17.解:(1)0.35m =,0.1n =(2)等级为3的有3个,等级为5的有2个, 由枚举得,共有10种取法,抽取的2个产品等级恰好相同的取法有4种,故概率为2518.解: (1)11a = 22a =∵ 22(1)0n n na n a n +--= ⇒ (1)()0n n na an +-= 又 ∵ 数列{}n a 各项均为正数 ∴ n a n =(2)231232222n n n S =+++⋅⋅⋅+ 2112321222n n nS -=+++⋅⋅⋅+ ∴2111121222222n n n n n n S -+=+++⋅⋅⋅+-=-19.解:(1)当1PFFC λ==时,取PD 中点G ,连接AG 、FG ,则1CD AB 2FG ∥∥ ∴BF AG ∥ 且 BF ⊆/平面PAD ∴BF ∥平面PAD(2)∵PA ⊥平面ABCD 且 4PDA π∠= ∴PDA ∆为等腰直角三角形∴11113213232F BCD BCD V S PA -∆=⋅=⨯⨯⨯= 20.解 1)1422=+y x ……………………(4分)2) 由题意可知,直线l 的斜率存在且不为0,故可设直线l 的方程为mkx y +=1122(,),(,)P x y Q x y 满足22440y kx m x y =++-=⎧⎨⎩ ,消去y 得222(14)84(1)0k x kmx m +++-=.2222226416(14)(1)16(41)0k m k m k m ∆=-+-=-+>,且122814km x x k -+=+,.因为直线OB AB oA ,,的斜率依次成等差数列,所以,k x y x y 22211=+,即2112212x kx y x y x =+,又m kx y +=,所以0)(21=+x x m ,即m=0. ……………………(9分)联立kx y y x ==+⎩⎨⎧1422 易得弦AB 的长为224141k k ++又点M 到kx y =的距离112+-=k k d所以11414121222+-++=k k k k s 24112kk +-=平方再化简求导易得41-=k 时S 取最大值5……………………(13分)21.解:(1)∵ 321()2x e f x x ax e =++ ∴ 3()x e f x x a e'=+-∵ 当3(,)2x ∈ +∞时,()f x 单调递增 ∴当3(,)2x ∈ +∞时,3()0xe f x x a e '=+->∴3x e a x e >- 函数3()x e g x x e =- 在3(,)2x ∈ +∞上递减 ∴33()22a g ≥=-(2)()|ln |0f x x ax b +--= ∴ 321|ln |2x e x x b e ++=令321()|ln |2x e h x x x e=++① 当1x >时 31()x e h x x e x '=-+∵ 12x x+≥ 32x e e e ≤< ∴()0h x '>即()h x 在(1,) +∞递增② 当01x <≤时 31()x e h x x e x'=--∵ 10x x-< 30x e e > ∴()0h x '<即()h x 在(0,1] 递减∵121(1)2h e =+当0x →时 321()|ln |2x e h x x x e=++ → +∞当x →+∞时 321()|l n |2x e h x x x e=++ → +∞ ∴① 当1212b e <+时,方程无解② 当1212b e =+时,方程有一个根③ 当1212b e >+时,方程有两个根。
湖南师大附中2012-2013学年高三第一次月考数学试卷(文科)
2012-2013学年湖南师大附中高三第一次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.﹣ ﹣﹣﹣=2.(5分)(2012•北京模拟)当a=3时,下面的程序段输出的结果是( ) IF a <10 THEN y=2+a ELSE y=a*a4.(5分)设函数,且函数f (x )为偶函数,则g (﹣2)=( )解:∵6.(5分)函数,g (x )=3x﹣1,则不等式f[g (x )]≥0的解集为( )①②,解得7.(5分)点,则x 2+y 2的取值范围是( )解:约束条件==,的取值范围∠ADC=30°,则斜坡AD 的长为( )C |AC|=|AC|====|AD|=a 半;如果它是奇数,则将它乘3再加1,不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,得到一个数列:6,3,10,5,16,8,4,2,1.现在请你研究:如果对正10.(5分)(2012•湖北)设△ABC 的内角A ,B ,C ,所对的边分别是a ,b ,c .若(a+b ﹣c )(a+b+c )=ab ,则角C=.cosC==C=.故答案为:11.(5分)(2012•上海)已知y=f (x )+x 2是奇函数,且f (1)=1,若g (x )=f (x )+2,则g (﹣1)=13.(5分)已知函数f (x )=x 2+ax+b ﹣3,f (x )的图象恒过点(2,0),则a 2+b 2的最小值为 .a++,﹣,﹣时,的最小值为.故答案为:.14.(5分)(2012•黑龙江)已知向量夹角为45°,且,则= 3.解:∵,=1∴=|2|====解得3下列关于函数f (x )的命题; ①函数f (x )的值域为[1,2];②函数f (x )在[0,2]上是减函数;③如果当x ∈[﹣1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点. 其中真命题为 ② (填写序号)16.(12分)已知函数f (x )=cos 2x ﹣sin 2x+2sinxcosx (1)求f (x )的最小正周期和单调递增区间; (2)求f (x )在[﹣,]上的值域.=cos2x+sin2x=sin 2x+﹣≤2x+≤+﹣≤+﹣])∵﹣,∴﹣≤2x+≤,∴≤2x+,]1111(1)证明:BC⊥AC1;(2)求直线AB与平面A1BC所成角的正弦值.AM=2,,所成角的正弦值为18.(12分)已知数列{a n}是等差数列,Sn是其前n项的和,且a3=5,S3=9(1)求首项a1和公差d;(2)若存在数列{b n},使a1b 1+a2b2+L+a n b n=5+(2n﹣3)2n+1对任意正整数n都成立,求数列{b n}的前n)由题意可得,解得==1+万件,则可获利﹣lnx+万美元,受美联货币政策影响,美元贬值,获利将因美元贬值而损失mx万美元,其中m为该时段美元的贬值指数,且m∈(0,1).(1)若美元贬值指数m=,为使得企业生产获利随x的增加而增长,该企业生产数量应在什么范围?(2)若因运输等其他方面的影响,使得企业生产x万件产品需增加生产成本万美元,已知该企业生产能力为x∈[4,10],试问美元贬值指数m在什么范围内取值才能使得该企业生产每件产品获得的平均利润m=,则企业获得利润是lnx+﹣时,都有﹣+﹣,﹣+﹣,则﹣+﹣﹣+﹣上的最小值为≤与椭圆相交于不同的两点代入椭圆,可得与椭圆相交于不同的两点﹣,= =+==x+﹣x+x+x+x+﹣+≥=,≥,∴。
黑龙江省哈师大附中2015届高三第一次月考数学文科试题及答案
高三第一次月考数学试题(文科)一、选择题(共12个小题,每小题5分,共60分)1.已知集合A={x ∈R|3x+2>0} , B={x ∈R|(x+1)(x-3)>0} 则A ∩B=( )A (-∞,-1)B (-1,-23) C (-23,3) D (3,+∞) 2.已知命题()()()()122121:,,--0p x x R f x f x x x ∀∈≥,则p ⌝是( ) A .()()()()122121,,--0x x R f x f x x x ∃∈≤B .()()()()122121,,--0x x R f x f x x x ∀∈≤C .()()()()122121,,--<0x x R f x f x x x ∃∈D .()()()()122121,,--<0x x R f x f x x x ∀∈ 3.下列函数中,与函数) A . y=1sin xB. y=1nx xC. y=x e xD. sin x x 4.下列命题中,真命题是( ) A .0,00≤∈∃x e R x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=b a D .1,1>>b a 是1>ab 的充分条件 5.若某空间几何体的三视图如图所示,则该几何体的表面积是( )A .60B .54C .48D .246. 如图所示,程序框图(算法流程图)的输出结果是( )A . 3B . 4C . 5D . 87.设α,β是两个不同的平面,l 是一条直线,给出下列说法:①若l ⊥α,α⊥β,则l ⊂β;②若l ∥α,α∥β,则l ⊂β;③若l ⊥α,α∥β,则l ⊥β;④若l ∥α,α⊥β,则l ⊥β.其中说法正确的个数为( )8.下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+ 9.定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x <-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x. . 则f (1)+f (2)+f (3)+…+f (2012)=( )A. 335B. 338C. 1678D. 201210.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A. 81π4 B . 16π C . 9π D. 27π411.函数-cos 6=2-2x xx y 的图象大致为12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9二、填空题(共4个小题,每小题5分,共20分)13.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生.14.函数f (x )=lg x 2的单调递减区间是________.15.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g . 16.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上, 0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 . 三、解答题(共6道大题,共70分)17.设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.18.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.n(ad-bc)2附:K2=19.如图1-5,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.20.已知函数f(x)=e x+e-x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数.(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.21.如图在四棱锥ABCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2.(1)证明:AC⊥平面BCDE;(2)求直线AE与平面ABC所成的角的正切值.22.函数f(x)=ax3+3x2+3x(a≠0).(1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a的取值范围.答案:选择题:DCDDABACBADC填空题:15; (-∞,0); -1; -10解答题:17.24.解:(1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1). 当x ≥1时,由f (x )=3x -3≤1得x ≤43, 故1≤x ≤43; 当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1.所以f (x )≤1的解集M ={x|0≤x ≤43} (2)由g (x )=16x 2-8x +1≤4得解得-14≤x ≤34, 因此N ={x|-14≤x ≤34}故M ∩N ={x|0≤x ≤34} 当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝⎛⎭⎫x -122≤14.18.解:(1)将2×2列联表中的数据代入公式计算,得χ2=100×(60×10-20×10)270×30×80×20=10021≈4.762. 由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)},其中a i 表示喜欢甜品的学生,i =1,2,b j 表示不喜欢甜品的学生,j =1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)}.事件A 由7个基本事件组成,因而P (A )=710.19. (1)证明:在三棱柱ABC - A 1B 1C 1中,BB 1⊥底面ABC ,所以BB 1⊥AB .又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1.因为E ,F ,G 分别是A 1C 1,BC ,AB 的中点,所以FG ∥AC ,且FG =12AC ,EC 1=12A 1C 1. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1,所以四边形FGEC 1为平行四边形,所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB =AC 2-BC 2= 3.所以三棱锥E - ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.20. (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x)=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1= -1t -1+1t -1+ 1对任意 t >1成立. 因为t -1+1t -1+ 1≥2 (t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13, 当且仅当 t =2, 即x = ln 2时等号成立.因此 m ≤-1321. (1)证明:连接BD ,在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE .(2)在直角梯形BCDE 中,由BD =BC =2,DC =2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,所以BD ⊥平面ABC .作EF ∥BD ,与CB 的延长线交于点F ,连接AF ,则EF ⊥平面ABC .所以∠EAF 是直线AE 与平面ABC 所成的角.在Rt △BEF 中,由EB =1,∠EBF =π4,得EF =22,BF =22; 在Rt △ACF 中,由AC =2,CF =322, 得AF =262. 在Rt △AEF 中,由EF =22,AF =262, 得tan ∠EAF =1313. 所以,直线AE 与平面ABC 所成的角的正切值是1313.22. 解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ).(i)若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1时成立.故此时f (x )在R 上是增函数. (ii)由于a ≠0,故当a <1时,f ′(x )=0有两个根;x 1=-1+1-a a ,x 2=-1-1-a a. 若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0. 5。
重庆市重庆一中2017届高三下学期第一次月段考试数学文科试题含答案 bybao 精品
2017年重庆一中高2017级高三下期第一次月考数学试卷(文科)一选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}0,2,4,6|233xA B x N ==∈≤,则集合AB 的子集个数为A. 6B. 7C. 8D. 4 2.设i 是虚数单位,复数21a ii++为实数,则实数a 的值为 A. B. C. D.3.抛物线28y x =的焦点到直线30x y -=的距离是 A.3 B. 23 C. 2 D.14.“p ⌝是真”是“p q ∨为假”的A. 充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件 5.已知等比数列的前三项分别是1,1,4a a a -++,则数列{}n a 的通项公式为A. 342n n a ⎛⎫=⨯ ⎪⎝⎭B. 1342n n a -⎛⎫=⨯ ⎪⎝⎭C. 243nn a ⎛⎫=⨯ ⎪⎝⎭ D. 1243n n a -⎛⎫=⨯ ⎪⎝⎭6.变量,x y 之间的一组相关数据如下表所示:若,x y 之间的线性回归方程为ˆˆ12.28ybx =+,则ˆb 的值为 A. 0.96 B. -0.94 C. -0.92 D.-0.987.若n S 是等差数列{}n a 的前n 项和,且8520S S -=,则11S 的值为 A. 66 B. 48 C. 44 D. 128.在如图所示的程序框图中,若输出的值是3,则输入的x 的取值范围是 A. (]2,4 B. ()2,+∞ C. (]4,10 D. ()4,+∞ 9.如图,网格纸的小正方形的边长为1,粗线画出的是一个几何体的三视图,则这个几何体的体积为 A.52 B. 72 C. 324+ D. 333+10.已知圆()22314x y -+=的一条切线y kx =与双曲线()222210,0x y C a b a b-=>>没有公共点,则双曲线C 的离心率的取值范围是 A. ()1,3 B. (]1,2 C.()3,+∞ D.[)2,+∞11.已知点M 的坐标(),x y 满足不等式组2402030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,N 为直线23y x =-+上任一点,则MN 的最小值是A.55 B. 255 C. 1 D.17212.已知函数()()ln ln ,1xf x x f x x =-+在0x x =处取得最大值,以下各式中:①()00f x x <;②()00f x x =;③()00f x x =;④()012f x <;⑤()012f x >,正确是序号是A.③⑤B. ②⑤C. ①④D. ②④二、填空题:本大题共4小题,每小题5分,共20分.13. 函数()[]223,4,4fx x x x =--∈-,任取一点[]04,4x ∈-,则()00f x ≤的概率为 .14. 已知平面向量()()1,2,2,a b m ==-,且a b a b +=-,则2a b += . 15. 如图,球面上有A,B,C 三点,90,2ABC BA BC ∠===,球心O 到平面ABC 的距离为2,则球的体积为 .16. 已知函数()()()ln ,0,f x x a b f a f b =>>=,则22a b a b+-的最小值为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)(中国好声音(The Voice of China ))是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日在浙江卫视播出,每期节目有四位导师参加.导师背对歌手,当每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身导师的团队中接受指导训练.已知某期《中国好声音》中,6位选手唱完后,四位导师为其转身的情况如下表所示:现从这6位选手中随机抽取两位参加某节目录制. (1)请回答基本事件总数并列出所有的基本事件;(2)求两人中恰好其中一位为其转身的导师不少于3人,而另一人为其转身的导师不多于2人的概率.18.(本题满分12分)如图,在各棱长均为2的三棱柱111ABC A B C -中,侧面11A ACC ⊥底面.ABC(1)求三棱柱111ABC A B C -的体积;(2)已知点D 是平面ABC 内一点,且四边形ABCD 为平行四边形,在直线1AA 上是否存在点P ,使//DP 平面1ABC ?若存在,请确定点P 的位置,若不存在,请说明理由.19.(本题满分12分)函数()()sin 0,2f x x πωϕωϕ⎛⎫=+<< ⎪⎝⎭的部分图象如图所示,将()y f x =的图象向右平移4π个单位长度后得到函数()y g x =的图象.(1)求函数()y g x =的解析式; (2)在ABC ∆中,内角A,B,C 满足22sin123A B g C π+⎛⎫=++ ⎪⎝⎭,且其外接圆的半径为1,求ABC ∆的面积的最大值.20.(本题满分12分)平面直角坐标系xoy 中,椭圆()22122:10x y C a b a b+=>>的离心率为22,过椭圆右焦点F 作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.(1)求椭圆的方程;(2)A,B 是抛物线22:4C x y =上两点,且A,B 处的切线相互垂直,直线AB 与椭圆1C 相交于C,D 两点,求弦CD 的最大值.21.(本题满分12分) 已知函数()ln a xf x x+=在点()(),e f e 处切线与直线20e x y e -+=垂直.(注:e 为自然对数的底数)(1)求a 的值;(2)若函数()f x 在区间(),1m m +上存在极值,求实数m 的取值范围; (3)求证:当1x >时,()21f x x >+恒成立.请考生在第22、23两题中任选一题作答,如果多做,则按照所做的第一题计分. 22.(本题满分10分)选修4-4:极坐标与参数方程 已知曲线1C 的极坐标方程为()2cos sin a ρθθ-=,曲线2C 的参数方程为sin cos 1sin 2x y θθθ=+⎧⎨=+⎩(θ为参数),且1C 与2C 有两个不同的交点. (1)写出曲线1C 的直角坐标方程和曲线2C 的普通方程; (2)求实数a 的取值范围.23.(本题满分10分)选修4-5:不等式选讲 已知函数()()223,1 2.f x x a x g x x =-++=-+ (1)解不等式()22g x x <-+;(2)若对任意1x R ∈都有2x R ∈,使得()()12f x g x =成立,求实数a 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012学年度秦皇岛市第一中学高三年级月考数学试题(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟第Ⅰ卷(选择题,共60分)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.已知z 为纯虚数,iz -+12是实数,则复数z =( ) A .2i B .i C .-2i D .-i2.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线⊄b 平面α,直线⊂a 平面α,直线//b 平面α,则直线a b // ( )A .大前提是错误的B .小前提是错误的C .推理形式是错误的D .非以上错误 3.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内极值点有( ) A. 1个 B. 2个 C. 3个 D. 4个4.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距3,则P 到另一焦点距离为( ) A. 2 B. 3 C. 5 D. 75.命题“关于x 的方程)0(≠=a b ax 的解是唯一的”的结论的否定是( ) A. 无解 B. 两解 C. 至少两解 D. 无解或至少两解 6.曲线3231y x x =-+在点(1, -1)处的切线方程是 ( ) A. y=3x -4 B. y=-3x +2 C. y=-4x +3 D. y=4x -5 7.实验人员获取一组数据如下表:则拟合效果最接近的一个为( )x 1.99 3 4 5.1 6.12 y1.54.047.51218.01A .y =2x -2B .y =21(x 2-1) C .y=log 2x D .y=x)21(8.已知双曲线2221x y a-=()0a >的右焦点与抛物线28y x =焦点重合,则此双曲线的渐近线方程是( )A .5y x =±B .55y x =±C .3y x =±D .33y x =± 9.右面的程序框图输出S 的值为( ) A .2 B.6C .14 D.3010.在极坐标系中,曲线)3sin(4πθρ-=关于( )A .直线3πθ=对称 B .直线65πθ=对称 C .点)3,2(π对称 D .极点对称 11.)10()3)(2)(1()(----=x x x x x x f ,则=')0(f ( ) A .0B .102C .20D .10!12.函数y =f (x )是定义在R 上的可导函数,f (x )=f (2-x ),而(x -1))(x f '<0,设a =f (0),b =f (0.5),c=f (3),则a ,b ,c 的大小关系为( ) A .a <b <c B .c< a <bC . c< b< aD . b <c< a开始1,0n S ==?3≤n否2nS S =+ 1n n =+是输出S结束第Ⅱ卷(非选择题,共90分)二.填空题:本大题共4小题,每小题5分13.曲线()232f x x x =-在1x =处的切线方程为 . 14.复数z =3+ai ,满足|z -2|<2,则实数a 的取值范围为_________.15.高一年级下学期进行文理分班,为研究选报文科与性别的关系,对抽取的50名同学调查得到列联表如下,已知P 05.0)84.3(2≈≥k ,025.0)024.5(2≈≥k ,计算 k 2=2()4.848()()()()n ad bc a b c d a c b d -≈++++,则至少有_____的把握认为选报文科与性别有关.16.如果椭圆22221(0)x y a b a b+=>>,满足a ,b ,c 成等比数列,则该椭圆为“优美椭圆”,且其离心率215-=e ;由此类比双曲线,若也称其为“优美双曲线”,那么你得到的正确结论为:_________________________________.三.解答题:解答应写出文字说明,证明过程或演算步骤 17.(本小题满分10分)在△ABC 中,∠A =120°,K、L 分别是AB 、AC 上的点,且BK=CL ,以BK,CL 为边向△ABC 的形外作正三角形BKP 和正三角形CLQ 。
证明:PQ=BC 。
18.(本小题满分12分)已知函数32()3(1)(36)10f x mx m x m x m =-++++<,其中。
(Ⅰ)若()f x 的单调增区间是(0,1),求m 的值。
(Ⅱ)当[1,1]x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围。
理科 文科 男 13 10 女72019.(本小题满分12分)在直角坐标系xOy 中,直线l 的直角坐标方程为x -y +4=0,曲线C 的参数方程为ααα(sin cos 3⎩⎨⎧==y x 为参数) (Ⅰ)已知在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(2,4π),求点P 关于直线l 的对称点P 0的直角坐标; (Ⅱ)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.20.(本小题满分12分) 已知a >0,函数f (x )=lnx -ax(Ⅰ)若曲线y=f (x )在点(1,f (1))处的切线l 与曲线C :θρcos 2-=相切,求a 的值; (Ⅱ) 求f (x )的在]1,0(上的最大值.(本题极点在坐标原点,极轴为X 轴)21. (本小题满分12分)已知椭圆的一个顶点为()0,1A -,且焦点在x 轴上。
若右焦点到直线022=+-y x 的距离为3.(1)求椭圆的标准方程; (2)设直线)0(≠+=k m kx y 与椭圆相交于不同的两点,M N .当AN AM =时,求m 的取值范围.22.(本小题满分12分) 如图,点P 是抛物线x y42=上动点,F 为抛物线的焦点,将向量FP 绕点F 按顺时针方向旋转90°到FQ (Ⅰ)求Q 点的轨迹C 的普通方程; (Ⅱ)过F 倾斜角等于4π的直线l 与曲线C 交于A 、B 两点,求|FA|+|FB|的值.xO y PQF文科数学答案一、选择题。
CACDD BBBCB DB 二、填空题。
13. y x =; 14. (3,3)-;15. 95%;16.双曲线22221(0,0)x y a b a b-=>>中,若,,a b c 成等比,则称双曲线为“优美双曲线”,且离心率512e += 三、解答题。
17.12060180,A ABC ACB BKP CLQ PBC QCB CQ BP ∠=∴∠+∠=∆∆∴∠+∠==∴∴和为正三角形四边形PBCQ 为平行四边形PQ=BC18. 22()36(1)(36)f x mx m x m '=-+++(1) (0)0(1)00f f m '=⎧⎪'=⎨⎪<⎩解得2m =-(2)2()2(1)20g x mx m x =-++>(0m <)恒成立 所以(1)0(1)0g g ->⎧⎨>⎩解得403m -<<19.(1)(1,1)P ,设000(,)p x y00000011315114022y x x y x y -⎧=-⎪=-⎧-⎪⇒⎨⎨=++⎩⎪-+=⎪⎩(2)(3cos ,sin )Q αα距离2cos()43cos sin 4622d πααα++-+==所以当cos()16πα+=-时,min 2d =20.(1)曲线C :22(1)1x y -+=1()(1)1,(1)f x a f a f a x''=-∴=-=- 切线为(1)10a x y ---=所以211(1)1a a a =⇒=-+(2)11()(0)ax f x a x x x-'=-=> 1)当11,a≥即01a <≤时,()0f x '<在(0,1)恒成立 max ()(1)f x f a ==-2)当11a <,即1a >时,()f x 在1(0,)a 增,在1(,1)a减 max 1()()ln 1f x f a a==--21.(1)椭圆方程为2213x y += (2)222221(13)63303x y k x kmx m y kx m⎧+=⎪⇒+++-=⎨⎪=+⎩所以MN 中点p 坐标为12223,21313x x km mx y kx m k k +-===+=++ 所以21321AP k k m k=-⇒=-所以2222(6)4(13)(33)4(36)0km k m m m ∆=-+-=--> 即02m <<22.(1)(1,0),(,)F Q x y 得(1,)FQ x y =-,所以(,1)FP y x =-- 可得(1,1)P y x --带入抛物线得C :21(1)14y x =--+ (2)将21222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩带入曲线C 得:24280t t +-=所以121242,80t t t t +==-<有直线参数方程几何意义得12128FA FB t t t t +=+=-=。