数学建模 教学大纲

合集下载

《数学建模》课程教学大纲

《数学建模》课程教学大纲

《数学建模(公选)》课程教学大纲一、课程基本信息课程代码:12130541课程英文名称: Mathematical Modelling课程面向专业:理工类专业课程类型:选修课先修课程:高等数学、线性代数、概率论与数理统计学分:2.5总学时:48 (其中理论学时:48 ;实验学时:0)二、课程性质与目的本课程主要介绍用数学知识解决实际问题的手段——建立数学模型。

通过教学,使学生掌握数学模型的基本知识;培养学生认识问题,用数学模型和计算机分析解决实际问题的初步能力;增强学生学习数学的兴趣和自学的能力,了解数学的一些应用分支的理论,会建立相应的简单模型,并能对模型进行分析。

三、课程教学内容与要求第一章建立数学模型1、教学内容与要求主要内容:学习数学建模课程的意义;数学模型的定义及分类;建立数学模型的方法及步骤;数学建模示例。

基本要求:了解数学模型的意义及分类,理解建立数学模型的方法及步骤。

2、教学重点:数学建模的基本方法和步骤。

3、教学难点:数学建模初步能力的培养。

第二章初等模型1、教学内容与要求主要内容:比例方法建模;类比方法建模;定性分析方法建模;量纲分析方法建模;初等模型举例。

基本要求:掌握比例方法,类比方法,定性分析方法及量纲分析方法建模的基本特点。

能运用所学知识建立数学模型,并对模型进行综合分析。

2、教学重点:比例方法建模,类比方法建模。

3、教学难点:量纲分析法建模第三章简单的优化模型1、教学内容与要求主要内容:存贮模型;生猪的出售时机;森林救火;冰山运输;量纲分析法基本要求:理解优化模型的一般意义,能运用高等数学的知识解决简单的优化模型。

掌握较简单的优化模型的建立和解法。

2、教学重点:比例方法建模,类比方法建模3、教学难点:量纲分析法建模第四章数学规划模型1、教学内容与要求主要内容:奶制品的生产与销售;自来水输送与货机装运;汽车生产与原油采购;接力队的选拔与选课策略;饮料厂的生产与检修;钢管和易拉罐下料基本要求:理解线性规划、整数规划模型和非线性规划模型的基本特点,能熟练利用数学软件进行数学规划模型的求解与灵敏度分析。

数学建模教学大纲

数学建模教学大纲

数学建模教学大纲(32学时)一、课程内容简介数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

主要介绍数学建模的概述、初等模型、简单优化模型、微分方程模型、离散模型、线性规划模型、概率模型等模型的基本建模方法及求解方法。

二、教学目的及任务数学建模是计算机类高职生继高等数学、线性代数之后进一步提高运用数学知识解决实际问题、基本技能,培育和训练综合能力所开设的一门新学科。

通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。

学会进行科学研究的一般过程,并能进入一个实际操作的状态。

通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。

三、本课程与其它课程的关系在学习本课程前需要基本掌握下列课程内容:高等数学、线性代数、概率论与数理统计。

由于本课程的学习,只要是使学生掌握数学知识,解决实际问题能力,这种能力提高有助其它专业课的学习。

四、本课程基本内容要求以建立不同的数学模型作为教学项目载体,每个项目分解为若干个学习任务(学习情境),每个学习任务按照资讯、决策、计划、实施、检查、评估、拓展步骤进行教学组织和内容设计。

教学内容按照教学做一体化的思路设计,实现实践教学与理论教学的相互渗透。

教学内容教学项目一:建立数学模型学习学时:2学习目标:(1)了解数学建模的历史和现状;开展数学建模的意义,熟悉数学模型的基本概念;数学模型的特点和分类;(2)掌握数学建模的方法及基本步骤的知识,并能用于指导全部课程的学习。

(3)使学生正确地了解数学描写和数学建模的不同在于数学理论的思维特征。

、教学内容:(1)数学建模的历史和现状(2)高职院校开设数学建模课的现实意义(3)数学模型的基本概念(4)数学模型的特点和分类(5)数学建模的方法及基本步骤。

《 数学建模 》教学大纲(新)

《 数学建模 》教学大纲(新)

《数学建模》教学大纲一、课程的基本信息课程编码:课程性质:专业必修课总学时:64学时学分:4开课单位:信息管理学院适用专业:信息与计算科学先修课程:高等数学、线性代数、概率论与数理统计二、课程目的与任务数学建模(实验)课程是信息与计算科学专业的必修课,是利用数学和计算机基础平台进行实践应用课程之一。

是基础数学科学联系实际的主要途径之一。

通过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法,培养和训练学生的数学建模素质。

要求学生具有熟练的计算推导能力;通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。

熟练掌握一至两种数学软件(matlab,lingo等),为学生适应日后在社会中实际应用奠定必要的基础。

三、课程教学基本要求数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

要求掌握的初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型等模型及求解方法。

由于课时的关系,可以适当删减某些比较难的内容,但是务必要使学生在学习过程有所得,要求至少掌握基本建模方法思想,会使用操作数学软件工具解决基本数值分析问题。

五、课程教学基本内容导引建立数学模型教学内容:1、什么是数学建模2、为什么学习数学建模3、怎样学习数学建模MATLAB软件初步(1)MATLAB软件初步(2)重点:1、数学建模基本方法;2、数学建模能力的培养;难点:MATLAB软件应用;第1章数据分析模型教学内容:1.1 薪金到底是多少1.2 评选举重总冠军1.3 估计出租车的总数1.4 解读CPIMATLAB 矩阵1.5 NBA赛程的分析与评价——全国大学生数学建模竞赛2008年D题MATLAB 多项式重点:1、薪金到底是多少;2、评选举重总冠军;3、NBA赛程的分析与评价;难点: MATLAB 矩阵;第2章简单优化模型教学内容:2.1 倾倒的啤酒杯2.2 铅球掷远2.3 不买贵的只买对的MATLAB符号计算2.4 影院里的视角和仰角MATLAB 绘图2.5 易拉罐形状和尺寸的最优设计——全国大学生数学建模竞赛2006年C题重点:1、倾倒的啤酒杯;2、不买贵的只买对的;3、易拉罐形状和尺寸的最优设计;难点:MA TLAB 绘图;第3章差分方程模型教学内容:3.1 贷款购房3.2 管住嘴迈开腿MATLAB m文件与m函数3.3 物价的波动3.4 动物的繁殖与收获期中测试3.5 中国人口增长预测——全国大学生数学建模竞赛2007年A 题MATLAB 数据拟合重点:1、贷款购房;2、物价的波动;3、中国人口增长预测难点:MA TLAB m文件与m函数第4章微分方程模型教学内容:4.1 人口增长MATLAB 插值4.2 火箭发射MATLAB 实验报告4.3 给药方案4.4 海上追踪LINGO基础入门4.5 SARS的传播——全国大学生数学建模竞赛2003年A题和C题LINGO 线性规划重点:1、人口增长;2、火箭发射;3、SARS的传播难点:LINGO 线性规划第5章随机数学模型教学内容:5.1 博彩中的数学5.2 报童售报与飞机预订票LINGO集5.3 作弊行为的调查与估计5.4 汽车租赁与基因遗传LINGO 实验报告5.5 自动化车床管理——全国大学生数学建模竞赛1999年A 题LINGO 线性规划重点:1.博彩中的数学2.作弊行为的调查与估计3.自动化车床管理难点:LINGO 线性规划六、考核方式与成绩评定考核方式:考查考试用时:2学时成绩评定:本课程成绩构成比例为:期末考试成绩占总成绩的60%,期中考试成绩占总成绩的20%,平时成绩占总成绩的20%;平时成绩的构成及比例为:考勤占5%,课堂测验成绩占5%,实验成绩占5%,作业占5%。

数学建模实验教学大纲(专业课程)

数学建模实验教学大纲(专业课程)

数学建模实验教学大纲一、制定本大纲的依据根据2006级信息与计算科学专业培养计划和信息与计算科学专业课数学建模课程教学大纲制定本实验教学大纲。

二、本实验课程的具体安排三、本实验课在该课程体系中的地位与作用数学实验是数学建模课程的重要组成部分。

作为与相关教学内容配合的实践性教学环节,应在数学建模理论课教学过程中或数学建模理论课教学完成后开设。

学生应具有计算机的基本操作能力,并在数学上已经达到各门信息与计算科学的基础数学课程的基本要求。

四、学生应达到的实验能力与标准通过本课程的学习,能够熟悉MAPLE软件的功能,语法格式,界面等特点,掌握MAPLE的基本操作;能够利用MAPLE软件进行基本的代数运算,求极限,求导数,计算积分等运算;能够掌握利用MAPLE软件进行向量和矩阵的各种运算,求值等操作;了解利用MAPLE绘制一维和二维的图形和动画的方法;能够掌握利用MAPLE来计算统计学中的各种估计和检验。

五、讲授实验的基本理论与实验技术知识实验一初等数学验1.实验的基本内容(1)熟悉MAPLE语言环境;(2)MAPLE语言的语法结构和特点;(3)MAPLE的基本操作(3)有理函数运算;(4)解代数方程;(5)MAPLE语言的符号运算与数值运算。

2.实验的基本要求(1)熟悉MAPLE软件的运行环境语法和界面的特点;(2)熟悉使用MAPLE解决初等的运算问题;(3)熟悉使用MAPLE进行有理函数的运算和代数方程的求解;(4)熟悉MAPLE语言中数值计算与符号运算。

3.实验的基本仪器设备和耗材微机。

实验二微积分学实验1.实验的基本内容(1)利用MAPLE软件求极限;(1)利用MAPLE求一元函数的导数和多元函数的偏导数;(2)利用MAPLE计算高阶导数;(3)利用MAPLE计算积分。

2.实验的基本要求(1)熟练掌握使用MAPLE软件求极限;(2)熟练掌握使用MAPLE软件进行求导运算;(3)熟练掌握利用MAPLE软件进行积分运算。

《数学建模》课程教学大纲

《数学建模》课程教学大纲

《数学建模》课程教学大纲一、课程基本信息二、课程教学目标随着科学技术和计算机的迅速发展,数学向各个领域的广泛渗透已日趋明显,数学不仅在传统的物理学、电子学和工程技术领域继续发挥着重要的作用,而且在经济、人文、体育等社会科学领域也成为必不可少解决问题的工具,数学建模就是沟通实际问题与数学工具之间联系的必不可少的桥梁。

本课程作为信息与计算科学专业本科生开设的专业核心课,将数学方法应用到实际问题中去,主要是通过机理分析,根据客观事物的性质分析因果关系,在适当的假设条件下,利用合适的数学工具得到描述其特征的数学模型。

通过本课程的学习,希望学生能够达到以下能力目标:1. 培养学生利用数学工具解决实际问题的能力;2. 将实际问题“翻译”为数学语言并予以求解,然后再解释实际现象并应用于实际的能力;3. 逐步提高学生的数学素质和应用数学知识解决实际问题的能力。

三、教学学时分配《数学建模》课程理论教学学时分配表*理论学时包括讨论、习题课等学时。

《数学建模》课程实验内容设置与教学要求一览表四、教学内容和教学要求第一章建立数学模型(5学时)(一)教学要求通过本章内容的学习,了解数学描写和数学建模的不同于数学理论的思维特征,理解数学模型的意义及分类,掌握建立数学模型的方法及步骤等。

(二)教学重点与难点教学重点:从现实对象到数学模型,数学建模的方法和步骤,数学模型的特点和分类及怎样学习数学建模教学难点:数学建模的方法和步骤,数学模型的特点和分类(三)教学内容第一节从现实对象到数学模型第二节数学建模的重要意义第三节数学建模示例1.椅子能在不平的地面上放稳吗2.商人们怎样安全过河3. 如何施救药物中毒第四节数学建模的基本方法和步骤1.数学建模的基本方法2.数学建模的基本步骤第五节数学模型的特点和分类1.数学模型的特点2.数学模型的分类第六节数学建模能力的培养本章习题要点:要求学生完成作业5-8题。

其中概念题35%,应用题25%,计算题40%第二章初等模型(5学时)(一)教学要求通过本章内容的学习,了解初等模型的概念,理解比例方法、类比方法、图解法、定性分析方法建模的基本特点,掌握运用所学知识建立数学模型,并对模型进行综合分析等。

数学建模实验教学大纲

数学建模实验教学大纲

数学建模实验教学大纲一、引言数学建模是一门涉及数学、计算机科学和实际问题解决的跨学科课程。

通过数学建模实验教学,学生将学习如何将实际问题抽象化、建立模型,并运用数学方法进行问题求解。

本教学大纲旨在为数学建模实验课程提供指导,帮助教师和学生达到教育目标。

二、课程目标1. 培养学生的科学思维和实际问题解决能力。

2. 掌握各种数学模型的建立与求解方法。

3. 学习数据分析技术和模型验证方法。

4. 提高学生的团队合作和沟通能力。

三、教学内容1. 数学建模的基础知识(1) 数学建模的定义和基本步骤。

(2) 常见数学模型的分类和特点。

2. 实际问题抽象化和模型建立(1) 学习如何从实际问题中提取关键信息。

(2) 学习如何建立数学模型,选择合适的数学方法和假设。

3. 数学模型求解(1) 学习常见数学方法的应用,如线性规划、微分方程等。

(2) 掌握数学软件工具的使用,如Matlab、Python等。

4. 数据分析和模型验证(1) 学习数据收集和处理的基本技巧。

(2) 学习如何验证数学模型的准确性和可靠性。

5. 团队合作和沟通(1) 学习如何分工合作,形成高效的团队。

(2) 提高表达和演示能力,培养良好的沟通能力。

四、教学方法1. 理论授课:通过讲授基础知识,引导学生了解数学建模的概念和步骤。

2. 实践操作:组织学生动手实践,参与实际问题的建模和求解过程。

3. 小组讨论:鼓励学生在小组内讨论并解决问题,加强团队合作和沟通能力。

4. 作业练习:布置作业练习,提供问题求解的机会,巩固学生的知识和技能。

五、教学评估1. 课堂表现:考察学生的参与度、思维逻辑和问题解决能力。

2. 作业考核:通过作业的完成情况,评估学生对知识的掌握程度。

3. 实践项目:组织学生实施实际项目,并对项目结果进行评估。

4. 小组评价:学生之间进行互评,评估团队合作和沟通效果。

六、教学资源1. 教材:提供适合教学内容的教材,包括数学建模原理和实例分析。

《数学建模》教学大纲与考试大纲(专业课周3)(五篇模版)

《数学建模》教学大纲与考试大纲(专业课周3)(五篇模版)

《数学建模》教学大纲与考试大纲(专业课周3)(五篇模版)第一篇:《数学建模》教学大纲与考试大纲(专业课周3)新疆财经大学应用数学学院《数学建模》课程教学大纲及考试大纲二O一七年七月《数学建模》课程教学大纲一、课程的基本信息课程代码:4120039 课程性质:选修课总学时:51学时学分:3 开课单位:应用数学学院适用专业:数学与应用数学专业(专业代码070101)、金融数学专业(专业代码020305T)先修课程:数学分析、高等代数、概率论与数理统计、运筹学、数学实验二、课程说明数学建模(实验)课程是综合利用数学的思想、方法以解决实际问题的一门学科,是基础数学科学联系实际的主要途径之一。

数学建模是近十几年来开设的一门新兴课程,它以实际问题为载体,把数学知识、数学软件和计算机应用有机结合,容知识性、启发性、实用性和实践性于一体,特别强调学生的主体地位,在教师的引导下,用学到的数学知识和计算机技术,借助适当的数学软件,建立数学模型,分析、解决一些经过简化的实际问题。

该课程的引入,是数学教学体系、内容和方法改革的一项有益的尝试。

三、课程的目的与基本要求通过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法,培养和训练学生的数学建模素质。

要求学生具有熟练的计算推导能力;通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。

四、本课程与其它课程的联系:本课程是在学生系统学习了大学数学基础课程、数学实验等课程的基础上开设的一门综合应用与实践课。

学生学习本课程前,必须掌握大学数学的基础知识、常见数学软件包的使用,具备一定的逻辑思维能力及分析问题、解决问题的能力。

因此学好本课程能提高学生“用”数学和现代计算工具解决实际问题的能力。

五、教材、教学参考书教材:姜启源、谢金星主编《数学模型》(第四版)高等教育出版社教学参考书:1、杨启帆方道元遍《数学建模》高等教育出版社2、寿纪麟主编《数学建模——方法与范例》高等教育出版社3、叶其孝主编《大学生数学建模竞赛辅导教材》科学出版社4、萧树铁主编《数学实验》高等教育出版社六、教学时间安排本课程计3学分,51学时,学时分配如下[注1]:序号课程内容课时第一章建立数学模型第二章初等模型6 4 3 第三章简单的优化模型 4 第四章数学规划模型第五章微分方程模型第六章代数方程与差分方程模型 47 第八章离散模型第九章概率统计模型 9 第十章统计回归模型第十一章博弈模型2 注1:本课程内容采用案例式教学及实验教学模式,教学中教师可按照具体情况适度调整案例及课时。

数学建模课程大纲

数学建模课程大纲

数学建模课程大纲一、课程简介数学建模是一门应用数学课程,旨在培养学生运用数学工具和方法解决实际问题的能力。

本课程将通过理论讲授、案例分析和实践操作等方式,帮助学生全面理解数学建模的基本原理和基本方法,培养学生的问题分析、问题建模和问题求解等能力。

二、课程目标1.了解数学建模的基本概念和原则;2.掌握数学建模的常用方法和工具;3.培养学生的实际问题解决能力;4.发展学生的团队合作和沟通能力。

三、课程内容1.数学建模的概述1.1 数学建模的定义和分类1.2 数学建模的基本步骤1.3 数学建模的实际应用领域2.问题分析与问题建模2.1 问题分析和问题定义2.2 数据收集和处理2.3 模型假设和模型建立2.4 模型参数的选择和调整3.模型求解与结果分析3.1 模型求解的方法和技巧3.2 模型求解的稳定性和精度分析3.3 结果解释和对比分析4.数学建模软件的应用4.1 常用数学建模软件介绍4.2 数学建模软件的基本操作和应用案例四、教学方法与评价1.教学方法本课程将采用讲授、案例分析和实践操作相结合的教学方法。

通过课堂讲解学生基本理论知识,通过案例分析让学生熟悉解决实际问题的思路和方法,通过实践操作让学生尝试应用数学建模软件解决实际问题。

2.课程评价本课程将通过平时表现、作业和实践项目等多种评价方式来评价学生的学习情况。

具体评价方式将在开课前和学生明确。

五、参考教材与参考资料1.参考教材-《数学建模导论》王磊著北京大学出版社-《数学建模方法与应用》李明著清华大学出版社2.参考资料-《数学建模基础与方法》秦立和著上海交通大学出版社-《数学建模综合实例与方法》张志国著高等教育出版社六、作业与实践项目1.作业安排学生将根据课程内容安排完成一定数量的作业,包括理论推导题、模型建立题、实践操作题等。

作业将用于检查学生对课程知识的掌握情况。

2.实践项目学生将参与一个或多个与数学建模相关的实践项目,通过团队合作解决实际问题,并撰写实践报告。

《数学建模》课程教学大纲

《数学建模》课程教学大纲

《数学建模》课程教学大纲《数学建模》课程教学大纲第一部分大纲说明一、课程的作用与任务《数学建模》课程是中央广播电视大学数学与应用数学专业的一门限选课,它是应用数学专业的一门基础课程。

通过教学,使学生了解数学建模的基本知识,且具有用数学方法解决实际问题的初步能力,为后继的数学课程学习和进一步培养数学应用能力提供基础。

数学建模课程的主要内容数学建模方法论、初等数学模型、微分方程模型、运筹学模型、概率统计模型等。

二、课程的目的与教学要求根据整个教学计划的内容安排,以及学生主要是成人、在职、业余学习的特点,本课程将主要介绍初等数学模型,运筹学模型,微分方程模型和概率统计模型这四类常见数学模型中的较基本、较简单的部分,使学生对数学建模的基本想法与做法有一个较全面的初步的了解,为应用所学数学知识解决实际问题奠定一个较好的基础。

1 对相关课程内容的基本要求由于本课程的特点,对学生的基本数学基础有下列要求:熟练掌握常微分方程的基本内容,概率论与统计分析基础,运筹学中的线性规划、目标规划的初步知识,图论基础知识、决策论、存贮论与排队论初步知识。

2通过本课程的学习,应达到下列基本目标:(1)深化学生对所学数学理论的理解和掌握;(2)使学生了解数学科学的重要性和应用的广泛性,进一步激发学生学习数学的兴趣;(3)熟悉并掌握建立数学模型的基本步骤、基本方法和技巧;(4)培养学生应用数学理论和数学思想方法,利用计算机技术等辅助手段,分析、解决实际问题的综合能力;(5)培养学生的数学应用意识,同时进一步拓宽学生的知识面,培养学生的科学研究能力。

三、课程的教学要求层次教学要求层次:有关定义、定理、性质等概念的内容按“知道、了解、理解”三个层次要求;有关计算、解法、公式和法则等方法的内容按“会、掌握、熟练掌握” 三个层次要求。

第二部分学时、教材与教学安排一、学时分配本课程共4学分,讲授54学时(包括习题课)学时分配如下:项目内容学时电视学时IP课学时第一章数学建模方法论13第二章初等数学模型9第三章微分方程模型9第四章运筹学模型13第五章概率统计模型10合计541012二、教学安排数学建模课程安排在第6学期,一个学期完成全部教学任务。

《数学建模》教学大纲

《数学建模》教学大纲

《数学模型》课程教学大纲一、《数学模型》课程说明(一)课程编号:07251105(二)英文名称:Mathmatic Modeling(三)开课对象:数学与应用数学专业(四)课程的性质:数学建模是为数学与应用数学专业开设的一门学科基础课,其先修课程有数学分析、高等代数、概率论与数理统计、数学实验等。

它是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

(五)教学目的:数学建模是继本科生学习数学分析、高等代数、概率论与数理统计之后进一步提高运用数学知识解决实际问题,培育和训练综合能力所开设的一门新学科。

通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。

学会进行科学研究的一般过程,并能进入一个实际操作的状态.通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力、熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。

(六)教学要求和方法1.教学要求本课程主要介绍在数学应用中已经比较完善的数学模型,包括初等模型、简单优化模型、线性规划模型、离散模型、离散模型、微分方程模型、差分方程、概率统计模型等内容。

要求学生了解数学建摸的基本概念及基本方法,学会将学过的数学方法和知识同周围的现实世界联系起来,甚至和真正的实际问题联系起来。

不仅应使学生知道数学有用、怎么用,更要使学生体会到在真正的应用中还需要继续学习。

2.教学方法本课程将课堂讲授与上机实习结合起来,以课堂讲授为主。

课堂讲授旨在教学生如何建立模型,讲授中穿插各类数模实例,与现实中的各类实际问题相结合,启发学生自主思考和研究问题,找寻解决问题的数学模型和实际方法。

除此外,还会讲解数学建模论文的书写方法,以论文的形式完成建模和研究工作。

上机旨在教学生如何求解模型,以学生自主学习为主,结合课堂学习内容完成课堂布置的作业,利用数学软件求解模型结果。

《数学建模》教学大纲

《数学建模》教学大纲

数学建模教学大纲课程名称:数学建模课时数56(课堂教学部分)面向对象:理工农医、社会科学各专业本科生预修课程要求:微积分、线性代数、(常微分方程、概率论)一、课程介绍(100-150字)数学模型是应用数学知识和方法解决实际问题的重要工具。

本课程通过具体案例初步介绍数学建模的一般原则和常用方法,充实微分方程、概率统计、运筹优化等应用数学分支知识。

培养学生的科学素质和科学精神,加强文献查阅、计算机应用、论文写作等能力训练和综合素质培养,引导及鼓励学生开展科学研究,解决实际问题。

二、教学目标培养学生应用数学方法和工具解决实际问题的能力。

通过讲授数学在不同领域应用的典型案例、经典模型和常用方法,使学生体会到数学对科学技术和社会发展的巨大意义,初步掌握建立数学模型,解决实际问题的方法和步骤,加深对数学的理解。

通过研究性学习和课程实践,使学生初步具备发现问题,解决问题的能力,掌握文献查阅,计算机应用,论文撰写等科学研究的主要技能,逐步养成勇于尝试,善于创新的科研精神和不畏困难,大力协同的科研品格。

三、教学安排模块一、数学建模概论(6学时)阐述数学模型的意义和作用,建立数学模型的步骤和方法,数学建模需要具备的能力和应用数学研究的主要特点,并通过典型案例加以诠释。

结合本模块学习,学生可自主开展文献查阅,科技数据库使用,数学软件应用等方面的实践。

模块二、基本数学模型(16学时)本模块主要讲授应用微积分、线性代数、微分方程、概率论和初等数学等分支知识建立的经典数学模型。

通过本模块的学习,使学生熟悉建立模型和求解模型的思路和方法,激发学生学习基础课程的兴趣。

结合本模块的学习,学生可通过文献查阅,了解经典模型的新发展与新应用,并就若干具体问题建立简单数学模型。

1.微积分模型(3学时)建议案例:利息理论、蛛网模型等2.线性代数模型(4学时)建议案例:关灯游戏、量纲分析法、Leslie人口模型等3.微分方程模型(5学时)建议案例:万有引力定律、人口模型、传染病模型、Lanchester方程、种间关系等4.概率论模型(4学时)建议案例:招聘问题,赌徒破产问题、存储模型等(三)、运筹与统计模型(26学时)概要介绍运筹和统计的主要内容,为学生进一步学习和应用奠定基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学建模》教学大纲
一、课程的基本信息
课程编码:课程性质:专业必修课
总学时:64学时学分:4
开课单位:信息管理学院适用专业:信息与计算科学
先修课程:高等数学、线性代数、概率论与数理统计
二、课程目的与任务
数学建模(实验)课程是信息与计算科学专业的必修课,是利用数学和计算机基础平台进行实践应用课程之一。

是基础数学科学联系实际的主要途径之一。

通过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法,培养和训练学生的数学建模素质。

要求学生具有熟练的计算推导能力;通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。

熟练掌握一至两种数学软件(matlab,lingo等),为学生适应日后在社会中实际应用奠定必要的基础。

三、课程教学基本要求
数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

要求掌握的初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型等模型及求解方法。

由于课时的关系,可以适当删减某些比较难的内容,但是务必要使学生在学习过程有所得,要求至少掌握基本建模方法思想,会使用操作数学软件工具解决基本数值分析问题。

五、课程教学基本内容
导引建立数学模型
教学内容:
1、什么是数学建模
2、为什么学习数学建模
3、怎样学习数学建模
MATLAB软件初步(1)
MATLAB软件初步(2)
重点:
1、数学建模基本方法;
2、数学建模能力的培养;
难点:MATLAB软件应用;
第1章数据分析模型
教学内容:
薪金到底是多少
评选举重总冠军
估计出租车的总数
解读CPI
MATLAB 矩阵
NBA赛程的分析与评价——全国大学生数学建模竞赛2008年D题MATLAB 多项式
重点:
1、薪金到底是多少;
2、评选举重总冠军;
3、NBA赛程的分析与评价;
难点: MATLAB 矩阵;
第2章简单优化模型
教学内容:
倾倒的啤酒杯
铅球掷远
不买贵的只买对的
MATLAB符号计算
影院里的视角和仰角
MATLAB 绘图
易拉罐形状和尺寸的最优设计——全国大学生数学建模竞赛2006年C题重点:
1、倾倒的啤酒杯;
2、不买贵的只买对的;
3、易拉罐形状和尺寸的最优设计;
难点:MATLAB 绘图;
第3章差分方程模型
教学内容:
贷款购房
管住嘴迈开腿
MATLAB m文件与m函数
物价的波动
动物的繁殖与收获
期中测试
中国人口增长预测——全国大学生数学建模竞赛2007年A 题MATLAB 数据拟合
重点:
1、贷款购房;
2、物价的波动;
3、中国人口增长预测
难点:MATLAB m文件与m函数
第4章微分方程模型
教学内容:
人口增长
MATLAB 插值
火箭发射
MATLAB 实验报告
给药方案
海上追踪
LINGO基础入门
SARS的传播——全国大学生数学建模竞赛2003年A题和C题
LINGO 线性规划
重点:
1、人口增长;
2、火箭发射;
3、SARS的传播
难点:LINGO 线性规划
第5章随机数学模型
教学内容:
博彩中的数学
报童售报与飞机预订票
LINGO集
作弊行为的调查与估计
汽车租赁与基因遗传
LINGO 实验报告
自动化车床管理——全国大学生数学建模竞赛1999年A 题
LINGO 线性规划
重点:
1.博彩中的数学
2.作弊行为的调查与估计
3.自动化车床管理
难点:LINGO 线性规划
六、考核方式与成绩评定
考核方式:考查
考试用时:2学时
成绩评定:本课程成绩构成比例为:期末考试成绩占总成绩的60%,期中考试成绩占总成绩的20%,平时成绩占总成绩的20%;平时成绩的构成及比例为:考勤占5%,课堂测验成绩占5%,实验成绩占5%,作业占5%。

期末总评成绩=(平时成绩×20%)+ (期中成绩×20%)+(期末成绩×60%)。

补考方法:总评成绩低于60分的学生,须参加学院统一组织的补考。

补考总成绩=(平时成绩×30%)+ (补考成绩×70%)。

合格按60分记。

七、教材与主要参考书目
教材
实用数学建模,姜启源谢金星主编,高等教育出版社,2014年第1版
参考书
数学模型,姜启源谢金星叶俊主编,高等教育出版社,2010年第四版
八、大纲编写必要的说明
执笔人签字:
教研室主任签字:
教学主任签字:
制订日期:年月日。

相关文档
最新文档