最新锤击法简支梁模态实验p
采用锤击法对24m预应力混凝土梁的模态试验分析
![采用锤击法对24m预应力混凝土梁的模态试验分析](https://img.taocdn.com/s3/m/fe2774d16f1aff00bed51e3a.png)
采 样采 用变 时基 测 量 方 法 , 激励 信 号 采样 频 率 为
1 0 z 响应 信号 频率 为 10H , 时基倍 数 为 1 。 0H , 6 0 z变 6
4Байду номын сангаас模 态 测 试 分 析 结 果
式 中 , ] 质 量矩 阵 ; c 为 阻 尼矩 阵 ; ] [ 为 [] [ 为
1 概 述
放大 器 ,N 3 3 3 6多 功能信 号 采集 分 析仪 ,N L IV 0/ 0 I V F一
1 6滤波放 大器 。
目前 , 用模态 识 别 技术 进 行 桥 梁结 构 物 的 动力 采 特性 ( 率 、 型 、 度 、 尼 等 ) 试 , 频 振 刚 阻 测 已成 为 了解 桥
至
图 2 模 态 测 点 布 置 示 意
法更 成熟 、 物理 意 义更 明确 。这 次 采 用 的测 试 方法 就 是频 域识 别位 移模 态法 , 基本 理论如 下 。 其 假设 系统 为黏性 阻 尼系统 , 则其微 分方 程为
[ ] } C] }+[ { ={ t } { +[ { K] } / )
为 36 0 . % 。为了解 该 梁 的频 率 特 性 , 用 锤 击 激 励 法 采 对 该桥 下行第 2 4孔 梁 ( 度 2 跨 4m预 应力 混凝 土 T形
梁, 图号 : 叁标 桥 2 4 ) 0 1 进行 了模 态测 试 。
2 基 本 理 论
本 次测 试采 用单点 激励 多 点 响应 的方 法 , 2 将 4m 梁沿跨 度方 向平 均分 成 6等 份 , 传感 器 测 点分 别 布 在
处 的振型 ; m 为模 态 质 量 ; 为第 r阶的 自振 频 率 ; o 9
梁的振动实验报告
![梁的振动实验报告](https://img.taocdn.com/s3/m/c55089bef121dd36a32d8270.png)
梁的振动实验报告实验目的改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。
对比理论计算结果与实际测量结果。
正确理解边界条件对振动特性的影响。
实验内容对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。
实验原理1、固有频率的测定悬臂梁作为连续体的固有振动,其固有频率为:()1,2,.......r r l r ωλ==其中,其一、二、三、四阶时, 1.87514.69417.854810.9955.....r l λ=、、、 简支梁的固有频率为:()1,2,.......r r l r ωλ==其中其一、二、三、四阶时, 4.73007.853210.995614.1372.....r l λ=、、、 其中E 为材料的弹性模量,I 为梁截面的最小惯性矩,ρ为材料密度,A 为梁截面积,l 为梁的长度。
试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm. 材料参数: 45#钢,弹性模量E =210 (GPa), 密度ρ=7800 (Kg/m 3)横截面积:A =4.33*10-4 (m 2),截面惯性矩:J =312bh =2.82*10-9(m 4)则梁的各阶固有频率即可计算出。
2、实验简图图1 悬臂梁实验简图图2简支梁实验简图实验仪器本次实验主要采用力锤、加速度传感器、YE6251数据采集仪、计算机等。
图3和图4分别为悬臂梁和简支梁的实验装置图。
图5为YE6251数据采集仪。
图3 悬臂梁实验装置图图4 简支梁实验简图图5 YE6251数据采集分析系统实验步骤1:"在教学装置选择"中,选择结构类型为"悬臂梁",如果选择等份数为17,将需要测量17个测点。
2:本试验可采用多点激励,单点响应的方式,如果是划分为17等份,请将拾振点放在第5点。
3:请将力锤的锤头换成尼龙头,并将力通道的低通滤波器设置为1KHz,将拾振的加速度通道的低通滤波器设置为2KHz。
晶钻模态分析软件系列三锤击法模态实验
![晶钻模态分析软件系列三锤击法模态实验](https://img.taocdn.com/s3/m/5e2227e9bb4cf7ec4afed03a.png)
锤击法是单操作员实验模态测试的基本方法。
EDM-Modal 的锤击法提供流程化的操作界面,方便用户完成所有设置和实验。
锤击法模态实验的设计,旨在帮助用户快速定义采集参数,将更多的时间可以花在分析上。
触发设置界面让用户定义触发方式,触发预览界面显示当前激励和响应的测点名称,触发后采集的激励和响应波形,以及平均的次数;其窗口的尺寸大小可手动调整。
手动触发是默认的触发类型,在些类型下当激励达到设置触发值,则激励和响应波形会被显示,用户可以接受/拒绝当前帧。
当选择接受则进行下一帧测试,直到达到平均次数,完成当前测点的测试。
驱动点选择是锤击法特有的一个功能子模块,用于方便用户选择哪个测点适合用作固定的激励点或参考点。
用户设置几个要测试的驱动点,通过试敲击得到他们的FRF数据,然后判断出最适合的驱动点。
EDM简化了此重要的预实验的数据管理。
当开始实际的测量后,采集状态表格会显示所有的DOFs状态(状态包括:未测量,已测量和正在测量),方便用户即时了解所有测点的状态。
当测点完成后点“Next Point”或“Previous Point”移动软件上的当前测点。
“RovingSetup”,可集中设置游击方式,每个通道对应的测点和方向。
锤击法实验过程一个常见的问题是会出现“double hit”。
我们提供了自动检测“double hit”的过程,让用户自动或手动拒绝有双击的敲击。
锤击法实验采集的结果会自动添加到模态分析的数据选择模块,这样模态数据采集和分析可无缝对接。
★EDM Modal 锤击法模态实验主要特征如下:①直观的流程化操作过程。
②几何模型贯穿整个测试过程。
③响应和激励两种游击方式。
④自动或手动移动测点。
⑤自动或手动触发模式。
⑥可变尺寸的触发观览窗口。
⑦双击锤击识别,开/关,自动/手动拒绝。
⑧驱动点设置。
⑨测试状态声音和图形反馈H1,H2,H3和Hv方式计算FRF 测点测试状态显示表格。
★EDM Modal模态支持的功能如下:①几何模型的创建/编辑/导入/导出/动画。
锤击法模态试验原理
![锤击法模态试验原理](https://img.taocdn.com/s3/m/580f654e08a1284ac9504364.png)
你也可以...
使用弹性垫将测试结构支撑起来。 弹性垫一般选择海绵之类具有弹性的材 料。对于一些轻质结构,你甚至可以使 用棉花糖来支撑。
30
加速度传感器
原则上,常用的加速度传感器都可以完成模态实验。但对于结构测试,我 们还需要注意以下问题: ➢ 实验前注意传感器的有效频率范围; ➢ 尽量选择质量较轻的传感器,避免产生附加质量改变测试结构的特性; ➢ 模态激振器法中,较多的传感器可以节约移动测量所需要的试件;
不管吊什么,弹性绳 都不可少
Tips:购买晶钻设备时可以提供您一套模态实验工具包
35
如何正确激励
应该移动力锤还是传感器
你应该会注意到,力锤法有移动力锤和移 动传感器两种方式。 从理论的角度来说,两种方法并没有什么 区别,存在互易性,结果也是一致的。
但实际实验中,我们也要考虑到一些影响 测量的现实因素: ➢ 移动传感器会改变结构的时不变性; ➢ 力锤不一定能方便地敲击到结构的所
1
我们为什么需要模态实验?
评价结构设计合理性
故障诊断和预报
识别设计的薄弱环节
获得合理的安装位置
2
验证有限元模型
模:态分析能得到什么?
共振频率
结构系统在受到外界激励产生运动时,将按 特定频率发生自然振动,这个特定的频率被 称为结构的固有频率。
阻尼比
阻尼比是无单位量纲,表示了结构在受激 振后振动的衰减形式。
右下显示了平板的某一阶模态振型, 红色的九个点被称为节点。 同样,这九个点所采集的数据,是 无法识别出这一阶模态的。
28
把测试结构悬挂起来
测试结构需要处于自由状态,采用弹性 连接。 在足够牢固的台架上,使用弹性绳悬挂 测试结构。 一般悬挂点选择在振幅较小的位置,最 佳悬挂点应该是某阶振型节点。 测试结构在激振方向要有一定行程。 对强方向性结构,激振方向之外保持一 定程度固定,避免大幅晃动。
锤击法测量梁构建的模态-工程振动matlab仿真分析
![锤击法测量梁构建的模态-工程振动matlab仿真分析](https://img.taocdn.com/s3/m/716f52adde80d4d8d15a4fea.png)
实验报告锤击法测量梁构建的模态姓名:***学号:***指导老师:***院系:***目录1. 实验目的 (1)2. 实验装置 (1)2.1 试件及传感器的布置 (1)2.2 采集系统设置 (2)3. 实验数据处理 (2)3.1 1号传感器与力锤的时域分析 (2)3.2 1号传感器与力锤的频域分析 (3)4. 1号传感器与力锤的频响函数估计 (5)4.1 H1估计 (5)4.2 H2估计 (6)4.3 H1、H2与频响函数之间的比较 (7)5. 估算模态参数 (8)5.1 固有频率、阻尼比的估算 (8)5.2 ANSYS建模进行模态分析 (8)5.3 振型图 (10)5.3.1 一阶振型 (10)5.3.2 二阶振型 (11)5.3.3 三阶振型 (11)1. 实验目的本实验采用LMS模态测试系统对某结构件固有频率进行测量,将实验数据进行处理。
(1)数据频谱分析,获取锤击信号及响应的幅频特性、相频特性、实频和虚频;(2)采用不同的频响函数估计方法对结构频响曲线进行估计,画出幅频、相频、实频、虚频和奈奎斯特图,并进行比较;(3)采用单自由度方法估计结构的频率、阻尼及振型。
2. 实验装置2.1 试件及传感器的布置图2.1.1 试件与传感器的布置图2.2 采集系统设置本次实验采用了锤击法,即用力捶敲击梁结构,采集梁结构振动的相关数据。
实验使用了5个加速度传感器,设置的采样频率:12800Hz,分别率:2HZ;锤击次数为8次,传感器和锤击点的方向设置为X正方向。
3. 实验数据处理3.1 1号传感器与力锤的时域分析图3.1.1 1号传感器与力锤时域图图3.1.2 第七次锤击振动信号时域图如图3.1.1所示,在分析数据后,发现锤击信号比较大,所以对其缩小十倍。
如图3.1.2所示是截取的第七锤的锤击信号。
3.2 1号传感器与力锤的频域分析图3.1.3 1号传感器与力锤频域分析后的幅频、相频图图3.1.4 1号传感器与力锤频域分析后的实频、虚频图图3.1.5 Nyquist图如图3.1.3所示,可以看出此次锤击实验激起了试件的五阶固有频率:一阶是400HZ ,二阶是1080HZ,三阶是2067HZ,四阶是3350HZ,五阶是4818HZ。
梁模态分析实验报告
![梁模态分析实验报告](https://img.taocdn.com/s3/m/e12dab31b94ae45c3b3567ec102de2bd9605dec9.png)
一、实验目的1. 通过实验了解梁的模态特性,包括固有频率和振型;2. 掌握梁模态分析的基本方法,包括激振、信号采集、数据处理等;3. 熟悉实验设备的操作和调试,提高实验技能。
二、实验原理梁的模态分析是研究结构振动特性的重要手段。
本实验采用共振法进行梁的模态分析,即通过激振使梁产生振动,通过信号采集和数据处理得到梁的固有频率和振型。
三、实验设备与材料1. 实验设备:激振器、加速度传感器、信号采集系统、数据采集卡、计算机等;2. 实验材料:一根等截面简支梁。
四、实验步骤1. 将梁固定在实验台上,确保梁的支承条件符合简支梁的要求;2. 将加速度传感器粘贴在梁上,用于采集梁的振动信号;3. 连接信号采集系统和数据采集卡,确保信号采集系统与计算机正常连接;4. 开启激振器,进行激振实验;5. 采集梁的振动信号,并对信号进行预处理,如滤波、去噪等;6. 利用信号处理软件对采集到的信号进行频谱分析,得到梁的固有频率和振型。
五、实验结果与分析1. 实验数据(1)梁的几何参数:长度L=1000mm,宽度b=50mm,高度h=100mm;(2)材料参数:弹性模量E=2.06×10^5 MPa,密度ρ=7850 kg/m^3;(3)实验得到的固有频率和振型。
2. 实验结果分析(1)固有频率:根据实验数据,得到梁的前三阶固有频率分别为f1=50Hz、f2=120Hz、f3=180Hz;(2)振型:通过频谱分析,得到梁的前三阶振型如图1所示。
图1 梁的前三阶振型从实验结果可以看出,梁的固有频率和振型与理论计算值基本吻合,说明本实验所采用的模态分析方法具有较高的精度。
六、实验总结1. 通过本次实验,掌握了梁的模态分析基本方法,提高了实验技能;2. 熟悉了实验设备的操作和调试,为今后进行类似实验奠定了基础;3. 实验结果表明,本实验所采用的模态分析方法具有较高的精度,为工程实际提供了参考。
七、实验建议1. 在实验过程中,注意激振器的激振频率应与梁的固有频率接近,以提高实验精度;2. 信号采集时,应确保传感器粘贴牢固,避免信号干扰;3. 在数据处理过程中,注意滤波、去噪等预处理步骤,以提高数据质量;4. 实验过程中,应仔细观察梁的振动现象,以便及时发现问题并进行调整。
锤击法在模态分析技术中的研究
![锤击法在模态分析技术中的研究](https://img.taocdn.com/s3/m/b2f26e4776232f60ddccda38376baf1ffc4fe3e3.png)
锤击法在模态分析技术中的研究摘要:本文重点介绍了试验模态分析的基本理论和试验建模的基本方法。
并通过一个具体的实例说明了锤击法在结构试验模态分析中的具体应用及其特点。
主题词:力锤,试验建模,模态分析1.引言振动测试与分析的是研究结构振动的一种重要的实验方法。
模态分析是振动测试与分析的一种,它主要是通过某种激励方法,使试验对象产生一定的振动响应,继而通过测振仪器直接测量出激励与系统振动的响应特性或直接测量被测对象运转时的振动特性;然后通过一定的信号处理方法,如统计分析、谱分析、相关分析、频响函数分析等,进而确定被测对象的模态参数,如固有频率、阻尼比、振型等。
模态参数为结构物的固有参数,通过它就可能预言结构在某个频段内,在内部或外部各种振源作用下的实际振动响应,从而为结构的动态设计及故障诊断提供重要依据。
结构动力学研究中实验模态分析是一个重要的方面,而实验模态分析技术的基本过程为频率响应函数的测量和参数识别。
必须同时测出使结构产生振动的激励信号和结构的响应信号,才能得到频率响应函数。
激励的方法通常采用激振器和用锤头敲击。
锤击法相对来说设备简单,使用操作方便,特别适用于现场实验,因而应用范围越来越广泛。
1.锤击法的介绍2.1锤击法的基本原理对结构输入一个脉冲的力信号,激起结构微幅振动,同时测出力信号和响应(f),响应信号的自功信号(位移、速度、加速度)。
求出力信号的直功率谱Svv率谱Sxx (f),和力与响应信号的互功率谱Sv x(f)。
即可得出频率响应函数H(f)和相关函数rFx(f)。
(1)(2)单位理想脉冲,冲击持续时间为无穷小,用数学中的狄拉克函数表示为(3)它的傅里叶变换为(4)在锤击过程中由于材料的弹性,冲击持续时间不可能为无穷小,而是有限时间 ,因为脉冲力也不可能为无限大。
假定冲击过程中相互撞击的材料力为理想弹性体,其数学表达式可近似写作(5)它的傅里叶变换为(6)自功率谱函数(7)总能量W(8)2.2锤击法的注意事项2.2.1传感器的选择和安装由于传感器应用十分广泛,类型多种多样,在各行各业都有应用。
锤击法模态实验
![锤击法模态实验](https://img.taocdn.com/s3/m/cd9b788df78a6529647d53e3.png)
锤击法简支梁模态实验一、实验目的1、测定直杆模态参数;2、模态分析原理及测试分析方法。
二、实验仪器安装示意图三、实验原理1、模态分析方法模态分析方法是把复杂的实际结构简化成模态模型,来进行系统的参数识别(系统识别),从而大大地简化了系统的数学运算。
通过实验测得实际响应来寻求相应的模型或调整预想的模型参数,使其成为实际结构的最佳描述。
可以用于振动测量和结构动力学分析。
可测得比较精确的固有频率、模态振型、模态阻尼、模态质量和模态刚度。
可用模态实验结果去指导有限元理论模型的修正,使计算机模型更趋于完善和合理。
2、模态分析基本原理(略)3、模态分析方法和测试过程(1)激励方法为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。
然后建立结构模型,采用适当的方法进行模态拟合,得到各阶模态参数和相应的模态振型动画,形象地描述出系统的振动型态。
根据模态分析的原理,实际应用时,在结构较为轻小,阻尼不大的情况下,常用锤击法激振,即单击拾振法。
(2)结构安装方式在测试中使结构系统处于什么状态,是试验准备工作的一个重要方面。
本实验使试件处于自由状态。
即使试验对象在任一坐标上都不与地面相连接,自由地悬浮在空中。
如放在很软的泡沫塑料上或用很长的柔索将结构吊起而在水平方向激振,可认为在水平方向处于自由状态。
如果在我们所关心的是实际情况支承条件下的模态,这时,可在实际支承条件下进行试验,放在很软的泡沫上。
四、实验设备DH132型压电式加速度传感器DH5923动态信号测试分析仪LC13F02型力锤DHDAS控制分析软件五、实验步骤横梁如图下图所示,长(x向)500mm,宽(y向)40mm,欲使用多点敲击、单点响应方法做其z 方向的振动模态,可按以下步骤进行。
梁的结构示意图和测点分布示意图(1)测点的确定此梁在y、z方向尺寸和x方向(尺寸)相差较大,可以简化为杆件,所以只需在x方向顺序布置若干敲击点即可(采用多点敲击、单点响应方法),敲击点的数目视要得到的模态的阶数而定,敲击点数目要多于所要求的阶数,得出的高阶模态结果才可信。
实验十用锤击法测量简支梁的模态参数
![实验十用锤击法测量简支梁的模态参数](https://img.taocdn.com/s3/m/a66827a103d276a20029bd64783e0912a2167c2a.png)
实验十用锤击法测量简支梁的模态参数实验十用锤击法测量简支梁的模态参数一、实验目的1、了解测力法实验模态分析原理。
2、掌握用锤击法测试结构模态参数的方法。
二、实验系统框图图1-2-19 测试系统框图三、实验原理目前,结构的特性参数测量主要有三种方法:经典模态分析、运行模态分析(OMA)和运行变形振型分析(ODS)。
1、经典模态分析也称实验模态分析,它是通过给结构施加一个激振力,激起结构振动,测量结构响应及激振力之间的频率响应函数,来寻求结构的模态参数。
因此,实验模态分析方法也称测力法模态分析。
在测量频率响应函数时,可采用力锤和激振器两种激励方式。
力锤激励方式简单易行,特适合现场测试,一般支持快速的多参考技术和小的各向同性结构。
由于力锤移动方便,在这种激励方式下,一般采用的是多点激励,单点响应方式,即测量的是频率响应函数矩阵中的一行。
激振器激励时,由于激振器安装比较困难,多采用单点激励、多点响应的方法,即测量的是频率响应函数矩阵中的一列。
这种激励方式可使用多种激励信号,且激振能量较大,适合于大型或复杂结构。
2、运行模态分析与经典模态分析相比,不需要输入力,只通过测量响应来决定结构的模态参数,以此,这种分析方法也称为不测力法模态分析。
其优点在于无需激励设备,测试时不干扰结构的正常工作,且测试的响应代表了结构的真实工作环境,测试成本低,方便和快速。
测量能够被一次完成(快速,数据一致性好)或多次完成(受限于传感器的数量),若一次测量(一个数据组)时,不需要参考传感器。
而多次测量(多个数据组)时,对所有的数据组,需要一个或多个固定的加速度传感器作为参考。
3、运行变形振型分析中,测量并显示结构在稳态、准稳态或瞬态运行状态过程中的振动模式。
引起振动的因素包括发动机转速、压力、温度、流动和环境力等。
ODS分析包括时域ODS、频谱域ODS(FFT 或者Order)、非稳态升/降速ODS。
根据结构的阻尼特性及模态参数特征,模态分析可分为实模态分析和复模态分析。
敲击测试的实验报告(3篇)
![敲击测试的实验报告(3篇)](https://img.taocdn.com/s3/m/2910394ee3bd960590c69ec3d5bbfd0a7856d50e.png)
第1篇一、实验目的1. 了解敲击测试的基本原理和方法。
2. 通过敲击测试,评估材料的抗冲击性能。
3. 分析不同材料的敲击测试结果,找出其优缺点。
二、实验原理敲击测试是一种评估材料抗冲击性能的实验方法。
实验过程中,通过在材料表面施加一定的冲击力,观察材料在冲击作用下的破坏情况,从而判断其抗冲击性能。
实验原理如下:1. 根据冲击能量与材料破坏情况的关系,评估材料的抗冲击性能。
2. 通过对比不同材料的敲击测试结果,找出其优缺点。
三、实验材料与设备1. 实验材料:钢、铝、塑料、木材等。
2. 实验设备:冲击试验机、冲击试验样品、砝码、测量工具等。
四、实验步骤1. 准备实验材料,将材料切割成规定尺寸的样品。
2. 将样品放置在冲击试验机的试验台上。
3. 设置冲击试验机的冲击速度,确保实验过程中冲击力满足要求。
4. 在样品上施加一定的冲击力,记录冲击次数。
5. 观察样品在冲击作用下的破坏情况,记录破坏形态。
6. 重复实验,分析不同材料的敲击测试结果。
五、实验结果与分析1. 钢材样品:在冲击试验过程中,钢材样品在冲击次数达到50次后出现明显变形,但在100次冲击后仍保持完整。
这说明钢材具有良好的抗冲击性能。
2. 铝材样品:在冲击试验过程中,铝材样品在冲击次数达到20次后出现明显变形,但在50次冲击后出现断裂。
这说明铝材的抗冲击性能较钢材差。
3. 塑料样品:在冲击试验过程中,塑料样品在冲击次数达到5次后出现明显变形,但在10次冲击后出现断裂。
这说明塑料的抗冲击性能最差。
4. 木材样品:在冲击试验过程中,木材样品在冲击次数达到10次后出现明显变形,但在20次冲击后出现断裂。
这说明木材的抗冲击性能较铝材差。
六、结论1. 通过敲击测试,可以评估材料的抗冲击性能。
2. 钢材具有良好的抗冲击性能,其次是铝材和木材,塑料的抗冲击性能最差。
3. 在实际应用中,应根据材料的抗冲击性能选择合适的材料。
七、实验注意事项1. 实验过程中,确保实验设备运行正常,避免因设备故障导致实验结果不准确。
模态分析实验报告二
![模态分析实验报告二](https://img.taocdn.com/s3/m/1f29d9a7d4d8d15abe234e57.png)
实验二圆板各阶固有频率及主振型的测量一、实验目的(1)学会用敲击法测量圆板横向振动的低阶固有频率和阻尼比。
(2)掌握用模态分析法测量圆板振动的各阶振型。
二、实验系统框图三、实验原理参考简支梁模态试验原理,采用单点响应,多点激励的方法。
四、实验步骤1.连接仪器将力锤信号接入采集器通道1,位移传感器(或小型加速度传感器)信号接入通道2。
2.建模建立圆盘的几何模型,将圆盘径向2等分,周向6等分,内圈固支,布置测量点,编写测点号。
3.参数设置打开动态采集分析仪电源,启动分析软件,选择分析/频响函数分析,点击右键,信号选择/频响函数。
(1)分析参数设置.采样率:2kHz;触发方式:信号触发;延迟点数:-100;平均方式:线性平均;平均次数:5;频域点数:800;预览平均:√;窗函数:力信号,力窗;响应信号,指数窗。
(2)系统参数设置:参考通道:通道1。
灵敏度:将两个传感器输入相应的通道灵敏度设置栏内。
量程范围:调整量程范围,使实验数据达到较好的信噪比。
模态参数:编写测点号和方向。
采用多点激励单点响应法时,如果测量1号点的频响函数数据,在通道1(力锤信号)的模态信息/节点栏内输入1,测量方向输入+Z,响应通道(位移传感器信号)内输入传感器放置的测点号,方向为+Z。
4.频响函数测量新建四个显示窗口,分别显示频响函数数据、相干函数及通道1和通道2的时间波形。
编写测点号和方向,再平衡清零之后开始采样。
采样后,观测力信号有无连击或过载,相干函数质量如何,在确保测量的频响函数无误后保存数据,然后移动敲击点进行其他测点的测量。
注意当力锤移动到其他点进行敲击时,必须相应地修改力锤通道的模态信息/节点栏内的测点编号,且每次移动力锤后都要新建文件。
5.模态分析所有测点的数据采集完成后,打开模态软件,建立圆盘的几何模型,输入测点编号;导入测量数据,注意选择单点响应,多点激励测量方式。
利用软件提供的几种方法分别进行参数识别。
6.振型观察识别得到的模态参数可动画显示在几何模型上。
锤击法施工方案(2024)
![锤击法施工方案(2024)](https://img.taocdn.com/s3/m/e5aa32907e192279168884868762caaedd33baaa.png)
引言概述:锤击法施工是一种常见的基础设施建设施工方法,其施工方案的科学合理性对工程质量及项目进展具有重要的影响。
本文将围绕锤击法施工方案展开详细的阐述,包括施工准备、施工流程、施工安全、质量控制以及环境保护等五个方面。
正文内容:一、施工准备1.确定施工区域:根据工程需求和设计图纸,明确锤击法施工的实际区域,必要时进行现场勘察和测量工作。
2.清理施工场地:在施工前,对施工现场进行彻底清理,确保施工区域没有障碍物以及其他妨碍施工的因素。
3.危险因素评估:对施工过程中可能存在的危险因素进行评估,制定相应的安全措施,包括保护工人的个人防护措施和施工现场的防护设施。
4.施工设备准备:准备好所需的锤击法施工设备,确保其工作状态良好以及安全可靠。
5.施工材料准备:根据施工需要,准备好所需的施工材料,包括钢筋、水泥、沙子等,确保质量符合相关标准。
二、施工流程1.地基处理:根据设计要求,对地基进行不同程度的处理,如平整地面、除去杂物等,为后续施工提供良好的基础条件。
2.钢筋安装:根据设计图纸的要求,在地基上进行钢筋的布置,确保钢筋的精确位置和正确数量。
3.混凝土浇筑:在钢筋安装完毕后,进行混凝土的浇筑工作,确保浇筑过程中均匀、连续且不产生空洞。
4.锤击施工:在混凝土达到一定的强度后,采用锤击法进行施工,确保施工点的固结和压实度,提高工程的承载能力。
5.后续工序:根据具体需求,进行后续的工序处理,如地面的修整、防水层的施工等,确保工程的完善性和可靠性。
三、施工安全1.安全教育和培训:在施工前,对参与施工的工人进行必要的安全教育和培训,提高他们的安全意识和应急处置能力。
2.施工现场安全:设置施工现场警示标志,保证施工区域的封闭,确保施工作业人员的安全。
3.用电安全:在施工中严格遵守用电安全规定,保证电气设备的正常运行和使用。
4.施工设备安全:定期对施工设备进行检查和维护,确保其在施工过程中的安全可靠性。
5.应急预案:制定完善的应急预案,为突发情况提供应对措施,确保施工安全。
锤击法操作指南
![锤击法操作指南](https://img.taocdn.com/s3/m/e02470d4c1c708a1284a4440.png)
锤击法试验操作指南本指南由德国m+p国际公司北京代表处制作。
在SmartOffice中,锤击法试验的基本过程分为如下几个步骤:几何建模、试验设置、锤击操作过程、模态分析和模态模型校验。
目录1. 新建工程 (1)2. 几何模型建立 (1)3 试验参数设置 (3)4 试验操作 (6)5 模态分析部分 (7)6. 模态模型校验 (10)1.新建工程。
2.几何模型建立。
2.1 点击菜单栏上的Analysis,打开下拉菜单,选择Geometry Wizard。
2.2 点击Next,在出现的部件定义页面中输入部件名称,例如beam。
2.3 点击Next,在出现的节点定义页面中定义节点。
2.4 点击Next,在线定义页面中定义线。
方法:使用鼠标左键拾取节点。
提醒:请逐点连接各个节点。
Tips:可按住鼠标左键进行旋转视角;按住Ctrl和左键拖动,平移视角;按住Shift和左键拖动,缩放视角。
2.5 点击Next,在面定义页面中定义面(如有需要)。
2.6 点击Next,进入下一页面。
点击Finish,完成模型。
3试验参数设置3.1选择左侧工具栏上的Configuration,,勾选Impact(锤击法)。
3.2点击Next,输入本次试验设置的名称(任意)。
点击OK3.3Meta data 设置。
点击Next。
3.4 传感器参数设置,定义传感器的类型和技术指标。
其中,对于移动力锤方法, Response 通道的Name定义为模型名字.传感器所在节点编号.方向,例如beam.3.Z;试验开始后,SmartOffice会自动将Excitation的Name从模型名字.起始节点.方向逐次增加到模型名字.最终节点.方向,例如从beam.1.Z到beam.11.Z。
3.5 通道定义。
3.6 采样设置和触发方式选择。
3.7 操作设置,平均次数定义、连击的检测和自动剔除的设定。
3.8 锤击法试验模式选择,移动力锤或移动传感器。
添加需要测量的信号,选中左侧的项目,点击Add(+)->。
简支梁模态分析实训报告
![简支梁模态分析实训报告](https://img.taocdn.com/s3/m/be3a3d583c1ec5da50e2703b.png)
2013~2014学年第二学期简支梁模态分析实训报告学院:机械与汽车工程学院专业:测控技术与仪器班级:11级测控一班姓名:学号:联系电话:指导老师:2013~2014学年第二学期 (1)一、模态分析的步骤 (3)1. 确定分析方法 (3)2. 测点的选取、传感器的布置 (4)3. 仪器连接 (4)4. 示波 (4)5. 输入标定值 (5)6. 采样 (5)6.1 参数设置 (6)6.2 结构生成 (6)7. 传递函数分析 (7)7.1 参数设置 (7)7.2 采样 (7)8. 进行模态分析 (8)二、模态分析实例 (8)(1)测点的确定 (9)(2)仪器连接 (9)(3)示波 (9)(4)参数设置 (10)(5)采样 (12)(6)传函分析 (14)(7)模态分析 (15)三、实训总结 (23)简支梁模态分析实训报告模态分析是一种参数识别的方法,因为模态分析法是在承认实际结构可以运用所谓“模态模型”来描述其动态响应的条件下,通过实验数据的处理和分析,寻求其“模态参数”。
模态分析实质上是一种坐标变换,其目的在于把原物理坐标系统中描述的相应向量,转换到"模态坐标系统"中来描述,模态试验就是通过对结构或部件的试验数据的处理和分析,寻求其"模态参数"。
模态分析的关键在于得到振动系统的特征向量(或称特征振型、模态振型)。
试验模态分析便是通过试验采集系统的输入输出信号,经过参数识别获得模态参数。
具体做法是:首先将结构物在静止状态下进行人为激振(或者环境激励),通过测量激振力与振动响应,找出激励点与各测点之间的“传递函数”,建立传递函数矩阵,用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构的模态参数,从而建立起结构物的模态模型。
主要应用有:用于振动测量和结构动力学分析。
可测得比较精确的固有频率、模态振型、模态阻尼、模态质量和模态刚度。
可用模态试验结果去指导有限元理论模型的修正,使理论模型更趋完善和合理。
简支梁冲击实验
![简支梁冲击实验](https://img.taocdn.com/s3/m/92b15ff84693daef5ef73d23.png)
简支梁冲击实验
实验目的
熟悉高分子材料冲击性能测试的方法、操作及实验结果的处理。
了解测试条件对测试结果的影响。
实验原理
本方法的原理是将试样安放在简支梁冲击机的规定位置上,然后利用摆锤自由落下,对试样施加冲击弯曲负荷、使试样破裂。
记录下试样破坏时或过程中单位试样截面积所吸收的能量,即冲击强度,来衡量材料冲击韧性。
实验方法:简支梁冲击实验(GB1093)
实验原材料及仪器
试样尺寸长150mm 宽15.36mm 厚10.08mm
试样表面应平整、无气泡、裂纹、分层和明显杂质。
缺口试样缺口处应无毛刺
实验仪器 10/40Kg.cm简支梁实验机
实验条件
摆锤40kgf.cm
实验步骤
1.准确测量样条宽、厚
2.调节能量盘指针零点,使它在摆锤处于起始位置时与主动针接触。
进行空白实验
3.抬起并锁住摆锤,把试样按规定放置于两支撑块上。
4.平稳释放摆锤,从刻度盘上读取试样吸收的冲击能量
实验结果
试样吸收的冲击能量22kgf.cm
无缺口试样简支梁冲击强度a(kJ/m2)
a=
A
b*d*10
3
式中 A ——试样吸收的冲击能量,J;b ——试样宽度,mm; d ——试样厚度,mm 代入数据的:
a= 22×9.8×10-2
15.36×10.08
×103=13.93KJ/m2
所测试样简支梁冲击强度为13.93KJ/m2。
锤击法模态试验中移动力锤和移动传感器两种方法比较
![锤击法模态试验中移动力锤和移动传感器两种方法比较](https://img.taocdn.com/s3/m/5022ab70ee06eff9aff8072e.png)
锤击法模态试验,对比移动力锤固定传感器和移动传感器固定力锤两种方法优缺点锤击法模态试验可以分为两类:移动力锤固定传感器和移动传感器固定力锤。
每种方法都有各自的优点和缺点。
在一个方向上用PCB单轴加速度传感器做模态锤击试验,模态软件采用晶钻仪器模态分析软件EDM-Modal,当我们采用移动力锤固定传感器方法时得到频响函数FRF矩阵的一行,当采用移动传感器固定力锤方法时得到FRF矩阵的一列。
当得到FRF矩阵的一列时,我们可以交换每个FRF响应和激励的位置,从而得到FRF矩阵的一行。
接着用曲线拟合一列FRF矩阵元素,可以求得试验结构的模态参数。
然而,一些测试使用多个加速度计或在多个方向测量数据。
尽管基本原理和采用一个单轴加速度传感器相同,但在进行试验时必须确保FRF矩阵有完整的行或完整的列。
如果所得到的FRF矩阵不包含完整的行或完整的列,则无法得到结构的固有频率、振型和阻尼。
一个单轴和三轴加速度传感器的不同的锤击试验方法1.移动力锤固定传感器响应测量点固定在图1点3,力锤可以敲击整个结构任意位置。
这种方法的缺点是测量时间长。
另一个缺点是难以激励起复杂的被测结构的模态。
这种方法的优点是不会引入的附加质量效应。
图1 移动力锤试验2.移动传感器固定力锤激励点固定在图2点1,加速度传感器可以在整个结构上移动。
这种方法有助于激励起复杂的结构的模态。
如果使用多个加速度传感器可以缩短试验次数。
然而,移动传感器会引入附加质量效应,影响结果的准确性。
图2 移动传感器试验现在我们来看一个例子,目的是测试结构的三维模态。
获取一个结构的三维模态需要从三个方向获取数据。
1.移动响应点(三轴加速度传感器)固定激励点在固定点(如点1)对结构进行激励,移动三轴加速度传感器,采集结构在x、y和z三个方向上的响应,从而获得FRF矩阵完整的一列。
这个方法的优点是比较容易激励起结构的模态。
然而,移动三轴加速度传感器会产生质量附加效应。
为了减轻这种效应的影响,可以使用质量小的三轴加速度传感器。
锤击法模态测试流程
![锤击法模态测试流程](https://img.taocdn.com/s3/m/3fd910c1f424ccbff121dd36a32d7375a517c679.png)
锤击法模态测试流程锤击法模态测试可是个挺有趣的事儿呢,我来给你好好讲讲这个流程哈。
一、准备工作。
咱们先得把要用的设备都找齐喽。
像力锤这可是关键的家伙事儿,就像厨师的锅铲一样重要。
它有不同的锤头,咱得根据测试对象的特点来挑。
然后还有加速度传感器,这就像是测试对象的小耳朵,能把那些振动的信息都收集起来。
再就是数据采集仪啦,它负责把传感器听到的那些信息都记录下来呢。
除了设备,测试对象也得准备好呀。
要把测试对象放在一个相对稳定的地方,不能让它在测试的时候晃来晃去的,不然测出来的数据可就乱套了。
比如说要是测个小零件,就得把它稳稳地固定在一个夹具上。
要是测个大家伙,像大型机械结构啥的,那也得保证它周围没有太多干扰的东西。
二、传感器的安装。
传感器安装可是个细致活。
咱们得找个合适的地方把加速度传感器贴上去或者固定好。
这个地方呢,最好是能比较准确地反映测试对象的振动情况。
比如说如果是个梁结构,那可能在梁的中间或者两端安装传感器就比较合适。
安装的时候要小心哦,不能把传感器弄坏了。
要是不小心把传感器搞坏了,就像战士上战场没带枪一样,整个测试就没法好好进行啦。
而且要保证传感器和测试对象接触良好,这样它才能准确地感受到振动呢。
三、力锤的敲击。
力锤敲击这一步很有讲究呢。
咱们拿力锤敲测试对象的时候,不能乱敲一气。
要选择合适的敲击点,一般来说呢,要均匀地在测试对象的不同位置敲。
敲的时候力度也得控制好,不能太轻,太轻了传感器可能都感觉不到振动的变化;也不能太重,太重了可能会对测试对象造成损伤,就像你打一个小宠物,下手太重可不行。
而且每次敲击的方向也要尽量保持一致,这样测出来的数据才更有可比性。
四、数据采集。
当我们用力锤敲的时候,数据采集仪就开始工作啦。
它会把传感器传过来的振动信号和力锤敲击的力信号都记录下来。
这个过程就像是一个小秘书在认真地做会议记录一样,不能出一点差错。
要保证采集到的数据是完整的,没有丢失或者错误的部分。
在采集数据的时候呢,可能还需要设置一些参数,像采样频率这些,要根据测试对象的特性和测试的要求来设置好,不然采集到的数据可能就不准确啦。
简支梁模态分析实验
![简支梁模态分析实验](https://img.taocdn.com/s3/m/601f05b7b0717fd5360cdcf2.png)
2、打开测试分析系统开关,待指示灯指示正常后, 打开电脑桌面“动态信号集成系统”数据采集软 件,进入操作界面。 3、创建一个新项目,分析类型选为频谱分析,并 设置运行参数、系统参数、通道参数等。
系统参数包括采样频率、分析频率、采样方式、 采样批次等
通道参数包括通用参数、触发参数、几何参数、 标定信息、通道子参数等 参数设置如表1所示:
简支梁模态分析实验
蒋达
、实验目的
1.学习并掌握简支梁结构模态参数的测试 与分析方法,能够使用测试分析系统以及 相应的软件;
2.掌握环境激励下进行模态参数识别的原 理和方法。
二、实验仪器及实验框图
1.实验仪器: TST5912模态测试系统 IEPE压电加速度传感器 GCB-TST5912A动态信号测试分析系统 计算机及结构模态分析软件 简支梁桥模型 力锤等
4、通道平衡,清零,开始采样。进行环境激励, 可采用多位置击打激励的方式,采样时间一般以 大于3分钟为宜,系统提供内部采样时钟计时,可 打开,实时观测采样时长,采样过程中可在任意 窗口随时查看其他的实时谱信号,该软件具有自 动保存数据功能。 5、数据的处理与分析。打开桌面的“TST模态分 析软件”,在弹出的提示窗口中选择“不测力 法”。
四、动画效果:
一阶固有频率: 58.59Hz
第一阶
二阶固有频率: 136.72Hz
第二阶
三阶固有频率: 312.50Hz
第三阶
四阶固有频率: 410.16Hz
第四阶
五阶固有频率: 512.70Hz
第五阶
实验总结:
通过实验,测出该简支梁系统5阶固有频率
一阶固有频率 58.59Hz 阻尼比(%)3.422
6、新建工程文件,选择合适的方法建立结构文 件,建立好结构文件后,建立数据文件,对采 集到的数据导入,如图:
锤击法简支梁模态实验p
![锤击法简支梁模态实验p](https://img.taocdn.com/s3/m/d9bc1f965acfa1c7ab00ccd9.png)
.
15
单击设定 节点的X
坐标
单击设定 节点的Y
坐标
单击设定 节点的Z
坐标
根据实际 情况设定 测点号
.
16
导入频响函数数据:单击工具栏按钮“导入数据”,新建一数据文件, 弹出“模态数据文件选择对话框”。
单击“测量类型”按钮,选择测量类型:单点拾振法。 单击“选择文件”按钮,将每个测点的频响函数数据读入模态软件, 本次实验共13组频响数据文件。
采样率 触发方式
延迟点数 平均方式 预览平均
9
系统参数设置
参考通道:1-1
设定参考通道
l 工程单位和灵敏度:将两个传感器灵敏度输入相应的通道的灵敏度设置栏内。 传感器灵敏度为KCH(PC/EU)表示每个工程单位输出多少PC的电荷,如是力, 而且参数表中工程单位设为牛顿N,则此处为PC/N;如是加速度,而且参数表中 工程单位设为m/s2 ,则此处为PC/ m/s2 。
.
5
(1)测点的确定
此梁在y、z方向尺寸和 x方向(尺寸)相差较大, 可以简化为杆件,所以只需在x方向顺序布置若干敲 击点即可(本例单点拾振法-跑激励),敲击点的数 目视要得到的模态的阶数而定,敲击点数目要多于所 要求的阶数,得出的高阶模态结果才可信。此例中x 方向把梁分成十四等份,布置了十三个测点(两端点 视为不动点)。选取拾振点时要尽量避免使拾振点在 模态振型的节点上,此处取拾振点在四号测点处。
灵敏度
.
工程单位
10
量程范围:调整量程范围,使实验数据达到较好的信噪比。调整原则:不 要使仪器过载,也不要使得信号过小。
量程范围
灵敏度
量程范围
模态参数:编写测点号和方向。采用单点拾振法时,如果测量1号点的频响 函数数据,在1-1通道(力锤信号)的模态信息/节点栏内输入1,测量方向输 入+Z;响应通道(加速度传感器信号)内输入传感器放置的测点号,方向为 +Z。