(2018)近三年广东省中考数学试题知识点分布表

合集下载

03填空题知识点分类-广东省省卷五年(2017-2021)中考数学真题分类汇编(32题)

03填空题知识点分类-广东省省卷五年(2017-2021)中考数学真题分类汇编(32题)

近五年广东省卷填空题知识点分类一.平方根(共1小题)1.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.二.非负数的性质:算术平方根(共2小题)2.(2020•广东)若+|b+1|=0,则(a+b)2020=.3.(2018•广东)已知+|b﹣1|=0,则a+1=.三.实数大小比较(共1小题)4.(2017•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)四.代数式求值(共2小题)5.(2020•广东)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.6.(2017•广东)已知4a+3b=1,则整式8a+6b﹣3的值为.五.同类项(共1小题)7.(2020•广东)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.六.整式的混合运算—化简求值(共1小题)8.(2019•广东)已知x=2y+3,则代数式4x﹣8y+9的值是.七.因式分解-提公因式法(共2小题)9.(2020•广东)分解因式:xy﹣x=.10.(2020•宿迁)分解因式:a2+a=.八.因式分解-运用公式法(共1小题)11.(2019•云南)分解因式:x2﹣2x+1=.九.分式的化简求值(共1小题)12.(2021•广东)若x+=且0<x<1,则x2﹣=.一十.负整数指数幂(共1小题)13.(2019•广东)计算:20190+()﹣1=.一十一.解二元一次方程组(共1小题)14.(2021•广东)二元一次方程组的解为.一十二.一元二次方程的定义(共1小题)15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为.一十三.反比例函数图象上点的坐标特征(共1小题)16.(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.一十四.二次函数图象与几何变换(共1小题)17.(2021•广东)把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.一十五.平行线的性质(共1小题)18.(2019•广东)如图,已知a∥b,∠1=75°,则∠2=.一十六.多边形内角与外角(共2小题)19.(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是.20.(2017•广东)一个n边形的内角和是720°,则n=.一十七.平行四边形的性质(共1小题)21.(2021•广东)如图,在▱ABCD中,AD=5,AB=12,sin A=.过点D作DE⊥AB,垂足为E,则sin∠BCE=.一十八.圆周角定理(共1小题)22.(2018•广东)同圆中,已知所对的圆心角是100°,则所对的圆周角是.一十九.点与圆的位置关系(共2小题)23.(2021•广东)在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为.24.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.二十.切线的性质(共1小题)25.(2018•广东)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC 相切于点E,连接BD,则阴影部分的面积为.(结果保留π)二十一.扇形面积的计算(共1小题)26.(2021•广东)如图,等腰直角三角形ABC中,∠A=90°,BC=4.分别以点B、点C为圆心,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F,则图中阴影部分的面积为.二十二.圆锥的计算(共1小题)27.(2020•广东)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.二十三.作图—基本作图(共1小题)28.(2020•广东)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.二十四.利用轴对称设计图案(共1小题)29.(2019•广东)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).二十五.翻折变换(折叠问题)(共1小题)30.(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.二十六.解直角三角形的应用-仰角俯角问题(共1小题)31.(2019•广东)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).二十七.概率公式(共1小题)32.(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.参考答案与试题解析一.平方根(共1小题)1.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x = 2 .【解析】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.二.非负数的性质:算术平方根(共2小题)2.(2020•广东)若+|b+1|=0,则(a+b)2020= 1 .【解析】解:∵≥,|b+1|≥0,+|b+1|=0,∴a﹣2=0,a=2,b+1=0,b=﹣1,∴(a+b)2020=1.故答案为:1.3.(2018•广东)已知+|b﹣1|=0,则a+1= 2 .【解析】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.三.实数大小比较(共1小题)4.(2017•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b>0.(填“>”,“<”或“=”)【解析】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.四.代数式求值(共2小题)5.(2020•广东)已知x=5﹣y,xy=2,计算3x+3y ﹣4xy的值为7 .【解析】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.6.(2017•广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【解析】解:∵4a+3b=1,∴8a+6b﹣3=2(4a+3b)﹣3=2×1﹣3=﹣1;故答案为:﹣1.五.同类项(共1小题)7.(2020•广东)如果单项式3x m y与﹣5x3y n是同类项,那么m+n= 4 .【解析】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.六.整式的混合运算—化简求值(共1小题)8.(2019•广东)已知x=2y+3,则代数式4x﹣8y+9的值是21 .【解析】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.七.因式分解-提公因式法(共2小题)9.(2020•广东)分解因式:xy﹣x=x(y﹣1).【解析】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).10.(2020•宿迁)分解因式:a2+a=a(a+1).【解析】解:a2+a=a(a+1).故答案为:a(a+1).八.因式分解-运用公式法(共1小题)11.(2019云南)分解因式:x2﹣2x+1=(x﹣1)2.【解析】解:x2﹣2x+1=(x﹣1)2.九.分式的化简求值(共1小题)12.(2021•广东)若x+=且0<x<1,则x2﹣=﹣.【解析】解:∵0<x<1,∴x<,∴x﹣<0,∵x+=,∴(x+)2=,即x2+2+=,∴x2﹣2+=﹣4,∴(x﹣)2=,∴x﹣=﹣,∴x2﹣=(x+)(x﹣)=×(﹣)=﹣,故答案为:﹣.一十.负整数指数幂(共1小题)13.(2019•广东)计算:20190+()﹣1= 4 .【解析】解:原式=1+3=4.故答案为:4.一十一.解二元一次方程组(共1小题)14.(2021•广东)二元一次方程组的解为.【解析】解:,①×2﹣②,得:3y=﹣6,即y=﹣2,将y=﹣2代入②,得:2x+(﹣2)=2,解得:x=2,所以方程组的解为.故答案为.一十二.一元二次方程的定义(共1小题)15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为x2﹣2=0(答案不唯一).【解析】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,∴满足条件的方程可以为:x2﹣2=0(答案不唯一),故答案为:x2﹣2=0(答案不唯一).一十三.反比例函数图象上点的坐标特征(共1小题)16.(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y =(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【解析】解:如图,作A2C⊥x轴于点C,设B1C=a ,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A3(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).一十四.二次函数图象与几何变换(共1小题)17.(2021•广东)把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为y=2x2+4x.【解析】解:把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:y=2(x+1)2+1﹣3,即y=2x2+4x 故答案为y=2x2+4x.一十五.平行线的性质(共1小题)18.(2019•广东)如图,已知a∥b,∠1=75°,则∠2=105°.【解析】解:∵直线c直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°一十六.多边形内角与外角(共2小题)19.(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是8 .【解析】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.20.(2017•广东)一个n边形的内角和是720°,则n= 6 .【解析】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.一十七.平行四边形的性质(共1小题)21.(2021•广东)如图,在▱ABCD中,AD=5,AB=12,sin A=.过点D作DE⊥AB,垂足为E,则sin∠BCE=.【解析】解:如图,过点B 作BF ⊥EC 于点F ,∵DE ⊥AB ,AD =5,sin A ==,∴DE =4,∴AE ==3,在▱ABCD 中,AD =BC =5,AB =CD =12, ∴BE =AB ﹣AE =12﹣3=9, ∵CD ∥AB ,∴∠DEA =∠EDC =90°,∠CEB =∠DCE , ∴tan ∠CEB =tan ∠DCE , ∴===,∴EF =3BF ,在Rt △BEF 中,根据勾股定理,得 EF 2+BF 2=BE 2,∴(3BF )2+BF 2=92, 解得,BF =,∴sin ∠BCE ===.故答案为:.一十八.圆周角定理(共1小题) 22.(2018•广东)同圆中,已知所对的圆心角是100°,则所对的圆周角是 50° . 【解析】解:弧AB 所对的圆心角是100°,则弧AB 所对的圆周角为50°. 故答案为50°.一十九.点与圆的位置关系(共2小题) 23.(2021•广东)在△ABC 中,∠ABC =90°,AB =2,BC =3.点D 为平面上一个动点,∠ADB =45°,则线段CD 长度的最小值为 . 【解析】解:如图所示. ∵∠ADB =45°,AB=2,作△ABD 的外接圆O (因求CD 最小值,故圆心O 在AB 的右侧),连接OC , 当O 、D 、C 三点共线时,CD 的值最小. ∵∠ADB =45°, ∴∠AOB =90°,∴△AOB 为等腰直角三角形, ∴AO =BO =sin45°×AB =.∵∠OBA =45°,∠ABC =90°, ∴∠OBE =45°,作OE ⊥BC 于点E , ∴△OBE 为等腰直角三角形. ∴OE =BE =sin45°•OB =1, ∴CE =BC ﹣BE =3﹣1=2, 在Rt △OEC 中, OC ===. 当O 、D 、C 三点共线时, CD 最小为CD =OC ﹣OD =.故答案为:.24.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为 2﹣2 .【解析】解:如图,连接BE ,BD .由题意BD ==2,∵∠MBN =90°,MN =4,EM =NE ,∴BE =MN =2,∴点E 的运动轨迹是以B 为圆心,2为半径的弧, ∴当点E 落在线段BD 上时,DE 的值最小, ∴DE 的最小值为2﹣2.(也可以用DE ≥BD ﹣BE ,即DE ≥2﹣2确定最小值)故答案为2﹣2.二十.切线的性质(共1小题) 25.(2018•广东)如图,矩形ABCD 中,BC =4,CD =2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【解析】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E , ∴OD =2,OE ⊥BC ,易得四边形OECD 为正方形, ∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π. 故答案为π.二十一.扇形面积的计算(共1小题) 26.(2021•广东)如图,等腰直角三角形ABC中,∠A=90°,BC =4.分别以点B 、点C 为圆心,线段BC 长的一半为半径作圆弧,交AB 、BC 、AC 于点D 、E 、F ,则图中阴影部分的面积为 4﹣π .【解析】解:等腰直角三角形ABC 中,∠A =90°,BC =4,∴∠B =∠C =45°, ∴AB =AC =BC =2∵BE =CE =BC =2, ∴阴影部分的面积S =S △ABC ﹣S扇形BDE﹣S扇形CEF=2﹣×2=4﹣π,故答案为4﹣π.二十二.圆锥的计算(共1小题)27.(2020•广东)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m .【解析】解:如图,连接OA ,OB ,OC ,则OB =OA =OC =1m ,因此阴影扇形的半径为1m ,圆心角的度数为120°,则扇形的弧长为:m ,而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =,解得,r =(m ), 故答案为:.二十三.作图—基本作图(共1小题) 28.(2020•广东)如图,在菱形ABCD 中,∠A =30°,取大于AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 45° .【解析】解:∵四边形ABCD 是菱形, ∴AD =AB ,∴∠ABD=∠ADB =(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.二十四.利用轴对称设计图案(共1小题)29.(2019•广东)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是a+8b (结果用含a,b代数式表示).【解析】解:方法1、如图,由图可得,拼出来的图形的总长度=5a+4[a﹣2(a﹣b)]=a+8b故答案为:a+8b.方法2、∵小明用9个这样的图形(图1)拼出来的图形∴口朝上的有5个,口朝下的有四个,而口朝上的有5个,长度之和是5a,口朝下的有四个,长度为4[b﹣(a﹣b)]=8b﹣4a,即:总长度为5a+8b﹣4a=a+8b,故答案为a+8b.二十五.翻折变换(折叠问题)(共1小题)30.(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【解析】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.二十六.解直角三角形的应用-仰角俯角问题(共1小题)31.(2019•广东)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是(15+15)米(结果保留根号).【解析】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.二十七.概率公式(共1小题)32.(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【解析】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:。

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)

2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

2018年广东中考数学试卷(含解析)

2018年广东中考数学试卷(含解析)

2018年广东省初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018广东省,1,3)四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13C . 3.14-D .2【答案】C【解析】实数中,正数大于0,0大于负数,两个负数比较,绝对值大的反而小【知识点】数的大小比较2.(2018广东省,2,3)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯【答案】A【解析】科学记数法最后化简形式a ×10n (110a ≤<),如果这个数为大数,那么n 的计算方式为整数个数减1,如果为极小数,那么n 为0的个数【知识点】科学记数法3.(2018广东省,3,3)如图,由5个相同正方体组合而成的几何体,它的主视图是 A . B . C . D .【答案】B【解析】主视图从正面看立体图形得到的平面图形,从正面看,图形上层有1个正方形,底层有3个正方形,故选B .【知识点】三视图4.(2018广东省,4,3)数据1、5、7、4、8的中位数是A .4B .5C .6D .7【答案】B【解析】求一组数据(n 个数据)的中位数,先排序,如果n 为奇数,则中位数为最中间的数,如果n 为偶数,则中位数是中间两个数的平均数.【知识点】中位数5.(2018广东省,5,3)下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形【答案】D【解析】中心对称图形就是绕某点旋转180°后仍和它本身重合的图形为中心对称图形,等腰三角形不是中心对称图形,故选D .【知识点】中心对称图形6.(2018广东省,6,3)不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥【答案】D【解析】3x -1≥x +3,3x -x ≥3+1,2x ≥4,x ≥2,故选D【知识点】解不等式7.(2018广东省,7,3)在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则△ADE 与△ABC 的面积之比为A .12B .13C .14D .16 【答案】C【解析】相似三角形面积比等于相似比的平方,由中位线性质知相似比为1:2,所以△ADE 与△ABC 的面积之比为14【知识点】中位线;相似三角形8.(2018广东省,8,3)如图,AB ∥CD ,∠DEC =100°,∠C =40°,则∠B 的大小是A .30°B .40°C .50°D .60°【答案】B【思路分析】要想求∠B 的度数,由平行,只需求∠D 的度数,在△DEC 中,知道其他两个角,可以求出∠D 的度数.【解题过程】解:∵∠DEC =100°,∠C =40°,∴∠D =40°,∵AB ∥CD∴∠B =∠D =40°【知识点】平行线的性质;三角形内角和9.(2018广东省,9,3)关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m 的取值范围为 A .m <94 B .m ≤94 C .m >94 D .m ≥94【答案】A【思路分析】由一元二次方程有两个不等实根可得Δ>0,进而列不等式求解.【解题过程】a =1,b=-3,c=mΔ=b 2-4a c=(-3)2-4m >0∴m <94【知识点】一元二次方程根的判别式10.(2018广东省,10,3)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为【答案】B【思路分析】根据面积的变化情况及阶段判断函数图象.【解题过程】P 点在线段AB 上,高越来越大,底不变,面积越来越大;P 在线段AD 上,高不变,底不变,面积不变;P 在线段CD 上,底不变,高越来越小,面积越来越小,故选B .【知识点】函数图象二、填空题:本大题共14小题,每小题3分,共42分.不需写出解答过程,请把最后结果填在题中横线上.11.(2018广东省,11,3) 同圆中,已知弧AB 所对的圆心角是ο100,则弧AB 所对的圆周角是 °.【答案】50°【解析】同弧所对的圆周角是圆心角的一半,圆心角为100°,所以圆周角为50°.【知识点】圆周角、圆心角关系12.(2018广东省,12,3)分解因式:=+-122x x .【答案】2)1(-x【解析】因式分解的方法有提公因式法及公式法,显然没有公因式可提,考虑公式法,三项可以考虑完全平方公式,通过形式判断满足完全平方公式分解.【知识点】因式分解13.(2018广东省,13,3)一个正数的平方根分别是x +1和x -5,则x = .【答案】2【解析】一个正数的平方根互为相反数,故x +1和x -5互为相反数,可以列方程求解.【知识点】平方根14.(2018广东省,14,3)已知01=-+-b b a ,则=+1a .【答案】2【解析】∵0a b -≥,10b -≥,01=-+-b b a ∴0a b -=,10b -=∴a =1,b=1∴a +1=2【知识点】二次根式的性质;绝对值15.(2018广东省,15,3)如图,矩形ABCD 中,BC =4,CD =2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)题15图【答案】π【解析】连接OE ,易证四边形ABEO 为正方形,则扇形OED 的圆.心角为90°,半径为2,因此可求扇形OED 的面积,阴影面积看成正方形ABEO +扇形OED -三角形ABD ,正方形ABEO 和三角形ABD 面积均可求,即可求得阴影部分.【知识点】正方形的判定;扇形面积;转化的数学思想16.(2018广东省,16,3)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=3x(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2 A 3∥B 1 A 2交双曲线于点A 3,过A 3作A 3 B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2 A 3 B 3;以此类推,…,则点B 6的坐标为 .题16图B 3B 2B 1A 3A 2A 1O x y【答案】(26,0) 【思路分析】分别过点A 1、A 2、A 3作垂线,求出他们的点坐标,利用解析式求出每个等边三角形的边长,从而求出点B 1、B 2、B 3的点坐标,按照规律得到B 6点坐标【解题过程】过点A 作AE ⊥x 轴,设OE =m ,则AE =3m ,则m ▪3m =3,解m =1,即B 1(2,0),过A 2作A 2F ⊥x 轴于点F ,设B 1F =a ,则F (2+a ,0),∴A 2(2+a ,3a ),将A 2点代入y=3x解得a =21 ,∴B 2(22,0),类似求得B 3(23,0),故B 6(26,0). 题16答案图B 3B 2B 1A 3A 2A 1O x yE F【知识点】反比例函数;等边三角形性质;解直角三角形三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(2018省市,题号,分值)计算:11 220182-⎛⎫--+ ⎪⎝⎭【思路分析】先计算各项的值,进而求得结果,一个负数的绝对值为它的相反数,任何非零数的零次幂都为1,一个数的-1次幂相当于它的倒数【解题过程】原式=2-1+2=3【知识点】绝对值;零指数幂和负整指数幂;有理数加减18.(2018省市,题号,分值)先化简,再求值:22221644a aa a a-+-g,其中a=32【思路分析】先将分式化简,再将a值代入求值【解题过程】()()()222244216224444a aa a aaa a a a a a+--==+-+-g g,当a=32时,原式=3【知识点】分式的乘除;二次根式19.(2018省市,题号,分值)如图,BD是菱形ABCD的对角线,︒=∠75CBD,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求DBF∠的度数.【思路分析】(1)根据尺规作图步骤作垂直平分线,保留痕迹即可;(2)先利用菱形性质求得∠DBA的度数,再利用垂直平分线性质求得∠ABF的度数,进而求得∠DBF的度数.【解题过程】(1)如图直线MN为所求19题答案图1FECDABMN(2)解:∵四边形ABCD是菱形∴AD =AB ,AD ∥AB ,∵∠DBC =75°,∴∠ADB =75°,∴∠ABD =75°∴∠A =30°∵EF 为AB 的垂直平分线∴∠A =∠FBE =30°,∴∠DBE =45° 19题答案图2FE C DA BMN【知识点】菱形性质;线段垂直平分线性质;尺规作图20.(2018省市,题号,分值)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。

2018年广东省中考数学试题(带答案解析)

2018年广东省中考数学试题(带答案解析)

2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆 B.菱形C.平行四边形 D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1= .13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)已知+|b﹣1|=0,则a+1= .15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B 1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆 B.菱形C.平行四边形 D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE ∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1= 2 .【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD ﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD ﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B 1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点Bn的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B 3、B4的坐标进而得出点Bn的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,(3,6);所以M1②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,(,﹣2),所以M2综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= 60 °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

2018年广东省中考数学试题(含答案解析)-全新整理

2018年广东省中考数学试题(含答案解析)-全新整理

2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000 2.人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形 D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1= .13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)已知+|b﹣1|=0,则a+1= .15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B 1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000 2.人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形 D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE ∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1= 2 .【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD ﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD ﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B 1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点Bn的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B 4的坐标进而得出点Bn的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M(3,6);1②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,(,﹣2),所以M2综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= 60 °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S=•OA•AB=×2×2=2,△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,∴S=•OM•NE=×1.5x×x,△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

2018年广东省初中毕业生数学学科学业考试大纲 考纲解读(二)

2018年广东省初中毕业生数学学科学业考试大纲 考纲解读(二)

2018年广东省初中毕业生数学学科学业考试大纲一、考试性质初中毕业生数学学科学业考试(以下简称为“数学学科学业考试”)是义务教育阶段数学学科的终结性考试,目的是全面、准确地反映初中毕业生的数学学业水平.考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一.二、指导思想(一)数学学科学业考试要体现《义务教育数学课程标准(2011年版)》(以下简称《标准》)的评价理念,有利于引导数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于减轻过重的学业负担.(二)数学学科学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价.(三)数学学科学业考试命题应当面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展,三、考试依据(一)教育部2002年颁发的《关于积极推进中小学评价与考试制度改革的通知》.(二)教育部2011年颁发的《义务教育数学课程标准(2011年版)》.(三)广东省初中数学教学的实际情况,四、考试要求(一)以《标准》中的“课程内容”为基本依据,不拓展知识与技能的考试范围,不提高考试要求,选学内容不列入考试范围.(二)试题主要考查如下方面:基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等.(三)突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查.(四)试卷内容大致比例:代数约占60分;几何约占50分;统计与概率约占10分.五、考试内容第二部分空间与图形1.图形的认识(1)点、线、面、角①通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等.②会比较线段的长短,理解线段的和、差以及线段中点的意义.③掌握基本事实:两点确定一条直线.④掌握基本事实:两点之间线段最短.⑤理解两点间距离的意义,能度量两点间距离.⑥理解角的概念,能比较角的大小.⑦认识度、分、秒,会对度、分、秒进行简单换算,并会计算角的和、差.(2)相交线与平行线①理解对顶角、余角、补角的概念,探索并掌握对顶角相等,同角(等角)的余角相等,同角(等角)的补角相等的性质.②理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线.③理解点到直线距离的意义,能度量点到直线的距离.④掌握过一点有且仅有一条直线与已知直线垂直.⑤识别同位角、内错角、同旁内角;掌握平行线概念:掌握两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.⑥掌握过直线外一点有且只有一条直线与这条直线平行.⑦掌握两条平行直线被第三条直线所截,同位角相等.⑧能用三角尺和直尺过已知直线外一点画这条直线的平行线.⑨探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么这两条直线平行;探索并证明平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补).⑩了解平行于同一条直线的两条直线平行.(3)三角形①理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性.②探索并证明三角形内角和定理,掌握该定理的推论:三角形的外角等于与它不相邻的两个内角的和.证明三角形的任意两边之和大于第三边.③理解全等三角形的概念,能识别全等三角形中的对应边、对应角.④掌握两边及其夹角分别相等的两个三角形全等、两角及其夹边分别相等的两个三角形全等、三边分别相等的两个三角形全等等基本事实,并能证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等.⑤探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边的距离相等的点在角的平分线上.⑥理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端点的距离相等;反之,到线段两端的距离相等的点在线段的垂直平分线上.⑦理解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两个底角相等,底边上的高线、中线及顶角平分线重合,探索并掌握等腰三角形的判定定理:有两个底角相等的三角形是等腰三角形.探索等边三角形的性质定理:等边三角形的各角都等于60°.探索等边三角形的判定定理:三个角都相等的三角形(或仅有一个角是60°的等腰三角形)是等边三角形.⑧了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半,掌握有两个角互余的三角形是直角三角形.⑨探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题:探索并掌握判定直角三角形全等的“斜边、直角边”定理.⑩了解三角形重心的概念.(4)四边形①了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式.②理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性.③探索并证明平行四边形的有关性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.④了解两条平行线之间距离的意义,能度量两条平行线之间的距离.⑤探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形.正方形具有矩形和菱形的一切性质.⑥探索并证明三角形中位线定理.(5)圆①理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念:探索并了解点与圆的位置关系.②探索圆周角与圆心角及其所对的弧的关系,了解并证明圆周角及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补.③知道三角形的内心和外心.④了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径的关系,会用三角尺过圆上一点画圆的切线.⑤会计算圆的弧长、扇形的面积.(6)尺规作图①能用尺规完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线.②会利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边和底边上的高作等腰三角形;已知一直角边和斜边作直角三角形.③会利用基本作图完成:过不在同一直线上的三点作圆;会作三角形的外接圆、内切圆,作圆的内接正方形和正六边形.④在尺规作图中,了解尺规作图的道理,保留作图痕迹,不要求写作法.(7)定义、命题、定理①通过具体实例,了解定义、命题、定理、推论的意义.②结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.③知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程中可以有不同的表达形式,会综合法证明的格式.④了解反例的作用,知道利用反例可以判断一个命题是错误的.⑤通过实例体会反证法的含义.2.图形与变换(1)图形的轴对称①通过具体实例认识轴对称,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分.②能画出简单平面图形关于给定对称轴的对称图形,③了解轴对称图形的概念:探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质.④认识并欣赏自然界和现实生活中的轴对称图形.(2)图形的旋转①通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等,②了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分,③探索线段、平行四边形、正多边形、圆的中心对称性质.④认识并欣赏自然界和现实生活中的中心对称图形.(3)图形的平移①通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得到的图形中,两组对应点的连线平行(或在同一条直线上)且相等.②认识并欣赏平移在自然界和现实生活中的应用.(4)图形的相似①了解比例的性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割.②通过具体实例认识图形的相似,了解相似多边形和相似比.③掌握两条直线被一组平行线所截,所得的对应线段成比例.④了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.⑤了解两个三角形相似的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似.⑥了解图形的位似,知道利用位似将一个图形放大或缩小.⑦会用图形的相似解决一些简单的实际问题.⑧利用相似的直角三角形,探索并认识锐角三角函数(sinA,cosA,tanA),知道30°、45°、60°角的三角函数值.⑨会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.⑩能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题.(5)图形的投影①通过丰富的实例,了解中心投影和平行投影的概念.②会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,会判断简单物体的三视图,能根据三视图描述简单的几何体.③了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型.④通过实例,了解上述视图与展开图在现实生活中的应用.3.图形与坐标(1)坐标与图形位置①结合实例进一步体会有序数对可以表示物体的位置.②理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标.③在实际问题中,能建立适当的直角坐标系,描述物体的位置.④对给定的正方形,会选择适当的直角坐标系,写出它的顶点坐标,体会可以用坐标刻画一个简单图形.⑤在平面上,能用方位角和距离刻画两个物体的相对位置.(2)坐标与图形运动①在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.②在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系.③在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化.④在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一条边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的.【知识汇总】1.直线、射线、线段与角(1)直线公理:经过两点有且只有一条直线.直线是向两方无限延伸的,直线没有端点.(2)射线:直线上一点和它一旁的部分叫做射线,这点叫做射线的端点,射线向一方无限延伸,射线只有一个端点.(3)线段:直线上两个点和它们之间的部分叫做线段.线段有两个端点,有长短之分,将某一线段分成两条相等的线段的点叫做该线段的中点.(4)两点确定一条直线,两点之间线段最短,两点间线段的长度叫两点间距离.(5)1°=60′,1′=60″. (6)1周角=2平角=4直角=360°.(7)如果两个角的和等于90°,就说这两个角互为余角,同角或等角的余角相等;如果两个角的和等于180°,就说这两个角互为补角,同角或等角补角相等.2.]对顶角:一个角的两边是另一个角的两边的反向延长线,则称这两个角是对顶角,对顶角相等.3.角平分线:角平分线上的点到角两边的距离相等,到角两边距离相等的点在角平分线上.4.平行线(1)过直线外一点,有且只有一条直线与这条直线 平行 . (2)平行线的性质:两条直线平行,同位角相等,内错角相等,同旁内角互补. (3)平行线的判定:同位角相等,或内错角相等,或同旁内角互补,两条直线平行.5.平面内,过一点有且只有一条直线与已知直线垂直6.线段垂直平分线(1)线段垂直平分线的定义:垂直平分一条线段的直线叫做线段的垂直平分线. (2)线段的垂直平分线上的点到这条线段两个端点的距离相等,到线段两端距离相等的点在线段的垂直平分线上.7.垂线段公理:直线外一点与已知线段连接的所有线段中,垂线段最短.8.三角形的边角关系(1)边与边的关系:三角形任意两边之和大于第三边;任意两边之差小于第三边.(2)角与角的关系:①三角形内角和定理:三角形的内角和等于180°;②三角形的外角和等于360°;③三角形的一个外角等于与它不相邻的两个内角的和;④三角形的一个外角大于任何一个与它不相邻的一个内角.(3)边与角的关系:在同一个三角形内,等边对等角,等角对等边;大边对大角,大角对大边.9.三角形的分类(1)按边分类:不等边三角形、等腰三角形、等边三角形; (2)按角分类:直角三角形、斜三角形(钝角三角形、锐角三角形).10.三角形的主要线段(1)三角形的角平分线:三角形的一个角的角平分线与这个角的对边相交,这个角的顶点和交点之间的 线段 .(2)三角形的中线:连结三角形一个顶点和它对边中点的线段.(3)三角形的高:从三角形的一个顶点向它的对边所在直线画垂线,顶点和垂足间的线段.(4)三角形的中位线:连结三角形两边中点的线段.三角形的中位线平行于第三边并且等于第三边的一半.11.三角形的内心和外心(1)三角形的内心:三角形三条角平分线的交点,它是三角形内切圆的圆心,它到三角形各边的距离相等.三角形的内心在三角形的内部;(2)三角形的外心:三角形三边的垂直平分线的交点,它是三角形外接圆的圆心,它到三角形三个顶点的距离相等.锐角三角形的外心在三角形的内部,钝角三角形的外心在三角形的外部,直角三角形的外心为斜边的中点.12.全等三角形的定义能完全重合的两个三角形叫做全等三角形.13.全等三角形的判定方法(1)有两边和它们的夹角对应相等的两个三角形全等.(简称“SAS ”)(2)有两角和它们的夹边对应相等的两个三角形全等.(简称“ASA ”)(3)有两角和其中一角的对边对应相等的两个三角形全等.(简称“AAS ”)(4)有三边对应相等的两个三角形全等.(简称 “SSS ” )(5)有斜边和一条直角边对应相等的两个直角三角形全等.(简称“HL ”)14.全等三角形的性质(1)全等三角形的对应边、对应角相等;(2)全等三角形的对应角平分线、对应中线、对应高相等;(3)全等三角形的周长相等、面积相等.15.相似三角形(1)定义:对应角相等,对应边成比例的三角形叫做相似三角形.(2)相似三角形的判定定理①相似三角形的判定定理1:两角对应相等的两个三角形相似;②相似三角形的判定定理2:三边对应成比例的两个三角形相似;③相似三角形的判定定理3:两边对应成比例且夹角相等的两个三角形相似;④平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形相似;⑤直角三角形被斜边上的高分成的两个三角形与原三角形相似.补充:若CD为 Rt △ABC斜边上的高(如图),则 Rt △ABC∽ Rt △ACD∽ Rt △CBD.且AC2=AD·AB,CD2=AD·BD,BC2=BD·AB.(3)性质:①相似三角形的对应角相等.②相似三角形的对应线段(边,高,中线,角平分线)成比例.③相似三角形的周长比等于相似比,面积比等于相似比的平方.16.相似多边形(1)[JP2]定义:各角对应相等,各边对应成比例的两个多边形叫做相似多边形;相似多边形对应边的比叫做相似比.(2)性质:①相似多边形的对应角相等,对应边成比例.②相似多边形的周长比等于相似比,面积比等于相似比的平方.17.图形的位似(1)位似图形定义:如果两个图形不仅相似,而且每组对应点所在直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫位似中心,此时相似比又称位似比.(2)位似图形的性质:位似图形上任意一对对应点到位似中心的距离比等于位似比,位似图形周长的比等于位似比;面积比等于位似比的平方.19.等腰三角形(1)定义:两边相等的三角形叫做等腰三角形.(2)性质:①等腰三角形的两腰相等;②等腰三角形的两底角相等,即“等边对等角”;③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,即“三线合一”.④等腰三角形是轴对称图形,有一条对称轴,对称轴是底边的垂直平分线.(3)判定:①有两条边相等的三角形是等腰三角形;②有两个角相等的三角形是等腰三角形;即“等角对等边”.20.等边三角形(1)定义:三边相等的三角形是等边三角形.(2)性质:①等边三角形的三边相等,三角相等,都等于60°;②“三线合一”;③等边三角形是轴对称图形,有三条对称轴.(3)判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60 °的等腰三角形是等边三角形.21.直角三角形(1)性质:①直角三角形的两锐角互余;②直角三角形30°角所对的直角边等于斜边的一半;③直角三角形中,斜边上的中线长等于斜边的长的一半.(2)判定:①有一个角是直角的三角形是直角三角形;②有一边上的中线是这边的一半的三角形是直角三角形.(3)勾股定理及逆定理①勾股定理:直角三角形中,两直角边的平方和等于斜边的平方;②勾股定理的逆定理:若一个三角形中有两边的平方和等于第三边的平方,则这个三角形是直角三角形.60°30°45°(1)互余关系:sinA=cos(90°-A), cosA=sin(90°-A);(2)平方关系:sin2A+cos2A=1;(3)倒数关系:tanAtan(90°-A)= 1;(4)相除关系:tanA=.24.解直角三角形(1)解直角三角形的概念在直角三角形中,除直角外,一共有5个元素,即3条边和2个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程,叫做解直角三角形.(2)直角三角形的解法直角三角形解法按直角外已知2个元素的不同情况可大致分为四种类型:①已知一条直角边和一个锐角(如a,∠A)其解法为:∠B=90°-∠A,c2=a2+b2.②已知斜边和一个锐角(如c,∠A)其解法为:∠B=90°-∠A,a=c·sinA.③已知两直角边(如a,b),其解法为:c2=a2+b2, tanA=.④已知斜边和一直角边(如c,a),其解法为:b2=c2-a2 , sinA=.25.与解直角三角形有关的名词、术语(1)视角:视线与水平线的夹角叫视角.从下向上看,叫做仰角;从上往下看,叫做俯角.(2)方位角:目标方向线与正北方向线顺时针时的夹角.(3)坡度、坡角:坡面的垂直高度(h)和水平长度(l)的比叫做坡度(或坡比),记作i=.坡面与水平面的夹角(α),叫做坡角.26.圆的有关概念及性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,圆既是轴对称图形也是中心对称图形.(2)圆具有对称性和旋转不变性.(3)不共线的三点确定一个圆.(4)圆上各点到圆心的距离都等于半径.(5)圆上任意两点间的部分叫做弧,大于半圆周的弧称为优弧,小于半圆周的弧称为劣弧.(6)连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(7)弧、弦、圆心角的关系:定理,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论,在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量也分别相等.27.垂径定理定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.注意:轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.28.与圆有关的角及其性质(1)圆心角:顶点在圆心,角的两边和圆相交的角叫做圆心角.圆周角:顶点在圆上且角的两边和圆相交的角叫做圆周角.弦切角:顶点在圆上,角的一边和圆相交,另一边和圆相切的角叫做弦切角.(2)圆周角定理定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论:①同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.②半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是圆的直径.③三角形中,如果一边上的中线等于这边的一半,那么这个三角形是直角三角形.。

广东省中考数学科试题分析及教学建议

广东省中考数学科试题分析及教学建议

六、考试方式和试卷结构
考试时间为100分钟.全卷满分120分 (在120分中代数约占60分;几何约占50分;统计与概率约占
10分.)
选择题
10道
共30分
(四选一型 的单项选择
题)
填空题
6道
共24分
(只要求直 接填写结果)
解 (一)
3题

题 (二)
3题
每题6分,共18分 每题7分,共21分
(三)
3题
4. 思想方法 (2)数形结合思想 第22题:
第23题:
(二) 2019年省中考题试题分析
4. 思想方法 (3)整体思想 第14题:
第23题:
(二) 2019年省中考题试题分析
4. 思想方法 (4)函数与方程思想 第21题:
第23题:
(二) 2019年省中考题试题分析
4. 思想方法 (5)化归与转化思想 第21题:转化为方程和不等式 第22题: 转化图形求面积 第23题:转化为方程求表达式和点的坐标 第24题: AB=BG 第25题:转化为方程求点的坐标
五、考试内容 第一部分 数与代数

1. 数与式
与 代 2. 方程与不等式

3. 函数
有理数 实数 代数式 整式与分式 方程与方程组 不等式与不等式组
函数 一次函数 反比例函数 二次函数
五、考试内容 第二部分 空间与图形
点、线、面、角
空 间
1. 图形的性质

相交线与平行线 三角形 四边形 圆 尺规作图
1. 全面 考查内容涉及代数、几何、统计与
概率;
其分值分布代数约占60分;几何 约占50分;统计与概率约占10分.
(二) 2019年省中考题试题分析

2017--2019近几年广州中考数学情考点分析及建议

2017--2019近几年广州中考数学情考点分析及建议

2017--2019近几年广州中考数学情考点分析及建议近几年考情分析引言2019年广州中考数学试卷整体难度保持稳定,在稳定的基础上注重数学基础知识的考查,更加重视数学素养和数学方法。

选择填空题考法常规,考查范围以基础知识为主。

解答题部分,17-23题题型结构稳定,着重考查学生的“四基”。

24-25题着重考查学生的“代几”综合运用能力、作图探究能力、图形变换、数形结合思想的运用。

本次命题依据考试大纲,着力体现新课标的教学理念,突出对学生基本数学素养的评价,既考查了四基——基础知识、基本技能、基本数学思想方法和基本活动经验,又突出课本核心内容,关注学生研究的结果,也重视研究的过程。

2019广州中考数学命题,有利于培养学生对知识点的综合运用能力、动手作图能力与运算能力,有助于学生构建知识体系。

本次命题不设置偏题,确保了试题的科学性、公平性和严谨性。

一、整体评价试卷难度稳定,整体布局与往年的广州中考类似。

选择填空考法常规,但计算量增大;解答题梯度明显,区分度很高,注重知识接洽,请求学生具备计算本领、多个知识点灵活运用本领、作图本领等数学基本头脑和本领。

二、试卷特点试卷题型分为选择题、填空题、解答题,在分值分布和题型特征方面与往年相似。

今年函数部分分值降低,压轴题与以往同等,考查一题函数、一题几何的模式。

函数压轴题,考查含参问题、函数过定点的问题,注重初高衔接;另一道压轴题,以等边三角形为背景的翻折问题,通过构造“辅助圆”解决最值问题。

今年的试题主要特点:①重视基础,考查灵活运用知识点的本领;②突显学生作图本领,加强着手本领;③注重知识点交汇;④常规但不俗套;⑤注重学生计算本领的考查;⑥相比往年,今年减少了分类讨论头脑的考查。

今年第10题,难度不大,但涉及的知识点较多,考查一元二次方程根的判别式、根与系数的关系、平方差公式以及整体思想等知识点。

第16题,则是引入“半角模型”和“三垂直模型”的构造,以及利用函数求最值问题,强调了学生平时在研究过程中,对常见的典型几何模型的归纳,以及函数思想解决最值问题。

广州市近三年中考数学考点细目表

广州市近三年中考数学考点细目表

菱形性质,勾股定理以及坐标轴
★★★☆☆☆
二次根式化简
★★★☆☆☆
垂直平分线性质,四边形综合以及相似比 与面积比
★★★★☆☆
一元一次不等式
★★☆☆☆☆
全等三角形的判定
★★★☆☆☆
分式方程化简求值,正方形面积
★★☆☆☆☆
中位数,平均数,众数
★★★☆☆☆
不等式方案应用题
★★★☆☆☆
一次函数画图像,分类讨论,反函k值,一 次函数与反比例函数的图像与性质
★★★☆☆☆
尺规作图,角平分线性质定理,最短路径 问题
★★★★☆☆
二次函数与圆,圆过定点问题
★★★★★☆
四边形内角和,旋转,勾股定理,暗圆, 动点问题
★0 矩形的性质/最短路径
一元二次方程中根的判别式与韦达定理
11 角
点到直线的距离
12 二次根式的计算
二次根式,分式有意义
13 解分式方程
因式分解
14 图形平移
旋转,角度计算
15 正方形的性质/相似 16 规律探究题:近似值 17 解不等式组
三视图,三角形计算,弧长计算
正方形综合(半角模型),三角形综合 (三垂直模型),面积最值(二函)
★★☆☆☆☆
三视图
★★☆☆☆☆
整式乘法计算、幂的乘方以及合并同类项 法则
★★☆☆☆☆
三线八角
★★★☆☆☆
概率
★★☆☆☆☆
垂直定理
★★★☆☆☆
二元一次方程组的应用
★★★☆☆☆
一次函数,反比例函数的图像与系数
★★★☆☆☆
找规律
★★★☆☆☆
二次函数图像
★★☆☆☆☆
三角函数
★★☆☆☆☆

广东省历年(2019-2023年)中考数学真题分类汇编 整式与因式分解

广东省历年(2019-2023年)中考数学真题分类汇编 整式与因式分解

广东省历年(2019-2023年)中考数学真题分类汇编整式与因式分解一、选择题1.(2023·深圳)下列运算正确的是()A.a3⋅a2=a6B.4ab−ab=4C.(a+1)2=a2+1D.(−a3)2=a6【答案】D【解析】【解答】解:A、由于a3·a2=a5,故此选项计算错误,不符合题意;B、由于4ab-ab=3ab,故此选项计算错误,不符合题意;C、由于(a+1)2=a2+2a+1,故此选项计算错误,不符合题意;D、由于(-a3)2=a6,故此选项计算正确,符合题意.故答案为:D.【分析】由同底数幂的相乘,底数不变,指数相加,进行计算,可判断A选项;整式加法的实质就是合并同类项,所谓同类项就是所含字母相同,而且相同字母的指数也分别相同的项,同类项与字母的顺序没有关系,与系数也没有关系,合并同类项的时候,只需要将系数相加减,字母和字母的指数不变,但不是同类项的一定就不能合并,据此可判断B选项;由完全平方公式的展开式是一个三项式,可判断C 选项;由幂的乘方,底数不变,指数相乘,可判断D选项.2.(2021·广州)下列运算正确的是()A.|−(−2)|=−2B.3+√3=3√3C.(a2b3)2=a4b6D.(a-2)2=a2-4【答案】C【解析】【解答】A. |−(−2)|=2≠−2,选项A计算不符合题意;B. 3与√3不是同类项,不能合并,3+√3≠3√3,选项B计算不符合题意;C. (a2b3)2=a2×2b3×2=a4b6,选项C计算符合题意;D. (a−2)2=a2−4a+4≠a2−4,选项D计算不符合题意.故答案为:C.【分析】利用绝对值,同类项,幂的乘方,完全平方公式计算求解即可。

3.(2021·广东)设6−√10的整数部分为a,小数部分为b,则(2a+√10)b的值是()A.6B.2√10C.12D.9√10【答案】A【解析】【解答】解:∵√9<√10<√16∴3<√10<4∴−4<−√10<−3∴6−4<6−√10<6−3∴2<6−√10<3∴6−√10的整数部分a=2,小数部分b=6−√10−2=4−√10∴(2a+√10)b=(2×2+√10)(4−√10)=(4+√10)(4−√10)=16−10=6故答案为:A.【分析】考查无理数的估算、整数部分与小数部分,先估算出无理数的范围,确定整数部分,再用无理数减去整数部分,得到小数部分,最后再计算表达式的数值。

(2018)近三年广东省中考数学试题知识点分布表

(2018)近三年广东省中考数学试题知识点分布表
代数几何综合(动点问题、线段长度、多边形面积、解直角三形的应用、二次函数求最值、二次根式计算)
近三年广东省中考数学试题知识点分布表
题型
题号
2019年
2019年
2019年
2019年
一、选择题
1
有理数的大小比较
求常数相反数
求常数绝对值
求常数绝对值
2
科学记数法
科学记数法
数轴数比较大小
科学记数法
3
几何题三视图
余角和补角
图形变换(中心对称图形与多边形)
中位数
4
统计(中位数)
一元二
绝对值、零和负整数指数幂
绝对值、零和负整数指数幂
解一元二次方程
18
分式的化简求值
分式的化简求值
分式的化简求值
分式化简求值
19
尺规作图、垂直平分线性质
二元一次方程的应用
尺规作图、中位线性质
尺规作垂线,用三角函数求边长
题型
题号
2019年
2019年
2019年
2019年
四、解答题
20
分式方程的应用和方程组的应用
几何综合(圆、相似三角形)
圆(性质、切线)与三角形(全等、相似)综合
几何综合(圆、平行四边形、垂直问题)
25
代数几何综合(二次函数最值、动点与三角形面积、分类讨论
代数几何综合(矩形、三角形、动点、分类讨论、二次函数最值)
代数几何综合(图形变换、动点问题、平行四边形、三角形全等的性质与判定、线段间关系、二次函数最值)
尺规作图、垂直平分线的性质
分式方程的应用
概率
21
统计(扇形统计图、用样本估计总体、条形统计图)

全国2018年中考数学试题分知识点汇编02科学记数法,近似数

全国2018年中考数学试题分知识点汇编02科学记数法,近似数

全国2018年中考数学试题分知识点汇编02科学记数法,近似数一、选择题1. (2018广东省,2,3)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000用科学记数法表示为A. B. C. D.71.44210⨯0.144210⨯81.44210⨯8⨯70.144210【答案】A【解析】科学记数法最后化简形式a×10n(),如果这个数为大数,那么n的计算方式为整数个数减1,如果为极小数,那么n为0的个数110≤<a【知识点】科学记数法2. (2018广西省桂林市,6,3分)2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学计数法表示为( )A.1.28×1014 B.1.28×10-14 C .128×1012 D.0.126×1015【答案】A.【解析】128 000 000 000 000是一个整数数位有15位的数,科学记数法表示一个数,就是把一个数写成a×10n的形式(其中1≤|a|<10,n为整数),故在用科学记数法表示时,a=1.28,n=15-1=14,即128 000 000 000 000=1.28×1014,故选择A.【知识点】科学记数法3. (2018广西省柳州市,5,3分)世界人口约7 000 000 000人,则科学记数法可表示为( )A.9×107B.7×1010C.7×109D.0.7×109【答案】C【解析】科学记数法的表示形式为a×10n,其中1≤|a|<10.若用科学记数法表示绝对值较大的数,则n的值等于该数的整数位数减去1,则a=7,n=10-1=9,故7 000 000 000=7×109.【知识点】科学记数法4. (2018海南省,3,3分)在海南省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注,据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000用科学记数法表示为()A.485×105 B.48.5×106 C.4.85×107 D. 485×108【答案】C【解析】用科学记数法表示较大的数时,其形式为a×10n,其中1≤|a|<10,n是正整数,这里的n等于原数的整数位减1,∴48500000=4.85×107,故选择C.【知识点】科学记数法--------表示较大的数5. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2018甘肃省兰州市,3,4分)据中国电子商务研究中心()发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( )A.1159.56×108元B. 11.5956×1010元C.1.15956×1011元D.1.15956×108元【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.故1159.56亿=1.15956×1011.【知识点】科学记数法7. (2018黑龙江省齐齐哈尔市,题号3,分值3)“厉害了,我的国!” 2018年1月18日,国家统计周对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶.把82万亿用科学记数法表示为()A. 8.2xlO13B. 8.2xl012C.D. 8.2xlO9118.210⨯【答案】A【解析】由科学记数法的定义可知,82万亿=82000000000000= 8.2xlO13 .【知识点】科学记数法.8. (2018湖北省江汉油田潜江天门仙桃市,3,3分) 2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.B.C.D.2⨯11⨯103.5103.510⨯103.510⨯3510【答案】B【解析】本题主要考查科学记数法.科学记数法表示数的标准形式为(且,为整数),所以350亿用科学记数法表示为.故选B .n a 10⨯101<≤a n 103.510⨯【知识点】科学记数法9.(湖北省咸宁市,3,3) 2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元,增速在全省17个市州中排名第三.将.123 500 000 000用科学记数法表示为( )A .123.5×109 B.12.35×1010 C.1.235×108D .1.235×1011【答案】D【解析】123 500 000 000的整数数位有12位,所以a ×10中,a 的值为1.235,n的值为12-1=11,即123 500 000 000=1.235×1011,故选D .n【知识点】科学记数法10. (2018湖南省怀化市,3,4分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列。

2016---2018年广州中考数学最全评析及考点分布图

2016---2018年广州中考数学最全评析及考点分布图

重磅!2018年广州中考数学最全评析及考点分布图,转发2018年广州中考,数学试题全面出炉!今年的数学题难度怎样?跟往年有什么不同?考点分布有什么规律?让我们一一道来!二、考点分布:1、2018年中考数学考点公布图:2、各年级考点在试卷中所占的比例:如上图数据我们发现八年级的考点在整张试卷中所占的比例很大,九年级只是16%,但是九年级的考点是在七、八年级知识点的基础之上加深加难的,跨年级部份也是以九年级的为主,所以学好九年级的知识在中考当中尤为关键!充分利用好这个暑假,对初三的知识进行预学习非常重要!三、今年数学试题的亮点:1、考察题型新颖,实则也是利用课本知识解决。

如第10题:值得一提的是:这道题跟橄榄山备考课件中的一道题极为相拟,大家可以对比看一下:2、考察题型跟现实生活联系紧密:例如第20题的共享单车。

3、压轴题跟往年一样,是探究题的模式:例如第25题.值得一提的,压轴题跟橄榄山备考课件中的一道题也是极为相似,做法基本差不多?大家看一下:四、近三年级广州中考考点对比:从上面我们分析出近三年级考点占比,可以得出考试的命题趋势:从上图我们可以看到图形认识与变换所占的比重最大,次之是函数,可见这两个方面都是中考考察的重点。

五、给准初三同学的一些建议:1、初二的内容在中考当中所占的比例很大,而且是学习初三知识的基础和铺垫。

所以一定要对初二的知识学习透彻!若还有一些盲点和漏洞,建议一定要利用好暑假的时间,进行查漏补缺!2、广州中考的出题更加与现实生活相联系,所以我们一定要把所学的知识与现实生活联系起来,比如购买物品、存钱缴税、销售物品等等,提高现实问题数学化。

3、初三的知识难度大,综合程度高,而且还要加入一门化学主科,所以时间和精力将更加紧张,一定要好好利用暑假的时间多做一些学习,抢占先机。

三、着重提高学生学习能力,激发学生学习动力,从而提高成绩!我们会定时对孩子的学习心理和学习能力做专业的测评,了解孩子的学习心理状态和学习方法,然后在教学过程当中,激发学生的学习兴趣,令掌握高效的学习方法,提高学生的学习能力,从而提高成绩!。

广东省卷近年中考数学考情分析全书

广东省卷近年中考数学考情分析全书

98 三视图(主视图) 99 三视图(左视图) 100 三视图(俯视图) 101 侧面展开图
102
轴对称图形 、中心对称图形
103 中心对称图形
104 图形的折叠
105 图形的平移
106 图形的旋转
107 最短路线问题
第六章 圆
24、圆的基本性质
2022
2021
2020
2019
2018
题16,1分
题24(1) ,2分
4分
4分
题23(2),2分
题23(1), 2分
题24(3), 2分
题23(3),3分
题23(3), 3分
11、反比例函数
2022
2021
2020
2019
2018
题9,3分
题21
题24
题23
题16
题24(1) 题23(2)
,2分
,2分
题21(1) 题24(3) 题23(1)
,4分
,2分
,2分
题24(2) (3) ,6分
2020
2019
2018
题22(1), 4分
题13,4分
题15,2分 题20,3分 题21(2),2 分
题24(1)(3) ,2分 题25(1)(3),2 分
题19(2), 1分题22(2), 2分题24(1) (2) ,2分
题16,4分
题25(2),1分 题25(1),2

题16,1分 题9,3分 题23,3分 题17,4分 题24(1) 题21(2),2 (3),2分 分
42
二次函数的 图象和性质
43 二次函数的平移
题23
题22(1),4 (1),

广东省2018-2020年数学中考试卷分析PPT

广东省2018-2020年数学中考试卷分析PPT

分析人:2018--2020广东省数学中考试卷分析目录C O N T E N T 01近三年试卷各考题和分数分配02每年考题的特点03今后复习的建议01 近三年试卷各考题和分数分配201820192020年份题号1实数大小比较绝对值 相反数2科学计数法 科学计数法中位数3三视图 三视图 关于x轴对称的点的坐标4中位数幂的运算 多边形内角和5二次根式有意义6不等式解法 中位数 中位线7相似比 实数大小比较 二次函数平移8角度计算 二次根式化简 不等式组解法9折叠求线段长度10函数图像综合 几何综合 二次函数图像综合201820192020年份题号实数运算 分解因式11圆心角、圆周角关系12分解因式 平行线性质 同类项概念13平方根 多边形内角和 二次根式、绝对值非负性14非负性 整体思想运算 整体思想计算15阴影部分面积 解直角三角形 运用菱形、等腰三角形等性质计算角度16圆锥侧面积公式17解直角三角形 函数图象综合 几何综合年份题号20182019202024待定系数法求函数解析式、函数图像性质综合 圆的性质、三角形、四边形性质等综合反比例函数、一次函数三角形等综合25旋转、二次函数最值,相似等综合 相似、三角形面积公式、二次函数最值一次函数、二次函数、相似等综合02 每年考题的特点2018年此部分内容作为文字排版占位显示 (建议使用主题字体)标题文本预设此部分内容作字排版占位显示 (建议使用主题字体)标题文本预设点击输入标题内容1、依据课标、紧扣考纲点击输入标题内容2、重视基础、体现常规点击输入标题内容难题主要有:16题(4分)、23题(3)小题(3分)、24题(3)小题(4分)、25题(3)小题(3分)(16题填空题4分)知识点:反比例函数、等边三角形、解一元二次方程、图形规律。

(25题解答题9分)代数、几何综合:双动点分析,分类讨论思想;图形的旋转;等边三角形;勾股定理;等面积法(或相似)求线段长;三角函数的定义;二次函数的最值;(24题解答题9分)圆的综合:平行线的判定;全等三角形的判定与性质;圆的切线判定;三角函数;直角三角形的性质;圆周角定理及其推论;相似三角形的判定与性质;3、突出能力、体现选拔(23题解答题9分)函数综合:一次函数与二次函数的交点问题、待定系数法求函数解析式、三角函数、分类讨论思想;4、力求创新、美中不足保持稳定、力求创新:(1) 试卷重视四基(基础知识、基本技能、基本数学思想方法和基本活动经验)的考查;(2)试卷重视对运算能力、推理能力、应用意识和综合能力的考查;(3)试卷体现数学思想方法,特别是:转换与化归、数形结合、方程与函数、分类讨论;(4)试卷力求创新,在题目设置上有不少想法(如16,23(3),24,25等)难度偏大、美中不足:(1)难题或中难题占比过大:如15、16、23(3)(2)试卷整体布局可以更加合理:如24、25题;(3)试卷梯度可以更加明显(三种题目最好都能从易到难):如23(3)、24(1)(2)2019年此部分内容作为文字排版占位显示 (建议使用主题字体)标题文本预设此部分内容作字排版占位显示 (建议使用主题字体)标题文本预设点击输入标题内容1、整体分析:考察模块和难易度选择题基础题的特点:相当基础,大部分知识比较常规,与往年相差不大,是常考点,也是热门考点。

2018年广东省中考数学试卷及详细参考答案

2018年广东省中考数学试卷及详细参考答案

2018年广东省中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2018•广东)﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣2.(2018•广东)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×1043.(2018•广东)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.84.(2018•广东)如图所示几何体的主视图是()A.B.C.D.5.(2018•广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11 D.16二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(2018•广东)分解因式:2x2﹣10x=_________.7.(2018•广东)不等式3x﹣9>0的解集是_________.8.(2018•广东)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是_________.9.(2018•广东)若x,y为实数,且满足|x﹣3|+=0,则()2018的值是_________.10.(2018•广东)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是_________(结果保留π).三、解答题(一)(每小题6分,共30分)11.(2018•广东)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(2018•广东)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(2018•广东)解方程组:.14.(2018•广东)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(2018•广东)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(2018•广东)据媒体报道,我国2018年公民出境旅游总人数约5000万人次,2018年公民出境旅游总人数约7200万人次,若2018年、2018年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2018年仍保持相同的年平均增长率,请你预测2018年我国公民出境旅游总人数约多少万人次?17.(2018•广东)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(2018•广东)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(2018•广东)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=_________=_________;(2)用含有n的代数式表示第n个等式:a n=_________=_________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(2018•广东)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(2018•广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C 落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(2018•广东)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2018•广东)﹣5的绝对值是()A.5B.﹣5 C.D.﹣考点:绝对值。

近三年广东省中考数学试题知识点分布表

近三年广东省中考数学试题知识点分布表
近三年广东省中考数学试题知识点分布表
题型
题号
2018年
2017年
2016年
一、选择题
1
有理数的大小比较
求常数相反数
求常数绝对值
2
科学记数法
科学记数法
数轴数比较大小
3
几何题三视图
余角和补角
图形变换(中心对称图形与多边形)
4
统计(中位数)
一元二次方程的解
科学计数法
5
轴对称和中心对称图形
众数
勾股定理
6
解不等式
因式分解(提公因式)
算术平方根
12
因式分解
多边形内角与外角
因式分解
13
平方根的性质
实数大小比较、数轴
解不等式组
14
非负数和为零性质
概率公式
勾股定理与扇形面积
15
不规则图形面积计算
代数式求值
特殊直角三角形与等腰三角形:三线合一
16
代数几何综合与规律(反比例函数与等边三角形
翻折变换、矩形性质
圆的基本性质与三角函数
对称图形(轴对称/中心对称)
统计与数据:中位数
7
三角形中位线与相似三角形面积比
反比例函数与一次函数的交点问题
坐标系:点与象限
8Байду номын сангаас
平行的性质与三角形的角
整式乘法/合并同类项
三角函数
9
根的判别式与解不等式
圆内接四边形的性质
简单代数:整体思想
10
函数图像
正方形的性质
函数图象(一次函数)
二、填空题
11
圆的有关概念
三、解答题
17
实数简单计算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24
几何综合(圆与三角形
几何综合(圆、相似三角形)
圆(性质、切线)与三角形(全等、相似)综合
25
代数几何综合(二次函数最值、动点与三角形面积、分类讨论
代数几何综合(矩形、三角形、动点、分类讨论)
代数几何综合(平行四边形、线段间关系、二次函数最值)
菱形的性质
三Байду номын сангаас函数
22
三角形(全等三角形和等腰三角形)
统计(扇形统计图、用样本估计总体、条形统计图)
统计
五、解答题
23
代数几何综合(二次函数与一次函数、动点与特殊三角形
代数综合(抛物线与x轴的交点;待定系数法求二次函数解析式;解直角三角形.)
代数综合(反比例函数与一次函数解析式、点对称、抛物线解析式)
对称图形(轴对称/中心对称)
统计与数据:中位数
7
三角形中位线与相似三角形面积比
反比例函数与一次函数的交点问题
坐标系:点与象限
8
平行的性质与三角形的角
整式乘法/合并同类项
三角函数
9
根的判别式与解不等式
圆内接四边形的性质
简单代数:整体思想
10
函数图像
正方形的性质
函数图象(一次函数)
二、填空题
11
圆的有关概念
近三年广东省中考数学试题知识点分布表
题型
题号
2018年
2017年
2016年
一、选择题
1
有理数的大小比较
求常数相反数
求常数绝对值
2
科学记数法
科学记数法
数轴数比较大小
3
几何题三视图
余角和补角
图形变换(中心对称图形与多边形)
4
统计(中位数)
一元二次方程的解
科学计数法
5
轴对称和中心对称图形
众数
勾股定理
6
解不等式
因式分解(提公因式)
算术平方根
12
因式分解
多边形内角与外角
因式分解
13
平方根的性质
实数大小比较、数轴
解不等式组
14
非负数和为零性质
概率公式
勾股定理与扇形面积
15
不规则图形面积计算
代数式求值
特殊直角三角形与等腰三角形:三线合一
16
代数几何综合与规律(反比例函数与等边三角形
翻折变换、矩形性质
圆的基本性质与三角函数
三、解答题
17
实数简单计算
实数运算、零和负整数指数幂
实数简单计算
18
分式的化简求值
分式的化简求值
分式的化简求值
19
尺规作图、垂直平分线性质
二元一次方程的应用
尺规作图、中位线性质
四、解答题
20
分式方程的应用和方程组的应用
尺规作图、垂直平分线的性质
分式方程的应用
21
统计(扇形统计图、用样本估计总体、条形统计图)
相关文档
最新文档