LM324四种运放的基本应用

合集下载

LM324用法

LM324用法

见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

∙交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形∙有源带通滤波器许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。

这种有源带通滤波器的中心频率,在中心频率fo处的电压增益Ao=B3/2B1,品质因数,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。

R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。

上式中,当fo=1KHz时,C取0.01Uf。

此电路亦可用于一般的选频放大。

此电路亦可使用单电源,只需将运放正输入端偏置在1/2V+并将电阻R2下端接到运放正输入端既可。

∙比较器当去掉运放的反馈电阻时,或者说反馈电阻趋于无穷大时(即开环状态),理论上认为运放的开环放大倍数也为无穷大(实际上是很大,如LM324运放开环放大倍数为100dB,既10万倍)。

此时运放便形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-或接地)。

当正输入端电压高于负输入端电压时,运放输出低电平。

附图中使用两个运放组成一个电压上下限比较器,电阻R1、R1ˊ组成分压电路,为运放A1设定比较电平U1;电阻R2、R2ˊ组成分压电路,为运放A2设定比较电平U2。

1lm324应用实例

1lm324应用实例

R1
C1
VT1
R3
VT3
+VCC IC
C
B A
D
A +
VT2
R5
C2
VT4
O
(b)保护管工作特性
EE
UCE
R2
(a)电 路 图
R4 V
输出限流保护
正常工作时工作点在 A,工作电流过大,工 作点经B 移到C或D 点, 电流基本不变
1 滤波电路的基础知识
作用:选频。 一、滤波电路的种类: 低通滤波器LPF 带通滤波器BPF
GND
VCC
集成运放的主要技术指标
一、开环差模电压增益Aod 无外加反馈情况下的直流差模增益。一般在 105 107之间。理想运放的Aod为。
U O Aod 20 lg U U
二、共模抑制比KCMR 开环差模电压增益与开环共模电压增益之比。 多数集成运放共模抑制比达80dB以上。
100pF C R2 1 V+ R1
+
8
2 VCC_CIRCLE
C1 + C2
6
Vi
1
3
R3 V2
1
VCC_CIRCLE
-
1
2
2
V0
+ C4
C3
产生自激振荡 消振措施: 按规定部位和参数接入校正网络 防止反馈极性接错 避免负反馈过强
合理安排接线,防止杂散电容过大
保护电路
1、输入保护
利用二极管的限幅作用对输入信号幅度加以限制,以免 输入信号超过额定值损坏集成运放的内部结构。无论是输入 信号的正向电压或负向电压超过二极管导通电压,则V1或V2 中就会有一个导通,从而限制了输入信号的幅度,起到了保 护作用。

LM324集成芯片内部电路分析与典型应用_模电研讨文

LM324集成芯片内部电路分析与典型应用_模电研讨文

LM324集成芯片内部电路分析与典型应用_模电研讨文首先,LM324的内部电路主要由四个运算放大器组成。

每个运算放大器都由一个差分输入级、一个电压增益级以及一个输出级组成。

差分输入级由两个PNP型晶体管和两个NPN型晶体管组成,分别起到差分输入和电流放大的作用。

电压增益级由一个P型晶体管和一个N型晶体管组成,用于控制电压增益。

输出级由一个NPN型晶体管和一个PNP型晶体管组成,负责输出信号。

对于LM324的典型应用之一是作为比较器使用。

比较器主要用于比较两个输入信号的大小,根据比较结果输出高电平或低电平。

在LM324中,将一个运算放大器配置为比较器,其中一个输入信号接到非反相输入端,另一个输入信号接到反相输入端。

当非反相输入信号的电压高于反相输入信号的电压时,输出电压为高电平。

反之,则输出电压为低电平。

比较器常用于电压参考、开关控制等场合。

另一个典型应用是作为电压跟随器(Voltage Follower)。

电压跟随器主要用于信号缓冲和阻抗匹配。

LM324的一个运算放大器可以配置为电压跟随器,将输入信号接到非反相输入端,将输出信号从运算放大器的输出端取出。

由于LM324的输入阻抗相对较高,输出阻抗相对较低,因此可以有效地实现信号放大和阻抗匹配,保持输入输出信号一致。

此外,LM324还可以用于多种滤波电路的设计。

例如,可以将它配置为无源RC低通滤波器,用于滤除高频噪声。

另外,还可以将多个LM324连接起来,构成滤波电路的多级级联结构,实现更高阶次的滤波功能。

总之,LM324是一款功能强大的集成芯片,它内部的四个运算放大器提供了丰富的功能和灵活的配置方式。

通过灵活的连接和组合,可以实现多种不同的模拟信号处理和放大应用。

在电子工程领域,LM324已经成为一款被广泛应用的集成芯片。

lm324应用实例.ppt

lm324应用实例.ppt
GND
VCC
集成运放的主要技术指标
一、开环差模电压增益Aod
无外加反馈情况下的直流差模增益。一般在
105 107之间。理想运放的Aod为。
A 20lg
U O
od
U U


二、共模抑制比KCMR
开环差模电压增益与开环共模电压增益之比。 多数集成运放共模抑制比达80dB以上。
K
20 lg
1 LM324简介
GND
VCC
LM324四运放电路具有电源电压范围宽,静态功耗小, 可单电源使用,价格低廉等优点,因此被广泛应用在 反相交流放大器、同相交流放大器、测温电路、比 较器等各种电路中。
GND为接地端,VCC为电源正极端(6V),每个运放 的反相输入端、同相输入端、输出端均有编号。例如, 1Vi、1Vi 、1VO 分别表示1号运放的反相输入端、同相输入 端及输出端。依此类推,2Vi 、2Vi 、2VO 是表示2号运放器的, 等等。
uI = iIR = iCR
R R
得:
1
1
uO uC C iCdt RC uIdt
τ = RC
——积分时间常数
积分电路的输入、输出波形
(一)输入电压为阶跃信号 uI
UI
当 t ≤ t0 时,uI = 0, uO = 0; 当 t0 < t ≤ t1 时,
O uO
基本微分运算电路在输入信号时,集成运放内部的放大 管会进入饱和或截止状态,以至于即使信号消失,管子 还不能脱离原状态回到放大区,出现阻塞现象。
图7.2.19实用微分运算电路
图7.2.20微分电路输入、输出波形分析
LM324作反相交流放大器
代替晶体管进行交流

通用四运放的原理LM324

通用四运放的原理LM324

通用四运放的原理与应用(LM324为例)本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

LM324作反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值, Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

LM324作同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

LM324运放应用电路大全

LM324运放应用电路大全

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

LM324作反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

LM324作同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。

LM324运放应用电路大全

LM324运放应用电路大全

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

LM324作反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

LM324作同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。

lm324及充电器

lm324及充电器

lm324及充电器
LM324 四运放的应用
LM324 是四运放集成电路,它采用14 脚双列直插塑料封装,外形如图所示。

外部图
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1 所示的符号来表示,它有5 个引出脚,其中“+”、“-”为两个信
号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相
输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放
输出端Vo 的信号与该输入端的相位相同。

LM324 的引脚排列见图2。

图1 图 2
由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,
因此被广泛应用在各种电路中。

下面介绍其应用实例。

用lm324制作的充电器。

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)

lm324应用电路大全(温度控制器振荡器带通滤波器断电保护)描述lm324应用电路(一)温度控制器采用LM324四运算放大器集成电路,温度控制范围为5~95℃,可广泛应用于工农业生产方面的温度自动控制。

该温度控制器电路由电源电路、温度检测电路、基准电压电路、温度指示电路、电压比较放大电路和控制执行电路组成,如图6-6所示。

图6-6采用LM324运算放大器的温度控制器电路电路中,电源电路由电源开关S、电源变压器T、整流桥堆UR、滤波电容C1、C2、三端稳压集成电路IC2、限流电阻R10和电源指示发光二极管VL1组成;温度检测电路由晶体管式温度传感器V1、电阻R1、电容C3和运算放大器集成电路IC1(N1~N4)内部的N1组成;基准电压电路由电阻R4、R5、R8、电位器RP1~RP3、稳压二极管VS和IC1内部的N4组成;温度指示电路由电阻R2、R3、IC1内部的N2和电压表PV组成;电压比较放大电路由IC1内部的N3和电阻R6、R7组成;控制执行电路由电阻R9、晶体管V2、继电器K、二极管VD 和工作指示发光二极管VL2组成。

交流220V电压经T降压、UR整流、C1滤波及IC2稳压后,为IC1、基准电压电路和控制执行电路提供+9V工作电压,同时将VL1点亮;+9V电压经R5限流、VS稳压后产生+6V左右的基准电压,一路经R4、RP1分压后为N2的正相输入端提供基准电压;另一路先经N4缓冲放大,然后经RP2、RP3分压后,再经R8加至N4的正相输入端,作为N3的基准电压;V1发射结的电压降(Vbe)随着环境温度的变化而变化。

温度上升时,V1的导通内阻变小,发射结的电压降也减小,使N1的输出电压降低,N2的输出电压升高,N4的输出电压则下降;PV用来指示V1检测的温度值(灵敏度为10mV/℃),若PV指示电压值为250mV,则表明温度为25℃;RP3用来设定控制温度值;RP2用来设定RP3的最大输出电压(调节RP2的阻值,使RP3的最大输出电压为1V);RP1用来设定N2正相输入端的基准电压(调节RP1的阻值,使N2的正相输入端电压为530mV)。

lm324使用技巧

lm324使用技巧

lm324使用技巧LM324是一种常用的运算放大器,具有低功耗、高增益带宽积和宽电压范围等特点,广泛应用于模拟信号处理电路的设计中。

以下是关于LM324使用的一些建议和技巧:1. 偏置调整:在实际应用中,为了使运算放大器的工作点稳定,通常需要进行偏置调整。

可以通过使用一个电阻网络将信号和电源连接到运算放大器的反馈引脚,通过调整电阻值来实现偏置调整。

2. 断路保护:为了保护运算放大器不受短路或过载的损害,可以在输出端并联一个电流限制器和一个电阻。

这样一来,当输出端短路时,电流限制器会使输出电流减小,防止损坏。

3. 滤波应用:可以将LM324用作低通滤波器或高通滤波器,通过改变电容和电阻的数值可以实现不同的截止频率。

在使用时,需要根据具体的需求选择适当的电阻和电容数值。

4. 比较器应用:除了作为运算放大器,LM324还可以用作比较器。

比较器能够将一个输入信号与一个参考电压进行比较,并输出高或低电平。

在比较器应用中,可以将一个输入接到反馈引脚,通过调整参考电压和输入信号来实现不同的比较功能。

5. 双电源应用:LM324可以使用单电源或双电源工作。

在使用单电源时,需要将非反向输入引脚接到电源的中间点,以保证偏置电压正确。

在使用双电源时,非反向输入引脚需要接到负电源的中间点。

6. 组织布局:在进行线路布局时,应尽量减少导线的长度和交叉。

避免使用过小的焊盘和过小的电解电容,以免电容极性反向时造成损坏。

同时,应注意在焊接时避免过度加热,以免对元器件造成损坏。

7. 必要时进行补偿:LM324在某些高增益情况下可能存在稳定性问题,导致输出不稳定或振荡。

可以通过在运算放大器的输入端串联一个电容或在反馈回路中并联一个电容,来提高稳定性。

8. 过热保护:当运算放大器工作时,如果发热过大,可能会导致损坏。

可以通过在运算放大器附近安装散热片或风扇来进行散热,保持运算放大器的工作温度在安全范围内。

总结起来,LM324作为一种常用的运放,具有众多的应用场景和技巧。

LM324应用原理

LM324应用原理

LM324应用原理时间:2009-01-02 14:40:00 来源:资料室作者:电磁阀龙LM124/LM224/LM324四运算放大器芯片的中文应用资料LM124/LM224/LM324是四运放集成电路,它采用14管脚双列直插塑料(陶瓷)封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM124/LM224/LM324的引脚排列见图2。

图一图二 lm324功能引脚图图3 LM324/LM124/LM224集成电路内部电路图 1/4主要参数:极限参数:LM124为陶瓷封装由于LM124/LM224/LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

应用电路反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

Rf如改为可变电阻,可任意调整电压放大的倍数。

图4放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

图5电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

LM324功能应用简介

LM324功能应用简介

LM324功能应用简介2007/09/01 14:57LM324功能应用简介您现在的位置是:主页>>>电子元器件资料>>>正文LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图 2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

LM324应用

LM324应用

LM324四組運算放大器的應用喬治查爾斯電子電路網http://georgecharles.idv.st LM324是四運算放大器積體電路,它採用14腳雙列直插塑膠封裝,外形如圖所示。

它的內部包含四組形式完全相同的運算放大器,除電源共用外,四組運算放大器相互獨立。

每一組運算放大器可用圖1所示的符號來表示,它有5個引出腳,其中“+"、“-"為兩個信號輸入端,“V+"、“V-"為正、負電源端,“V o"為輸出端。

兩個信號輸入端中,Vi-(-)為反相輸入端,表示運算放大器輸出端V o的信號與該輸入端的相位相反;Vi+(+)為同相輸入端,表示運算放大器輸出端V o的信號與該輸入端的相位相同。

LM324的引腳排列見圖2。

圖1 圖2由於LM324四運算放大器電路具有電源電壓範圍寬,靜態功率消耗小,可單電源使用,價格低廉等優點,因此被廣泛應用在各種電路中。

下面介紹其應用實例。

z反相交流放大器電路見附圖。

此放大器可代替電晶體進行交流放大,可用於擴音機前置放大等。

電路無需調試。

放大器採用單電源供電,由R1、R2組成1/2V+偏置,C1是消振電容。

放大器電壓放大倍數Av僅由外接電阻Ri、Rf決定:Av=-Rf/Ri。

負號表示輸出信號與輸入信號相位相反。

按圖中所給數值,Av=-10。

此電路輸入電阻為Ri。

一般情況下先取Ri與信號源內阻相等,然後根據要求的放大倍數在選定Rf。

Co和Ci為耦合電容。

z同相交流放大器見附圖。

同相交流放大器的特點是輸入阻抗高。

其中的R1、R2組成1/2V+分壓電路,通過R3對運算放大器進行偏置。

電路的電壓放大倍數Av也僅由外接電阻決定:Av=1+Rf/R4,電路輸入電阻為R3。

R4的阻值範圍為幾千歐姆到幾十千歐姆。

z交流信號三分配放大器此電路可將輸入交流信號分成三路輸出,三路信號可分別用作指示、控制、分析等用途。

而對信號源的影響極小。

因運算放大器Ai輸入電阻高,運算放大器A1-A4均把輸出端直接接到負輸入端,信號輸入至正輸入端,相當於同相放大狀態時Rf=0的情況,故各放大器電壓放大倍數均為1,與分立元件組成的射極跟隨器作用相同。

LM321应用

LM321应用

LM324集成芯片内部电路分析与典型应用摘要:LM324 四运放的应用LM324 是四运放集成电路,它采用14 脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1 所示的符号来表示,它有5 个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。

LM324 的引脚排列见图2。

图1 图 2由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2 组成1/2V+偏置,C1 是消振电容。

放大器电压放大倍数Av 仅由外接电阻Ri、Rf 决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co 和Ci 为耦合电容。

同相交流放大器见附图同相交流放大器的特点是输入阻抗高其中的R1 R2 组成1/2V+分压电路通过R3 对运放进行偏置。

电路的电压放大倍数Av 也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4 的阻值范围为几千欧姆到几十千欧姆。

交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai 输入电阻高,运放A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0 的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

lm324芯片常用电路

lm324芯片常用电路

LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

●反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

●同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

LM324集成芯片内部电路分析与典型应用

LM324集成芯片内部电路分析与典型应用

《模拟电子技术》专题研讨报告LM324集成芯片内部电路分析与典型应用目录1.摘要 (3)2.关键词 (3)3.LM324集成芯片的内部工作原理 (5)4.LM324集成芯片单元电路分析 (5)5.LM324集成芯片典型应用电路设计及设计要求5.1低通滤波器 (5)5.2高通滤波器 (5)5.3带通滤波器 (5)6.参数运算及设计电路图 (8)7.电路仿真验证 (9)8.心得体会以及收获 (10)1.摘要LM324集成芯片内部构造由四运放构成。

其优点相较于标准运算放大器而言,电源电压工作范围更宽,静态功耗更小,因此在生活中有着极为广泛的应用。

LM324的四组运算放大器完全相同,除了共用工作电源外四组器件完全独立。

以其中一组运算放大器为例分析,其内部电路共由两级电路构成,其耦合方式为电容耦合。

这使得两级电路的直流工作状态相互独立互不影响。

LM324的典型应用有滤波器的制作。

带通滤波器可由一高通滤波器与一低通滤波器级联而成。

为了使电压放大倍数达到设计要求,可以改变接入电路电阻阻值。

2.关键词LM324集成芯片,滤波器,集成负反馈电路3.LM324集成芯片的内部工作原理LM324系列集成芯片为四个完全相同的运算放大器封装在一起的集成电路。

该集成电路外部具有十四个管脚分别包含八个输入端口、四个输出端口以及两个电压端口。

如图1 所示LM324常用的封装方式有两种,双列直插所料封装DIP封装方式以及双列贴片式封装SOP封装方式。

图2为LM324的管脚连接图。

除电源共用外,四组运放相互独立。

由图可知,第1、7、8、14号管脚为输出管脚,分别对应四个运算放大器的输出端。

第2、6、9、13号管脚为负输入端。

第4、11两管脚连接工作电压。

使用时,在4、11号管脚处分别接入正负工作电源,一般为12V或15V。

将输入端高点平输入至正输入端,低电平输入至负输入端。

此时在输出端便可得到经过同相放大的电压。

若将正负端反接,则可在输出端得到经过反响放大的电压。

LM324运算放大器应用电路全集

LM324运算放大器应用电路全集

LM324 运算放大器应用电路全集LM324 是四运放集成电路,它采用14 脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。

每一组运算放大器可用图1 所示的符号来表示,它有5 个引出脚,其中+、-为两个信号输入端,V+、V-为正、负电源端,Vo 为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。

LM324 的引脚排列见图2由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

LM324 pdf:elecfans/soft/39/2008/200805053498.htmlLM324 作反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电, 由R1、R2 组成1/2V+偏置,C1 是消振电容。

放大器电压放大倍数Av 仅由外接电阻Ri、Rf 决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值, Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co 和Ci 为耦合电容。

LM324 作同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2 组成1/2V+分压电路,通过R3 对运放进行偏置。

电路的电压放大倍数Av 也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4 的阻值范围为几千欧姆到几十千欧姆。

LM324 作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai 输入电阻高,运放A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0 的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

集成运算放大器的基本应用

集成运算放大器的基本应用

集成运算放大器的基本应用
集成运算放大器(Operational Amplifier,简称Op Amp)是一
种高增益、直流耦合的放大电路。

它广泛应用于电子电路中,具有非常重要的作用。

常见的集成运算放大器IC芯片有
LM741、LM358、LM324等。

以下是集成运算放大器的基本应用:
1. 比较器:将两个电压进行比较,输出高电平或低电平。

比较器具有电压转换和开关控制的功能,常用于电压检测、信号选择和自动控制等方面。

2. 增益放大器:将输入信号进行放大,输出信号比输入信号大。

这种电路可以放大微小信号,如传感器输出、电源噪声等。

3. 运算放大器:进行数学运算,如加减乘除、积分、微分和求反向比等。

这种电路通常用于信号处理、滤波、振荡和控制等方面。

4. 反馈电路:利用Op Amp的高增益和稳定性,通过反馈电路实现精确控制。

反馈电路包括正反馈和负反馈两种,应用广泛,如DC稳压电源、振荡器、电压跟随器和信号隔离器等。

5. 信号滤波:利用Op Amp的高增益和频率特性,设计高性能的RC滤波器和二阶滤波器。

这种电路可以提取出特定频率的
信号,去除噪声和干扰,应用于音频、通信和仪器等方面。

总之,集成运算放大器广泛应用于各种电子电路中,可以实现信号放大、滤波、比较和控制等多种功能,是电子工程师必不可少的工具。

LM324四种运放的基本应用

LM324四种运放的基本应用

LM324 四种运放的基本应用LM324 是四运放集成电路,它采用14 脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1 所示的符号来表示,它有5 个引出脚,其中+、-为两个信号输入端,V+、V-为正、负电源端,Vo 为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。

LM324 的引脚排列见图2。

图1图2由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

1、反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2 组成1/2V+偏置,C1 是消振电容。

放大器电压放大倍数Av 仅由外接电阻Ri、Rf 决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co 和Ci 为耦合电容。

2、同相交流放大器电路见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2 组成1/2V+分压电路,通过R3 对运放进行偏置。

电路的电压放大倍数Av 也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4 的阻值范围为几千欧姆到几十千欧姆。

3、交流信号三分配放大器电路见附图。

此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai 输入电阻高,运放A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0 的情况,故各放大器电压放大倍数均为 1 ,与分立元件组成的射极跟随器作用相同。

LM324运算放大器应用电路集

LM324运算放大器应用电路集

LM324运算放大器应用电路集LM324 是四运放集成电路,它采用14 脚双列直插塑料封装,外形如由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

LM324 pdf:elecfans/soft/39/2008/200805053498.htmlLM324 作反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电, 由R1、R2 组成1/2V+偏置,C1 是消振电容。

放大器电压放大倍数Av 仅由外接电阻Ri、Rf 决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值, Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co 和Ci 为耦合电容。

LM324 作同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2 组成1/2V+分压电路,通过R3 对运放进行偏置。

电路的电压放大倍数Av 也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4 的阻值范围为几千欧姆到几十千欧姆。

LM324 作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai 输入电阻高,运放A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0 的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

R1、R2 组成1/2V+偏置,静态时A1 输出端电压为1/2V+,故运放A2-A4 输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。

LM324 作有源带通滤波器许多音响装置的频谱分析器均使用此电路作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LM324 四种运放的基本应用
LM324 是四运放集成电路,它采用14 脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1 所示的符号来表示,它有5 个引出脚,其中+、-为两个信号输入端,V+、V-为正、负电源端,Vo 为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。

LM324 的引脚排列见图2。

图1图2
由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

1、反相交流放大器
电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2 组成1/2V+偏置,C1 是消振电容。

相关文档
最新文档