浙教版八年级上数学认识三角形
(浙教版)八年级数学上册课件:1.1 认识三角形 第2课时
8.如果一个三角形的三条高的交点恰是三角形的一个顶点, 那么这个三角形是( )
C
A.锐角三角形 C.直角三角形
B.钝角三角形 D.不能确定
9.如图所示.
(1)在△ABC中,BC边上的高是______;
(2)在△AEC中,AE边上的高是______; AB
(3)若AB=CD=3 cm,AE=5 cm,则△AEC的面积S=
1 解:(1)∠DAE=20°.(2)∠DAE=2(β -α ).(3)∠EFG =20°.(4)∠EFG 的大小不发生改变.理由:∵AD⊥BC,
1 FG⊥BC,∴∠GFE=∠EAD.∵∠EAD=2(β -α ),∴∠EFG 的大小不发生改变.
5.如图,AD是△ABC的中线2 ,且AB=6 cm,AC=4 cm,则△ABD 与△ACD的周长之差是_______cm.
第5题图
第6题图
6.如图,点 D 是 BC 的中点,点 E 是 AC 的中点.若 S△ADE=1, 则 S△ABC=_____4___.
知识点3:三角形的高线 7.(义乌市期中)过△ABC的顶点A,作BC边上的高,以下作法 正确的是( )
18.(浦江县月考)(例2变式)已知:在△ABC中,∠C>∠B,AE平 分∠BAC. (1)如图①,AD⊥BC于点D,若∠C=70°,∠B=30°,请你用量 角器直接量出∠DAE的度数; (2)若△ABC中,∠B=α,∠C=β(α<β),根据(1)中的结果大胆猜 想∠DAE与α,β间的等量关系,不必说明理由;
(3)如图②所示,在△ABC中,AD⊥BC,AE平分∠BAC,点 F是AE上的任意一点,过点F作FG⊥BC于点G,且∠B= 40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
浙教版八年级数学上册1.1认识三角形 (共19张PPT)
(1) 1cm, 2cm, 3.5cm;
(2) 4cm, 5cm, 9cm;
(3) 6cm, 8cm, 13cm.
例 2 已知一个三角形的两条边长分别为
3cm和9cm,你能确定该三角形第三条边长 的范围吗? 解:设第三条边长为acm,则
9-3<a<9+3
即 6<a<12
3.如图,在△ABC中,D是AB
例 1 判断下列各组线段中,哪些能组成三
角形,哪些不能组成三角形,并说明理由 (1)a=2.5cm,b=3cm,c=5cm; (2)6.3cm,6.3cm,12.6cm
判断方法:
(1)先从三边中找出最长的一边。 (2)检验较短的两边之和是否大于最长的一边。
课内练习
1.由下列长度的三条线段能组成三角形吗?请说明 理由.
那么C的位置应在什么地方?为什么? C A B 两边之和大于第三边 C C
.
. . .
.
1、有长为3、5、7、10四根木条,要摆 2 种摆法 出一个三角形,有___ 2、一个等腰三角形的一边是2cm,另 20cm 一边是9cm,则这个三角形的周长是______
一个等腰三角形的一边是5cm,另一边是 9cm,则这个三角形的周长是19cm ______________ 或23cm
探究活动
若三角形的周长为17,且三边长都有是 整数,那么满足条件的三角形有多少个?你 可以先固定一边的长,用列表法探求.
九州娱乐网 www.jiuzhouyule.me 车上各放着一把大铁锹和四只大木桶。大个子和小胖子把平车推到淋灰池子旁边,把所有的木桶全部搬下来摆放好,又各自抄起 一把铁锹。大个子问中年男人:“头儿,挖哪个池子里的?”中年男人没有说话,而是走过去从他们手里拿过大铁锹来,将两把铁锹相互 刮蹭敲打一番后又递给他们拿着。接着,又挨着个儿将八只大木桶一个一个地拍打拍打,又提起来倒过去磕打磕打以后重新摆放好。做完 这些之后,中年男人这才问耿老爹:“这位大哥,你想要哪个池子里的?”耿老爹说:“就顺序从边上的这个池子挖吧。”“好喽!”中 年男人答应一声,又认真吩咐大个子和小胖子:“装满当,装结实啊,注意不要铲上边边角角的杂物!”八只大木桶装得满满当当的了。 耿老爹按照中年男人说的数目交了钱,又问这些大木桶的押金几何,中年男人说:“你刚才交的,已经都包含在里边了,押金是一两银子。 什么时候还回来木桶,就如数退还。您稍等一下,我去开个收据。”转头又吩咐大个子年轻后生:“你去,把那个最大的搅拌盆刮蹭干净 了拿过来!”说完,进屋里开收据去了。少顷,中年男人又出来了。除了手里捏着收据之外,他臂弯里还抱来一把泥叶子、一个泥托子、 一把小铲子、一根长短、粗细适度的,光光滑滑的木棍和一包用牛皮纸包着的什么东西。耿老爹和耿正见了,赶快上前接过他臂弯里抱着 的东西。他腾开手以后,先把收据递给耿老爹,说:“这个收据请收好了。”然后,他又指着那些东西说:“这些个家伙什儿你们也拿去 用吧,用完了和八只木桶一块儿还回来就行了!”没等耿老爹道谢,他又指着那把泥叶子说“这把泥叶子很好用!还有,这是一包上好的 榆皮毛拉絮,送你们了。把这个和在石灰膏里充分搅拌,打成的石灰泥特别有韧劲儿,上的墙面既光滑又结实耐磨!”耿老爹喜出望外, 连声道谢!耿正兄妹三人各自拿起一件家伙什儿,小青捧起那包榆皮毛拉絮,都等在一边看着中年男人指挥两个助手装车。耿老爹和中年 男人,应该说是淋灰池子的头儿,分别把两挂平车架起来,大个子和小胖子把八大桶石灰膏和搅拌盆装到车上,再用两根粗实的麻绳将两 辆车上的大桶简单绑系一番,然后从二人手中接过平板车的把手,那头儿就挥手和大家告别了。当八大桶石灰膏被稳稳当当地送到白家院 儿里后,耿老爹赶快取下搅拌盆放在新屋的台阶上,然后和耿正各架住一挂平车,两个助手把八只装满了石灰膏的大木桶合力搬下来放到 新屋里的地中央。大个子年轻后生对耿老爹说:“你们什么还这些木桶和家伙什儿的时候,就过来叫我们一声,我们再推平车过来拉。” 耿老爹道了谢以后,他们就高高兴兴地走了。耿老爹把收据和剩下的银子交给乔氏,问:“不知道他们要的这
浙教版八年级上数学三角形的性质及初步认识
考点精读1. 三角形的内角和定理与外角和定理;2. 三角形中三边之间的关系定理及其推论;3. 全等三角形的性质与判定;4. 直角三角形的性质与判定。
知识点概要1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形中的几条重要线段:(1)三角形的角平分线(三条角平分线的交点叫做内心)(2)三角形的中线(三条中线的交点叫重心)(3)三角形的高(三条高线的交点叫垂心)3. 三角形的主要性质(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边;(2)三角形的内角之和等于180°(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和;(4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角;(5)三角形具有稳定性。
4、全等三角形(1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
(2)三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
5、直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)题型分类1:三角形例1:如图所示,图中三角形的个数共有()A.1个 B.2个 C.3 个 D.4个例2:下列长度的三条线段能组成三角形的是( )A.1cm, 2cm, 5cm B.4cm, 8cm, 12cmC.5cm, 5cm, 15cm D.6cm,8cm, 9cm例3:如图,在△ABC中,∠A= .∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;……;∠A2008BC与∠A2008CD的平分线相交于点A2009,得∠A2009.则∠A2009=.练习1. 下列长度的三条线段能组成三角形的是()A .1cm , 2cm , 3.5cmB .4cm , 5cm , 9cmC .5cm ,8cm , 15cmD .6cm ,8cm , 9cm2.如图,△ABC 中,∠A =60°,∠C =40°,延长CB 到D ,则∠ABD = 度.答案:1. D 2. 100° 最新考题1.如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得的三角形的周长可能是( )A .4B .4.5C .5D .5.52.将一副三角板按图中方式叠放,则角α等于( ) A .30° B .45° C .60°D .75°3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°,则E ∠的度数为( )A .70°B .80°C .90°D .100°4. 如图是一个任意的五角星,它的五个顶角的和是( )A. 50B. 100C. 180D. 200CBB 'A '例1:如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于() A .60B .50C .45D .30例2:如图2,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠=__________度. 练习1.如图,ACB A C B '''△≌△,BCB '∠=30°,则ACA '∠的度数为( )A .20°B .30°C .35°D .40°2.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD =OEA B DC例1ABCDCBA 例2B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠3.如图,在△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 的中点,若△ABC 的周长为12cm ,则△DEF 的周长是 cm .答案:1.C 2.C 3. 6; 最新考题1. 如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°2如图,ABC △的周长为32,且 AB AC AD BC =⊥,于D ,ACD △的周长为24,那么AD的长为 .3. 已知△ABC 中,AB=BC≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个. 答案:1.B 2 .8 3. 7 知识点3:等腰三角形例1:等腰直角三角形的一个底角的度数是( ) A .30°B .45°C .60°D .90°例2:如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部, 则阴影部分图形的周长为 cm .练习:1.已知等腰△ABC的周长为10,若设腰长为x ,则x 的取值范围是 .2.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E.若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为 .答案: 1. 2.5<x<5; 2. 6. 最新考题1.如图,AB AC BD BC ==,,若40A ∠=,则ABD ∠的度数是( ) A .20B .30C .35D .402. 如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知 10=∠BAE ,则C ∠的度数为( ) A .30 B .40 C .50 D .603.如图,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( )A.13 B.14 C.15 D.16答案:1.B 2.B 3.A过关检测一、选择题1.如图1,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成()A.22.5°角 B.30°角 C.45°角 D.60°角2.时钟8点整,时针与分针之间的夹角为()A.120° B.100° C.180° D.160°3.一张长方形纸ABCD,如图2,将C角折起到E处,作∠EFB的平分线FH,则∠HFG为()A.锐角 B.直角 C.钝角 D.无法确定图1 图2 图34.现有长分别为16cm,34cm的两根木棒,要从下列木棒中选取一根钉一个三角形的木架,应选取哪一根()A.16cm B.34cm C.18cm D.50cm5.在△ABC中,∠C=90°,AB=BC,AD是∠BAC的平分线,•DE•⊥AB•垂足为E,•若AB=20cm,则△DBE的周长为()A.20cm B.16cm C.24cm D.18cm8.如图4,△ABC中,∠B与∠C的平分线相交于点O,过点O作MN∥BC,分别交AB、•AC于点M、N,若AB=12,AC=18,BC=24,则△AMN的周长为()A.30 B.36 C.39 D.42图4 图5 图69.如图5,沿AC方向小山修路,为加快施工进度,•要在小山的另一边同时施工,•从AC上的一点B取∠ABD=120°,BD=210m,∠D=30°,要正好能使A、C、E成一直线,那么E、D两点的距离等于()A....105m10.如图6,△DAC和△EBC均是等边三角形,AE、BD分别与CD、•CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3 B.2 C.1 D.0二、填空题1.如图1所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=_______.(1)(2)(3)2.如图2,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么D•点到直线AB的距离是_______cm.3.如图3,AD、AF分别是△ABC的高和角平分线,已知∠B=36°,∠C=•76•°,则∠DAF=______度.4.(如图4,∠A=65°,∠B=75°,将纸片的一角折叠,使点C•落在△ABC内,若∠1=20°,则∠2的度数为______.(4)(5)(6)5.如图5,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD•交于点O,•且AO•平分∠BAC,那么图中全等三角形共有________对.6.如图6,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E•是AB边上一动点,则EC+ED的最小值是________.三、解答题1.已知:如图△ABC中,AB=AC,D为BC上一点,过点D作DE∥AB•交AC于点E,求证:∠C=∠CDE .2.已知:如图,△ABC 和△ECD 都是等腰直角三角形,•∠ACB=•∠DCE=90°,D 为AB 边上一点.求证:(1)△ACE ≌△BCD ;(2)AD 2+AE 2=DE 2.3.如图,已知:在Rt △ABC 中,∠ACB=90°,sinB=35,D 是BC 上一点,DE ⊥AB ,•垂足为E ,CD=DE ,AC+CD=9,求BC 的长.4.如图所示,D 是△ABC 的边AB 上一点,E 是AC 的中点,FC ∥AB . (1)试说明△ADE ≌△CFE ;(2)若AB=7,FC=5,求BD 的长.5.如图,已知,在Rt △ABC 中,∠ACB=90°,AC=BC ,D 是AB 中点,E 、F •分别在AC 、BC 上,且ED ⊥FD ,求证:S 四边形EDFC =12S △ABC .6.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD:(2)若AC=12cm,求BD的长.7.如图所示,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于O点,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可以判定△ABC是等腰三角形.(•用序号数写出所有情况)(2)选择(1)中的一种情况,证明△ABC是等腰三角形.。
浙教版数学八年级上册《1.1认识三角形》说课稿3
浙教版数学八年级上册《1.1 认识三角形》说课稿3一. 教材分析《认识三角形》是浙教版数学八年级上册的第一课时,本节课的主要内容是让学生了解三角形的定义、性质以及三角形的基本分类。
通过本节课的学习,学生能够掌握三角形的基本概念,理解三角形的性质,并能运用所学知识解决一些实际问题。
在教材的编排上,浙教版数学八年级上册将三角形的认识放在了第一课时,这是因为三角形是初中数学中非常重要的一个几何图形,很多后续的几何知识都会涉及到三角形。
因此,让学生在初中阶段一开始就对三角形有一个清晰的认识,有助于他们更好地学习后续的几何知识。
二. 学情分析八年级的学生已经具备了一定的几何知识,他们已经学习了直线、射线、线段等基本几何概念,也对图形的分类有一定的了解。
但是,他们对三角形的认识还比较肤浅,大多数学生可能只停留在三角形是一个有三条边的图形的层面上。
因此,在本节课的学习过程中,需要引导学生深入理解三角形的定义和性质,提升他们对几何图形的认识。
三. 说教学目标根据教材内容和学情分析,本节课的教学目标设定如下:1.让学生了解三角形的定义和性质,能正确识别各种类型的三角形。
2.培养学生运用几何知识解决实际问题的能力。
3.提升学生对几何图形的审美能力,培养他们的空间想象能力。
四. 说教学重难点1.教学重点:三角形的定义、性质和分类。
2.教学难点:三角形的高的概念和性质,以及三角形在实际问题中的应用。
五. 说教学方法与手段本节课采用讲授法、案例分析法、小组讨论法等多种教学方法,结合多媒体课件、几何模型等教学手段,引导学生从直观到抽象的认识三角形,提高他们的学习兴趣和参与度。
六. 说教学过程1.导入:通过展示一些生活中的三角形实例,如自行车的三角架、三角尺等,引导学生关注三角形,激发他们的学习兴趣。
2.新课导入:介绍三角形的定义和性质,让学生通过观察、操作、思考,理解三角形的本质特征。
3.案例分析:分析一些具体的三角形实例,让学生掌握三角形的基本分类,并能识别各种类型的三角形。
1.1.2 认识三角形(三角形中的重要线段,课件)八年级数学上册(浙教版)
主体学习
三角形的高线 你还记得 “过一点画已知直线的垂线” 吗?
01 23 4 5 01 23 4 5 01 23 4 5
0 1 2 0 3 1 4 205 31 42 53 4 5
过三角形的一个顶点,你能画出它的对边的垂线吗?
几何语言:
∵ AD ⊥ BC ∴ AD是△ ABC的BC
等底同高或同底等高的两个三角形面积相等。
三角形一边上的中线把该三角形分成面积相等的两部分。
知识总结 三角形的角平分线、中线和高线
三角形的 重要线段
概念
三角形一个内角的平
三角形的 分线与它的对边相交,
角平分线 这个角顶点与交点之
间的线段
B
三角形
三角形中,连结一 个顶点和它对边
的中线 中的线段
B
图形
A
1 2
∠BAC.
B
C
D
三角形的角平分线是一条线段
任意剪一个三角形,用折叠的方法,画出这个三 角形的三条角平分线,你发现了什么?
①三角形有3条角平分线且均在三角形的内部; ②三角形的三条角平分线相交于一点
这个交点称为三角形的内心。
三角形的中线
如图,如果点C是线段AB的中点,你能得到什么结论?
1
AC=BC= AB
边上的高
B
A
C D
从三角形一个顶点向它的对边所在直线做垂线, 顶点和垂足之间的线段叫做三角形的高线。
分别画出上面3类三角形所有的高
A
A
A D
F
E
D
B
D
CC
B B
CE F
①三角形有3条高线; ②三角形的三条高线所在的直线相交于一点
认识三角形(1)课件
新知讲解
三角形按内 角的大小分 类
锐角三角形 (三个内角都是锐角的三角形)
直角三角形 (有一个内角是直角的三角形)
钝角三角形 (有一个内角是钝角的三角形)
练一练
1、如果一个三角形的三个内角比是3:4:5,那么这个三 角形是______锐__角_____三角形。
2、如图,BD⊥AC,说出图中的锐角三角形、直角三角形和
认识三角形
——第一课时
浙教版 八年级上
学习目标
1、结合具体实例,进一步认识三角形的概念及基本 要素。 2、理解三角形三边关系的性质,并会初步应用它们 来解决问题。 3、通过观察、操作、想象、推理、交流等活动,发 展空间观念和推理能力。
导入新课
你能举出生活中看到的三角形例子吗? 雨伞、衣架、小红旗……
钝角三角形。
C
D
锐角三角形:△ABC 直角三角形:△ABD、△BCD
A
钝角三角形:没有
B
1.为什么有人喜欢 斜穿人行横道?
两点之间线段最短
拿出草稿纸,在纸上画出任意一个 三角形,动手量一量,算一算,叠 一叠,探究三角形任何两边和的数 量关系,把你的发现与小组同学交 流。
思考探究
新知讲解
在△ABC中,利用你发现的规律填空: A
A
b
c
B
C
a
(1)说出图中所有的三角形,以及每一个三角形的三条边和三
个内角。
(2)若∠A=40°,∠C=60°,求∠ABC的度数。
C D
A
B
(1)△ABC,△ABD、△BCD (边、角口述)
(2)∠A、∠C、∠ABC是△ABC的内角,根据三角形内角和为
180°,可知:∠ABC=180°-∠A-∠C=80°
浙教版八年级上数学认识三角形
一、新课:1、在右下图中你能用符号表示上面的三角形吗?2、 它的三个顶点分别是,三条边分别是,三个内角分别是3、 分别量出这三角形三边的长度,并计算任意两边之和以及任意两边之差。
你发现了什么?结论:三角形任意两边之和大于第三边三角形任意两边之差小于第三边例1:有两根长度分别为 5cm 和8cm 的木棒,用长度为2cm 的木棒与它们能摆成三角形吗?为什么?长度为13cm 的木棒呢?长度为 7cm 的木棒呢?巩固练习:1、下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?(单位:(1) 1, 3, 3 (2) 3, 4, 7 (3) 5, 9, 13(4) 11, 12, 22 (5) 14, 15, 302、已知一个三角形的两边长分别是3cm 和4cm ,则第三边长X 的取值范围cm )是__________________________ 。
若X是奇数,则X的值是_________________________ 。
这样的三角形有 ____________ 个若X 是偶数,则X 的值是 ________________________ 这样的三角形又有个3、一个等腰三角形的一边是2 cm ,另一 边疋 9cm 则这个三角形的周长是cm4、一个等腰三角形的一边是5cm,另一边疋 7cm 则这个三角形的周长 是cm小 结:掌握三角形三边关系:"三角形任意两边之和大于第三边;三角形任意两边之差 小于第三边”。
、三角形的内角性质根据自己手中的一副特殊的三角板,知道三角形的三个内角和等于 180°,那么是否对其他的三角形也有这样的一个结论呢?(提出问题,激发学生的兴趣)让学生用自己剪好的一个三角形, 把三个角撕下来,拼在一块。
你发现了 什么?小组交流结论:三角形三个内角和等于180°(几何表示)例2、如右图,在△ ABC 中,/ A = 3x ° Z= 2x ° Z= x 。
浙教版 数学八年级上册第1章 三角形的初步认识《三角形及其三角、三边关系》
12.【2017·邢台月考】如图,在△BCD中,BC=4,BD =5. (1)求CD的取值范围;
解:∵在△BCD中,BC=4,BD=5,∴1<DC<9.
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数. 解:∵AE∥BD,∠BDE=125°, ∴∠AEC=180°-∠BDE=55°, 又∵∠A=55°, ∴∠C=180°-55°-55°=70°.
11.若 a,b,c 是△ABC 的三边长,请化简|a-b-c|+ (b-c-a)2+|c-a-b|.
【点拨】本题先由“形”可得“数”,a-b-c<0,b-c- a<0,c-a-b<0,然后根据绝对值的性质进行化简,体 现了数形结合思想.
解:∵a,b,c是△ABC的三边长, ∴a<b+c,b<c+a,c<a+b, 即a-b-c<0,b-c-a<0,c-a-b<0. ∴原式=|a-b-c|+|b-c-a|+|c-a-b| =-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.
由题意知,把15 cm长的木棒分成两根, 可把15 cm分成5 cm和10 cm,6 cm和9 cm,7 cm和8 cm, 共三种不同的截法.
18.如图,P是△ABC内部的一点. (1)度量AB,AC,PB,PC的长,根据度量结果比较 AB+AC与PB+PC的大小.
解:度量结果略.AB+AC>PB+PC.
②当x=2时,y=8,则三边长分别为4 cm,6 cm,8 cm, ∵4+6>8,∴能组成三角形.
③当x=3时,y=3,则三边长分别为6 cm,9 cm,3 cm, ∵3+6=9,∴不能组成三角形. 因此各边的长分别为4 cm,6 cm,8 cm.
15.已知△ABC的两边长分别为3和7,第三边的长是关 于x的方程 x+2 a=x+1的解,求a的取值范围.
浙教版8年级上册《三角形初步知识》复习
D CB A《三角形的初步认识》复习讲义知识点1:认识三角形。
1、三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的顶点:三个顶点。
3、三角形的边:组成三角形的三条线段。
4、三角形的内角:每两条边所组成的角(简称三角形的角)。
三角形的顶点、边和角为三角形的三要素。
【例1】(1)如图1,点D在△ABC中,写出图中所有三角形:;(2)如图1,线段BC是△和△的边;(3)如图1,△ABD的3个内角是,三条边是。
【例2】如图2,D是△ABC的边BC上的一点,则在△ABC中∠C所对的边是,在△ACD中∠C所对的边是,在△ABD中边AD所对的角是,在△ACD中边AD所对的角是。
知识点2:三角形三边的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边【例3】判断:哪组线段首尾相接可以组成三角形?① 3cm ,4cm,5cm ② 8cm,7cm ,15cm ③ 12cm ,12cm,20cm ④ 5cm,5cm ,11cm知识点3、三角形内角和 :定理:三角形内角和等于180°。
【例4】一个三角形的三个内角分别为x,x-10,x+10(x>10°),•则这个三角形三个内角的度数分别为多少?【例5】在△ABC中,∠A:∠B=5:7,∠C-∠A=10°,则∠C=________ DBA知识点4、三角形外角定理:1、一般地,三角形的一个外角等于与它不相邻的两个内角之和。
2、三角形的一个外角大于与它不相邻的任意一个内角。
【例6】如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列正确的有()①∠5=∠1+∠4 ②∠3=∠1+∠6 ③∠1+∠4+∠6=180°④∠2+∠3+∠5=360°⑤∠3=∠1+∠7 ⑥∠2+∠3+∠7=360°⑦∠2=∠4+∠6 ⑧∠2=∠4+∠7第6题图第7题图第8题图【例7】如图,∠1、∠2、∠3的大小关系为()【例8】如图,∠BDC=98°,∠C=38°,∠B=23°,∠A的度数是()【学生练习题1】1、如图,在△ABC中,∠C=30°,若沿图中虚线剪去∠C,则∠1+∠2等于 .2、有四条线段,它们的长分别是2cm、3cm、4cm、5cm,以其中的三条线段为边长,共可组成几种不同的三角形.3、在长方形ABCD 中,如图,E 为AB 上一点,连结DE 、EC ,∠ADE=40°,∠BCE=60°,求∠1、∠2、∠3的度数.知识点6:三角形角平分线、中线和高的概念 1、三角形中的三条线段的概念:三角形中的量重要线段概念图形表示法三角形的角平分线 在三角形中,一个内角的角平分线与它对边相交,这个角的顶点与交点之间的线段。
新浙教版八年级上册初中数学全册教学课件 (2)可修改全文
八年级上册
第1章 三角形的初步认识
1.1 认识三角形
第1课时 三角形及其三角、三边的关系
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
1.三角形的定义. 2.三角形的表示方法及有关概念.(重点) 3.三角形的分类. (重点、难点)
新课讲解
练一练
所有的命题都是基本事实。 X 所有的真命题都是定理 。 X 所有的定理是真命题 。 √ 所有的基本事实是真命题 。 √
课堂小结
1.知识方面: 真命题与假命题的概念
当堂小练
1. “两点之间,线段最短”这个语句是( B ) A、定理 B、基本事实 C、定义 D、只是命题
当堂小练
2. “同一平面内,不相交的两条直线叫做平行线”这 个语句是( C ) A、定理 B、基本事实 C、定义 D、只是命题
当堂小练
3.下列各阴影部分的面积有何关系?
S乙>S甲=S丙
拓展与延伸
在△ABC中,AE,AD分别是BC边上的中线和高。说明△ABE的面积
与△AEC的面积相等。
解: ∵ AE是BC边上的中线
A
∴ BE = EC
1 ∵S △ABE= 2 BE · AD
1 S △AEC= 2 EC · AD
B
C ED
新课导入
一对父子的谈话
爸爸,什 么叫法律?
法律就是法 国的律师
那么什么 是法盲?
法盲就是法 国的盲人
新课讲解 知识点1 定义的定义 可见,在交流时对名称和术语要有共同的认识才行。
一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或 术语的定义.
2024年浙教版八上数学初一升初二预习——1.1认识三角形
形的周长为( D )
如果把“4”改
A.14
B.16
成“2”,其他 C.1条0件不变D,.那14或16
么等腰三角形
知识点:等腰三角形的概念. 的周长为__1_4__.
三角形两边的和大于第三边.
思想方法:分类讨论思想.
拓展提升 6.已知:a、b、c为三角形的三边长,化简:|b+c-a|
+|b-c-a|-|c-a-b|-|a-b+c|. 解:∵a、b、c为三角形三边的长,
条较短线段的和是否大于第三条线段即可
例 有两根长度分别为5 cm和8 cm的木棒,用长度为2 cm的
木棒与它们能组成三角形吗?为什么?长度为13 cm的木棒 呢?
解:∵5+2<8, ∴长度为2 cm的木棒与它们不能组成三角形. ∵5+8=13 , ∴长度为13 cm的木棒与它们也不能组成三角形.
初中数学
接所组成的图形叫做三角形.
A顶点
如图,顶点A所对的边BC用 a表示
c
∠B所对的边是__A__C___
AB边 所对的角是__∠__C___
B 顶点
a
b
C 顶点
初中数学
初中数学
三角形的有关概念
顶点: 点A 点B 点C
三边: BC
AC
AB
a
b
c
内角: ∠A ∠ B ∠ C
A
c
b
B
a
C
初中数学
三角形的有关概念
例 用一条长为18 cm的细绳围成一个等腰三角形.
(1)如果腰长是底边长的2倍,那么各边长是多少? (2)能围成有一边长为4 cm的等腰三角形吗?为什么? 分析:
等腰三角形的周长=18 cm,即2倍的腰长+底边长=18 cm. (1)腰长是底边长的2倍,可设底边长为x cm,列方程可求解. (2)可能腰长为4 cm, 也可能底边长为4 cm,需分类讨论.
浙教版数学八年级上册1.1《认识三角形》教案2
浙教版数学八年级上册1.1《认识三角形》教案2一. 教材分析《认识三角形》是浙教版数学八年级上册第一章的第一节内容。
本节课主要让学生了解三角形的定义、性质和分类,掌握三角形的基本概念,为后续学习三角形的判定和计算打下基础。
教材通过丰富的实例和图片,引导学生探究和发现三角形的性质,培养学生的观察、思考和动手能力。
二. 学情分析八年级的学生已经学习了平面几何的基本概念,对图形的认识有一定的基础。
但是,对于三角形的定义和性质,学生可能还存在模糊的认识。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例和引导,让学生逐步理解和掌握三角形的概念和性质。
三. 教学目标1.知识与技能:使学生了解三角形的定义、性质和分类,掌握三角形的基本概念。
2.过程与方法:培养学生的观察、思考和动手能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:三角形的定义、性质和分类。
2.难点:三角形性质的推导和应用。
五. 教学方法1.情境教学法:通过实例和图片,引导学生观察和思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生探究和发现,培养学生的解决问题的能力。
3.合作学习法:分组讨论和展示,培养学生的团队协作精神和沟通能力。
六. 教学准备1.准备相关实例和图片,用于引导学生观察和思考。
2.准备三角形模型或教具,用于展示和操作。
3.准备练习题和拓展题,用于巩固和提高学生的知识。
七. 教学过程1.导入(5分钟)利用实例和图片,引导学生观察和思考,提出问题:“你们知道什么是三角形吗?三角形有哪些性质呢?”让学生回忆和复习已学的知识,为新课的学习做好准备。
2.呈现(10分钟)讲解三角形的定义、性质和分类。
通过PPT或板书,展示三角形的基本概念和性质,引导学生理解和记忆。
3.操练(10分钟)让学生分组讨论,观察和分析给出的三角形实例,判断它们的类型,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、新课:
1、 在右下图中你能用符号表示上面的三角形吗?
2、它的三个顶点分别是 ,三条边分别
是 ,三个内角分别是 。
3、分别量出这三角形三边的长度,并计算任意两边 之和以及任意两边之差。
你发现了什么?
结论:三角形任意两边之和大于第三边 三角形任意两边之差小于第三边
例1:有两根长度分别为5cm 和8cm 的木棒,用长度为2cm 的木棒与它们能摆成三角形吗?
为什么?长度为13cm 的木棒呢?长度为7cm 的木棒呢?
巩固练习:
1、下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?(单位:cm ) (1) 1, 3, 3 (2) 3, 4, 7 (3) 5, 9, 13 (4) 11, 12, 22 (5) 14, 15, 30
2、已知一个三角形的两边长分别是3cm 和4cm ,则第三边长X 的取值范围是 。
若X 是奇数,则X 的值是 。
A
B C
a
b
c
这样的三角形有 个
若X 是偶数,则X 的值是 。
这样的三角形又有 个
3、一个等腰三角形的一边是2cm ,另一边是9cm ,则这个三角形的周长 是 cm
4、一个等腰三角形的一边是5cm ,另一边是7cm ,则这个三角形的周长 是 cm
小 结:掌握三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。
二、三角形的内角性质
根据自己手中的一副特殊的三角板,知道三角形的三个内角和等于180°,那么是否对其他的三角形也有这样的一个结论呢?(提出问题,激发学生的兴趣)
让学生用自己剪好的一个三角形,把三个角撕下来,拼在一块。
你发现了什么?小组交流。
结论:三角形三个内角和等于180°(几何表示)
例2 、如右图,在△ABC 中,∠A =x 3°∠=x 2°∠=x °求三个内角的度数。
解:∵∠A+∠B+∠C=180°,( ) ∴=++x x x 23
∴x 6=
∴x =
从而,∠A= ,∠B= ,∠C=
练习2 1、判断:
(1)一个三角形的三个内角可以都小于60°; ( ) (2)一个三角形最多只能有一个内角是钝角或直角; ( )
x 2x 3x A B C
2、在△ABC中,
(1)∠C=70°,∠A=50°,则∠B=
度;
(2)∠B=100°,∠A=∠C,则∠C= 度;
(3)2∠A=∠B+∠C,则∠A= 度。
三、猜一猜:
一个三角形中三个内角可以是什么角?(提醒:一个三角形中能否有两个直角?钝角呢?)小组讨论。
★按三角形内角的大小把三角形分为三类
举例(略)
练习3:
1、观察三角形,并把它们的标号填入相应的括号内:
锐角三角形()
直角三角形()
钝角三角形()
2、一个三角形两个内角的度数分别如下,这个三角形是什么三角形?
锐角三角形
(acute trangle)
三个内角都是锐
角
直角三角形
(righttriangle)
有一个内角是直
角
钝角三角
(obtusetriangle)
有一个内角是钝
角
(1)30°和60°()
(2)40°和70°()
(3)50°和30°()
(4)45°和45°()
四、猜想结论:
简单介绍直角三角形,和表示方法,Rt△
思考:直角三角形中的两个锐角有什么关系?
结论:直角三角形的两个锐角互余
小结:
1、三角形的三个内角的和等于180°;
2、三角形按角分为三类:
(1)锐角三角形(2)直角三角形(3)钝角三角形
四、
活动一:
1、任意画一个三角形,设法画出它的一个内角的平分线。
2、你能通过折纸的方法得到它吗?
学生可以用量角器来量出这个角的大小的方法画出这个角的平分线。
也可以用折纸的方法得到角平分线。
在学生得到这条角平分线后,教师应该引导学生观察这三条线之间的位置关系,并且在交流的基础上得到结论:
三角形一个角的角平分线和这个角的对边相交,这个角的顶点和对边交点之间的线段叫做三角形中这个角的角平分线。
简称三角形的角平分线。
教师应该规范学生的书面表达,给出下面的示范书写:
A
如图:∵AD是三角形ABC的角平分线。
1 2
∴∠1=∠2=∠BAC
或:∠BAC=2∠1=2∠2 B
D C
请你画出△ABC(锐角三角形)的所有角平分线,并且观察这些角平分线有什么规律?对于钝角三角形呢?直角三角形呢?它们的角平分线也有这样的规律吗?
一个三角形共有三条角平分线,它们都在三角形内部,而且相交于一点。
例题3
△ABC 中,∠B=80°∠C=40°,BO 、CO 平分∠B 、∠C ,则∠BOC=______.
B
A C
活动二:1、任意画一个三角形,设法画出它的三条中线,它们有怎样的位置关系?小组交流。
2、你能通过折纸的方法得到它吗?
画中线时,学生可以用刻度尺通过测量的方法来得一边的中点。
也可以用折纸的方法得到一边的中点。
在学生得到这条中线后,教师应该引导学生观察这当中的线段之间的大小关系,并且在交流的基础上得到结论:
连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线。
简称三角形的中线。
教师应该规范学生的书面表达,给出下面的示范书写: 如图:∵AD 是三角形ABC 的中线。
A ∴BD =DC =
2
1
BC 或:BC = 2BD =2DC
B D C
请你画出△ABC (锐角三角形)的所有中线,并且观察这些中线有什么规律?对于钝角三角形呢?直角三角形呢?它们的中线也有这样的规律吗?
学生通过自己的动手操作,观察。
应该比较快得到下面的结论: 一个三角形共有三条中线,它们都在三角形内部,而且相交于一点。
如图,已知,AD 是BC 边上的中线,AB=5cm,AD=4cm, ▲ABD 的周长是 12cm,求BC 的长.
练习4:
1、 AD 是△ABC 的角平分线(D 在BC 所在直线上), 那么∠BAD=_______=
2
1
______. △ABC 的中线(E 在BC 所在直线上),那么BE=___________=_______BC.
小 结:(1)三角形的角平分线的定义; (2)三角形的中线定义.
(3) 三角形的角平分线、中线是线段. 五、
过三角形的一个顶点A ,你能画出它的对边BC 的垂线吗?试试看,你准行! 从而引出新课:
1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
如图,线段AM 是BC 边上的高。
∵ AM 是BC 边上的高 ∴AM ⊥BC
做一做:每人准备一个锐角三角形纸片(1)你能画出这个三角形的高吗? 你能用折纸的方法得到它吗? (2)这三条高之间有怎样的位置关系呢?
小组讨论交流。
结论:锐角三角形的三条高在三角形的内部且交于一点。
3、议一议:
每人画出一个直角三角形和一个钝角三角形
(1)画出直角三角形的三条高,并观察它 们有怎样的位置关系? (2)你能折出钝角三角形的三条高吗? 你能画出它们吗?
(3)钝角三角形的三条高交于一点吗? 它们所在的直线 交于一点吗?
小组讨论交流
结论:
1、直角三角形的三条高交于直角顶点处。
2、钝角三角形的三条高所在直线交于一点,此点在三角形的外部。
练习五:
如图,(1)共有个直角三角形
(2)高AD、BE、CF相对应的底分别是、。
(3)AD=3、BC=6、AB=5、BE=4,
则S△ABC= 、CF= 、
AC= 。
小结:
(1)锐角三角形的三条高在三角形的内部且交于一点。
(2)直角三角形的三条高交于直角顶点处。
(3)钝角三角形的三条高所在直线交于一点,此点在三角形的外部。