初等数学

合集下载

初等数学常用公式

初等数学常用公式

附录:初等数学常用公式一、初等代数 1.乘法公式1) (a ±b )2 = a 2±2ab + b 2 2) (a ±b )3 = a 3±3a 2b + 3a b 2±b 3 3) ( a+ b+c ) 2 = a 2+ b 2+ c 2+2ab +2bc +2ca 4) (a -b ) (a+b ) = a 2- b 2 5) (a ±b ) ( a 2 ab + b 2) = a 3±b 3 2.绝对值1) | a |=2a2) -| a | ≤ a ≤ | a | 3) | a | ≤ k⇔-k≤ a ≤ k , | a | < k ⇔-k < a < k4) | a |-| b | ≤ | a ± b | ≤ | a | + | b | 3.一元二次方程 a x 2 + b x + c = 01) 判别式 Δ= b 2 -4 a c2) 根:a b 2Δ±-;两根和为ab 2-;两根积为ac ;Δ> 0时,为两不等实根;Δ = 0 时,为两等实根;Δ < 0时,为一对共轭虚根。

4. 级数1) 设等差级数首项为 a 1,公差为 d ,则:通项公式 a n= a 1+(n -1)d ;前n 项和公式 S n =d n n na a a n n )1(21)(211-+=+2) 设等比级数首项为 a 1,公比为 q ,则:通项公式 a n = a 1 q n -1;前n 项和公式 S n = q q a q q a a n n --=--1)1(1115.指数律 (a > 0, b > 0)1) a m • a n = a m+n 2) a m ÷ a n = a m -n 3) (a m ) n = a m n 4) (a b ) m = a m b m 5) (ab ) m =mma b6)m n nma a )(=6.对数律 (a > 0, a ≠1)1)若 a x = M ,则 log a M = x ; l g x = x 10log2)x ax a=log 3) 01log a =4)1log =aa 5)y x xy a a a log log )(log +=6)y x yxa a alog log log -= 7))0(log log >=x x a x a a a8) ax x b b a log log log =9)1log log =⋅a b b a7.排列、组合与二项式公式1)设n m A 为m 个元素中取n 个的排列数,则nm A = m (m -1) (m-2)…(m -n +1)2)设n m C 为m 个元素中取n 个的组合数,则!n m !n !m C n m)(-=3)k n k n k n C C C 11+-=+4)(a + b ) n = a n +1n C a n -1 b +… +k n C a n -k b k +…+ b n二、平面三角 1 弧度=π180≈57°17′45″,1°=180π弧度≈0.0174533弧度1.基本关系 1) sin x ²csc x=1 2) cos x ²sec x=1 3) tan x ²cot x=1 4) sin 2 x+cos 2 x=1 5) 1+tan 2 x=sec 2 x6) 1+cot 2 x=csc 2 x7) tan x =cosx sinx8) cot x=sinxcosx2.两角和的三角函数1) sin (α±β) = sin αcos β± cos αsin β 2) cos (α±β) = cos αcos βsinαsin β3) tan (α±β) = βαβ±α tan tan 1tan tan3.倍角公式1)sin 2 x= 2sin xcos x2)cos 2 x= cos 2 x -sin 2 x=1-2sin 2 x=2 cos 2 x -13)tan 2 x=xx2tan 12tan -4)sin 3 x= 3sin x -4sin 3 x 5) cos 3 x= 4 cos 3 x -3 cos x4.半角公式1)s i n 2cosx 12-±=x 或 sin 2 2cosx 12-=x 2)c o s 2x cos 12+±=x 或 cos 22cosx 12+=x3)t a n cosx1sinxsinx cosx 12+=-=x5.和差化积公式1)sin α+ sin β= 2sin 2βα+cos 2βα-2)sin α-sin β= 2 cos 2βα+ sin 2βα-3)cos α+ cos β= 2cos 2βα+cos 2βα-4)cos α-cos β= -2sin 2βα+sin 2βα-6.积化和差公式 1)sin αcos β= 21[sin(α+β)+sin(α-β)] 2)cos αcos β=21[cos (α+β)+ cos (α-β)]3)s i n αs i n β= -21[cos (α+β)- cos (α-β)]7.设三角形三边a, b, c 所对的三个角分别为A ,B ,C ,外接圆半径为R ,则有1)正弦定理R 2sinC c sinB b sinA a === 2)余弦定理 c 2 = a 2+ b 2-2 a b cosC 8.反三角函数恒等式1)arc s i n x + a r c cos x = 2π 2)arc t a n x + a r c co t x =2π3)arc t a n x = a r c s i n 21xx +4)arc s i n x = a r c t a n 21xx -三、平面解析几何下述公式中出现的点P ,Q ,M 的坐标分别为(x 1 , y 1),(x 2 , y 2),(x 0 , y 0)1.P ,Q 两点的距离:|PQ| =212212)()(y y x x -+-2.定比分点公式:λλλλ++=++=1 1210210y y y ,x x x ,这里M 点是线段PQ 的分点,且λ=MB AM。

(完整版)初等数学知识点汇总,推荐文档

(完整版)初等数学知识点汇总,推荐文档

初等数学知识点汇总一、绝对值1、非负性:即|a| ≥ 0,任何实数a 的绝对值非负。

归纳:所有非负性的变量(1)正的偶数次方(根式) 0,,,,412142≥a a a a (2)负的偶数次方(根式) 112424,,,,0a a a a----> (3)指数函数 a x (a > 0且a≠1)>0考点:若干个具有非负性质的数之和等于零时,则每个非负数必然为零。

2、三角不等式,即|a| - |b| ≤ |a + b| ≤ |a| + |b| 左边等号成立的条件:ab ≤ 0且|a| ≥ |b|右边等号成立的条件:ab ≥ 03、要求会画绝对值图像二、比和比例1、%(1%)ap a p −−−→+原值增长率现值 %)1(%p a p a -−−→−现值下降率原值%%%%p p p p ⋅=⇔=-⇔乙甲,甲是乙的乙乙甲注意:甲比乙大2、 合分比定理:d b ca m mdb mc ad c b a ±±=±±==1 等比定理:.a c e a c e a b d f b d f b++==⇒=++3、增减性(m>0) , (m>0)1>b a b a m b m a <++01a b <<ba mb m a >++4、注意本部分的应用题(见专题讲义)三、平均值1、当为n 个正数时,它们的算术平均值不小于它们的几何平均值,即n x x x ,⋯⋯,,21),1 0( ·2121n i x x x x nx x x i nn n ++++++⋯⋯≥⋯当且仅当。

时,等号成立=n x x x ⋯⋯==212、 2ab b a ≥+⎪⎩⎪⎨⎧>>等号能成立另一端是常数,00b a 3、2(0)a b ab abba≥>+ ,同号4、n 个正数的算术平均值与几何平均值相等时,则这n 个正数相等,且等于算术平均值。

初等数学公式及其函数图像

初等数学公式及其函数图像
象. 26.互为反函数的两个函数的关系
f (a) b f 1 (b) a .
27. 若 函 数 y f ( kx b) 存 在 反 函 数 , 则 其 反 函 数 为 y
1 [f k
1
( x ) b] , 并 不 是
y [ f 1 (kx b) ,而函数 y [ f 1 (kx b) 是 y
者的一个必要而不是充分条件.特别地, 方程 ax bx c 0(a 0) 有且只有一个实根在
2
(k1 , k 2 ) 内,等价于 f (k1 ) f (k 2 ) 0 ,或 f (k1 ) 0 且 k1
k1 k 2 b k2 . 2 2a
9.闭区间上的二次函数的最值
A CU B CU A B R
4.容斥原理
card ( A B) cardA cardB card ( A B ) card ( A B C ) cardA cardB cardC card ( A B ) card ( A B) card ( B C ) card (C A) card ( A B C ) .
1
ab 对称. 2m
( x) 的图象关于直线 y=x 对称. 25.若将函数 y f ( x) 的图象右移 a 、上移 b 个单位,得到函数 y f ( x a ) b 的图 象;若将曲线 f ( x, y ) 0 的图象右移 a 、上移 b 个单位,得到曲线 f ( x a, y b) 0 的图
11.定区间上含参数的二次不等式恒成立的条件依据 (1)在给定区间 (,) 的子区间 L (形如 , , , , , 不同)上含参数 的二次不等式 f ( x, t ) 0 ( t 为参数)恒成立的充要条件是 f ( x, t )min 0( x L) . (2)在给定区间 (,) 的子区间上含参数的二次不等式 f ( x, t ) 0 ( t 为参数)恒成立 的充要条件是 f ( x, t )man 0( x L) .

常用初等数学公式

常用初等数学公式

常用初等数学公式1.乘法公式:-(a+b)×c=a×c+b×c-(a-b)×c=a×c-b×c-(a+b)×(c+d)=a×c+a×d+b×c+b×d-(a-b)×(c-d)=a×c-a×d-b×c+b×d2.平方公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²3.立方公式:- (a + b)³ = a³ + 3a²b + 3ab² + b³- (a - b)³ = a³ - 3a²b + 3ab² - b³4.四则运算:-a+b=b+a-a-b=-(b-a)-a×b=b×a-a÷b=a/b5.分式运算:- 分式相加:a/b + c/d = (ad + bc) / bd- 分式相减:a/b - c/d = (ad - bc) / bd- 分式相乘:(a/b) × (c/d) = ac / bd- 分式相除:(a/b) ÷ (c/d) = (ad) / (bc)6.指数公式:-a⁰=1-a¹=a-a²=a×a-aᵐ×aⁿ=a^(m+n)(同底数的指数相乘,等于底数不变,指数相加)-(aⁿ)ᵐ=a^(n×m)(指数的幂,等于底数不变,指数相乘)-a⁻ⁿ=1/aⁿ(负指数的运算)7.开方公式:-平方根:√a×√a=a- a × √b × √b = ab- √(ab) = √a × √b-aⁿ/ⁿ√a=√a8.百分数运算:-百分数变小数:移动两位小数点向左-小数变百分数:移动两位小数点向右-分数变百分数:分子变化,分母变100-百分数变分数:分子不变,分母变1009.比例运算:-比例:a:b=c:d,即a/b=c/d-相等比例:a:b=c:b-倒数比例:a:b=1/b:1/a-反比例:a×b=k(k为常数)10.连续整数运算:-连续整数的和:n个连续整数之和=(第一个整数+最后一个整数)×n/2-连续整数的平均数:n个连续整数的平均数=(第一个整数+最后一个整数)/2-连续偶数的和:n个连续偶数之和=(第一个偶数+最后一个偶数)×n/2-连续奇数的和:n个连续奇数之和=n²或n²+n11.平行线运算:-共线角性质:对内(内错角):互补角之和为180°;对内(内析角):互余角之和为180°;对外角与内错角互补;对外角与内析角互余-切线性质:切线与半径垂直;相交弧(两条)所对圈角相等;切线之间平行12.角度运算:-直角的两个补角相等-锐角的两个角平分线的和等于180°-相邻补角:两个角的和等于180°-对顶角:两个补角叫做一个对顶角13.园及圆周运算:-圆的面积:A=πr²-圆的周长:C=2πr-弧长公式:L=2πr(α/360°)(α为圆心角)-扇形面积公式:A=1/2r²α/360°(α为圆心角)- 弓形面积公式:A = 1/2r²(α - sinα)14.角正弦、余弦、正切公式:- 正弦公式:sinA = 对边/斜边- 余弦公式:cosA = 邻边/斜边- 正切公式:tanA = 对边/邻边15.直角三角形中的特殊比值:- 正弦:sin45° = cos45° = √2/2- 余弦:cos45° = sin45° = √2/2- 正切:tan45° = 1, tan30° = 1/√3- 三角函数的反函数:sin(-A) = -sinA,cos(-A) = cosA,tan(-A) = -tanA16.四边形运算:-平行四边形的性质:对角线互相平分;对角线互相垂直-矩形的性质:所有内角为90°;对角线相等-正方形的性质:所有边相等;所有内角为90°;对角线相等且互相垂直-菱形的性质:所有边相等;对角线互相垂直;对角线互相平分-梯形的性质:上底+下底×高/2=面积以上为常用的初等数学公式,涵盖了乘法公式、平方公式、四则运算、分式运算、指数公式、开方公式、百分数运算、比例运算等多个方面。

初等数学1

初等数学1

第一章 绝对值 平均值 比和比例一 实数和实数的绝对值1.实数:有理数 无理数的统称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧,,2log ,2,π数,如无理数:无限不循环小数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数2.实数的绝对值(1)定义:⎪⎩⎪⎨⎧<-=>=⎪⎭⎪⎬⎫)0()0(0)0(a a a a a a a 为实数,则设 零的绝对值是零 反数真数的绝对值是它的相 正数绝对值是它本身 2a a a = 的绝对值还可以表示为实数(2)性质00,0=⇔=-=≥a a a a a , (3)实数绝对值的几何意义;实数a 在数轴上对应一点,这个点到原点的距离就是a 的绝对值a(4)常用的运算法则;⋅=⋅a b a ;b ;)0();0();0(b a b b b a b b a b ba b a ≤≤-⇔>≤≠≤≠=b a b a b a b a b a b b a +≤+≤-≥-≤⇔>≥;)0(或①a b a b a b ==+⇔≥⋅0 ②a 0<⋅b b a b a +<+⇔;b a b a b a +≤-≤-①a b a b a b +=-⇔≤⋅0②b a b a b a +<-⇔>⋅0例1:设a.b.c 三个实数在数轴上的对应点为A B C ,位置如下化简:b a a +-+b c a c -+-()时当或解: 求 且:已知 例原式: 02||2|75|752|75|75077||550,,7,52300)(0<⋅=+∴=+-⇒=-==-⇒-==∴<⋅±==±=∴=+<===-+-+++=-=-⇒>--=-⇒>-+-=+⇒<+⇒-<⇒<b a b a b a b a b a b b a a b a b a b a a b c c a b a a bc b c b c c a a c c a b a b a b a b a b a例3:304030204030200)40(30)20(0,:0)40(30)202222=+-=++∴====-=+=-∴++=-+++-c b a c b a c b a c b a c b a 且它们的和为数已知式中各项均为非负解的值求:(已知例4:分别求适合下列条件的X 值 ①43≤-x ②14≥-x解:①71434≤≤-⇒≤-≤-x x②531414≥≤⇒≥--≤-或或x x x 例5 x 为何值时,等式242=-+-x x 成立 解法1:用b a b a +≤+4204020402""0)4()2(2)4()2(42≤≤⎩⎨⎧≤-≤-⎩⎨⎧≥-≥-=≥-⋅-=-+-≥-+-x x x x x x x x x x x 解得或由以上不等式得出成立时解法2:在全体实数范围内寻找使已知等式成立的X 值① 当x<2时,原等式化为2-x+4-x=2 解得x=2这与x<2不相符 这明在x<2的范围内没有使原等式成立的值② 当24≤≤x 时,原等式化为X-2+X-4=2 2=2 ∴当24≤≤x ,原等式恒成立 ③ 当x>4时,原等式化为 x-2+x-4=2 x=4这与x>4 不相符 说明在x>4 的范围内没有使原等式成立的值.∴ 综合得出X 的值的范围为24≤≤x二. 平均值 1.算术平均值:∑===++++ni innxxxxxxxxxnx nn 13213211记为的算术平均值为个数2.几何平均值:作长方形看成线段长把记为的几何平均值为个正数,11211321321aaxxxxxxxxxnii nnnnG n ==⋅⋅a 1a 2简单性质:①如果N 个数据彼此都相等 a x xxx n===== 321 则a G x ==②可以证明:332132121213;2x xxxxxxxxx ≥++⋅≥+以上各式中x xx 321为R +例1. 某笔厂生产三种不同规格的圆珠笔一批,其中有6000支单价为3元,3000支单价为5元,1000支单价为10元,求这批圆笔平均价格。

100个经典初等数学问题

100个经典初等数学问题

100个经典初等数学问题第01题阿基米德分牛问题Archimedes' Problema Bovinum太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成. 在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7.在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.问这牛群是怎样组成的?第02题德•梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题Newton's Problem of the Fields and Cowsa头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题Berwick's Problem of the Seven Sevens在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * ** * * * * ** * * * * 7 ** * * * * * ** 7 * * * ** 7 * * * ** * * * * * ** * * * 7 * ** * * * * ** * * * * *用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题Kirkman's Schoolgirl Problem某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed letters求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.第07题欧拉关于多边形的剖分问题Euler's Problem of Polygon Division可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couplesn对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?第09题卡亚姆的二项展开式Omar Khayyam's Binomial Expansion当n是任意正整数时,求以a和b的幂表示的二项式a+b的n 次幂.第10题柯西的平均值定理Cauchy's Mean Theorem求证n个正数的几何平均值不大于这些数的算术平均值.第11题伯努利幂之和的问题Bernoulli's Power Sum Problem确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np.第12题欧拉数The Euler Number求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x无限增大时的极限值第13题牛顿指数级数Newton's Exponential Series将指数函数ex变换成各项为x的幂的级数.第14题麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series不用对数表,计算一个给定数的对数.第15题牛顿正弦及余弦级数Newton's Sine and Cosine Series不用查表计算已知角的正弦及余弦三角函数.第16题正割与正切级数的安德烈推导法Andre's Derivation of the Secant and Tangent Series在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列.试利用屈折排列推导正割与正切的级数.第17题格雷戈里的反正切级数Gregory's Arc Tangent Series已知三条边,不用查表求三角形的各角.第18题德布封的针问题Buffon's Needle Problem在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?第19题费马-欧拉素数定理The Fermat-Euler Prime Number Theorem每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.第20题费马方程The Fermat Equation求方程x2-dy2=1的整数解,其中d为非二次正整数.第21题费马-高斯不可能性定理The Fermat-Gauss Impossibility Theorem证明两个立方数的和不可能为一立方数.第22题二次互反律The Quadratic Reciprocity Law(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式(p/q)•(q/p)=(-1)[(p-1)/2]•[(q-1)/2].第23题高斯的代数基本定理Gauss' Fundamental Theorem of Algebra每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根.第24题斯图谟的根的个数问题Sturm's Problem of the Number of Roots求实系数代数方程在已知区间上的实根的个数.第25题阿贝尔不可能性定理Abel's Impossibility Theorem高于四次的方程一般不可能有代数解法.第26题赫米特-林德曼超越性定理The Hermite-Lindemann Transcedence Theorem系数A不等于零,指数α为互不相等的代数数的表达式A1eα1+A2eα2+A3eα3+…不可能等于零.第27题欧拉直线Euler's Straight Line在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离.第28题费尔巴哈圆The Feuerbach Circle三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上.第29题卡斯蒂朗问题Castillon's Problem将各边通过三个已知点的一个三角形内接于一个已知圆.第30题马尔法蒂问题Malfatti's Problem在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切.第31题蒙日问题Monge's Problem画一个圆,使其与三已知圆正交.第32题阿波洛尼斯相切问题The Tangency Problem of Apollonius.画一个与三个已知圆相切的圆.第33题马索若尼圆规问题Macheroni's Compass Problem.证明任何可用圆规和直尺所作的图均可只用圆规作出.第34题斯坦纳直尺问题Steiner's Straight-edge Problem证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出.第35题德里安倍立方问题The Deliaii Cube-doubling Problem画出体积为一已知立方体两倍的立方体的一边.第36题三等分一个角Trisection of an Angle把一个角分成三个相等的角.第37题正十七边形The Regular Heptadecagon画一正十七边形.第38题阿基米德π值确定法Archimedes' Determination of the Number Pi设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,…其中av+1是av、bv的调和中项,bv+1是bv、av+1的等比中项. 假如已知初始两项,利用这个规则便能计算出数列的所有项. 这个方法叫作阿基米德算法.第39题富斯弦切四边形问题Fuss' Problem of the Chord-Tangent Quadrilateral找出半径与双心四边形的外接圆和内切圆连心线之间的关系.(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)第40题测量附题Annex to a Survey利用已知点的方位来确定地球表面未知但可到达的点的位置.第41题阿尔哈森弹子问题Alhazen's Billiard Problem在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形.第42题由共轭半径作椭圆An Ellipse from Conjugate Radii已知两个共轭半径的大小和位置,作椭圆.第43题在平行四边形内作椭圆An Ellipse in a Parallelogram,在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点.第44题由四条切线作抛物线A Parabola from Four Tangents已知抛物线的四条切线,作抛物线.第45题由四点作抛物线A Parabola from Four Points.过四个已知点作抛物线.第46题由四点作双曲线A Hyperbola from Four Points.已知直角(等轴)双曲线上四点,作出这条双曲线.第47题范•施古登轨迹题Van Schooten's Locus Problem平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?第48题卡丹旋轮问题Cardan's Spur Wheel Problem.一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?第49题牛顿椭圆问题Newton's Ellipse Problem.确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹.第50题彭赛列-布里昂匈双曲线问题The Poncelet-Brianchon Hyperbola Problem确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹.第51题作为包络的抛物线A Parabola as Envelope从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,…,n和n,n-1,…,2,1,0.求证具有相同数字的点的连线的包络为一条抛物线.第52题星形线The Astroid直线上两个标定的点沿着两条固定的互相垂直的轴滑动,求这条直线的包络.第53题斯坦纳的三点内摆线Steiner's Three-pointed Hypocycloid确定一个三角形的华莱士(Wallace)线的包络.第54题一个四边形的最接近圆的外接椭圆The Most Nearly Circular Ellipse Circumscribing a Quadrilateral一个已知四边形的所有外接椭圆中,哪一个与圆的偏差最小?第55题圆锥曲线的曲率The Curvature of Conic Sections确定一个圆锥曲线的曲率.第56题阿基米德对抛物线面积的推算Archimedes' Squaring of a Parabola确定包含在抛物线内的面积.第57题推算双曲线的面积Squaring a Hyperbola确定双曲线被截得的部分所含的面积.第58题求抛物线的长Rectification of a Parabola确定抛物线弧的长度.第59题笛沙格同调定理(同调三角形定理)Desargues' Homology Theorem (Theoremof Homologous Triangles)如果两个三角形的对应顶点连线通过一点,则这两个三角形的对应边交点位于一条直线上.反之,如果两个三角形的对应边交点位于一条直线上,则这两个三角形的对应顶点连线通过一点.第60题斯坦纳的二重元素作图法Steiner's Double Element Construction由三对对应元素所给定的重迭射影形,作出它的二重元素.第61题帕斯卡六边形定理Pascal's Hexagon Theorem求证内接于圆锥曲线的六边形中,三双对边的交点在一直线上.第62题布里昂匈六线形定理Brianchon's Hexagram Theorem求证外切于圆锥曲线的六线形中,三条对顶线通过一点.第63题笛沙格对合定理Desargues' Involution Theorem一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶. *一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23,14,31,24,12,34;其中23与14、31与24、12与34称为对边(对顶点).第64题由五个元素得到的圆锥曲线A Conic Section from Five Elements求作一个圆锥曲线,它的五个元素——点和切线——是已知的.第65题一条圆锥曲线和一条直线A Conic Section and a Straight Line一条已知直线与一条具有五个已知元素——点和切线——的圆锥曲线相交,求作它们的交点.第66题一条圆锥曲线和一定点A Conic Section and a Point已知一点及一条具有五个已知元素——点和切线——的圆锥曲线,作出从该点列到该曲线的切线.第67题斯坦纳的用平面分割空间Steiner's Division of Space by Planesn个平面最多可将整个空间分割成多少份?第68题欧拉四面体问题Euler's Tetrahedron Problem以六条棱表示四面体的体积.第69题偏斜直线之间的最短距离The Shortest Distance Between Skew Lines计算两条已知偏斜直线之间的角和距离.第70题四面体的外接球The Sphere Circumscribing a Tetrahedron确定一个已知所有六条棱的四面体的外接球的半径.第71题五种正则体The Five Regular Solids将一个球面分成全等的球面正多边形.第72题正方形作为四边形的一个映象The Square as an Image of a Quadrilateral证明每个四边形都可以看作是一个正方形的透视映象.第73题波尔凯-许瓦尔兹定理The Pohlke-Schwartz Theorem一个平面上不全在同一条直线上的四个任意点,可认为是与一个已知四面体相似的四面体的各隅角的斜映射.第74题高斯轴测法基本定理Gauss' Fundamental Theorem of Axonometry正轴测法的高斯基本定理:如果在一个三面角的正投影中,把映象平面作为复平面,三面角顶点的投影作为零点,边的各端点的投影作为平面的复数,那么这些数的平方和等于零.第75题希帕查斯球极平面射影Hipparchus' Stereographic Projection试举出一种把地球上的圆转换为地图上圆的保形地图射影法.第76题麦卡托投影The Mercator Projection画一个保形地理地图,其坐标方格是由直角方格组成的.第77题航海斜驶线问题The Problem of the Loxodrome确定地球表面两点间斜驶线的经度.第78题海上船位置的确定Determining the Position of a Ship at Sea利用天文经线推算法确定船在海上的位置.第79题高斯双高度问题Gauss' Two-Altitude Problem根据已知两星球的高度以确定时间及位置.第80题高斯三高度问题Gauss' Three-Altitude Problem从在已知三星球获得同高度瞬间的时间间隔,确定观察瞬间,观察点的纬度及星球的高度.第81题刻卜勒方程The Kepler Equation根据行星的平均近点角,计算偏心及真近点角.第82题星落Star Setting对给定地点和日期,计算一已知星落的时间和方位角.第83题日晷问题The Problem of the Sundial制作一个日晷.第84题日影曲线The Shadow Curve当直杆置于纬度φ的地点及该日太阳的赤纬有δ值时,确定在一天过程中由杆的一点投影所描绘的曲线.第85题日食和月食Solar and Lunar Eclipses如果对于充分接近日食时间的两个瞬间太阳和月亮的赤经、赤纬以及其半径均为已知,确定日食的开始和结束,以及太阳表面被隐蔽部分的最大值.第86题恒星及会合运转周期Sidereal and Synodic Revolution Periods确定已知恒星运转周期的两共面旋转射线的会合运转周期.第87题行星的顺向和逆向运动Progressive and Retrograde Motion of Planets行星什么时候从顺向转为逆向运动(或反过来,从逆向转为顺向运动)?第88题兰伯特慧星问题Lambert's Comet Prolem借助焦半径及连接弧端点的弦,来表示慧星描绘抛物线轨道的一段弧所需的时间.第89题与欧拉数有关的斯坦纳问题Steiner's Problem Concerning the Euler Number如果x为正变数,x取何值时,x的x次方根为最大?第90题法格乃诺关于高的基点的问题Fagnano's Altitude Base Point Problem在已知锐角三角形中,作周长最小的内接三角形.第91题费马对托里拆利提出的问题Fermat's Problem for Torricelli试求一点,使它到已知三角形的三个顶点距离之和为最小.第92题逆风变换航向Tacking Under a Headwind帆船如何能顶着北风以最快的速度向正北航行?第93题蜂巢(雷阿乌姆尔问题)The Honeybee Cell (Problem by Reaumur)试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小.第94题雷奇奥莫塔努斯的极大值问题Regiomontanus' Maximum Problem在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)第95题金星的最大亮度The Maximum Brightness of Venus在什么位置金星有最大亮度?第96题地球轨道内的慧星A Comet Inside the Earth's Orbit慧星在地球的轨道内最多能停留多少天?第97题最短晨昏蒙影问题The Problem of the Shortest Twilight在已知纬度的地方,一年之中的哪一天晨昏蒙影最短?第98题斯坦纳的椭圆问题Steiner's Ellipse Problem在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?第99题斯坦纳的圆问题Steiner's Circle Problem在所有等周的(即有相等周长的)平面图形中,圆有最大的面积.反之:在有相等面积的所有平面图形中,圆有最小的周长.第100题斯坦纳的球问题Steiner's Sphere Problem在表面积相等的所有立体中,球具有最大体积.在体积相等的所有立体中,球具有最小的表面.。

高观点下初等数学的内涵及实现途径探析

高观点下初等数学的内涵及实现途径探析

高观点下初等数学的内涵及实现途径探析初等数学是从小学到高中阶段的数学教育内容,它包含了数的概念、四则运算、代数、几何等基础知识。

在高观点下,初等数学的内涵不再仅仅是一系列概念、定理和计算方法,而是从整体上考虑数学教育的目的、方法和价值。

初等数学的内涵首先,初等数学的内涵应该包括数学的本质和价值。

数学是一种科学思维方式,它强调精确性、抽象性和逻辑性,不仅在自然科学和工程技术中有重要应用,而且还是一种文化和哲学上的追求。

因此,初等数学应该培养学生的逻辑思维和解决问题的能力,同时也应该让学生了解数学在实际生活中的应用,并感受到数学对人类文明的作用。

其次,初等数学的内涵还应该包括个体化教育和多元化方法。

学生在数学学习中的兴趣、能力和学习风格都是不同的,因此教师应该采用不同的教学方法和策略来满足不同学生的需求。

比如,通过班级合作、小组活动、个别辅导等方式,让学生在自主学习和交互学习中发挥优势,提高学习积极性和学习效果。

最后,初等数学的内涵还应该强调培养学生的思想品质和创新思维。

数学是一种探索未知的过程,它需要学生具备求知欲、审美情趣和自主思考能力,同时也需要学生具备勇于挑战和创新的精神。

因此,初等数学教育应该通过具体的教学案例和课程设计,去激发学生的求知兴趣和创新能力。

在实现初等数学高观点的过程中,我们可以采取以下几个途径:第一,建立合适的数学课程和教学模式。

数学课程应该根据学生的发展需求和兴趣爱好来设计,使得学生在学习数学的过程中能够拓宽自己的思维领域和增强数学意识。

教师应该采用多种教学方法和策略,如讲解、引导、探究、演练等,让学生在探索中感受数学的魅力和美好。

第二,积极推进教育信息化和网络技术的应用。

随着信息技术的不断普及和发展,我们可以利用网络工具和数字资源来构建数学的虚拟学习环境,帮助学生在一个更宽广的空间中参与数学学习,并能够个性化定制、多元化参与和实时互动交流。

第三,加强教师的专业化研究和素养提升。

初等数学知识

初等数学知识

初等数学知识教学内容教学要求思考题数学家——毕达哥拉斯初等数学知识大致说来,数学可分为初等数学与高等数学两大部分。

初等数学主要包括两部分:几何学与代数学。

几何学是研究空间形式的学科,而代数学则是研究数量关系的学科。

初等数学基本上是常量的数学。

高等数学含有非常丰富的内容,它主要包含:解析几何:用代数方法研究几何问题;线性代数:研究如何解线性方程组及有关的问题;高等代数:研究方程式的求根问题;微积分:研究变速运动及曲边形的求面积问题;作为微积分的延伸,物理类各系还要讲授微分方程与偏微分方程;概率论与数理统计:研究随机现象,依据数据进行推理;所有这些学科构成高等数学的基本部分,在此基础上,建立了高等数学的宏伟大厦。

我们这门课程要讲的就是高等数学的重要分支——微积分。

微积分是17世纪后期出现的一个崭新的数学学科,它在数学中占据着主导地位,是高等数学的基础。

它包括微分学和积分学两大部分。

微积分学的诞生标志着高等数学的开始,这是数学发展史上的一次伟大转折. 高等数学的研究对象、研究方法都与初等数学表现出重大差异. 初等数学应当为高等数学做哪些准备?(1)发展符号意识,实现从具体数学的运算到抽象符号运算的转变. 符号是一种更为简洁的语言,没有国界,全世界共享,并且这种语言具有运算能力;(2)培养严密的逻辑思维能力,实现从具体描述到严格证明的转变;(3)培养抽象思维的能力,实现从具体数学到概念化数学的转变;(4)发展变化意识,实现从常量数学到变量数学的转变.微积分研究的对象是变量,它的基础是实数,因此我们这一讲要回顾一下初等数学知识中与实数密切相关的几个概念。

教学内容1.第一次数学危机2.实数、数轴与绝对值3.区间与邻域教学要求1.了解第一次数学危机2.理解实数、数轴、绝对值的概念3.理解区间、邻域的概念1.第一次数学危机人们对数的认识来源于自然数。

自然数是数东西时“实物个数”的表示,从1开始,依次为1,2,3,4,…,n,…,其中n表示任意一个自然数。

初等数学常用公式

初等数学常用公式

初等数学常用公式:(一)代数乘法及因式分解公式1.(1)(x+a) (x+b) =x2 + (a+b)x +ab(2)(a±b)2=a2 ±2ab+b2(3) (a±b)3=a3±3a2b+3ab2±b3(4)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca(5)(a+b+c)3=a3+b3+c3+3a2b+3ab2+3b2c+3bc2+ 3a2c+ 3ac2+ 6abc(6) a2-b2=(a -b)(a+b)(7)a3±b3= (a±b) (a2ab +b2).(8) a n-b n= (a-b)(a n-1 +a n-2b+a n-3b2+…+ab n-2+b n-1) (n为正整数)(9) a n-b n= (a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1) (n为偶数)(10) a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1) (n为奇数) 2。

指数运算(设a,b,是正实数,m,n是任意实数)1.指数定义下面(1)--(3)式中,m、n均为正整数.= (n个a的乘积);(1)a n(2)(3)(4)无理指数幂可用有理指数幂近似表示.例如2.指数运算法则(1)(2)(3)(4)(5)式中a.>0 ,b>0;x1,x2,x为任意实数.3.对数定义若a x=b (a>0 , a≠1) ,则x称为b的以a 为底的对数,记作当a=10时,,称为常用对数.当a=e 时,,称为自然对数.4.对数的性质(1)(2)(3)(4)(5)换底公式由此可推出:(a)(在换底公式中取c=b)(b) (在换底公式中取c=10)5.对数运算法则(1)(2)(3)(x 为任意实数)1.基本不等式在下面1)~5)各式中,设a >b, 则1) a ±c > b ± c2) ac > bc (c>0);ac<bc(c<0)3),4) a n>b n ( n>0, a>0, b>0) ; a n<b n ( n<0, a>0, b>0)5) (n为正整数,a>0,b>0)6)设且b, d同号,则2. 有关绝对值的不等式(1)绝对值的定义•实数a的绝对值实数的绝对值是数轴上点到原点的距离.(2) 有关绝对值的不等式(a) 若a , b,…, k为任意复数(包含实数),则(b)若a ,b为任意复数(包含实数),则(c)若则-b≤a≤b特别有(d)若则a>b或a<-b(e)(f)若a , b,…,k为任意复数(包含实数),则(g)若a , b,…,k为任意复数(包含实数),则有关三角函数、指数函数、对数函数的不等式1) sin x<x<tg x (0<x<)2) cos x<<1 (0<x<π )3)()4)(-∞<x<∞, x≠0 )5)( x>0 )6) ( 0<x<)7)( 0<x<1, x≠)8)( x≠0 )9)( x<1, x≠0 )10)(n为自然数,x>0)11) ( x ≠0 )12) ( x >-1, x ≠0 )13) ( x >-1, x ≠0 )14) ( x > -1, x ≠0 )特别取(n 为自然数 ), 有15)ln x ≤ x-1 ( x >0 )阶乘、排列、组合、二项与多项式1.阶乘注:表中n 为自然数 2.排列(a) 从n 个不同的元素中每次取出k 个(k ≤n )不同的元素,按一定的顺序排成一列,称为排列.其排列种数为:(b) 特别当k =n 时,此排列称为全排列.其排列种数为:定义说明 0!=1 规定n 的阶乘 (-1)!!=0规定(21)!(21)!!135(21)2!nn n n n ++=⋅⋅⋅⋅⋅+= 奇数的阶乘 0!!=0 规定偶数的阶乘3.组合(a) 从n个不同的元素中每次取出k个(k≤n)不同的元素,不管其顺序合并成一组,称为组合.其组合种数为:(b) 组合公式4.二项与多项式(a) 二项式公式(b) 二项式系数,杨辉三角形我国南宋时期数学家杨辉在他所著的《详解九章算法》(1261年)中记载着有关二项式系数的研究.在二项式公式中分别取n=0, 1, 2 ,…, 6 时,其二项式系数可表示成三角形,称为杨辉三角形.(a+b)01(a+b)111(a+b)2121(a+b)31331(a+b)414641(a+b)515101051(a+b)61615201561代数方程1.一元n次代数方程其中n为正整数;a0 , a1,…, a n是属于数域S(实数域或复数域)的常数;x为未知数.f(x)称为一元n次多项式;方程f(x)=0称为一元n次代数方程;最高次项系数a0称为首项系数.设c是一常数,使f(c)=0 , 则称c为多项式f(x) 或方程f(x)=0 的根.代数基本定理每个复数域上n次代数方程在复数域中至少有一个根.代数基本定理的推论每个n次代数方程在复数域中有且只有n个根.2.一元二次方程方程根的表达式根与系数关系判别式有两个不等的实根有两个相等的实根有两个复根有两个不等的实根有两个相等的实根有两个复根二. 三角函数公式表同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

100个世界著名初等数学问题

100个世界著名初等数学问题

H 100个著名初等数学问题第01题阿基米德分牛问题Archimedes' Problema Bovinum太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的¼+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7.在母牛中,白牛数是全体黑牛数的1/3+¼;黑牛数是全体花牛数¼+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.问这牛群是怎样组成的?第02题德·梅齐里亚克的法码问题The Weight P roblem of Bachet de Meziriac一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题Newton's Problem of the Fields and Cowsa头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题Berwick's Proble m of the Seven Sevens在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷* * * * 7 * = * * 7 * ** * * * * ** * * * * 7 ** * * * * * ** 7 * * * ** 7 * * * ** * * * * * ** * * * 7 * ** * * * * ** * * * * *用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题Kirkman's Schoolgi rl Problem某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题The Bern oulli-Euler Problem of the Misaddressed letters求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.第07题欧拉关于多边形的剖分问题Euler's Proble m of Polygon Division可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couplesn对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?第09题卡亚姆的二项展开式Omar Khayyam's Bi nomial Expansion当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂.第10题柯西的平均值定理Cauchy's Mean Theor em求证n个正数的几何平均值不大于这些数的算术平均值.第11题伯努利幂之和的问题Bernoulli's Power Sum Problem确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np.第12题欧拉数The Euler Number求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x 无限增大时的极限值.第13题牛顿指数级数Newton's Exponential Ser ies将指数函数ex变换成各项为x的幂的级数.第14题麦凯特尔对数级数Nicolaus Mercator's L ogarithmic Series不用对数表,计算一个给定数的对数.第15题牛顿正弦及余弦级数Newton's Sine and Cosine Series不用查表计算已知角的正弦及余弦三角函数.第16题正割与正切级数的安德烈推导法Andre's D erivation of the Secant and T angent Series 在n个数1,2,3,…,n的一个排列c1,c2,…,c n中,如果没有一个元素ci的值介于两个邻近的值ci-1和c i+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列.试利用屈折排列推导正割与正切的级数.第17题格雷戈里的反正切级数Gregory's Arc Tan gent Series已知三条边,不用查表求三角形的各角.第18题德布封的针问题Buffon's Needle Proble m在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?第19题费马-欧拉素数定理The Fermat-Euler Pri me Number Theorem每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.第20题费马方程The Fermat Equation求方程x2-dy2=1的整数解,其中d为非二次正整数.第21题费马-高斯不可能性定理The Fermat-Gau ss Impossibility Theorem证明两个立方数的和不可能为一立方数.第22题二次互反律The Quadratic Reciprocity Law(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2].第23题高斯的代数基本定理Gauss' Fundamenta l Theorem of Algebra每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根.第24题斯图谟的根的个数问题Sturm's Problem of the Number of Roots求实系数代数方程在已知区间上的实根的个数.第25题阿贝尔不可能性定理Abel's Impossibility Theorem高于四次的方程一般不可能有代数解法.第26题赫米特-林德曼超越性定理The Hermite-Li ndemann Transcedence Theorem系数A不等于零,指数α为互不相等的代数数的表达式A1eα1+A2eα2+A3eα3+…不可能等于零.第27题欧拉直线Euler's Straight Line在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离.第28题费尔巴哈圆The Feuerbach Circle三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上.第29题卡斯蒂朗问题Castillon's Problem将各边通过三个已知点的一个三角形内接于一个已知圆.第30题马尔法蒂问题Malfatti's Problem在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切.第31题蒙日问题Monge's Problem画一个圆,使其与三已知圆正交.第32题阿波洛尼斯相切问题The Tangency Probl em of Apollonius.画一个与三个已知圆相切的圆.第33题马索若尼圆规问题Macheroni's Compass Problem.证明任何可用圆规和直尺所作的图均可只用圆规作出.第34题斯坦纳直尺问题Steiner's Straight-edge Problem证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出.第35题德里安倍立方问题The Deliaii Cube-dou bling Problem画出体积为一已知立方体两倍的立方体的一边.第36题三等分一个角Trisection of an Angle把一个角分成三个相等的角.第37题正十七边形The Regular Heptadecagon画一正十七边形.第38题阿基米德π值确定法Archimedes' Deter mination of the Number Pi设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,…其中av+1是av、bv的调和中项,bv+1是b v、av+1的等比中项. 假如已知初始两项,利用这个规则便能计算出数列的所有项. 这个方法叫作阿基米德算法.第39题富斯弦切四边形问题Fuss' Problem of th e Chord-T angent Quadrilateral找出半径与双心四边形的外接圆和内切圆连心线之间的关系.(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)第40题测量附题Annex to a Survey利用已知点的方位来确定地球表面未知但可到达的点的位置.第41题阿尔哈森弹子问题Alhazen's Billiard Pro blem在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形.第42题由共轭半径作椭圆An Ellipse from Conj ugate Radii已知两个共轭半径的大小和位置,作椭圆.第43题在平行四边形内作椭圆An Ellipse in a Pa rallelogram,在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点.第44题由四条切线作抛物线A Parabola from Fo ur Tangents已知抛物线的四条切线,作抛物线.第45题由四点作抛物线A Parabola from Four P oints.过四个已知点作抛物线.第46题由四点作双曲线A Hyperbola from Four Points.已知直角(等轴)双曲线上四点,作出这条双曲线.第47题范·施古登轨迹题Van Schooten's Locus Problem平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?第48题卡丹旋轮问题Cardan's Spur Wheel Pro blem.一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?第49题牛顿椭圆问题Newton's Ellipse Problem.确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹.第50题彭赛列-布里昂匈双曲线问题The Poncelet -Brianchon Hyperbola Problem确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹.第51题作为包络的抛物线A Parabola as Envelo pe从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,…,n和n,n-1,…,2,1,0.求证具有相同数字的点的连线的包络为一条抛物线.第52题星形线The Astroid直线上两个标定的点沿着两条固定的互相垂直的轴滑动,求这条直线的包络.第53题斯坦纳的三点内摆线Steiner's Three-poi nted Hypocycloid确定一个三角形的华莱士(Wallace)线的包络.第54题一个四边形的最接近圆的外接椭圆The Mo st Nearly Circular Ellipse Circumscribing a Quadril ateral一个已知四边形的所有外接椭圆中,哪一个与圆的偏差最小?第55题圆锥曲线的曲率The Curvature of Conic Sections确定一个圆锥曲线的曲率.第56题阿基米德对抛物线面积的推算Archimedes' Squaring of a Parabola确定包含在抛物线内的面积.第57题推算双曲线的面积Squaring a Hyperbol a确定双曲线被截得的部分所含的面积.第58题求抛物线的长Rectification of a Parabol a确定抛物线弧的长度.第59题笛沙格同调定理(同调三角形定理)Desar gues' Homology Theorem (Theorem of Homologo us Triangles)如果两个三角形的对应顶点连线通过一点,则这两个三角形的对应边交点位于一条直线上.反之,如果两个三角形的对应边交点位于一条直线上,则这两个三角形的对应顶点连线通过一点.第60题斯坦纳的二重元素作图法Steiner's Doubl e Element Construction由三对对应元素所给定的重迭射影形,作出它的二重元素.第61题帕斯卡六边形定理Pascal's Hexagon Theorem求证内接于圆锥曲线的六边形中,三双对边的交点在一直线上.第62题布里昂匈六线形定理Brianchon's Hexagr am Theorem求证外切于圆锥曲线的六线形中,三条对顶线通过一点.第63题笛沙格对合定理Desargues' Involution Theorem一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶.*一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23,14,31,24,12,34;其中23与14、31与24、12与34称为对边(对顶点).第64题由五个元素得到的圆锥曲线A Conic Secti on from Five Elements求作一个圆锥曲线,它的五个元素——点和切线——是已知的.第65题一条圆锥曲线和一条直线A Conic Section and a Straight Line一条已知直线与一条具有五个已知元素——点和切线——的圆锥曲线相交,求作它们的交点.第66题一条圆锥曲线和一定点A Conic Section and a Point已知一点及一条具有五个已知元素——点和切线——的圆锥曲线,作出从该点列到该曲线的切线.第67题斯坦纳的用平面分割空间Steiner's Divisi on of Space by Planesn个平面最多可将整个空间分割成多少份?第68题欧拉四面体问题Euler's Tetrahedron Pro blem以六条棱表示四面体的体积.第69题偏斜直线之间的最短距离The Shortest Di stance Between Skew Lines计算两条已知偏斜直线之间的角和距离.第70题四面体的外接球The Sphere Circumscri bing a Tetrahedron确定一个已知所有六条棱的四面体的外接球的半径.第71题五种正则体The Five Regular Solids将一个球面分成全等的球面正多边形.第72题正方形作为四边形的一个映象The Square as an Image of a Quadrilateral证明每个四边形都可以看作是一个正方形的透视映象.第73题波尔凯-许瓦尔兹定理The Pohlke-Schwar tz Theorem一个平面上不全在同一条直线上的四个任意点,可认为是与一个已知四面体相似的四面体的各隅角的斜映射.第74题高斯轴测法基本定理Gauss' Fundamenta l Theorem of Axonometry正轴测法的高斯基本定理:如果在一个三面角的正投影中,把映象平面作为复平面,三面角顶点的投影作为零点,边的各端点的投影作为平面的复数,那么这些数的平方和等于零.第75题希帕查斯球极平面射影Hipparchus' Stere ographic Projection试举出一种把地球上的圆转换为地图上圆的保形地图射影法.第76题麦卡托投影The Mercator Projection画一个保形地理地图,其坐标方格是由直角方格组成的.第77题航海斜驶线问题The Problem of the Lo xodrome确定地球表面两点间斜驶线的经度.第78题海上船位置的确定Determining the Posi tion of a Ship at Sea利用天文经线推算法确定船在海上的位置.第79题高斯双高度问题Gauss' Two-Altitude Pr oblem根据已知两星球的高度以确定时间及位置.第80题高斯三高度问题Gauss' Three-Altitude Problem从在已知***球获得同高度瞬间的时间间隔,确定观察瞬间,观察点的纬度及星球的高度.第81题刻卜勒方程The Kepler Equation根据行星的平均近点角,计算偏心及真近点角.第82题星落Star Setting对给定地点和日期,计算一已知星落的时间和方位角.第83题日晷问题The Problem of the Sundial制作一个日晷.第84题日影曲线The Shadow Curve当直杆置于纬度φ的地点及该日太阳的赤纬有δ值时,确定在一天过程中由杆的一点投影所描绘的曲线.第85题日食和月食Solar and Lunar Eclipses如果对于充分接近日食时间的两个瞬间太阳和月亮的赤经、赤纬以及其半径均为已知,确定日食的开始和结束,以及太阳表面被隐蔽部分的最大值.第86题恒星及会合运转周期Sidereal and Synod ic Revolution Periods确定已知恒星运转周期的两共面旋转射线的会合运转周期.第87题行星的顺向和逆向运动Progressive and Retrograde Motion of Planets行星什么时候从顺向转为逆向运动(或反过来,从逆向转为顺向运动)?第88题兰伯特慧星问题Lambert's Comet Prole m借助焦半径及连接弧端点的弦,来表示慧星描绘抛物线轨道的一段弧所需的时间.第89题与欧拉数有关的斯坦纳问题Steiner's Prob lem Concerning the Euler Number如果x为正变数,x取何值时,x的x次方根为最大?第90题法格乃诺关于高的基点的问题Fagnano's Altitude Base Point Problem在已知锐角三角形中,作周长最小的内接三角形.第91题费马对托里拆利提出的问题Fermat's Prob lem for Torricelli试求一点,使它到已知三角形的三个顶点距离之和为最小.第92题逆风变换航向T acking Under a Headwi nd帆船如何能顶着北风以最快的速度向正北航行?第93题蜂巢(雷阿乌姆尔问题)The Honeybee Cell (Problem by Reaumur)试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小.第94题雷奇奥莫塔努斯的极大值问题Regiomonta nus' Maximum Problem在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)第95题金星的最大亮度The Maximum Brightne ss of Venus在什么位置金星有最大亮度?第96题地球轨道内的慧星A Comet Inside the Earth's Orbit慧星在地球的轨道内最多能停留多少天?第97题最短晨昏蒙影问题The Problem of the Shortest Twilight在已知纬度的地方,一年之中的哪一天晨昏蒙影最短?第98题斯坦纳的椭圆问题Steiner's Ellipse Probl em在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?第99题斯坦纳的圆问题Steiner's Circle Proble m在所有等周的(即有相等周长的)平面图形中,圆有最大的面积.反之:在有相等面积的所有平面图形中,圆有最小的周长.第100题斯坦纳的球问题Steiner's Sphere Probl em在表面积相等的所有立体中,球具有最大体积.在体积相等的所有立体中,球具有最小的表面。

初等数学研究(第一讲)

初等数学研究(第一讲)

性质
小数具有连续性和传递性,即 任何两个小数相加或相减的结 果仍然是有限小数或无限循环 小数。
运算规则
小数的加法、减法、乘法和除 法满足交换律、结合律和分配 律。
分数
80%
定义
分数是一种有理数,表示为两个 整数的商,如1/2、2/3和3/4等 。
100%
性质
分数具有加法、减法、乘法和除 法的封闭性,即任何两个分数的 和、差、积和商仍然是分数。
对初等数学研究的展望
初等数学与高等数学的 衔接
初等数学的跨学科研究
信息技术在初等数学教 学中的应用
随着数学教育的不断发展,初等数学 与高等数学的衔接问题越来越受到关 注。未来研究可以探讨如何更好地将 初等数学与高等数学进行衔接,促进 数学教育的连贯性和系统性。
随着跨学科研究的兴起,初等数学可 以与其他学科进行交叉融合,开展跨 学科的研究。例如,将初等数学与物 理学、工程学、经济学等领域相结合 ,可以产生新的研究领域和研究方向 。
生物学
生物学中的遗传学、生态 学等领域也需要用到数学 知识,如概率统计、微积 分等。
数学在工程中的应用
建筑学
电子工程
建筑设计中需要用到几何学、线性代 数等数学知识,以确定建筑物的形状、 尺寸等。
电子工程中需要用到电路分析、信号 处理等数学知识,以设计电子设备和 系统。
机械工程
机械工程中需要用到力学、微积分等 数学知识,以分析机械的运动、受力 等情况。
80%
运算规则
分数的加法、减法、乘法和除法 满足交换律、结合律和分配律。
代数式
定义
代数式是由数字、字母通过有限 次的四则运算得到的数学表达式, 如2x+3y、x^2+y^2和xy+z等。

初等数学常用公式3篇

初等数学常用公式3篇

初等数学常用公式第一篇:初等数学常用公式(一)1.勾股定理:直角三角形的两条直角边的平方和等于斜边的平方,即a²+b²=c²。

2.等腰三角形面积公式:面积=(底边×高)÷2。

3.正方形面积公式:面积=边长×边长。

4.长方形面积公式:面积=长×宽。

5.平行四边形面积公式:面积=底边×高。

6.圆的面积公式:面积=π×半径²。

7.圆的周长公式:周长=2×π×半径。

8.球的表面积公式:表面积=4×π×半径²。

9.球的体积公式:体积=(4÷3)×π×半径³。

10.立方体的体积公式:体积=边长³。

11.棱柱的体积公式:体积=底面积×高。

12.棱锥的体积公式:体积=(底面积×高)÷3。

13.圆锥的体积公式:体积=(底面积×高)÷3。

14.扇形的面积公式:面积=(弧长×半径)÷2。

15.三角形面积公式:面积=(底边×高)÷2。

以上是初等数学常用公式,掌握这些公式可以更轻松地解决各种数学问题。

第二篇:初等数学常用公式(二)16.两点间距离公式:d=√(x₂-x₁)²+(y₂-y₁)²。

17.点到直线距离公式:d=│Ax₁+By₁+C│÷√(A²+B²)。

18.两点连线斜率公式:k=y₂-y₁÷x₂-x₁。

19.一次函数公式:y = kx + b。

20.平移变换公式:(x,y)→(x+a,y+b)。

21.旋转变换公式:(x,y)→(xcosθ-ysinθ,xsinθ+ycosθ)。

22.对称变换公式:(x,y)→(2a-x,y)。

23.四则运算规则:加减法可交换,乘除法可结合,加法与乘法遵循“分配律”。

初等模型-数学模型

初等模型-数学模型

几何模型
01
02
03
平面几何
平面几何是几何模型的基 础,通过点、线、面等基 本元素描述实际问题,如 三角形、四边形、圆等。
立体几何
立体几何是描述三维空间 中物体形状和位置关系的 数学模型,如长方体、球 体、圆柱体等。
解析几何
解析几何是将几何问题转 化为代数问题的数学模型, 通过代数方法解决几何问 题。
提高数学模学模型具有强大的预测和决策支持功能 ,可以提高决策的科学性和准确性。通过 数学模型的建立和应用,可以解决实际问 题,推动科学技术和社会经济的发展。
影响力
加强数学模型的宣传和推广,提高其在社 会、经济、科技等领域的认知度和影响力 。同时,加强国际交流与合作,推动数学 模型在全球范围内的应用和发展。
感谢观看
THANKS
通过数学模型可以模拟物种进化过程, 解释生物多样性的起源和演化。
在商业决策中的应用
市场预测
通过分析历史数据和市场趋势, 可以建立一个数学模型来预测未
来的市场需求和销售情况。
投资决策
利用数学模型评估投资组合的风 险和回报,帮助投资者做出明智
的投资决策。
供应链管理
通过数学模型优化库存管理、物 流和运输,降低成本并提高效率。
01
02
03
04
解析法
通过数学公式推导求解,适用 于有解析解的简单问题。
数值法
通过数值计算求解,适用于大 多数实际问题。
近似法
通过近似计算求解,适用于难 以精确求解的问题。
模拟法
通过模拟实验求解,适用于难 以建立数学模型的问题。
数学模型的验证与优化
模型验证
通过对比模型的预测结果与实际数据 进行验证,确保模型的准确性。

初等数学(数学学科术语)

初等数学(数学学科术语)

代数部分:有理数(正数和负数及其运算),实数(根式的运算),平面直角坐标系,基本函数(一次函数, 二次函数,反比例函数),简单统计,锐角三角函数,方程(一元一次方程,二元一次方程组,一元二次方程, 三元一次方程组),因式分解、整式、分式、一元一次不等式。
几何部分:全等三角形,四边形(重点是平行四边形及特殊的平行四边形),对称与旋转,相似图形(重点 是相似三角形),圆的基本性质,
演算解题
高等数学,单靠教师把课讲好是远远不够的。只有调动学生学习的积极性和主动性,促使他们自觉地接受经 常、充分而又严格的数学训练,才能使他们真正走近数学,取得切身的体会,从而加深对数学的理解。在认真复 习的基础上做好习题,是和课堂教学联系最直接与紧密,同时也最利于经常实施和长期坚持的一项重要的数学训 练。
集合,基本初等函数(指数函数、对数函数,幂函数,高次函数),二次函数根分布与不等式,柯西不等式, 排列不等式,初等行列式,三角函数,解析几何与圆锥曲线(椭圆,抛物线,双曲线),复数,数列,高等统计 与概率,排列组合,平面向量,空间向量,空间直角坐标系,导数以及相对简单的定积分。
发展历史
初等数学时期从公元前五世纪到公元十七世纪,延续了两千多年、由于高等数学的建立而结束。这个时期最 明显的结果就是系统地创立了初等数学,也就是现在中小学课程中的算术、初等代数、初等几何(平面几何和立 体几何)和平面三角等内容。
逻辑结构
在现代数学中,符号演算在课程中常占着较大的比例,比如微积分中的极限演算,导数和各种积分演算等。

高等数学可以为初等数学中常用的数学方法提供理论
现行的中学教材中,只讲怎样运用常用的数学方法——数学归纳法而不谈原理的证明,中学教材这样处理是 考虑到中学生的知识水平、年龄特征和中学数学的教学目的。但对于一位未来的中学教师要知其然更要知其所以 然。数学归纳法的合理性,是由自然数的归纳公理所保证的,也就是由归纳公理提供的。由该公理还可以演变出 各种形式的归纳证明方法:第一数学归纳法、第二数学归纳法、反向归纳法、无穷递降归纳法等。用这些方法可 以解决用其他数学方法难于处理的许多问题,具体实例在此处从略。

学初等数学比较好的书

学初等数学比较好的书

学初等数学比较好的书(原创实用版)目录1.引言:介绍初等数学的重要性和适用范围2.初等数学的概念和分类3.推荐的初等数学教材4.如何选择适合自己的初等数学教材5.结论:学习初等数学的重要性和教材选择的建议正文【引言】初等数学是数学的基础部分,主要包括代数、几何、三角函数等内容。

它在我们日常生活中有着广泛的应用,例如购物时计算价格、解决几何图形问题等。

初等数学也是学习高等数学和其他科学学科的基础,因此掌握好初等数学非常重要。

【初等数学的概念和分类】初等数学主要包括以下几个方面:1.代数:包括有理数、整数、小数等基本运算,以及方程、不等式、函数等基本概念。

2.几何:研究点、线、面及其相关性质,包括直线、角、三角形、多边形、圆等基本图形。

3.三角函数:研究三角形的边角关系,包括正弦、余弦、正切等函数及其应用。

【推荐的初等数学教材】学习初等数学,选择一本好的教材非常重要。

这里推荐几本较好的初等数学教材:1.《初等数学》:由我国著名数学家陈景润主编,内容涵盖了初等数学的主要知识点,适合初中和高中生学习。

2.《数学》:由教育部科学技术司主管,人民教育出版社出版,是我国中小学数学教材的主要版本,适合小学生、初中生和高中生学习。

3.《数学分析》:由美国数学家斯皮尔曼著,是一本经典的初等数学教材,适合有一定数学基础的读者学习。

【如何选择适合自己的初等数学教材】选择初等数学教材时,需要注意以下几点:1.教材的内容:确保教材涵盖了初等数学的主要知识点,包括代数、几何、三角函数等。

2.教材的难度:选择适合自己数学水平的教材,对于初学者,可以选择较为简单的教材入手。

3.教材的编写风格:选择适合自己的学习风格的教材,例如有些教材适合自学,有些教材适合课堂学习。

【结论】学习初等数学非常重要,选择一本好的教材可以帮助我们更好地掌握初等数学的知识。

在选择教材时,需要考虑教材的内容、难度和编写风格,选择适合自己的初等数学教材。

如何学好初等数学

如何学好初等数学

如何学好初等数学初等数学是数学的基础,其在日常生活中有着广泛的应用。

学好初等数学对于提高个人综合素质和未来的学习都有着重要的意义。

本文将从基础知识、技能培养、应用实践、逻辑思维、创新能力、学习习惯和兴趣培养等方面,为读者提供如何学好初等数学的指导。

一、基础知识初等数学的基础知识包括数轴、算术法则、代数表达式、方程式、函数、平面几何、概率与统计等方面的基本概念和基本方法。

要学好初等数学,首先需要掌握这些基础知识,并能够熟练运用。

二、技能培养初等数学中需要掌握的技能包括计算技能、画图技能、逻辑思维技能、分析数据技能等。

通过大量的练习,不断提高这些技能,能够更好地掌握初等数学的知识。

三、应用实践初等数学在生活中的应用非常广泛,例如在购物、投资、制作图表等方面的应用。

通过将数学知识应用到实际生活中,能够更好地理解数学知识,提高学习兴趣和动力。

四、逻辑思维初等数学中的逻辑思维能力包括推理、判断、逻辑思维等方面。

通过学习和练习,不断提高这些能力,能够更好地理解和掌握初等数学的知识。

五、创新能力初等数学中的创新能力包括建立数学模型和解决问题的能力。

通过学习和练习,不断提高这些能力,能够更好地运用数学知识,为未来的学习和工作打下坚实的基础。

六、学习习惯良好的学习习惯对于学好初等数学非常重要。

在数学学习中,可以采用多种方式来培养良好的学习习惯,例如每天定时练习、积极参与课堂讨论、做好笔记和认真完成作业等。

通过这些良好的习惯,能够更有效地掌握初等数学的知识。

七、兴趣培养兴趣是学好数学的最好动力。

在数学学习中,可以通过多角度思考、观察与实践等方式来培养兴趣。

例如,通过参加数学竞赛、阅读有趣的数学书籍、观看数学知识相关的视频等方式,让数学学习不再枯燥乏味,从而更好地掌握初等数学的知识。

总之,学好初等数学需要掌握基础知识、培养相关技能、应用于实践、提高逻辑思维能力、创新能力和养成良好的学习习惯。

同时,兴趣培养也是初等数学学习中不可或缺的一部分。

初等数学

初等数学

几何基本知识1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等三角形全等判定22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等角平分线29 角的平分线是到角的两边距离相等的所有点的集合等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形直角三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半垂直平分线39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合图形的对称42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称勾股定理46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形四边形内角和及多边形内角和公式48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°外角和51推论任意多边的外角和等于360°平行四边形性质及判定方法52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形矩形性质及判定方法60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形菱形性质及判定方法64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形正方形性质及判定方法69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角图形的中心对称71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形的性质及判定方法74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形平行线性质78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边三角形的其他性质81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半梯形的其他性质82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h比例83 (1)比例的基本性质,如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例相似三角形及其判定方法90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似相似三角形的性质96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 定理不在同一直线上的三点确定一个圆107垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧108推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧109推论2 圆的两条平行弦所夹的弧相等110圆是以圆心为对称中心的中心对称图形111定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等112推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等113定理一条弧所对的圆周角等于它所对的圆心角的一半114推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等115推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径116推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形117定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角点的其他知识118和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线119到已知角的两边距离相等的点的轨迹,是这个角的平分线120到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线121①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锥体体积是同底等高柱体体积的三分之一.
60
和角公式: sina b sinacosb cosasinb cosa b cosacosb sinasinb
sin
b ,cos
a2b2
a, a2b2
fxa2b2sinx 61
倍角公式: sin 2a 2sina cosa cos 2a cos2 a sin2 a 2cos2 a 1 1 2sin2 a 2 tan a tan 2a 1 tan2 a
计算经常包含排列组合.
袋中有 3 个黄球,2 个红球,1 个篮球,每次取一个球,
取出后不放回,任取两次,都是红球的概率是[ A ]
(A) 1 15
(B) 11 30
(C) 1 3
(D) 2 3
C62 15,C22 1
虽然描述是有序的,但是问题与次序无关, 仍可用组合数.若问:至少一个红球?
C62 15,C42 6
n个元素中任取m个,排成一列,几种排法?
Pnm
n!
n m!
n ! 1 2 .... n , 0 ! 1
21
n个元素中任取m个,形成一组,几种方法?
Cnm
n!
m!n m!
22
如果试验 E 有 n 个等可能性的结果,事件 A 包含其中 m 个 结果,则事件 A 发生的概率:
P(A) m / n .
20
20
找好基点, 比如纯酒精
97
a2008 2008224 4
1 3
1a 1b
B
2008 2008224 b
6
1 2
32
分子相同
98
63 : 2
2 3
m 2 9 R 2 2 .2 5 R 2 9 R 2 c o s
m2 92.25963
R2Βιβλιοθήκη 243R B底圆上每一点到顶点距离
m
都是L,展开为扇形!平
1 2 2
22
作为验算,可以看看平方和是否等于1. 63
积化和差: sin a cos b 1 sina b sina b 2
sin a sin b 1 cosa b cosa b 2
应该与和角公式联系.
和差化积: sin a sin b 2sin a b cos a b
2
N次代数方程至少有一个 根(实根或复根)
N次代数方程有N个根(包
括重根的重数)
x1
实系数代数方程复数根必 共轭成对出现
a0
x2
a0
18
等差数列: an
an1
d
a1
n 1d
,中项:
a
2
b
4 a 0 2 2 d 6 4 a 6 a 7 2 a 0 1 1 d 3 2 S 1212a066d192
面上直线最短!
A
2 R
99
选项都是常数,利用特殊位 置(图),必然选 A.
对于(2)就要确认公共部分面积不变.如图可以贴补.
100
平行条件:
ka11 a2
k2 b1
b2
,垂直条件: ak11ak22
1 b1b2
0
夹角: tan k1 k2 ,锐角.
1 k1k2
75
平面内到两个定点F1,F2的距离之和等于一个常数 (大于|F1F2|)的点的轨迹叫做椭圆,这两个定点 叫做焦点,两定点间的距离叫做焦距。
x2 a2
y2 b2
3 没有红球概率:2/5,所以: 5
23
几个概率公式
24
25
初等代数常用方法
26
27
B
28
29
30
31
32
33
34
35
36
37
基本公式:
x1
x2
b a
,
x1 x2
c a

x1 2x2 2x1x222x1x2b2 a2 2ac
x 1 x 2x 1 x 22x 1 2 x 2 2 2 x 1 x 2b 2 a 2 4 a c
x 2 y 2 1 实轴在ox上,符号交换则反之. a2 b2
半焦距 c a2 b2 ,焦点 c, 0 ,离心率: e c 1
a 离心率大—开口大.渐近线: y b x . a b 等轴.
a
78
定义:平面内与一个定点F和一条定直线L距离相等的 点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线L 叫做抛物线的准线。
三角 形的 分类
按角分 按边分
锐角三角形,钝角 三角形,直角三角 形
等腰三角形,等边 三角形,不等边三 角形
59
能够完全重合的两个三角形叫全等。
全等三角形的对应边、对应角、对应的角的平分线、 高及中线相等。
正方形、矩形、菱形、平行四边形、一般四边形 园:半径、等弧周角是心角的一半、大弧对大角(周、心)
2
复数:虚数单位、实部与虚部、四则运算(开方)、 共轭复数、模(绝对值),复平面,复方程与图形
引入虚数单位 i,规定 i2=-1,i 可以和实数一起进行通常的四
则运算,运算时原有加乘运算仍然成立。形如:
a+bi(a,b 为实数)
a---实部 b----虚部
设: z1 a1 ib1 、 z2 a2 ib2 ,则:
88
89
C
4A 4A
2A
6A
2A
4A
3A
3A A
AB5A A
2
10
90
D
对称轴x=3/4,
x1,2
3 4
916k 4
大根不小于1, 小根大于-1
1
31
3 916k1k1
44
2
0,k9 1 4 16 2
3 916k1k5
44
2
91
C
a 2 a b b 2 c c a 1 2 a q a q 2 a 1 q 2 q 2 a a 1 1 q q
z1 z2 a1 a2 i b1 b2
z1z2 a1a2 b1b2 i a1b2 b1a2
z1 a1a2 b1b2 i b1a2 a1b2
z2
a22 b22
3
复数 z i i2 i3 i4 i5 i6 i7 ,则 z i (
)
A:2
B: 3 C: 2
等比数列: an an1q a1qn1 ,中项: ab
a 1 2 q 4 1 2 q 2 q 4 2 5 , a 3 a 5 a 1 q 2 1 q 2 5
a n s n s n 1 3 2 n 2 n 1 3 2 n 1 ,n 1 , a 1 1 119
D:1
4
5
算术计算技术
四则运算 分数运算 初等方程 比和比例
6
语言解读能力
7
8
计数能力
10
分数处理技术
11
12
13
14
15
16
代数部分
17
a2b22ab a b ab a b 2
abc
3
abc
2
ba
3
ax 2x 1 b xx2 c ab 0, x 1 x2x 1 ,2 ac b2 b a 2 4 a c
2sinarccos4cosarccos4 234 24
5
5 5 5 25
sinarccos41cos2arccos43
5
55
62
半角公式: sin a 1 cos a
2
2
cos a 1 cos a
2
2
sin sin /61 co s/6 123
1 2 2
22
c o s c o s/61 c o s/6 123
92
ABC DE A B C D E
93
D
CD AB 时,x y / 2 ,而不垂直时 x, y 会变化(向 2 个方
向接近平行时?)
94
95
B Sn1,1,2,2,......S2n1n;S2nn S20041002,S20051003
96
C
2049% 9.8,倒 10.2
B:812812.8 C:614610.2
三角形三条中线的交点,叫做三角形的重心。 (1)重心到每边中点的距离等于这边中线的三分之一。 (2)三角形顶点与重心的连线必过对边中点。
三角形三条高的交点,叫做三角形的垂心。
三角形的一个顶点与垂心连线必垂直于对边。
58
三角形相等: (1)两边及夹角对应相等。记为SAS
(2)两角和一边对应相等。记为ASA (3)三边对应相等。记为SSS
所以:
P
1
C340 C440
51
52
53
54
55
56
几何部分
57
三角形三条内角平分线的交点,叫做三角形的内心(即内切圆的圆心)
(1)内心到三角形三边的距离相等。 (2)三角形一个顶点与内心的连线平分这个角。
三角形三边的垂直平分线的交点,叫做三角形的外心。(即外接圆的圆心)
(1)外心到三角形的三个顶点的距离相等。 (2)外心与三角形一边中点的连线必垂直该边。
71
72
73
74
x, y 的一次方程 ax by c 0 是直线.
斜截式: y a x c ,斜率: k a , y 截距: c
bb
b
b
截距式: x y 1, x 截距: c , y 截距: c
c c
a
b
ab
点 x0 , y0 到直线的距离: d
ax0 by0 c a2 b2
1
a>b焦点在ox,反之焦点在oy,以下设a>b
半焦距 c a2 b2 ,焦点 c, 0 ,离心率: 0 e c 1
相关文档
最新文档