盾构测量

盾构测量
盾构测量

内容提要:通过广州轨道交通四号线大学城专线隧道盾构掘进的实践,介绍了地铁盾构施工中的控制测量、联系测量、VMT导向系统、盾构姿态人工检测、管环检测的技术和经验,其中VMT导向系统的应用和维护及经验教训是本文介绍的重点。

关键词:平面控制、高程控制、联系测量、导向系统、盾构姿态、管环检测

1控制测量

1.1平面控制测量:

1.1.1平面控制测量概述:

地铁施工领域里平面控制网分两级布设,首级为GPS控制网,二级为精密导线网。施工前业主会提供一定数量的GPS点和精密导线点以满足施工单位的需要。施工单位需要做的是在业主给定的平面控制点上加密地面精密导线点,然后是为了向洞内投点定向而做联系测量,最后是在洞内为了保证隧道的掘进而做施工控制导线测量。不管是地面精密导线还是洞内施工控制导线都是精密导线测量,虽然边长不满足四等导线的要求,但是基本上是采用四等导线的技术要求施测,其中具体技术要求在《地下铁道、轻轨交通工程测量规范》都有规定。

1.1.2地面平面控制测量:

在业主交接桩后,施工单位要马上对所交桩位进行复测。业主交桩数量有限,不一定能很好地满足施工的需要,所以经常要在业主所交桩的基础上加密精密导线点,以方便施工。特别是在始发井附近,一定要保证有足够数量的控制点,不少于3个。其具体技术要求在《地下铁道、轻轨交通工程测量规范》都有规定。

1.1.3 洞内平面控制测量

洞内施工控制导线一般采用支导线的形式向里传递。但是支导线没有检核条件,很容易出错,所以最好采用双支导线的形式向前传递。然后在双支导线的前面连接起来,构成附合导线的形式,以便平定测量精度。洞内施工控制导线一般采用在管片最大跨度附近安装牵制对中托架,测量起来非常方便,且可以提高对中精度,还不影响洞内运输。强制对中托架尺寸形状要控制好,以便可以直接安装在管片的螺栓上面,不需要电钻打眼安装。由于盾构施工一般都是双线隧道错开50环左右掘进,如果错开环数很大,后面掘进的盾构机由于推力很大,会对前面另一个洞的导线点产生影响。特别是在左右线间距较小岩层很软时,影响很大,很容易导致测量出大错。还有就是如果在曲线隧道里,管片上的导线点间的边角关系经常受盾构机的推力和地质条件的影响,所以要经常复测。

1.2 高程控制测量:

1.2.1高程控制测量概述:

高程控制测量主要包括地面精密水准测量和高程传递测量及洞内精密水准测量,在广州地铁领域里的精密水准测量也就是城市二等水准测量。不管是地面还是洞内都采用的是城市二等水准测量。其技术要求在《地下铁道、轻轨交通工程测量规范》都有规定。

1.2.2 地面高程控制测量

地面水准测量按城市二等水准的要求施测。

1.2.3洞内高程控制测量

洞内由于轨道上钢枕太多,轨道下的泥水经常盖到钢枕上来了,立尺很不方便,用水准仪配因钢尺测量非常麻烦。而采用全站仪三角高程测高差的办法传递高程就很方便。见图1。当然此时一定要保证前后视的棱镜高要不变,由于不需要量仪器高,而是通过测量前后两个点的高差来传递高程,所以往返观测取平均值精度可以满足施工的需要。这在我们仑官区间左、右线都得到证实,仑官区间约1.5公里,高程贯通误差左线是8㎜、右线都在11㎜左右。

图1全站仪三角高程测量传递高程

1.3 联系测量

1.3.1 定向测量

地铁施工规定,在任何贯通面上,地下测量控制网的贯通中误差,横向不超过±50㎜,竖向不超过±25㎜。联系测量主要有一井定向(联系三角形定向)、两井定向、铅垂仪陀螺经纬仪联合定向、导线定向四中方式,其中我们施工单位一般都没有陀螺经纬仪,所以很少采用铅垂仪陀螺经纬仪联合定向。用导线定向精度最好且最方便,但是用导线定向受始发井的长度和深度制约,一般也很少用。所以一般都采用一井定向(联系三角形定向)或两井定向,其中用两井定向受地面及洞内各种因素的制约要少,很方便,但是在同样的始发井长度和深度的情况下最好采用一井定向(联系三角形定向),这样有利于提高井下定向的精度。这在我们仑大始发井的多次联系测量中得到证实。虽然一井定向(联系三角形定向)

对场地要求较高,做起来也很麻烦,但是定向精度很有保证。联系测量向洞内投点时把点间距尽量拉大些,在始发井底板,最好投四个点,保证始发井两端都各有两个控制点。且尽量保证每次联系测量投点时都投在这四个点上。以便取多次联系测量的加权平均值做为最终的始发控制点坐标。

图2一井定向联系测量示意图

图3两井定向联系测量示意图

1.3.2 高程传递测量

向洞内传递高程一般采用悬挂钢尺的方法,一定要注意加温度和尺长改正,才能保证导入井下的水准点的精度。如果有斜井或通道,也可以用水准测量的方法向

井下传递高程。如果全站仪的仰俯角不大的话还可以直接用全站仪三角高程测高差的办法传递高程。

图4钢尺导入法传递高程

2导向系统:

2.1导向系统介绍

2.1.1VMT导向系统概述:

在掘进隧道的过程中,为了避免隧道掘进机(TBM)发生意外的运动及方向的突然改变, 必须对TBM的位置和DTA(隧道设计轴线)的相对位置关系进行持续地监控测量。TBM能够按照设计路线精确地掘进,则对掘进各个方面都有好处(计划更精确,施工质量更高)。这就是TBM采用“导向系统”(SLS)的原因。德国VMT 公司的SLS-T系统就是为此而开发,该系统为使TBM沿设计轴线(理论轴线)掘进提供所有重要的数据信息。SLS-T系统功能完美,操作简单。

2.1.2导向系统基本组成与功能

导向系统是由激光全站仪(TCA)、中央控制箱、ESL靶、黄盒子和计算机及掘进软件组成。其组成见下图:

图5导向系统组成

2.1.2.1全站仪(TCA)

具有伺服马达,可以自动照准目标和跟踪,并可发射激光束,主要用于后视定向,测量距离、水平角和竖直角,并将测量结果传输到计算机。

2.1.2.2ESL靶

也称光靶板,是一台智能性型的传感器。ELS接收全站仪发射的激光束,测定水平和垂直方向的入射点。偏角由ELS上激光的入射角确认,坡度由该系统内的倾斜仪测量。ELS在盾构机体上的位置是确定的,即对TBM坐标系的位置是确定的。

2.1.2.3中央控制箱

主要的接口箱,它为黄盒子(继而为激光全站仪)及ELS靶提供电源。

2.1.2.4黄盒子

它主要为全站仪供电,保证全站仪工作和与计算机之间的通信和数据传输。

2.1.2.5计算机及掘进软件

SLS-T软件是自动导向系统数据处理和自动控制的核心,通过计算机分别与全站仪和ELS通信接收数据,盾构机在线路平、剖面上的位置计算出来后,以数字和图形在计算机上显示出来。如下图所示:

图6 VMT导向系统盾构姿态显示

2.1.3导向基本原理

洞内控制导线是支持盾构机掘进导向定位的基础。激光全站仪安装在位于盾构机的右上侧管片上的拖架上,后视一基准点(后视靶棱镜)定位后。全站仪自动掉过方向来,收寻ELS靶, ELS接收入射的激光定向光束,即可获取激光站至ELS 靶间的方位角、竖直角,通过ELS棱镜和激光全站仪就可以测量出激光站至ELS 靶间的距离。TBM的仰俯角和滚动角通过ELS靶内的倾斜计来测定。ELS靶将各项测量数据传向主控计算机,计算机将所有测量数据汇总,就可以确定TBM在全球坐标系统中的精确位置。将前后两个参考点的三维坐标与事先输入计算机的DTA(隧道设计轴线)比较,就可以显示盾构机的姿态了。

2.2导向系统应用

2.2.1 始发托架和反力架定位

盾构机初始状态主要决定于始发托架和反力架的安装,因此始发托架的定位在整个盾构施工测量过程中显得格外重要。盾构机在曲线段始发方式通常有两种:切线始发和割线始发,两种始发方式示意图见下图7:

图7 切线和割线始发示意图

始发托架的高程要比设计提高约1~5㎝,以消除盾构机入洞后“栽头”的影响。反力架的安装位置由始发托架来决定,反力架的支撑面要与隧道的中心轴线的法线平行,其倾角要与线路坡度保持一致。

2.2.2 移站

2.2.2.1激光站人工移站

盾构机的掘进时的姿态控制是通过全站仪的实时测设ELS的坐标,反算出盾构机盾首、盾尾的实际三维坐标,通过比较实测三维坐标与DTA三维坐标,从而得出盾构姿态参数。随着盾构机的往前推进,每隔规定的距离就必须进行激光站的移站。激光站的支架用角钢和钢板做成可以安装在管片螺栓的托架形似, 托架的底板采用400×400×10mm钢板,底板中心焊上仪器连接螺栓,长1㎝。采取强制对中,减少仪器对中误差。托架安装位置在隧道右侧顶部不受行车的影响和破坏的地方。安装时,用水平尺大致调平托架底板后,将其固定好,然后可以安装前视棱镜或仪器。托架示意图如下图8:

图8 激光站的托架示意图

一般在后视靶托架即将脱出盾构机最后一节台车后进行,这样就可以直接站在盾构机上移站,不需要搭楼梯,既安全又方便。把前视棱镜安装在后视托架后,测量出棱镜中心到托架底板的高程,然后直接从下面的测站采用极坐标测量方式测出托架的三维坐标。然后在后视靶托架上设站,前视直接采用极坐标测量方式测出激光站托架的三维坐标。然后把后视棱镜安装在后视靶托架上,把激光全站仪安装在激光站托架上整平,把黄盒子固定好,给全站仪接上电源,手动把全站仪瞄准后视棱镜,瞄准的精度在±10㎝左右,然后把全站仪电源关闭。接着在主空室里,启动SLS-T,按“编辑器—F2”进入编辑器窗口,进入激光站编辑窗口,输入激光全站仪中心和后视靶棱镜中心的三维坐标。按“保存”键保存,然后关闭编辑器窗口。再按“定位—F5”键,给激光全站仪定位。定位完成后,再按“方位检查—F5”键,检查激光站和后视棱镜的坐标有没有错误。如果超限,将会显示差值,如果不超限,那么将不显示。最后再按“推进—F4”就完成了激光站的人工移站的全过程。

2.2.2.2激光站自动移站

VMT导向软件SLS—T有激光站自动移站功能,移站的过程除了托架和全站仪及后视棱镜的安装,其它测量工作都可以通过此功能完成。

操作流程为:

程序的启动及后续测量工作在主控室进行。此时SLS-T软件处于“管片拼装”状态,按功能键F3,关闭测量后,通过功能键“激光站移站—F6”来启动程序。在初始窗口中,按下按钮“测量开始—F2”,启动方位检测程序。方位检测被成功的执行后,显示检测结果,在得到理想的结果后,按下F2确认后方位检测的结果。在测定新激光站点坐标前,事先在信息输入窗口中输入如下信息:水平与垂直方向上偏移的近似值及新激光站点的大致里程;当前棱镜的高度及仪器的高度;新站点的点位编码。在信息输入窗口下,按下F2键启动程序。全站仪自动搜索到前视棱镜(即新激光站点)后,自动瞄准棱镜进行测量。屏幕显示计算出来的新激光站点坐标。在测定新激光站坐标时,为避免获得错误的数据,须遮盖住其他的反射棱镜。新激光站点的坐标测定后,将全站仪和后视棱镜转移到新的位置。全站仪和后视棱镜转移到新的位置后,主控室按功能键F2进行确认,新的信息窗口会显示新激光站点三维坐标,然后将新激光站点上的全站仪手动转向新的后视点即原先的激光站,按下F2,重新调整定位全站仪上的刻度。成功执行上述的步骤后,出现一新的信息窗口。通过按下F2功能键完成激光站移站程序。

2.2.2.3激光站的人工检查

在推进的过程中,可能会由于安装托架的管片出现沉降、位移或托架被碰动,使激光站点或后视靶的位置发生变化,从而全站仪测得错误的盾构机姿态信息。为了保证激光全站仪的准确定位,在SLS-T软件的状态为“推进”时,通过功能键F5对全站仪的定位进行检查,如果测得的后视靶的值超过了在编辑器中设定的限值时,需要对激光站进行人工检查。检查方法是利用洞内精密导线点对激光站点及后视靶点位置进行测量,重新确定两点的三维坐标。设站导线点尽量选择在右侧管片侧壁上的强制对中导线点,这样建测站时能够一次建站测算出两个点位的坐标,避免误差的积累。当不满足上述建站条件时,从隧道内主控制导线点引测至后视靶托架上,在托架上建立测站,测定激光站点的三维坐标。

2.3 导向系统维护与检修

2.3.1导向系统维护

2.3.1.1ELS靶:

1.由于ELS靶的安装位置附近有注浆管,在注浆的过程中很容易被人碰到,而前面板是玻璃作成的,容易被破坏特别是ELS棱镜更是容易被工人碰动,在没有对ELS靶进行保护之前,我们的ELS棱镜曾多次被工人碰掉,对掘进造成不小影响。后来我们在ELS靶的四周用4块木板保护起来后,就再也没有人碰掉ELS棱镜了;

2.ELS靶前面板保护屏要经常擦干净,防止激光接收靶接收的信号太弱;

3. ELS 靶附近不能有强光,强光会使VMT姿态显示不正常。

2.3.1.2电缆:

在前期我们按常规安装好导向系统传输电缆卷后,在盾构机向前推进的过程中,经常把传输电缆拉断。严重的时候,甚至把激光站托架都拉动,把黄盒子拉掉,还威胁到激光全站仪的安全,极大地破坏了导向系统。为了克服这个问题,我们采用了三种办法。1.把在导向系统的传输电缆卷安装在激光站的前面,这样盾构机推进时,电缆一直是顺着拉;2.在盾构机电缆经过的地方用安全网覆盖,把盾构机上的各个突起物盖住,防止勾断电缆;3.通过加强平时的巡视,经常整理传输电缆。通过以上办法后,电缆再也没有被拉断过。

2.3.1.3激光站和黄盒子:

1.在始发时,由于激光站托架是安装在竖井里面,激光全站仪和黄盒子容易被雨水淋湿,一定要加以保护。

2.在隧道里面时,由于工人冲洗管片时,容易被水浇湿,需要经常提醒掘进工人。激光全站仪和黄盒子要经常擦干净、凉干。

2.3.2导向系统故障处理

2.3.2.1ELS靶:

1. ELS靶的前面板被注浆的浆液覆盖,ELS靶接收到的激光信号不够强,导致不工作,处理办法是把前面板的覆盖物清理干净;

2.ELS靶的前面板附近有很强的光源,严重干扰了ELS靶对激光信号的接收,导致VMT显示不正常,处理办法是把光源移开;

3.ELS靶的温度太高,导致ELS靶不工作,处理办法是用湿毛巾冷敷ELS靶降温。

4.ELS靶和激光站之间空间被人或其他东西挡了,导致ELS靶接收不到激光信号,处理办法把障碍物移开,如果移不动,就移激光站,把激光站向前移到适当位置。

2.3.2.2激光全站仪:

1.激光全站仪被水淋了,不能正常工作,处理办法是把全站仪卸下来,擦干净凉干;

2. 全站仪的气泡偏了,VMT显示姿态偏差变大,处理办法是把全站仪再次整平,然后做一下全站仪方位检查,如果检查超限,就需要重新测定激光站的坐标,千万不要在不测定变动后的激光站坐标的情况下重新定位测量。这样只能误导VMT导向系统给出错误导向。如果检查未超限,就直接重新整平仪器,重新定位测量。

3.全站仪在定位时没有关掉全站仪的电源,定不了位,处理办法是把全站仪的电源关掉,重新启动定位程序。

4.全站仪找不到ELS靶,处理办法是首先看全站仪与ELS靶之间的空间有没有障碍物挡,如果有,将其移开。如果还收寻不到,就人工测量出激光站至ELS靶的方位,手动输入到激光站编辑器里的方位当前值里。

2.3.2.3电缆:

电缆被拉断,导致不能传输数据或电流。处理办法是沿着线路一直排查,直到找到断裂出,把电缆接好。

3.盾构姿态人工复测

3.1盾构姿态人工检测概述

在盾构施工的过程中,为了保证导向系统的正确性和可靠性,在盾构机掘进一定的长度或时间之后,应通过洞内的独立导线独立的检测盾构机的姿态,即进行盾构姿态的人工检测。盾构施工中所用到的坐标系统有三种:全球坐标系统、 DTA 坐标系、TBM坐标系。

3.2盾构机参考点的测量

在进行盾构机组装时,VMT公司的测量工程师就已经在盾体上布置了盾构姿态测量的参考点(共21个),如图9。并精确测定了各参考点在TBM坐标系中的三维坐标。我们在进行盾构姿态的人工检测时,可以直接利用VMT公司提供的相关数据来进行计算。其中盾体前参考点及后参考点是虚拟的,实际是不存在的):

图9 S267盾构机参考点的布置

盾构姿态人工检测的测站位置选在盾构机第一节台车的连接桥上,此处通视条件非常理想,而且很好架设全站仪。只要在连接桥上的中部焊上一个全站仪的连接螺栓就可以了。测量时,应根据现场条件尽量使所选参考点之间连线距离大一些,以保证计算时的精度,最好保证左、中、右各测量一两个点,这样就可以提高测量计算的精度。例如在我们在选择S267盾构机的参考点时,即是选择的1、10、21三点作为盾构姿态人工检测的参考点。

3.3 盾构姿态的计算

3.3.1盾构姿态的计算原理

盾构机作为一个近似的圆柱体,在开挖掘进过程中我们不能直接测量其刀盘的中心坐标,只能用间接法来推算出刀盘中心的坐标。

图10盾构姿态计算原理图

如图A 点是盾构机刀盘中心,E 是盾构机中体断面的中心点,即AE 连线为盾构机的中心轴线,由A 、B 、C 、D 、四点构成一个四面体,测量出B 、C 、D 三个角点的三维坐标(x i ,y i , z i ),根据三个点的三维坐标(x i , y i , z i )分别计算出L AB , L AC , L AD , L BC , L BD ,L CD , 四面体中的六条边长,作为以后计算的初始值,在盾构机

掘进过程中L i 是不变的常量,通过对B 、C 、D 三点的三维坐标测量来计算出A

点的三维坐标。同理,B 、C 、D 、E 四点也构成一个四面体,相应地求得E 点的三维坐标。由A 、E 两点的三维坐标就能计算出盾构机刀盘中心的水平偏航,垂直偏航,由B 、C 、D 三点的三维坐标就能确定盾构机的仰俯角和滚动角,从而达到检测盾构机姿态的目的。

3.3.2通过AutoCAD 作图求解盾构姿态

通过几何解算盾构姿态方法的缺点是在内业计算时,如果用人工手算,其工作量相当大,而且难免出错,因此我们在进行解算时,是利用AutoCAD 进行作图求解,相对于用几何方法解算,速度要快很多。其操作过程如下:

首先是把隧道中心线(三维坐标)通过建立CAD 脚本文件输入CAD 中,这个工作一个工地只要做一次。然后是把所测参考点1、10、21的坐标(三维)输入到CAD 里面。分别以1、10、21为球心,以1、10、21到前点的距离为半径画球,求三个球的交集。用鼠标左键点击交集后的体,就可以找到两个端点,这两个端点到1、10、21的距离就分别等于1、10、21到前点的距离。然后根据盾构掘进的方向,舍去其中一个点。同样方法把后点在CAD 里画出来。由于后点通过求交集的方法求出的两个端点距离很近,通过盾构机的掘进方向很南判断,于是通过前点到后点的距离是3.9491米来判断。画出前后点的位置后,通过前后点向隧道中线做垂线,通过测量垂线在水平和垂直方向上偏离值来求解盾构机前后点的姿态。盾构机的坡度=(为盾体前后参考点连线长度)。根据测量平差理论可知,实际测量时,需要观测至少4个点位以上,观测的参考点越多,多余观测就越多,因此计算的精度就越高。比较VMT 导向系统测得的盾构姿态值和人工检测的盾构姿态值,其精度基本上能达到±5mm 之内。

图11盾构姿态CAD计算示意图

4.管环检测

4.1管环测量概述

由于在盾构掘进过程中,刚拼装的管环还没有来得及注入双液浆加固,因此还不稳定,经常发生管环位移现象。有时位移量很大,特别是上浮,位移量大常常引起管环限界超限。因为地铁施工中规定,拼装好的管环允许最大限界值是±10㎝。为了防止管环的侵限,我们首先是提高控制测量的精度外,其次是提高导线系统的精度,最后就是通过每天的管环测量,实测出管环的位移趋势,采取措施尽量减小位移量。当然,管环测量还起到复核导向系统的作用。

4.2管环测量方法

根据管环的内径是2.7米, 采用铝合金制作一铝合金尺,铝合金尺长3.8米(可根据实际情况调整长度)。在铝合金尺正中央,贴上一个反射贴片。根据管环、铝合金尺、反射贴片的尺寸,就可以计算出实际上的管环中心与铝合金尺上反射贴片中心的高差。测量时,首先用水平尺把铝合金尺精确整平,然后用全站仪测量出铝合金尺上反射贴片中心的三维坐标,就可以推算出实际的管环中心的三维坐标。每次管环测量时,应重叠5环已经稳定了的管环,这样就可以消除测错的可能。

图12.管环测量示意图

图13管环中心标高推算示意图

4.3管环姿态计算

管环测量时,把管环检测外业数据直接存储在全站仪的内存里。回到办公室后,通过徕卡测量办公室软件(Leica Survey –Office),将全站仪里面的管环测量外业数据下载,然后将其复制到EXCLE表格中编辑成CAD认识的三维坐标,然后将三维坐标数据复制到记事本程序里面保存,文件的后缀名必须是.SCR,如“管环检测外业数据.SCR”。这样就把管环检测的外业数据编辑成了CAD的画点脚本文件。通过CAD的脚本功能,就很方便快节地在CAD里面把点画出来。

打开AutoCAD,在模型状态下(一定要关闭“对象捕捉”命令),打开菜单栏的“工具(T)”选项,在下拉子菜单中选择“运行脚本(R…)”,或者在命令行中输入“.SCR”,两种方式都是运行脚本,AutoCAD便查找脚本文件。操作者找

到要调用的脚本文件“管环检测外业数据.SCR” 后,直接打开它。AutoCAD 便自动把点画出来了。如下图14。

图14 管环姿态计算示意图

点位画出来后,就可以在CAD里通过查询命令直接量出管环的水平和垂直姿态了。通过以上管环的测量和计算方法,解决了管环检测数据量大,计算难,测量时间长的问题。大大提高管环检测的效率和准确度。

5. 结束语

由于盾构机的VMT导向系统必须有控制测量的支持才能运作,所以控制测量还是盾构隧道测量的基础。为了保证隧道的顺利贯通,我们首先要做好控制测量,然后就是保证导向系统的正常运行,定期对盾构姿态进行人工检测,保证导向系统的正确可靠。加强管环姿态检测,及时发现管环的位移趋势,防止管环安装侵限。加强管环姿态的检测同时也是对导向系统的复核。由于笔者才疏学浅,文中难免有不周全之处,恳请各位提出批评与建议。

盾构施工控制测量方案

杭州市地铁2号线一期工程SG2-3标 杭发厂站—人民广场站 盾构施工控制测量方案 编制: 审核: 批准: 中铁隧道集团有限公司 杭州市地铁2号线一期工程SG2-3标项目经理部 二○一一年七月

一、编制依据 1、杭州市地铁2号线工程杭发厂站~人民广场站区间施工设计图及有关说明; 2、《地下铁道、轻轨交通工程测量规范》GB50308—2002; 3、《城市测量规范》CJJ8—99; 4、《新建铁路工程测量技术规范》TB10101—99; 5、《城市轨道交通工程测量规范》GB50308-2008; 6、《建筑变形测量规范》JGJ8-2007; 7、《工程测量规范》GB50026-93; 8、《市政地下工程施工及验收规程》DGJ08-236-1999; 9、《盾构法隧道施工及验收规范》GB50446-2008; 10、杭州地铁公司发布的地铁工程施工测量管理细则。 二、工程概况 2.1、工程位置 本工程位于杭州市萧山区,其中杭发厂站-人民广场站区间为2号线全地下盾构区间,盾构从人民广场南端头井始发沿市心中路下掘进,先后旁穿北河上的泰安桥和长廊顶河上的华荣桥,抵达杭发厂站北端头后调头,再次始发掘进至人民广场南端头。盾构区间平面位置详见图1.1《工程平面位置图》。

图1.1 工程平面位置 2.2、设计情况 【杭~人】区间起讫里程为上行线SDK5+665.328~SDK6+350.666(下行线XDK5+665.328~XDK6+350.666),区间上行线长685.338m(下行线长685.863m)。区间上行线及下行线由直线段和二组缓和曲线组成,曲线半径均为1000m、1500m、。区间上行线及下行线隧道均以0坡出站后以22‰的下坡到达区间最低点后,上行线以21.6‰的上坡(下行线线以21.56‰的上坡),最后以2‰的上坡进站。线路呈节能V型。本区间竖曲线半径最大为5000m,最小为3000m。隧道拱顶埋深为10.2~15.6m。 2.3、技术标准 1)结构设计使用年限为100年。 2)结构的安全等级为一级。 3)结构按7度抗震设防。 4)结构设计按6级人防验算。 5)衬砌结构变形验算:计算直径变形≤2‰D(D为隧道外径)。 6)管片结构允许裂缝开展,但裂缝宽度≤0.2mm。 7)结构抗浮安全系数不得小于1.05。 8)盾构区间隧道防水等级为二级。 三、施工测量流程 仪器检测→交桩及控制点复测→测量方案及审批→机载仪器测量→人工复测→监理、建设方复测→施工过程中复测→竣工测量。 四、施工平面控制测量 4.1、施工平面控制网的布置原则 (1)、工程测量放样的程序,遵守由总体达到局部的原则; (2)、控制点应满足整体控制要求; (3)、控制点应埋设在牢固不易破坏的位置; (4)、控制点相互之间必须通视,不能满足通视要求应合理设置工作点; (5)、控制点数据采集后需进行闭合,并进行平差计算; (6)、严格控制限界要求,满足设备安装要求,放样时需掌握“宁大勿小”

盾构现场施工隧道监测方法

精心整理上海长兴岛域输水管线工程盾构推进 环境监测 技术方案

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容

上海长兴岛域输水管线工程盾构推进环境监测技术方案 前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全 工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

施工工序,第一台盾构自原水过江管工作井始发推进(东线)至中间盾构工作井进洞后盾构主机解体调头,继续西线隧道推进施工。第二台盾构自中间盾构工作井始发推进(东线)至水库出水输水闸井进洞后盾构转场回中间盾构工作井,继续进行西线隧道推进施工。总体筹划详见下图: 二盾构推进对周边环境影响程度的分析和估算 因很复杂,其中隧道线形、盾构形状、外径、埋深等设计条件和土的强度、变形特征、地下水位分 V l S (x )i Z -地面至隧道中心深度。 φ-土的内摩擦角。 在已知盾构穿越的土层性质、覆土深度、隧道直径及施工方法后,即可事先估算盾构施工可能引起的地面沉降量,同时可及时地采取措施把影响控制在允许范围内。在推进过程中根据盾构性能及监测数据及时调整施工参数,控制变形量,确保周边环境的绝对安全,实现信息化施工。 三监测施工的依据 3.1技术依据 1) 上海长兴岛域输水管道工程技术标卷(甲方提供)

盾构区间监测方案

南昌市轨道交通1号线一期工程土建施工三标段 长江路站~珠江路站区间上行线 盾构推进监测方案 编制: 审核: 审批: 中铁十六局集团有限公司 南昌市轨道交通1号线一期工程土建施工三标段项目经理部 2011年12月22日

目录 一、工程概况...................................................................................................................... - 1 - 二、监测方案编制原则与依据.......................................................................................... - 4 - 三、监测范围及内容.......................................................................................................... - 5 - 四、监测点的布设.............................................................................................................. - 5 - 五、监测作业方法.............................................................................................................. - 6 - 六、监测相关技术要求...................................................................................................... - 7 - 七、仪器设备选用.............................................................................................................. - 8 - 八、监测施工人员组织计划(管理网络图)................................................................ - 10 - 九、监测信息反馈体系.................................................................................................... - 10 - 十、监测质量保证措施.................................................................................................... - 15 - 十一、安全保证措施............................................................................................................ - 16 -

盾构施工控制测量

中铁三局西南公司盾构施工作业指导书 盾构施工控制测量 中铁三局西南公司盾构工程段

1.盾构施工控制测量 1.1 目的和适用范围 为了保证盾构机准确定位始发,根据设计蓝图计算出的隧道中心线在规范偏差允许范围内掘进并准确贯通,制定本作业指导书。 本作业指导书适用于采用盾构施工的区间隧道工程。 1.2 工作内容及技术要点 盾构施工测量主要分为四部分:地面控制、联系测量、洞内控制和竣工测量,具体内容及技术要求见表1.2-1。 表1.2-1 盾构施工测量内容及技术要点 1.3 测量前准备工作 1.3.1盾构施工前,项目部应成立专门的测量组织机构,测量人员应具备相应的测量技能等级及执业资格。 1.3.2项目应配置精度满足要求的测量仪器,全站仪测角精度不低于2″,测距精度不低于Ⅱ级(5~10mm)。

1.3.3盾构施工前,应编制测量方案,并按程序经过审查、批准后方可实施。1.4 测量作业 1.4.1 交接桩及复测 1 项目中标后,交接桩资料包括平面控制点坐标及高程以及相应的“点之记”,经业主方代表(或者业主委托的第三方测量(以下简称“业主测量队”)单位代表)、施工承包方代表签字确认后生效,并到各控制桩点现场确认。 2 施工承包方完成接桩后,应及时编写复测方案并组织实施。复测成果上报监理及业主(或业主测量队)审查。如发现有交桩控制点精度不满足要求,应在复测报告中明确申请业主测量队进行复测确认。 3 一条区间隧道交桩控制点应不少于6个,即在隧道两端各有2个以上平面控制点和1个以上水准点。 4 按照精密导线的要求进行控制导线复测,具体要求按照《城市轨道交通工程测量规范》(GB 50308-2008)“3.3精密导线测量”执行。 1.4.2 地面控制点加密 1 加密导线点与交桩控制点宜形成附合导线,附合导线的边数宜少于12个,相邻的短边不宜小于长边的1/2,个别短边的边长不应小于100m。 2 受条件限制,加密导线点与交桩控制点只能形成闭合导线时,应在《城市轨道交通工程测量规范》(GB 50308-2008)要求基础上增加至少一倍的观测频率。 3 加密水准点应设置在施工影响范围之外且比较稳固的地方,至少每半年对加密水准点与交桩水准点进行一次联测。 1.4.3 平面联系测量 1 平面联系测量一般可采用一井定向(如图 1.4.3-1)、两井定向(如图 1.4.3-2),投点方式可采用钢丝或者投点仪。 2 一井定向联系三角形测量具体要求按照《城市轨道交通工程测量规范》(GB 50308-2008)“9.3联系三角形测量”执行。 3 两井定向联系测量 1)在盾构施工时,可以利用车站两个端头井或者是一个端头井和中间的出土口位置进行两井定向。 2)左右线的地下控制边可以同时测量,但应分开计算。

地铁盾构区间孤石探测及处理方案

盾构区间孤石探测及处理方案 编制: 复核: 审批: 二○一一年七月二十八日

盾构区间孤石处理方案 一、工程概况 武汉市轨道交通二号线一期工程第xx标段盾构工程包括【积玉桥站~螃蟹甲站】、【螃蟹甲站~体育南路站(盾构区间部分)】二个盾构区间。盾构机自积玉桥站始发,到达螃蟹甲站后过站,再从螃蟹甲站东端头二次始发,掘进完xx盾构隧道后,从紫砂路盾构井和体育南路站盾构井解体吊出。 在紫沙路下,左线盾构下穿已建成的明挖出入场线隧道结构,两结构间净距离仅为1.7m。且两隧道结构在平面上呈小角度斜交,相交段长度约为80m。出入场线在该相交处采用了SMW工法桩,在SMW工法桩施工过程中,发现在地面以下14m~20m范围内存在孤石,盾构穿越此处时必须对孤石进行提前处理。 目前,530、531两台盾构机刀盘的开口率以及刀具的配置是适用于软土的地层施工掘进。如遇到孤石地层会造成掘进困难,若处理不好,会引起较严重的土工问题。 二、盾构机在软土地层中掘进遇到孤石的危害 在盾构法隧道施工过程中,可能遇到随机分布的孤石,且孤石形状大小各异、强度不一,而基岩使隧道内岩土层软硬不均。在这类地层中掘进效率低,刀盘刀具磨损严重,易产生卡刀、斜刀、掉刀、刀具偏磨、线路偏移等,处理起来速度比较慢,严重影响施工进度,有的甚至因施工无法进展而不得不变更设计,花费成本较高,经济效益差;怎样处理好盾构掘进过程中所遇到的球状花岗岩和基岩突起,是我部盾构施工过程中的技术难题。 目前,530、531两台盾构机只在刀盘边缘装配有7把滚刀,掘进时若碰到孤石,靠边缘的7把滚刀很难将孤石破碎。在软土地层中,盾构机掘进时滚刀很难产生足够的反力将孤石破碎。若孤石不破碎,盾构机掘进时,孤石会在刀盘前方随着盾构机掘进方向移动,对地层造成很大的扰动。此外,对盾构机刀盘的主轴承、刀盘的钢结构产生伤害,对刀具产生破坏。盾构机的掘进姿态很难控制。 三、孤石处理方案 1、盾构隧道补充勘察 为了进一步准确掌握孤石的分布情况,为孤石处理方案提供依据,必须对沿线补充勘察,进行详细了解。 采用地质探测仪对孤石进行探测,发现孤石后对该地段进行加密补勘,探测宽度

杭州地铁1号线武艮盾构区间测量方案

杭州市地铁1号线武—艮区间 (10、11号盾构) 盾构施工控制测量方案 编制: 审核: 批准: 中铁隧道集团有限公司 杭州地铁1号线武—艮盾构区间项目经理部 二00九年一月

控制测量方案 一、编制依据 1、杭州市地铁1号线工程武—艮区间(10、11号盾构)施工设计图及有关说明; 2、杭州市地铁1号线工程武—艮区间(10、11号盾构)控制点复测成果书(2008年7月21日复测资料); 3、《地下铁道、轻轨交通工程测量规范》GB50308—2002; 4、《城市测量规范》CJJ8—99; 5、《新建铁路工程测量技术规范》TB10101—99; 6、《城市轨道交通工程测量规范》GB50308-2008; 7、《建筑变形测量规范》JGJ8-2007; 8、《工程测量规范》GB50026-93; 9、《市政地下工程施工及验收规程》DGJ08-236-1999; 10、《盾构法隧道施工及验收规范》GB50446-2008; 11、杭州地铁公司发布的地铁工程施工测量管理细则。 二、工程概况 2.1、工程位置 本工程位于杭州市下城区,由2个盾构区间组成,划分为3个单位工程。即1号线武林广场站~文化广场站区间隧道工程、1号线文化广场站~艮山门站区间隧道工程、3号线武林广场站~文化广场站区间隧道工程。其中武林广场站~文化广场站区间为1、3号线四条单线隧道交叉并行。

2.2、设计情况 【武~文】区间1号线起讫里程为K15+620.882~K16+193.476(左K16+187.350),左、右线的线路长分别为:566.528m 和572.654m;3号线起讫里程为K15+620.882~K16+179.361(左K16+173.08),左、右线的线路长分别为:552.259m和558.539m。 本区间的1、3号线分别为4条单线隧道,隧道线路在空间上相互交叉重叠,最小净间距为4.063m。1号线平面分别由直线段和两组缓和曲线组成,左线曲线半径为分别600m、500m;右线曲线半径分别为400m、400m。3号线平面由直线段和三组缓和曲线组成(右线由直线段和两组缓和曲线组成),左线曲线半径分别为500m、400m、1000m;右线曲线半径分别为400m、500m。 1号线左线隧道纵断面先以2‰下坡出站(右线以2‰上坡出站),然后以11.985‰及28‰的上坡(右线以21.937‰的下坡),最后以2‰的下坡进站(右线以2‰的上坡进站)。3号线左线隧道纵断面先以2‰的下坡出站后(右线14‰的上坡出站),以 4.852‰的上坡(右线先以30‰的下坡再以17.672‰的上坡),最后以2‰的下坡进站。1号线竖曲线半径最大为5000m,最小为3000m,3号线竖曲线半径最大为5000m。隧道拱顶埋深1号线为9.5~17m,3号线为6.7~18m。 【文~艮】区间起讫里程为K16+461.556~K17+539.118(左K17+562.378),左、右线的线路长分别为:1100.822m、1077.562m。区间左线由直线段和三组缓和曲线组成(右线由直线段和三组缓和曲线组成),左线曲线半径分别为330m、1000m、600m(右线曲线半径

盾构施工监测方案

广州市轨道交通三号线北延段工程施工 8 标段 【龙归站~人和站盾构区间(二) 】土建工程 盾构隧道施工监测方案
§1 编制依据 §1 编制依据
1、 广州市轨道交通三号线北延段工程施工 8 标段工程合同文件 (GDJCDG-0521) 2、 《盾构法隧道工程施工及验收规程》 (DGJ08-233—1999) 3、 《地下铁道、轻轨交通工程测量规范》 (GB50308-1999) 4、 《地下铁道工程施工及验收规范》 (GB50299-1999) 5、 《建筑变形测量规范》 (JGJ/T8-97) 6、 《土木工程监测技术》 夏才初等编著,中国建筑工业出版社,2001.7
§2 工程概况 §2 工程概况
三号线延长线出龙归站沿 106 国道继续向北行进,穿过沙坑涌、北二环高速 公路、泥坑涌、流溪河后到人和站。本区间为龙归~人和区间的第二段盾构施工 段,由南端风井始发往北掘进至北端中间风井吊出,掘进长度为 1750.4 米(右 线) 。 本标里程范围 YCK19+830~YCK21+660,即南端风井终点~北端风井起点 段盾构和南端风井;含 4#、5#、6#联络通道。 南端风井起点里程 YCK19+830,终点里程 YCK19+909.6,结构净长度为 78m;4#联络通道里程 YCK19+900,与风井合建。 盾构区间起点里程 YCK19+909.6, 终点里程 YCK21+660, 右线盾构长 1750.4 米, 左线盾构长 1749.2 米, 区间盾构总长 3499.6 米; 5#联络通道里程 YCK20+500, 6#联络通道里程 YCK21+100。 见图 2-1。
1

地铁盾构隧道施工测量方案设计与实现

地铁盾构隧道施工测量方案设计与实现 发表时间:2019-02-22T15:09:15.050Z 来源:《防护工程》2018年第32期作者:李丛乐[导读] 地铁盾构施工测量的根本是为了使隧道施工能够在设计上做到科学无误、合理畅通,在此主要借鉴以某市地铁6号线为研究案例 李丛乐 北京建工土木工程有限公司北京 100020 摘要:地铁盾构施工测量的根本是为了使隧道施工能够在设计上做到科学无误、合理畅通,在此主要借鉴以某市地铁6号线为研究案例,对地铁盾构隧道施工测量方案进行详细论述,并分析考证此方案在实际施工操作时是否切实可行,最后将对地铁盾构隧道施工的典型特征进行归纳,并提出相应的合理化建议。 关键词:盾构隧道;地铁;施工测量;方案 引言:为了能够让某市地铁6号线在设计上实现科学无误、合理畅通,并符合交通工程规范标准,需要提前对测量方案进行设计分析,这样能够确保地铁盾构施工在严密的监护和把控之下,为后期的机电安装以及铺设铁轨奠定良好的基础,从而确保整个地铁隧道的质量。 1地铁工程情况 在此以某市地铁6号线为施工实例进行相关探讨,该工程全长为5841.9单线米,投资约2.8亿人民币,一期工程在2011年完成通车。该工程项目在管理机构方面也有专业的要求标准,首先是在项目相关人员的组成上配备了各方面的专业人才,有专职的测量工程师,他们主要是负责现场的测量放样以及施工控制和资料复核整理,专业的测量工和技术员4人,助理工程师1人。 2地铁施工测量工作 2.1对于地面的控制点进行重复测量并进行加密工作 2.1.1地面的控制测量工作 按照相关的规程,该地铁工程使用的LJ058、GPS点等20多个精密导线点进行了精度非常高的复测,并且进行符合实际要求的加密工作。然后将测量的数据提供给监理工程师和相关业主进行检查,当数据检验合格后才能够批准使用。在测量引测近井导线点的时候,要充分依据重复测量得到的数据成果,将公司精测队找到的最近导线点作为测量的基点,布设出三角形形成一个闭合的导线网。利用业主许可的水准网,测量的基点最好选择离得最近的精密水准点,按照我国规定的二等精度实施检测,将水准点引到端头井的周边,使其能够符合在地面的水准点以上。每个端头不能少于2个水准点,这有利于后期相互的校正核对。 2.1.2对于站内的投点以及盾构始发井的测量 在该项目工程的施工过程中,必须进行多次的联系测量。采用的方法主要有两种:定向测量和高程传递,前者就是利用地面的控制点,然后采用导线做定向的测量;后者的测量主要是利用悬垂的钢尺,也就是通过将地面高程传递到近井水准点上,然后通过在竖井内挂钢尺来测量。 2.2施工放样工作分析 一般情况下,包括主体的结构纵横轴线、基坑的开挖线、维护结构的纵横中心线等。围护结构中:测量方法采用极坐标法、支距法或者偏角法。搅拌桩误差范围±50mm,连续墙误差范围±10mm,锚索误差范围±50mm。主体结构中:测量方法采用极坐标法、支距法或者偏角法。边角点误差范围±10mm,轴线点误差范围±10mm,细部点误差范围±20mm。 2.2.1采用极坐标的方法进行放样 主要是两个已知的导线点坐标,其中一个被选为作为后视点,另一个作为置镜点,依据业内的计算资料可以算出来放样点的坐标,得出相关的数据,比如置镜点和后视点之间的夹角等,然后再根据实际的要求进行施工放样[1]。 2.2.2对于井内的施工放样工作 首先是该项目采用的竖向投测方法,就是利用锤球和经纬挂吊的方法来进行测量;其次是竖向的标高传递测量,用水准仪进行测量,然后用钢尺来测量各层的标高。在各个角设定标高的引测点,确定每一层的控制线,要保证误差允许范围为±3mm。在完成满堂支架体系后,要把标高和柱子的中心位置作为基准,测量梁底和顶板位置的标高,在进行下一步工序前必须要进行充分的调整。 2.3井下控制方面的测量工作 2. 3.1井下水准测量 地下高程控制的测量是从近井水准点开始的,沿着隧道设计方向进行导线的布设,直线段的边长应该不小于200m,曲线部分的导线边长应该不小于100m,如果检测点的位置有变化,那么应该考虑选择另外的施工控制导线点再重新进行施工控制导线测量工作[2]。 2.3.2对于井下水准的测量工作 地下近水井的水准点是地下高程控制测量的依据基础,洞内的水准点可以充分的利用地下的导线点,沿着隧道的直线段大约每200m设置一个固定的水准点,在曲线段大约每100m设置一个。在整个隧道贯穿前地下控制的水准测量应该独立的进行3次,比如该项目工程就投设了3个水准点D12-D1。而其最大高交叉应该满足规范的要求,数据合格后才可以。 2.4始发架的定位及SLS—T系统 当后配套在下井时应该提前做好中线点的选择工作,即在始发井前设置两个点,在始发井后面和钢环上都设定一个点。如果在架设仪器的时候有困难,那么可以采用悬挂线绳吊垂线的方法来设定。盾构机自身具备SLS-T系统,这是一种导向系统,它能够随时地测量盾构机的掘进趋势、水平倾角以及盾构机的偏离隧道设计中线的位置等[3]。另外,对于托架的测量,必须要提前测量全站仪和后视棱镜点的高程、和坐标。采用正倒镜观测四测回的方法进行角度测量,在观测的时候应该每条边都往返进行观测,同时进行气象改正;一般采用的是单程的双置镜方法进行高程测量。 3盾构推进工作 3.1测量前期的准备内容

深圳地铁5号线民五区间盾构隧道监测方案

深圳地铁5号线(环中线)工程 民治~五和盾构区间隧道 施工监测方案 编制: 审核: 审查: 中铁西南科学研究院有限公司 深圳地铁5号线BT项目土建工程施工监测项目部 二○○九年一月十日

目录 一、编制依据........................................................................................................... - 1 - 二、工程概况........................................................................................................... - 1 - 三、监测方案说明................................................................................................... - 2 - 四、质量保证、成果及时性保证、安全保证措施............................................. - 11 - 五、民五盾构区间建(构)筑物专项监测方案................................................. - 13 - 六、附图............................................................................................................... - 16 -

盾构区间测量施工方案

1、概况 (1) 2、技术编制依据 (2) 3、仪器设备配置 (3) 4、施工测量组织机构........ (3) 5 、测量技术保证措施 (4) 6、技术方案............ (5) 7、贯通后的测量 (20) 8 、全线贯通误差分析 (20)

郑州市轨道交通 2 号线一期工程土建施工 06 工区盾构区间施工测量设计方案 一、概况 1.1 、工程概况 本标段共包括三个盾构区间南环站~长江站区间右线,长江站~航海站区间右线,航海站~帆布厂站区间右线。 帆布厂街站?航海东路站右线盾构区间隧道 帆布厂街站?航海东路站盾构区间右线起讫里程YCK22+655.200?YCK23+352.900,右线全长697m;区间出帆布厂街站后以20%。的坡度下坡200m, 以4.155%的坡度上坡389.422m,最后以2%。的坡度上坡25m进入航海东路站。隧道拱顶最深埋深11.05米,区间半径5000m,在区间中部设联络通道兼水泵房两处。 航海东路站?长江路站右线盾构区间隧道航海路站?长江路站盾构区间,右线起讫 里程YCK23+543.509? YCK24+981.000,右线全长1355.001m,区间出航海东路站后以26%的坡度下坡250m,以5%。的坡度下坡225m,再以5.85%。的坡度上坡525m,然后分别以26% 的坡度上坡330m,最后以2%。的坡度上坡25m进入长江路站。 长江路站?南环路站右线盾构区间隧道 长江路站?南环路站盾构区间线路从长江路站南端头井(YCK25+177.700)出发,沿花寨路南行,横穿端午路、白桦路,以10%的坡度下坡250m,以16.872%。的坡度上坡229.0250m,再以2%。的坡度上坡270m进入南环路站,南环路站北端头井(YCK25+719.000),右线全长589m为双线单圆盾构区间。其中区间设一处联络通道结合泵站设置在线路最低点附近。 1.2、控制点概况: 本标段施工中总共利用3个GPS及精密导线点和3个二等水准点,其中相邻 两控制点相互通视。水准点均设在房角及硬化层上。 、编制依据 《城市轨道交通工程测量规范》GB50308---2008 《工程测量规范》 GB50026---2007

盾构测量方案

目录 一、编制及测量依据........................................................................................................ - 1 - 二、工程概况.................................................................................................................... - 1 - 三、测量任务和内容........................................................................................................ - 2 - 四、施工测量技术方案.................................................................................................... - 2 - 4.1施工首级测量控制网的检测 (3) 4.2施工控制网的加密测量 (3) 4.3联系测量 (6) 4.4地下施工控制导线测量 (8) 4.5施工放样测量 (9) 4.6盾构施工测量 (10) 4.7隧道贯通测量 (14) 4.8隧道竣工测量 (14) 4.9隧道沉降测量 (14) 五、测量误差分析.......................................................................................................... - 15 - 5.1隧道测量误差分析 (15) 5.2隧道贯通误差预计 (16) 六、测量人员和测量仪器配备...................................................................................... - 19 - 6.1主要测量人员配备表及职责划分细则 (19) 6.2职责划分细则 (21) 6.3主要测量仪器配备 (21) 七、测量工作管理.......................................................................................................... - 22 - 7.1测量人员管理 (22) 7.2仪器管理 (22) 7.3资料管理 (23) 八、测量质量保证措施.................................................................................................. - 23 - 九、施工测量复核程序图.............................................................................................. - 25 -

盾构施工测量

盾构施工测量技术 盾构法隧道施工是一项综合性的施工技术,它是将隧道的定向掘进、运输、衬砌、安装等各工种组合成一体的施工方法。其埋设深度可以很深,不受地面建筑、天气和交通等的影响,机械化和自动化程度很高,是一种先进的土层隧道施工方法,广泛应用于城市地铁、越江隧道等的施工中。 盾构施工测量主要是控制盾构的位置和推进方向,目的是确保盾构按照设计轴线推进,管片拼装后型后满足隧道轴线误差控制要求。利用洞内导线点测定盾构机的位置(当前空间位置和轴线方向),通过推进油缸施以不同的推力,调整盾构的位置和推进方向,使盾构机的掘进按照设计的线路方向推进。盾构推进只是盾构施工技术的一部分,在整个施工过程中,施工测量还包括地面测量(地面控制测量﹑沉降观测和井位放样等)﹑联系测量(方位传递﹑坐标传递和高程传递等)以及地下施工测量(地下导线点的测设、洞门钢环的安装、始发台的定位、反力架的定位、盾构始发测量﹑盾构掘进过程中的测量、隧道沉降测量﹑联络通道的施工测量、盾构到达测量、贯通测量、断面测量以及竣工测量等)。每一步的测量工作都十分重要,直接影响下一步的施工。在各项工作中,最为重要的是地面控制测量﹑联系测量﹑地下控制测量和盾构施工测量。这些工作决定着隧道能否达到设计要求,盾构机能否准确进入接受井并确保隧道准确贯通。 一、地面控制测量 1、地面平面控制测量 对于隧道工程,地面控制测量的主要任务是建立合适的测量控制系统,提供可靠的地面控制点,为联系测量和地下控制测量提供起算依据,同时也作为以后复核测量和竣工测量的起算数据。地面测量控制网的点位和起算数据由建设单位负责提供,一般要求暗挖隧道的地面控制网精度不应低于国家四等三角网测量的技术指标及精度要求,同时要根据盾构隧道的贯通长度、联系测量和地下控制导线的精度等条件,估算地面控制网应达到的精度。施测时,以现有平面GPS控制点为依据布置平面控制点,建立地面导线控制网。 2、地面高程控制测量 以现有的二等水准点从工作井至接收井布设水准线路,用此精密水准点来控制隧道的施工高程。在施工前、施工中和进洞前分三次复核水准路线。

盾构TBM施工测量要求

关于盾构TBM施工测量的若干技术要求 各盾构(TBM )项目部(工区): 近年来,随着盾构(TBM )法施工的工地不断增多,与其相配套的施工测量技术也逐渐成熟,但因测量人员经验及素质原因和导向系统设备原因、加上洞内施工和环境的影响、盾构(TBM )和导向系统之间设计配套、以及隧道平纵线形设计因素、地质因素等客观原因,部分工地出现了导向系统故障多、误差大、影响掘进时间长、一些工地甚至多次出现了较大的掘进偏差等现象。 为使施工测量工作更好地服务于现场,高可靠性、高精度地实时提供盾构(TBM )姿态数据,使盾构(TBM )按照设计轴线精确掘进,各项建筑能够满足设计、限界要求,现根据相关测量规范、导向系统工作特点及各工地施工测量经验总结,列出以下盾构(TBM )施工测量若干要求,请各项目部根据本工地实际情况参照执行: 一、盾构(TBM初始姿态测量与人工导向 1、机器初始位置测量 盾构(TBM)组装完成/始发前,必须用人工测量方法测定机器盾壳或内部精密结构件特征点,计算机器姿态数据:包括刀盘切口里程、切口处平面、高程偏差、盾尾处平面、高程偏差、偏航角、俯仰角、滚动角等。 对于新机器,需要自行安装或要求导向系统技术服务人员安装若干个人工测量点,然后测量、计算人工测量点在盾构独立坐标系中的坐标并妥善保存,建立掘进过程中的人工导向系统。 对于旧机器,也需恢复、测量并计算复核人工检查点既有数据。 人工测量点位布置原则:

(1)人工测量点位应布置在与TBM掘进轴线相对位置不会发生变动的地方,能够真实反应机器姿态; (2)点位之间尽可能拉大距离,提高推算刀盘切口姿态数据的精度。 (3)在掘进过程中,置镜同一地方应至少能够观测到三个以上符合以上两条要求的点位,可多设几个检查点以备选择;同时根据掘进时通视条件,在机器上合适位置焊接仪器强制对中钢板(保证在人工测量过程中不发生移动即可)。 2、导向系统 导向系统测量结果与人工测量结果进行对比,较差不大于导向系统中误差 的2 倍(导向系统中误差由项目部测量组根据不同的机器和导向系统,以及设计文件和相关规范规定的掘进偏差中误差确定),如超出限差时应查找原因。 3、人工导向系统 所有盾构(TBM)都必须建立人工导向系统,做为机器自身导向系统的检查和备份系统。 (1) 出现以下情况时,需要进行人工导向: (a) 导向系统故障不能工作,需要继续掘进时; (b) 激光靶/马达棱镜安装托架变形、位置改变或修理、替换后重新安装时; (c) 掘进方向或高程偏离设计轴线较大时; (d) 怀疑导向系统测量结果有问题时; (e) 区间隧道贯通前; (f) 平时,也应按照一定的频率对导向系统进行检核校正。 2) 测量要求 (a) 最少测量三个人工测量点;如能够找到机器上理论的垂直面或水平面,也可

盾构区间施工测量方案

盾构区间施工测量方案

目录 第一章工程概况 (1) 1.1 河口大世界站~玉湖站区间设计概况 (1) 1.2盾构区间总体筹划 (1) 第二章编制依据 (2) 第三章编制原则 (2) 3.1测量管理目标 (2) 3.2质量指标 (2) 3.3施测原则 (2) 3.4准备工作 (3) 第四章地面控制测量 (5) 4.1平面控制网复测 (5) 4.2水准测量 (7) 4.3联系测量 (9) 4.4陀螺定向 (10) 4.5陀螺定向注意事项 (10) 4.6陀螺定向的误差分析 (11) 第五章、隧道内施工控制测量 (12) 5.1 地下控制测量 (12) 5.2 洞内加密导线的布设 (15) 5.3 高程控制测量 (16) 5.4 水准控制测量 (16) 5.5点位埋设及保护措施 (17) 第六章、盾构测量 (19) 6. 1盾构施工的坐标系统 (19) 6.2导向系统的基本组成与应用 (20) 6.3导向系统数据输入和复核 (21) 6.4盾构机零位姿态校核 (22) 6.5洞门钢环中心定位 (23) 6.6盾构始发、到达测量 (23)

6.7始发架的定位 (24) 6.8反力架的定位 (24) 6.9掘进测量 (24) 6.10移站测量 (26) 6.11管片成型测量(管片姿态测量) (26) 第七章测量精度保证措施注意事项及重难点 (27) 7.1测量精度保证措施 (27) 7.2注意事项及重难点 (29) 7.2.1地面控制测量注意事项 (29) 7.2.2联系测量注意事项 (29) 7.2.3地下控制测量注意事项 (29) 7.2.4盾构导向系统的注意事项 (30) 7.2.5人工复测 (30) 7.2.6测量数据处理注意事项 (31) 7.2.7本工程测量重难点 (31) 第八章、贯通测量 (31) 第九章、竣工测量 (32) 第十章、人员组织和仪器配置 (32) 根据工程进度情况随时增加仪器和人员。 (33) 第十一章、安全质量保证措施 (33) 12.1测点的安置原则与保护 (33) 12.2测量仪器设备保障与操作规范 (34) 12.3测量仪器保养和使用制度 (34) 第十二章、复核制度 (34)

九号线6标盾构测量方案

北京地铁九号线军事博物馆站-东钓鱼台站区间工程 盾构隧道施工测量方案 编制: 审核 审批: 北京城建地铁九号线六标工程项目经理部 2010年1月15日

一、工程概况 本工程为北京地铁九号线军事博物馆站-东钓鱼台站区间,设计范围为K12+652.000-K13+864.027采用盾构法施工。在K12-960.000和K13+338.000处各设联络通道一处,其中后者通道下设区间排水泵房。 本区间整体呈南北走向,南段主要位于玉渊潭公园内,北段位于规划白石桥南路下方,隧道覆土17.4-22.4米。白石桥南路尚未实现规划,道路规 备。该设备配有隧道导向系统,需定期对导向系统进行定位并由人工测量对盾构机的掘进姿态和环片安装状态进行检查和核准。隧道衬砌采用钢筋砼预制管片。隧道内经5.4m,隧道位于地下17.4m~22.4m。 二、技术依据 1.《地下铁道、轻轨交通工程测量规范》(GB50308-1999); 2.《工程测量规范》(GB50026-93); 3.甲方及设计的有关技术要求。 三、技术方案 1.地面控制网的检测 为满足盾构施工的需要,应检测业主提供的首级GPS控制点、精密导线点及精密水准点,保证上述各级控制点相邻点的精度分别小于±10mm,±8mm 和±8L mm(精z密水准路线闭合差)作为盾构测量工作的起算依据。

地面控制网是隧道贯通的依据,由于受施工和地面沉降等因素的影响,这些点有可能发生变化,所以在测量时和施工中应先对地面控制点进行检核,确定控制网的可靠性。工作内容包括:检测相应精密导线点,检测高程控制点等,。 2.施工控制网布设 在地面控制网检测无误后,依据检测的控制点,再进行施工控制网的加密,以保证日后的施工测量及隧道贯通测量的顺利进行。施工控制网的加密分两方面内容: (1)施工平面控制网加密测量 通常地面精密导线的密度及数量都不能满足施工测量的要求,因此根据现场的实际情况,进一步进行施工控制网的加密,以满足施工放样、竖井联系测量、隧道贯通测量的需要。 施工平面控制网采用Ⅰ级全站仪进行测量,测角四测回(左、右角各两测回,左、右角平均值之和与360°的较差应小于4″),测边往返观测各二测回,用严密平差进行数据处理,点位中误差小于±10mm。 (2)施工高程控制网的加密测量 根据实际情况,将高程控制点引入施工现场,并沿线路走向加密高程控制点。水准基点(高程控制点)必须布设在沉降影响区域外且保证稳定。 水准测量采用二等精密水准测量方法和±8L mm(L为水准路线长,以km计)的精密要求进行施测。 3.联系测量 联系测量是将地面测量数据传递到隧道内,以便指导隧道施工。具体方法是将施工控制点通过布设趋近导线和趋近水准路线,建立近井点,再通过近井点把平面和高程控制点引入竖井下,为隧道开挖提供井下平面和高程依据。 联系测量是联接地上与地下的一项重要工作,为提高地下控制测量精度,保证隧道准确贯通应根据工程施工进度,应进行多次复测,复测次数应随贯通距离的增加而增加,一般1KM以内取三次。其主要内容包括: (1)趋近导线和趋近水准测量; 地面趋近导线应附合在精密导线点上。近井点应与GPS点或精密导线点通视,并应使定向具有最有利的图形。 趋近导线测量用Ⅰ级全站仪进行测量,测角四测回(左、右角各两测回,

地铁工程盾构测量方案

xx市轨道交通1号线一、二期工程 土建施工9标 盾构测量方案 中铁二十四局集团有限公司 二0XX年二月

xx市轨道交通1号线一、二期工程 土建施工9标 盾构测量方案 编制: 审核: 批准:

目录 一、工程概况及编制依据 (1) 二、编制依据 (2) 三、仪器配置 (2) 四、测量管理网络及人员配置 (3) 五、基本技术要求 (3) 六、前期准备 (4) 七、控制网测量和各项准备 (4) 八、盾构施工前期的测量 (8) 九、联系测量 (8) 十、地下施工测量 (11) 十一、盾构姿态日常测量 (12) 十二、曲线段盾构测量 (15) 十三、地表沉降测量 (16) 十四、隧道沉降测量 (16) 十五、贯通测量 (17) 十六、竣工测量 (17) 十七、提高贯通精度的方法和测量复核 (18) 十八、质量保证措施 (19) 十九、施工安全保证措施 (19)

一、工程概况及编制依据 xx市轨道交通1号线一、二期工程由xx站至徽州大道站,线路长约24.65km,其中地下线23.65km,地面线1km。一期工程共设车站22座,全部为地下站。 云谷路站~南宁路站区间为盾构区间,区间线路沿规划庐州大道向南敷设,区间沿线以荒地和水稻田为主,线路下穿规划岷江路及规划徐河,本区间上方无管线。本区间隧道为两条单洞单线圆形隧道,均采用盾构法施工,区间线间距为由北向南由12m渐变至15m;区间最大纵坡25.007‰,最小纵坡2‰;区间设计起讫里程右线:K25+421.529~K25+738.600,左线:K25+421.500~K25+738.600,区间线路长度右线317.071m,左线317.050m,不设置联络通道;隧道穿过土层主要为粘土②层、粘土③层;右线盾构区间在南宁路站始发掘进至云谷路站,于站内调头后始发掘进左线盾构区间至南宁路站,然后吊出。具体走向详见该区间隧道走向图。 南宁路站~贵阳路站区间为盾构区间,区间线路沿规划庐州大道向南敷设,区间沿线以荒地和水稻田为主,线路下穿规划漓江路、规划嘉陵江路及规划丙铺路,本区间上方无管线。本区间隧道为两条单洞单线圆形隧道,均采用盾构法施工,区间线间距为15m;区间最大纵坡6‰,最小纵坡2‰;区间设计起讫里程左、右线:K25+926.000~K26+508.911,区间线路长582.911m,不设置联络通道;隧道穿过土层主要为粘土③层;右线盾构区间在南宁路站始发掘进至贵阳路站,于站内调头后始发掘进左线盾构区间至南宁路站,然后盾构转运至南宁路站右线小里程端头井处。具体走向详见该区间隧道走向图。 盾构衬砌采用C50钢筋混凝土预制管片拼装而成,每环管片由3块标准块、2块邻接块及1块封顶块组成。管片采用错缝拼装。管片内径为Φ5400mm,厚度300mm,管片外径为Φ6000mm,每环管片宽度1.5m。衬砌内弧面,在隧道贯通后按设计要求作嵌缝、抹孔等防水处理。 本工程采用铁建重工ZTE6250土压平衡盾构机。刀盘开挖直径6280mm,采用

相关文档
最新文档