BP神经网络实验 Matlab

合集下载

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。

1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。

它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。

本文将介绍BP神经网络的原理及其在MATLAB中的应用。

BP神经网络的原理基于神经元间的权值和偏置进行计算。

一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。

输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。

BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。

前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。

反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。

在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。

以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。

可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。

BP神经网络matlab详细参数

BP神经网络matlab详细参数

BP神经⽹络matlab详细参数基于matlab BP 神经⽹络参数详解(1)⽣成BP ⽹络(,[1 2...],{ 1 2...},,,)net newff PR S S SNl TF TF TFNl BTF BLF PF =PR :由R 维的输⼊样本最⼩最⼤值构成的2R ?维矩阵。

[1 2...]S S SNl :各层的神经元个数。

{ 1 2...}TF TF TFNl :各层的神经元传递函数。

BTF :训练⽤函数的名称。

(2)⽹络训练[,,,,,] (,,,,,,)net tr Y E Pf Af train net P T Pi Ai VV TV =(3)⽹络仿真[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T =BP ⽹络的训练函数训练⽅法训练函数梯度下降法traingd 有动量的梯度下降法 traingdm ⾃适应lr 梯度下降法traingda⾃适应lr 动量梯度下降法 traingdx 弹性梯度下降法 trainrpFletcher-Reeves 共轭梯度法traincgfPloak-Ribiere 共轭梯度法 traincgp Powell-Beale 共轭梯度法 traincgb 量化共轭梯度法trainscg拟⽜顿算法trainbfg⼀步正割算法trainoss Levenberg-Marquardt trainlmBP⽹络训练参数训练参数参数介绍训练函数net.trainParam.epochs最⼤训练次数(缺省为10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.goal训练要求精度(缺省为0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.lr学习率(缺省为0.01)traingd、traingdm、traingda、traingdx、trainrp、traincgf、trainscg、trainbfg、trainoss、trainlmnet.trainParam.max_fail最⼤失败次数(缺省为5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.min_grad最⼩梯度要求(缺省为1e-10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show显⽰训练迭代过程(NaN表⽰不显⽰,缺省为25)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.time最⼤训练时间(缺省为inf)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.mc动量因⼦(缺省0.9)traingdm、traingdxnet.trainParam.lr_inc学习率lr增长⽐(缺省为1.05)traingda、traingdxnet.trainParam.lr_dec学习率lr下降⽐(缺省为0.7)traingda、traingdxnet.trainParam.max_perf_inc表现函数增加最⼤⽐(缺省为1.04)net.trainParam.delt_inc权值变化增加量(缺省为1.2)trainrpnet.trainParam.delt_dec权值变化减⼩量(缺省为0.5)trainrpnet.trainParam.delt0初始权值变化(缺省为0.07)trainrpnet.trainParam.deltamax权值变化最⼤值(缺省为50.0)trainrpnet.trainParam.searchFcn⼀维线性搜索⽅法(缺省为srchcha)traincgf、traincgp、traincgb、trainbfg、trainoss net.trainParam.sigma因为⼆次求导对权值trainscg调整的影响参数(缺省值5.0e-5)/doc/cd3ed4b6f5335a8102d220e4.html mbda trainscgHessian矩阵不确定性调节参数(缺省为5.0e-7)net.trainParam.men_redtrainlm控制计算机内存/速uc度的参量,内存较⼤设为1,否则设为2(缺省为1)net.trainParam.mu trainlmµ的初始值(缺省为0.001)net.trainParam.mu_dec trainlmµ的减⼩率(缺省为0.1)net.trainParam.mu_inc trainlmµ的增长率(缺省为10)net.trainParam.mu_max trainlmµ的最⼤值(缺省为1e10)。

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码附录5:BP神经网络预测的matlab代码: P=[ 00.13860.21970.27730.32190.35840.38920.41590.43940.46050.47960.49700.52780.55450.59910.60890.61820.62710.63560.64380.65160.65920.66640.67350.72220.72750.73270.73780.74270.74750.75220.75680.76130.76570.7700]T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.48930.2357 0.4866 0.22490.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.18480.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.24030.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ]threshold=[0 1]net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');net.trainParam.epochs=6000net.trainParam.goal=0.01LP.lr=0.1;net=train(net,P',T')P_test=[ 0.77420.77840.78240.78640.79020.7941 ] out=sim(net,P_test')友情提示:以上面0.7742为例0.7742=ln(47+1)/5因为网络输入有一个元素,对应的是测试时间,所以P只有一列,Pi=log(t+1)/10,这样做的目的是使得这些数据的范围处在[0 1]区间之内,但是事实上对于logsin命令而言输入参数是正负区间的任意值,而将输出值限定于0到1之间。

标准的BP神经网络算法程序MATLAB

标准的BP神经网络算法程序MATLAB

count=1;
while (count<=maxcount) %结束条件1迭代1000次
c=1;
while (c<=samplenum)
for k=1:outputNums
d(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内 的值
end
break;
end
count=count+1;%训练次数加1
end%第一个while结束
error(maxcount+1)=error(maxcount);
p=1:count;
pp=p/50;
plot(pp,error(p),"-"); %显示误差
deltv(i,j)=alpha*yitay(j)*x(i); %同上deltw
v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);
dv(i,j)=deltv(i,j);
end
end
c=c+1;
end%第二个while结束;表示一次BP训练结束
double tmp;
for i=1:inputNums
x(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量
字串4
end
%Forward();
for j=1:hideNums
net=0.0;
for i=1:inputNums
net=net+x(i)*v(i,j);
dw=zeros(hideNums,outputNums); %10*3

BP神经网络matlab教程

BP神经网络matlab教程
第二步随机选取第个输入样本及对应期望输出第三步计算隐含层各神经元的输入和输出第四步利用网络期望输出和实际输出计算误差函数对输出层的各神经元的偏导hohoyiyiihih第五步利用隐含层到输出层的连接权值输出层的和隐含层的输出计算误差函数对隐含层各神经元的偏导数hohoihih第八步计算全局误差第九步判断网络误差是否满足要求
w
N 1 ho
w o (k )hoh (k )
N ho
2.4.2 BP网络的标准学习算法
第七步,利用隐含层各神经元的 h (k )和 输入层各神经元的输入修正连接权。
e e hih (k ) wih (k ) h (k ) xi (k ) wih hih (k ) wih w
p
i 1
h 1,2,
o 1,2,
,p
q
yio (k ) whohoh (k ) bo
o 1,2,
yoo (k ) f( yio (k ))
h 1
q
2.4.2 BP网络的标准学习算法
第四步,利用网络期望输出和实际输出, 计算误差函数对输出层的各神经元的偏导 o (k ) 数 。 ( w ho (k ) b ) e e yio yi (k )
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
2.4.2 BP网络的标准学习算法
网络结构 输入层有n个神经元,隐含层有p个神经元, 输出层有q个神经元 变量定义 x x1, x2 , , xn 输入向量; 隐含层输入向量; hi hi1 , hi2 , , hi p 隐含层输出向量; ho ho1 , ho2 , , ho p 输出层输入向量; yi yi1 , yi2 , , yiq 输出层输出向量; yo yo1 , yo2 , , yoq 期望输出向量; d o d1 , d 2 , , d q

BP神经网络matlab实现的基本步骤

BP神经网络matlab实现的基本步骤

1、数据归一化2、数据分类,主要包括打乱数据顺序,抽取正常训练用数据、变量数据、测试数据3、建立神经网络,包括设置多少层网络(一般3层以内既可以,每层的节点数(具体节点数,尚无科学的模型和公式方法确定,可采用试凑法,但输出层的节点数应和需要输出的量个数相等),设置隐含层的传输函数等。

关于网络具体建立使用方法,在后几节的例子中将会说到。

4、指定训练参数进行训练,这步非常重要,在例子中,将详细进行说明5、完成训练后,就可以调用训练结果,输入测试数据,进行测试6、数据进行反归一化7、误差分析、结果预测或分类,作图等数据归一化问题归一化的意义:首先说一下,在工程应用领域中,应用BP网络的好坏最关键的仍然是输入特征选择和训练样本集的准备,若样本集代表性差、矛盾样本多、数据归一化存在问题,那么,使用多复杂的综合算法、多精致的网络结构,建立起来的模型预测效果不会多好。

若想取得实际有价值的应用效果,从最基础的数据整理工作做起吧,会少走弯路的。

归一化是为了加快训练网络的收敛性,具体做法是:1 把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。

2 把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。

另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

神经网络归一化方法:由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:1、线性函数转换,表达式如下:复制内容到剪贴板代码:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

GA-BP神经网络应用实例之MATLAB程序

GA-BP神经网络应用实例之MATLAB程序

GA-BP神经网络应用实例之MATLAB程序% gap.xls中存储训练样本的原始输入数据 37组% gat.xls中存储训练样本的原始输出数据 37组% p_test.xls中存储测试样本的原始输入数据 12组% t_test.xls中存储测试样本的原始输出数据 12组% 其中gabpEval.m适应度值计算函数,gadecod.m解码函数%--------------------------------------------------------------------------nntwarn off;% nntwarn函数可以临时关闭神经网络工具箱的警告功能,当代码使用到神经% 网络工具箱的函数时会产生大量的警告而这个函数可以跳过这些警告但% 是,为了保证代码可以在新版本的工具箱下运行,我们不鼓励这么做pc=xlsread('gap.xls');tc=xlsread('gat.xls');p_test=xlsread('p_test.xls');t_test=xlsread('t_test.xls');p=pc';t=tc';p_test=p_test';t_test=t_test';% 归一化处理for i=1:2P(i,:)=(p(i,:)-min(p(i,:)))/(max(p(i,:))-min(p(i,:))); endfor i=1:4T(i,:)=(t(i,:)-min(t(i,:)))/(max(t(i,:))-min(t(i,:))); endfor i=1:2P_test(i,:)=(p_test(i,:)-min(p_test(i,:)))/(max(p_test(i,:))-min(p_test(i,:)));end%--------------------------------------------------------------------------% 创建BP神经网络,隐含层节点数为12net=newff(minmax(P),[12,4],{'tansig','purelin'},'trainlm'); %-------------------------------------------------------------------------- % 下面使用遗传算法对网络进行优化R=size(P,1);% BP神经网络输入层节点数S2=size(T,1);% BP神经网络输出层节点数S1=12;% 隐含层节点数S=R*S1+S1*S2+S1+S2;% 遗传算法编码长度aa=ones(S,1)*[-1,1];popu=100;% 种群规模initPop=initializega(popu,aa,'gabpEval');% 初始化种群gen=500;% 遗传代数% 下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPop,[1e-6 11],'maxGenTerm',...gen,'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%--------------------------------------------------------------------------% 绘收敛曲线图figure;plot(trace(:,1),1./trace(:,3),'r-'); hold on;plot(trace(:,1),1./trace(:,2),'b-'); xlabel('遗传代数');ylabel('平方和误差');figure;plot(trace(:,1),trace(:,3),'r-'); hold on;plot(trace(:,1),trace(:,2),'b-'); xlabel('遗传代数');ylabel('适应度');legend('平均适应度值','最优适应度值'); %-------------------------------------------------------------------------- % 下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.IW{1,1}=W1;net.LW{2,1}=W2;net.b{1}=B1;net.b{2}=B2;% 设置训练参数net.trainParam.epochs=3000;net.trainParam.goal=1e-6;% 训练网络net=train(net,P,T);w1=net.IW{1,1};w2=net.LW{2,1};b1=net.b{1};b2=net.b{2};% 测试网络性能temp=sim(net,P_test);yuce1=[temp(1,:);temp(2,:),;temp(3,:);temp(4,:)];for i=1:4yuce(i,:)=yuce1(i,:)*(max(t_test(i,:))-min(t_test(i,:)))+min(t_test(i,:));end%--------------------------------------------------------------------------% 测试输出结果之一figure;plot(1:12,yuce(1,:),'bo-');ylabel('切口外径 mm');hold on;plot(1:12,t_test(1,:),'r*-'); legend('测试结果','测试样本');figure;plot(1:12,yuce(1,:)-t_test(1,:),'b-');ylabel('误差 mm');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(1,:)-t_test(1,:))/t_test(1,:))*100,'b*'); ylabel('百分比');title('测试结果与测试样本误差');% 测试输出结果之二figure;plot(1:12,yuce(2,:),'bo-'); ylabel('切口内径 mm');hold on;plot(1:12,t_test(2,:),'r*-'); legend('测试结果','测试样本'); figure;plot(1:12,yuce(2,:)-t_test(2,:),'b-');ylabel('误差 mm');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(2,:)-t_test(2,:))/t_test(2,:))*100,'b*'); ylabel('百分比');title('测试结果与测试样本误差');% 测试输出结果之三figure;plot(1:12,yuce(3,:),'bo-'); ylabel('最大滚切力 N');hold on;plot(1:12,t_test(3,:),'r*-'); legend('测试结果','测试样本'); figure;plot(1:12,yuce(3,:)-t_test(3,:),'b-');ylabel('误差 N');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(3,:)-t_test(3,:))/t_test(3,:))*100,'b*');ylabel('百分比');title('测试结果与测试样本误差');% 测试输出结果之四figure;plot(1:12,yuce(4,:),'bo-'); ylabel('切断时间 s');hold on;plot(1:12,t_test(4,:),'r*-');legend('测试结果','测试样本');figure;plot(1:12,yuce(4,:)-t_test(4,:),'b-');ylabel('误差 s');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(4,:)-t_test(4,:))/t_test(4,:))*100,'b*'); ylabel('百分比');title('测试结果与测试样本误差');%--------------------------------------------------------------------------。

(完整版)BP神经网络matlab实例(简单而经典)

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。

S S SNl:各层的神经元个数。

[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。

BTF:训练用函数的名称。

(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

MATLAB实例:BP神经网络用于回归任务

MATLAB实例:BP神经网络用于回归任务

MATLAB 实例:BP 神经⽹络⽤于回归任务MATLAB 实例:BP 神经⽹络⽤于回归(⾮线性拟合)任务作者:凯鲁嘎吉 - 博客园问题描述给定多元(多维)数据X ,有真实结果Y ,对这些数据进⾏拟合(回归),得到拟合函数的参数,进⽽得到拟合函数,现在进来⼀些新样本,对这些新样本进⾏预测出相应地Y 值。

通常的最⼩⼆乘法进⾏线性拟合并不适⽤于所有数据,对于⼤多数数据⽽⾔,他们的拟合函数是⾮线性的,⼈为构造拟合函数相当困难,没有⼀定的经验积累很难完美的构造出符合条件的拟合函数。

因此神经⽹络在这⾥被应⽤来做回归(拟合)任务,进⼀步⽤来预测。

神经⽹络是很强⼤的拟合⼯具,虽然数学可解释性差,但拟合效果好,因⽽得到⼴泛应⽤。

BP 神经⽹络是最基础的⽹络结构,输⼊层,隐层,输出层,三层结构。

如下图所⽰。

整体的⽬标函数就是均⽅误差L =||f (X )−Y ||22其中(激活函数可以⾃⾏设定)f (X )=purelin W 2⋅tan sig (W 1⋅X +b 1)+b 2N : 输⼊数据的个数D : 输⼊数据的维度D 1: 隐层节点的个数X : 输⼊数据(D *N )Y : 真实输出(1*N )W 1: 输⼊层到隐层的权值(D 1*D )b 1: 隐层的偏置(D 1*1)W 2: 输⼊层到隐层的权值(1*D 1)b 2: 隐层的偏置(1*1)通过给定训练数据与训练标签来训练⽹络的权值与偏置,进⼀步得到拟合函数f (X )。

这样,来了新数据后,直接将新数据X 代⼊函数f (X ),即可得到预测的结果。

y = tansig(x) = 2/(1+exp(-2*x))-1;y = purelin(x) = x ;()MATLAB程序⽤到的数据为UCI数据库的housing数据:输⼊数据,最后⼀列是真实的输出结果,将数据打乱顺序,95%的作为训练集,剩下的作为测试集。

这⾥隐层节点数为20。

BP_kailugaji.mfunction errorsum=BP_kailugaji(data_load, NodeNum, ratio)% Author:凯鲁嘎吉 https:///kailugaji/% Input:% data_load: 最后⼀列真实输出结果% NodeNum: 隐层节点个数% ratio: 训练集占总体样本的⽐率[Num, ~]=size(data_load);data=data_load(:, 1:end-1);real_label=data_load(:, end);k=rand(1,Num);[~,n]=sort(k);kk=floor(Num*ratio);%找出训练数据和预测数据input_train=data(n(1:kk),:)';output_train=real_label(n(1:kk))';input_test=data(n(kk+1:Num),:)';output_test=real_label(n(kk+1:Num))';%选连样本输⼊输出数据归⼀化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%% BP⽹络训练% %初始化⽹络结构net=newff(inputn, outputn, NodeNum);net.trainParam.epochs=100; % 最⼤迭代次数net.trainParam.lr=0.01; % 步长net.trainParam.goal=1e-5; % 迭代终⽌条件% net.divideFcn = '';%⽹络训练net=train(net,inputn,outputn);W1=net.iw{1, 1};b1=net.b{1};W2=net.lw{2, 1};b2=net.b{2};fun1=yers{1}.transferFcn;fun2=yers{2}.transferFcn;%% BP⽹络预测%预测数据归⼀化inputn_test=mapminmax('apply',input_test,inputps);%⽹络预测输出an=sim(net,inputn_test);%⽹络输出反归⼀化BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)plot(BPoutput,'-.or')hold onplot(output_test,'-*b');legend('预测输出','期望输出')xlim([1 (Num-kk)]);title('BP⽹络预测输出','fontsize',12)ylabel('函数输出','fontsize',12)xlabel('样本','fontsize',12)saveas(gcf,sprintf('BP⽹络预测输出.jpg'),'bmp');%预测误差error=BPoutput-output_test;errorsum=sum(mse(error));% 保留参数save BP_parameter W1 b1 W2 b2 fun1 fun2 net inputps outputpsdemo.mclear;clc;close alldata_load=dlmread('housing.data');NodeNum=20;ratio=0.95;errorsum=BP_kailugaji(data_load, NodeNum, ratio);fprintf('测试集总体均⽅误差为:%f\n', errorsum);%%% 验证原来的或者预测新的数据num=1; % 验证第num⾏数据load('BP_parameter.mat');data=data_load(:, 1:end-1);real_label=data_load(:, end);X=data(num, :);X=X';Y=real_label(num, :);%% BP⽹络预测%预测数据归⼀化X=mapminmax('apply',X,inputps);%⽹络预测输出Y_pre=sim(net,X);%⽹络输出反归⼀化Y_pre=mapminmax('reverse',Y_pre,outputps);error=Y_pre-Y';errorsum=sum(mse(error));fprintf('第%d⾏数据的均⽅误差为:%f\n', num, errorsum);结果测试集总体均⽅误差为:5.184424第1⾏数据的均⽅误差为:3.258243注意:隐层节点个数,激活函数,迭代终⽌条件等等参数需要根据具体数据进⾏调整。

BP神经网络的设计实例(MATLAB编程)

BP神经网络的设计实例(MATLAB编程)

神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。

在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。

基于BP神经网络的函数逼近实验及MATLAB实现_曹旭帆

基于BP神经网络的函数逼近实验及MATLAB实现_曹旭帆

! ( 3) 由 ymj = F
W y m m- 1 ij i
计算从第一层直至输
i
出层各节点 j的输出 ymj , 其中上标 m 为 BP 网络的层
标号, F 为神经元的激励函数 ymi - 1为 BP网络 m - 1层
的 i节点的输出, Wmij为 m - 1层的 i节点到 m 层的 j节
点的连接权值, M = M, M - 1, ∀, 1。
!mj = !mj +
m j
( 9) 返回 2, 输入下一组数据前重复 ( 2) ∃ ( 8)的
过程。由此可见, BP 算法的主要思路是从后向前逐层
传播输出层的误差, 并用此误差修正前层权值。
对于 BP 神经网络, 有一个重要定理, 对于任何闭
区间内的连续函数, 都可以用一个三层的 BP 网络逼
近, 本文要研究的问题就是 BP 网络的 隐层神经元个
根据上述一系列实验以及各种算法的训练速度计算量及内存需求量我们设计的bp网络net隐层神经元数目定为16输入输出层神经元数目为1隐层输出层传递函数均为tansig训练函数为traingdx用样本训练网络net训练步数为10000步目标误差0000001bp网络net经过训练达到误差精度要求逼近误差e为00044959netiw11表示隐层16个神经元和输入层1神经元之间的连接权值netlw21表示输出层1个神经元和隐层16个神经元之间的连接权值netb1表示隐层16个神经元的阈值netb2表示输出个神经元的阈值bp网络net的各项权值和阈值如下
关键词: BP 神经网络; MATLAB; 函数逼近; 多项式拟合
中图分类号: TP183
文献标识码: A
文章编号: 1006- 7167( 2008) 05- 0034- 05

Matlab训练好的BP神经网络如何保存和读取方法(附实例说明)

Matlab训练好的BP神经网络如何保存和读取方法(附实例说明)

Matlab训练好的BP神经网络如何保存和读取方法(附实例说明)看到论坛里很多朋友都在提问如何存储和调用已经训练好的神经网络。

本人前几天也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。

通过不断调试,大致弄明白这两个函数对神经网络的存储。

下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。

如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口输入:save net %net为已训练好的网络然后在命令窗口输入:load net %net为已保存的网络加载net。

但一般我们都会在加载完后对网络进行进一步的操作,建议都放在M文件中进行保存网络和调用网络的操作如下所示:%% 以函数的形式训练神经网络functionshenjingwangluo()P=[-1,-2,3,1;-1,1,5,-3];%P为输入矢量T=[-1,-1,1,1,];%T为目标矢量net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')%创建一个新的前向神经网络inputWeights=net.IW{1,1}inputbias=net.b{1}%当前输入层权值和阀值layerWeights=net.LW{2,1}layerbias=net.b{2}net.trainParam.show=50;net.trainParam.lr=0.05;net.trainParam.mc=0.9;net.trainParam.epochs=1000;net.trainParam.goal=0.0002;%调用算法训练BP网络[net,tr]=train(net,P,T);%保存训练好的网络在当前工作目录下的aaa 文件中,net为网络名save('aaa', 'net');%也可以采用格式“save aaa net;”%若要保存到指定目录用“'save('d:\aaa.mat', 'net');”这样就保存到指定的目录下了%%调用网络,以函数的形式function jiazaiwangluo()%网络加载,注意文件名要加单引号load('-mat','aaa');%从指定目录加载“load('-mat','d:\aaa.mat'); ”P=[3;4]A=sim(net,P)%对网络进行仿真上面两个函数都已经调试成功,有需要的朋友可以试试看,希望对大家有帮助。

基于MATLAB的BP神经网络设计

基于MATLAB的BP神经网络设计

维普资讯
第 3 (0 7 第 8期 5卷 20 )
计算 机与数字工程
15 2
数太 少 , 错性 差 , 别未 经学 习的能力 样本 低 , 容 识 所 以必 须综合 多方 面 的 因素进行 设计 。 ①根 据 前 人 经 验 , 以 参 考 以 下 公 式 进 行 可

隐层节点数太多会导致学习时间过长 ; 而隐层节点

收 到本 文 时 间 :06年 1 20 O月 1 日 9
作者简介 : 孙帆 , , 男 硕士研究生 , 研究方 向: 神经 网络算法 , 电站 电价预测 。施学 勤 , , 水 女 硕士研究生 , 研究方 向 : 数 据库理论 与设计 , 管理信息系统 。
B 神经 网络 P T 13 P 8 M TA A L B语言 设计
定, 无规律 可寻。简要介 绍利用 MA L B语 言进行 B TA P网络建立 、 训练 、 真的方法及注意事项 。 仿
关键词 中图分类号
1 引 言
人工 神经 网络 ( rfil erl e ok 简 称 At c ua N t rs i aN i w A N) 近 年 来 发 展 起 来 的模 拟 人 脑 生 物 过 程 的 N 是
设计 :
针对 不 同 的应 用 ,P网络 提供 了多 种训 练 , B 学 习方法 , 常 对 于 包 含 数 百 个 权 值 的 函数 逼 近 网 通 络 , 练 函数 t il 收敛 速度 最 快 。将 R R P算 训 r nm a PO 法 的训 练 函数 t ir 用 于模 式 识 别 时 , 速 度 r np应 a 其
映射 。在模式样本相对较少的情的超平 面划 分 , 时 , 可 此 选择 两层 B P网络就 可以 了; 当模式样本数 很多 时 , 小 网络规模 , 一个 隐层 是有必 要 的 , 减 增加 但是

(完整word版)BP神经网络实验报告

(完整word版)BP神经网络实验报告

BP 神经网络实验报告一、实验目的1、熟悉MATLAB中神经网络工具箱的使用方法;2、经过在MATLAB下面编程实现BP网络逼近标准正弦函数,来加深对BP网络的认识和认识,理解信号的正向流传和误差的反向传达过程。

二、实验原理由于传统的感知器和线性神经网络有自己无法战胜的弊端,它们都不能够解决线性不能分问题,因此在实质应用过程中碰到了限制。

而BP 网络却拥有优异的繁泛化能力、容错能力以及非线性照射能力。

因此成为应用最为广泛的一种神经网络。

BP 算法的根本思想是把学习过程分为两个阶段:第一阶段是信号的正向流传过程;输入信息经过输入层、隐层逐层办理并计算每个单元的实质输出值;第二阶段是误差的反向传达过程;假设在输入层未能获取希望的输出值,那么逐层递归的计算实质输出和希望输出的差值〔即误差〕,以便依照此差值调治权值。

这种过程不断迭代,最后使得信号误差到达赞同或规定的范围之内。

基于 BP 算法的多层前馈型网络模型的拓扑结构如上图所示。

BP 算法的数学描述:三层BP 前馈网络的数学模型如上图所示。

三层前馈网中,输入向量为: X ( x1 , x2 ,..., x i ,..., x n )T;隐层输入向量为:Y( y1 , y2 ,..., y j ,...y m ) T;输出层输出向量为: O (o1 , o2 ,..., o k ,...o l )T;希望输出向量为:d(d1 ,d 2 ,...d k ,...d l )T。

输入层到隐层之间的权值矩阵用 V 表示,V(v1 , v2 ,...v j ,...v m ) Y,其中列向量v j为隐层第 j 个神经元对应的权向量;隐层到输出层之间的权值矩阵用W 表示,W( w1 , w2 ,...w k ,...w l ) ,其中列向量 w k为输出层第k个神经元对应的权向量。

下面解析各层信号之间的数学关系。

对于输出层,有y j f (net j ), j1,2,..., mnet j v ij x i , j1,2,..., m对于隐层,有O k f (net k ), k1,2,...,lm net k wjkyi, k1,2,...,lj0以上两式中,转移函数 f(x) 均为单极性Sigmoid 函数:1f ( x)x1 ef(x) 拥有连续、可导的特点,且有 f ' (x) f ( x)[1 f ( x)]以上共同构成了三层前馈网了的数学模型。

BP神经网络在MATLAB上的实现与应用

BP神经网络在MATLAB上的实现与应用

收稿日期:2004-02-12作者简介:桂现才(1964)),海南临高人,湛江师范学院数学与计算科学学院讲师,从事数据分析与统计,数据挖掘研究.2004年6月第25卷第3期湛江师范学院学报JO URN AL OF Z HA NJI ANG NOR M AL CO LL EG E Jun 1,2004Vol 125 N o 13BP 神经网络在M ATLAB 上的实现与应用桂现才(湛江师范学院数学与计算科学学院,广东湛江524048)摘 要:BP 神经网络在非线性建模,函数逼近和模式识别中有广泛地应用,该文介绍了B P 神经网络的基本原理,利用MA TL AB 神经网络工具箱可以很方便地进行B P 神经网络的建立、训练和仿真,给出了建立BP 神经网络的注意事项和例子.关键词:人工神经网络;BP 网络;NN box MA TL AB中图分类号:TP311.52 文献标识码:A 文章编号:1006-4702(2004)03-0079-051 BP 神经网络简介人工神经网络(Artificial Neural Netw orks,简称为N N)是近年来发展起来的模拟人脑生物过程的人工智能技术.它由大量简单的神经元广泛互连形成的复杂的非线性系统,它不需要任何先验公式,就能从已有数据中自动地归纳规则,获得这些数据的内在规律,具有很强的非线性映射能力,特别适合于因果关系复杂的非确性推理、判断、识别和分类等问题.基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple -layer feedf or ward net 2work,简记为BP 网络),是目前应用最多也是最成功的网络之一,构造一个BP 网络需要确定其处理单元)))神经元的特性和网络的拓扑结构.1.1神经元模型神经元是神经网络最基本的组成部分,一般地,一个有R 个输入的神经元模型如图1所示.其中P 为输入向量,w 为权向量,b 为阈值,f 为传递函数,a 为神经元输出.所有输入P 通过一个权重w 进行加权求和后加上阈值b 再经传递函数f 的作用后即为该神经元的输出a.传递函数可以是任何可微的函数,常用的有Sigmoid 型和线性型.1.2 神经网络的拓扑结构神经网络的拓扑结构是指神经元之间的互连结构.图2是一个三层的B P 网络结构.B P 网络由输入层、输出层以及一个或多个隐层节点互连而成的一种多层网,这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系,又不致使网络输出限制在-1和1之间.2 M A TLAB 中B P 神经网络的实现BP 网络的训练所采用的算法是反向传播法,可以以任意精度逼近任意的连续函数,近年来,为了解决BP 网络收敛速度慢,训练时间长等不足,提出了许多改进算法[1][2].在应用BP 网络解决实际问题的过程中,选择多少层网络、每层多少个神经元节点、选择何种传递函数、何种训练算法等,均无可行的理论指导,只能通过大量的实验计算获得.这无形增加了研究工作量和编程计算工作量.M AT L AB 软件提供了一个现成的神经网络工具箱(Neural Netw ork T oolbox,简称N Nbox),为解决这个矛盾提供了便利条件.下面针对BP 网络的建立、传递函数的选择、网络的训练等,在介绍NN box 相关函数的基础上,给出利用这些函数编程的方法.2.1 神经网络的建立M AT LAB 的N Nbox 提供了建立神经网络的专用函数ne wff().用ne wf f 函数来确定网络层数、每层中的神经元数和传递函数,其语法为:net =ne wf f(PR,[S1,S2,,,S N],{TF1,TF2,,,T FN},B TF,BL F,PF)其中PR 是一个由每个输入向量的最大最小值构成的Rx2矩阵.Si 是第i 层网络的神经元个数.TFi 是第i 层网络的传递函数,缺省为tansig,可选用的传递函数有tansig,logsig 或purelin.BT F )字符串变量,为网络的训练函数名,可在如下函数中选择:traingd 、traingdm 、traingdx 、trainbfg 、trainlm 等,缺省为trainlm.BL F )字符串变量,为网络的学习函数名,缺省为learngdm.BF )字符串变量,为网络的性能函数,缺省为均方差c mse cnew ff 在确定网络结构后会自动调用init 函数用缺省参数来初始化网络中各个权重和阈值,产生一个可训练的前馈网络,即该函数的返回值为net.由于非线性传递函数对输出具有压缩作用,故输出层通常采用线性传递函数,以保持输出范围.2.2 神经网络训练初始化后的网络即可用于训练,即将网络的输入和输出反复作用于网络,不断调整其权重和阈值,以使网络性能函数net.performFcn 达到最小,从而实现输入输出间的非线性映射.对于new ff 函数产生的网络,其缺省的性能函数是网络输出和实际输出间的均方差M SE.在N Nbox 中,给出了十多种网络学习、训练函数,其采用的算法可分为基本的梯度下降算法和快速算法,各种算法的推导参见文献[1][2].在M A T LAB 中训练网络有两类模式:逐变模式(incremental mode)和批变模式(batch mode).在逐变模式中,每一个输入被作用于网络后,权重和阈值被更新一次.在批变模式中,所有的输入被应用于网络后,权重和阈值才被更新一次.使用批变模式不需要为每一层的权重和阈值设定训80湛江师范学院学报(自然科学) 第25卷练函数,而只需为整个网络指定一个训练函数,使用起来相对方便,而且许多改进的快速训练算法只能采用批变模式,在这里我们只讨论批变模式,以批变模式来训练网络的函数是train ,其语法主要格式为:[net,tr]=train(N ET,p,t),其中p 和t 分别为输入输出矩阵,NET 为由ne wff 产生的要训练的网络,net 为修正后的网络,tr 为训练的记录(训练步数epoch 和性能perf).train 根据在new ff 函数中确定的训练函数来训练,不同的训练函数对应不同的训练算法.Traingd 基本梯度下降算法.收敛速度慢,可用于增量模式训练.Traingdm 带有趋势动量的梯度下降算法.收敛速度快于Traingd,可用于增量模式训练.Traingdx 自适应学习速度算法.收敛速度快于Traingd,仅用于批量模式训练.Trainnp 强适应性BP 算法.用于批量模式训练,收敛速度快,数据占用存储空间小.Traincgf Fletcher-reeves 变梯度算法.是一种数据占用存储空间最小的变梯度算法.Traincgp Polak -Ribiere 变梯度算法.存储空间略大于Traincgp,但对有些问题具有较快的收敛速度.Traincgb Powell-beale 变梯度算法.存储空间略大于Traincgp,具有较快的收敛速度.Trainsc g 固定变比的变梯度算法.是一种无需线性搜索的变梯度算法.Trainbf g BFGS 拟牛顿算法.数据存储量近似于Hessian 矩阵,每个训练周期计算虽大,但收敛速度较快.Trainoss 变梯度法与拟牛顿法的折中算法.Trainlm Levenberg -Marquardt 算法.对中度规模的网络具有较快的收敛速度.Trainbr 改进型L )M 算法.可大大降低确定优化网络结构的难度.训练时直接调用上述的函数名,调用前为下列变量赋初始值:net.trainParam.show )))每多少轮显示一次;net.trainPara m.L r )))学习速度;net.trainParam.epochs )))最大训练轮回数;net.trainPara m.goal )))目标函数误差.2.3 仿真函数及实例利用仿真函数可对训练好的网络进行求值运算及应用.函数调用形式为:a=sim(net,p);其中net 为训练好的网络对象,p 为输入向量或矩阵,a 为网络输出.如果P 为向量,则为单点仿真;P 为矩阵,则为多点仿真.作为应用示例利用上述的函数,可解决下述非线性单输入单输出系统的模型化问题.已知系统输入为:x(k)=sin(k*P /50)系统输出为:y(k)=0.7sin(P x)+0.3sin(3P x)假定采样点k I [0,50].采用含有一个隐层的三层BP 网络建模,为了便于比较建立了两个模型.模型一的神经元为{1,7,1},模型二为{3,7,1},输入层和隐层传递函数均为TA NSIG 函数,输出层为线性函数.网络训练分别采用基本梯度下降法和变学习速度的梯度下降法.可编制如下的应用程序:k=0:50;x(k)=sin(k*pi/50);y(k)=0.7*sin(pi*x)+0.3*sin(3*pi*x);net=new ff([0,1],[1,7,1],{-tansig .,.tansig .,.purelin .},.traingd .);%建立模型一,并采用基本梯度下降法训练.net.trainParam.show=100;%100轮回显示一次结果81第3期 桂现才:BP 神经网络在M A TL AB 上的实现与应用82湛江师范学院学报(自然科学)第25卷net.trainParam.L r=0.05;%学习速度为0.05net.trainParam.epochs=50000;%最大训练轮回为50000次net.trainParam.goal=1e-4;%均方误差为0.0001net=train(net,x,y);%开始训练,其中x,y分别为输入输出样本y1=sim(net,x);%用训练好的模型进行仿真plot(x,y,x,y1);%绘制结果曲线若采用模型二,仅需将程序第4句ne wf f函数中的第二个参数改为[3,7,1].若采用变学习速度算法,仅需将该函数第4个参数改为.traingda.,加入:net.trainparam.lr-inc=1.05%;训练速度增加系数.一句即可.模型一用基本梯度下降法,训练次数要5万次以上,用变学习速度的梯度下降法,训练次数为4214次.模型二用基本梯度下降法,训练次数要5万次以上,用变学习速度的梯度下降法,训练次数6511次.(M A TL AB6.0)以上结果反映出BP网络经有效训练后可很好地逼近非线性函数.但其训练次数过多,训练时间长.3建立BP神经网络的注意事项利用M A TL AB软件提供的工具箱编制采用BP网络解决非线性问题程序是一种便捷、有效、省事的途径,但在使用时要解决好以下几个关键环节.3.1神经元结点数网络的输入与输出结点数是由实际问题的本质决定的,与网络性能无关.网络训练前的一个关键步骤是确定隐层结点数L,隐层结点数的选择与其说具有科学性,不如说更具有技巧性,往往与输入数据中隐含的特征因素有关.L的选择至今仍得不到一个统一的规范.L的初始值可先由以下两个公式中的其中之一来确定[3][4].l=m+n(1)或l=0143mn+0112n2+2154m+0177n+0135+0151(2)其中m、n分别为输入结点数目与输出结点数目.隐层结点数可根据公式(1)或(2)得出一个初始值,然后利用逐步增长或逐步修剪法.所谓逐步增长是先从一个较简单的网络开始,若不符合要求则逐步增加隐层单元数到合适为止;逐步修剪则从一个较复杂的网络开始逐步删除隐层单元,具体实现已有不少文献讨论.3.2传递函数的选择工具箱提供了三种传递函数:L og-sigmoid、tan-sigmoid和线性函数.前两种为非线性函数,分别将x I(-],+])的输入压缩为y I[0,1]和y I[-1,+1]的输出.因此,对非线性问题,输入层和隐层多采用非线性传递函数,输出层采用线性函数,以保持输出的范围,就非线性传递函数而言,若样本输出均大于零时,多采用L og-sigmoid函数,否则,采用Tan-sigmoid函数.对线性系统而言,各层多采用线性函数.3.3数据预处理和后期处理如果对神经网络的输入和输出数据进行一定的预处理,可以加快网络的训练速度,M A TL AB 中提供的预处理方法有(1)归一化处理:将每组数据都变为-1至1之间数,所涉及的函数有pre mnmx、postmnmx、tramnmx;(2)标准化处理:将每组数据都化为均值为0,方差为1的一组数据,所涉及的函数有prestd、poststd、trastd;(3)主成分分析:进行正交处理,可减少输入数据的维数,所涉及的函数有prepca、trapca.(4)回归分析与相关性分析:所用函数为postrg,可得到回归系数与相关系数,也可用[5]介绍的方法进行置信区间分析.下面以归一化处理为例说明其用法,另外两种预处理方法的用法与此类似.对于输入矩阵p 和输出矩阵t 进行归一化处理的语句为:[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);训练时应该用归一化之后的数据,即:net =train(net,pn,tn);训练结束后还应对网络的输出an =sim(net ,pn)作如下处理:a =postmnmx(an,mint,maxt);当用训练好的网络对新数据pne w 进行预测时,也应作相应的处理:pnew n =tramnmx(pne w,minp,maxp);ane wn =sim(net,pne wn);ane w =postmnmx(anew,mint,ma xt);3.4 学习速度的选定学习速度参数net.trainparam.lr 不能选择的太大,否则会出现算法不收敛.也不能太小,会使训练过程时间太长.一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值来确定.3.5 对过拟合的处理网络训练有时会产生/过拟合0,所谓/过拟合0就是训练集的误差被训练的非常小,而当把训练好的网络用于新的数据时却产生很大的误差的现象,也就是说此时网络适应新情况的泛化能力很差.提高网络泛化能力的方法是选择合适大小的网络结构,选择合适的网络结构是困难的,因为对于某一问题,事先很难判断多大的网络是合适的.为了提高泛化能力,可用修改性能函数和提前结束训练两类方法来实现,详见[6].参考文献:[1] 张乃尧、阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.[2] 刘增良、刘有才.模糊逻辑与神经网络)))理论研究与探索[M].北京:北京航空航天大学出版社,1996.[3] 徐庐生.微机神经网络[M].北京:中国医药科技出版社,1995.[4] 高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报,1998,21(1):80-85[5] 陈小前,罗世彬,王振国,等1B P 神经网络应用中的前后处理过程研究[J].系统工程理论与实践,2002,22(1):65-70.[6] 闵惜琳、刘国华.用MA TLAB 神经网络工具箱开发B P 网络应用[J].计算机应用,2001,21(8):163-164.[7] 飞思科技产品研发中心.MA TLAB 6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.Realization of BP Networks and Their Applications on MATLABG UI Xian-cai(Mathe matics and C omputational Science School,Zhanji ang Normal C ollege,Zhanjiang,Guangdong 524048,Chi na)Abstract:B P Neural Netw orks are widely applied in nonlinear modeling,f unction approach,and pat 2tern rec ognition.This paper introduces the fundmental of BP Neural Networks.Nnbox can be easily used to create,train and simulate a netw ork,w hile some e xamples and explanations are given.Key words:Artificial Neural Netw orks;B P Networks;Nnbox;M A TL AB 83第3期 桂现才:BP 神经网络在M A TL AB 上的实现与应用。

第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子

第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子
44
BP网络应用实例
x=imread(m,’bmp’); bw=im2bw(x,0.5); 为二值图像 [i,j]=find(bw==0); )的行号和列号 imin=min(i); )的最小行号 imax=max(i); )的最大行号 %读人训练样本图像丈件 %将读人的训练样本图像转换 %寻找二值图像中像素值为0(黑
4
BP网络学习算法
图5.5具有多个极小点的误差曲面
5
BP网络学习算法
另外一种情况是学习过程发生振荡,如图5.6所示 。 误差曲线在m点和n点的梯度大小相同,但方向相反 ,如果第k次学习使误差落在m点,而第k十1次学习 又恰好使误差落在n点。 那么按式(5.2)进行的权值和阈值调整,将在m 点和n点重复进行,从而形成振荡。
图 5.16
待分类模式
20
BP网络应用实例
解(1)问题分析 据图5.16所示两类模式可以看出,分类为简单的非 线性分类。有1个输入向量,包含2个输入元素;两 类模式,1个输出元素即可表示;可以以图5.17所 示两层BP网络来实现分类。
图 5.17
两层BP网络
21
BP网络应用实例
(2)构造训练样本集
6
BP网络学习算法
图5.6学习过程出现振荡的情况
7
BP网络的基本设计方法
BP网络的设计主要包括输人层、隐层、输出层及各 层之间的传输函数几个方面。 1.网络层数 大多数通用的神经网络都预先确定了网络的层数,而 BP网络可以包含不同的隐层。
8
BP网络的基本设计方法
但理论上已经证明,在不限制隐层节点数的情况下 ,两层(只有一个隐层)的BP网络可以实现任意非 线性映射。 在模式样本相对较少的情况下,较少的隐层节点, 可以实现模式样本空间的超平面划分,此时,选择 两层BP网络就可以了;当模式样本数很多时,减小 网络规模,增加一个隐层是必要的,但BP网络隐层 数一般不超过两层。

实验五BP神经网络的构建与使用(一)

实验五BP神经网络的构建与使用(一)

人工神经网络实验五BP神经网络的构建与使用(一)一、实验目的1、熟悉MATLAB中神经网络工具箱的使用方法;2、掌握BP神经网络的特性和应用范围;3、掌握使用BP神经网络解决实际问题的方法;二、实验内容:在第四次实验中,试图用线性神经网络求解函数逼近问题,从实验的结果可以看到未能达到预期的效果,下面使用BP 神经网络来求解函数逼近问题:1、有21组单输入矢量和相对应的目标矢量,参考书《神经网络实验教程》P36的示例程序,试设计一个BP神经网络来实现这对数组的函数关系。

BP神经网络的部分参数输入与目标数据如下:BP神经网络参数:隐含层神经元个数为5个,设置BP神经网络的最大训练次数为1000。

提示:正确选择输入层到隐含层、隐含层到输出层的激活函数,tansig的定义域为负无穷到正无穷,值域为-1到1,logsig的定义域为负无穷到正无穷,值域为0到1;为观察训练后神经网络的效果,可以利用sim()函数(参见书P22)和plot()函数(参见书P15)在同坐标中画出输入数据和期望目标数据、测试数据和测试数据输出的图形输入数据:P=-1:0.1:1期望目标数据:T=[-0.96、0.577、-0.0729、0.377、0.641、0.66、0.461、0.1336、0.201、-0.434、-0.5、-0.393、-0.1647、0.0988、0.3072、0.396、0.3449、0.1816、-0.0312、-0.2183、-0.3201](注意:为了清楚的表示数据,我在数据间加了逗号,同学们在MATLAB中使用进请将逗号改为空格)截图:代码:P=-1:0.1:1;T=[-0.960.577-0.07290.3770.6410.660.4610.13360.201-0.434-0.5-0.393-0.16470.09880.30720.3960.34490.1816-0.0312-0.2183-0.3201];%创建一个BP神经网络,每一个输入向量的取值范围为[-1,1],隐含层有5个神经元,输出层%有一个神经元,隐含层的激活函数为tansig,输出层的激活函数为logsig,训练函数为梯度下%降函数,即2.3.2节中所描述的标准学习算法net=newff([-11],[5,1],{'tansig','tansig'},'traingd');%可以改变训练步数为3000、5000、10000来查看网络的训练结果net.trainParam.epochs=5000;%目标误差设为0.01net.trainParam.goal=0.01;%设置学习速率为0.1LP.lr=0.1;net=train(net,P,T);y=sim(net,P);figurehndl1=plot(P,y);%设置线宽为2set(hndl1,'linewidth',2);%设置线的颜色为红色set(hndl1,'color','red');hold onhndl2=plot(P,T);set(hndl2,'linewidth',2);%设置图形标题title('BP神经网络逼近非线性函数的MATLAB实现'); %设置图例legend('BP神经网络逼近非线性函数','原数据')2、对1中建立的BP神经网络进行测试,测试数据为:P2=-1:0.025:1并对测试结果进行分析,3、当最大训练次数设置为3000、5000、10000时,分析网络的输出效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算智能实验报告
实验名称:BP神经网络算法实验
班级名称: 2010级软工三班
专业:软件工程
姓名:李XX
学号: XXXXXX*******
一、实验目的
1)编程实现BP神经网络算法;
2)探究BP算法中学习因子算法收敛趋势、收敛速度之间的关系;
3)修改训练后BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。

二、实验要求
按照下面的要求操作,然后分析不同操作后网络输出结果。

1)可修改学习因子
2)可任意指定隐单元层数
3)可任意指定输入层、隐含层、输出层的单元数
4)可指定最大允许误差ε
5)可输入学习样本(增加样本)
6)可存储训练后的网络各神经元之间的连接权值矩阵;
7)修改训练后的BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果。

三、实验原理
1 明确BP神经网络算法的基本思想如下:
在BPNN中,后向传播是一种学习算法,体现为BPNN的训练过程,该过程是需要教师指导的;前馈型网络是一种结构,体现为BPNN的网络构架
反向传播算法通过迭代处理的方式,不断地调整连接神经元的网络权重,使得最终输出结果和预期结果的误差最小
BPNN是一种典型的神经网络,广泛应用于各种分类系统,它也包括了训练和使用两个阶段。

由于训练阶段是BPNN能够投入使用的基础和前提,而使用阶段本身是一个非常简单的过程,也就是给出输入,BPNN会根据已经训练好的参数进行运算,得到输出结果
2 明确BP神经网络算法步骤和流程如下:
1初始化网络权值
2由给定的输入输出模式对计算隐层、输出层各单元输出
3计算新的连接权及阀值,
4选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。

四、实验内容和分析
1.实验时建立三层BP神经网络,输入节点2个,隐含层节点2个,输出节
输入值输出
0.0 0.0 0.0
0.0 1.0 1.0
1.0 0.0 1.0
1.0 1.0 0.0
代码:
P=[0.0 0.0 1.0 1.0;0.0 1.0 0.0 1.0];%输入量矩阵
T=[0.0 1.0 1.0 0.0];%输出量矩阵
net=newff(minmax(P),T,[2 1],{'tansig','purelin'},'traingd');%创建名为net的BP神经网络
inputWeights=net.IW{1,1};%输入层与隐含层的连接权重
inputbias=net.b{2};%输入层与隐含层的阈值
net.trainParam.epochs=5000;%网络参数:最大训练次数为5000次
net.trainParam.goal=0.01;%网络参数:训练精度为0.001 net.trainparam.lr=0.5;%网络参数:学习设置率为0.5
net.trainParam.mc=0.6; %动量
[net,tr]=train(net,P,T); %训练
A=sim(net,P); %仿真
E=T-A; %误差
MSE=mse(E); %均方误差
训练结果:
训练次数5000,全局误差0.008364
2.输入测试样本为
输入层与隐含层连接权值为 隐含层与输出层连接权值为 隐含层神经元阈值为
输出层神经元阈值为
可见网络性能良好,输出结果基本满足识别要求。

3.改变学习因子
学习因子决定每一次循环训练中所产生的权值变化量。

大的学习因子可能导致系统的不稳定;但小的学习因子导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于误差最小值。

所以一般情况下倾向于选取较小的学习速率以保证系统的稳定性。

4.改变输入层、隐含层、输出层的单元数
当隐含层节点个数为3时,相同训练样本和测试样本,得到测试结果为
net=newff(minmax(P),T,[3 1],{'tansig','purelin'},'traingd');%创建名为net的BP神经网络
训练次数5000,全局误差0.004126
可见,改变输入层、隐含层、输出层的单元数,即改变网络结构,可以改善网络性能,增加隐含层节点个数可以更好的提取模式特征,识别结果更精确,但网络复杂度增加,可能不稳定。

5.最大允许误差ε控制网络识别精度。

提高,但可能导致网络无法收敛到允许的误差范围。

net.trainParam.lr=0.05;
6.增加学习样本
在基本实验的基础上,增加一个学习样本0.1 1.0 1.0后,训练次数变增加为18982,全局误差为0.0099993,相同测试样本,测试结果为
在基本实验的基础上,增加一个学习样本0.1 1.0 1.0后,训练次数变增加为20000,全局误差为0.12568,相同测试样本,测试结果为
网络学习速度降低,识别精度大大提高。

另外,改变学习样本个数,将改变原有训练结果。

7.改变部分连接权值
网络性能被改变。

四、实验小结
通过这次实验,我对BP神经网络有了更为重要的理解。

明白了BP神经网络算法的基本步骤,会运用Matlab构建简单的BP神经网络。

同时,了解了BP神经网络各个参数的意义。

在实验过程中,通过改变参数的值,调整BP神经网络的输出结果。

相关文档
最新文档