地铁盾构施工测量技术

合集下载

地铁盾构法隧道施工测量技术

地铁盾构法隧道施工测量技术

地铁盾构法隧道施工测量技术一、背景近年来,城市建设高速发展,地铁的运营也日益普及。

地铁作为城市公共交通的重要组成部分,对于城市的发展和居民的出行都具有重要意义。

而隧道施工是地铁建设的重要环节之一。

盾构法隧道施工具有施工周期短、对周边环境影响小等优点,已成为地铁隧道施工的主要方法之一。

在盾构法隧道施工过程中,施工测量技术的应用是确保施工质量的关键手段之一。

二、盾构法隧道施工测量技术盾构法隧道施工是通过在隧道两端或两侧设置起点和终点控制点来进行控制,盾构机按照预设的轨迹进行推进,同时进行测量,保证盾构隧道的质量。

盾构法隧道施工测量技术的主要内容包括:1. 隧道轨迹测量在盾构法隧道施工过程中,通过测量盾构机推进的路径和轨迹,对于盾构机的推进和控制都具有十分重要的意义。

常用的测量方法有:•外推法•内推法•三角测量法•中心线测量法•激光投影测量法2. 盾构机姿态测量盾构机姿态的测量是保证盾构隧道质量的一个重要方面。

通过常规测量以及精密仪器测量盾构机的姿态角,包括横倾、纵倾和翻滚等状态,保证盾构机按照设计要求推进,并在施工过程中不发生异常。

3. 其他测量隧道建设中还需要进行其他类型的测量,如地质构造测量、交通流量监测、气象、地下水位等测量。

三、盾构法隧道施工测量技术的意义盾构法隧道施工测量技术的应用,不仅能够保证施工质量,还能够有效降低盾构施工的风险和成本,保证施工进度的顺利进行。

同时,在施工完成后,通过对整个隧道进行测量,能够对隧道的使用情况进行监测,提高隧道的安全性和使用效益。

四、盾构法隧道施工测量技术的应用,在地铁建设中具有十分重要的意义。

通过不断提高测量技术的水平与能力,能够提高隧道施工的效率和质量,为城市的建设和居民的出行带来更多的便利。

盾构法地铁隧道施工测量误差控制技术措施和方法

盾构法地铁隧道施工测量误差控制技术措施和方法

盾构法地铁隧道施工测量误差控制技术措施和方法摘要:现代社会地铁隧道施工过程中经常会使用盾构法,但实际应用期间受到多种外界因素的影响,导致盾构机与隧道衬砌轴线出现偏差,若偏差值超出可控范围,将会为隧道后期施工以及地铁运行留下安全隐患。

针对此,本文将对盾构法施工状态下地铁隧道施工测量误差控制技术进行深入分析,降低实际测量误差,确保地铁隧道施工能够安全顺利展开。

关键词:盾构法地铁隧道施工;测量误差;控制技术;措施与方法前言:盾构机是一种地下掘进机,常用于地铁隧道工程施工过程中,基于其可移动的钢制外壳,隧道开挖施工的同时,还能进行支护、衬砌等多个工序的施工作业,对施工效率有大幅度的提升作用,可充分保障隧道工程施工的安全性,有效防止隧道内壁发生脱落或坍塌等危害。

但这一施工方法受其本身工艺的局限性较大,开挖施工期间必然会发生一定程度的横向贯通误差,例如,开挖准备工作中,起始方位角的测定出现一定偏差,最终引发隧道横向偏差,随着隧道开挖长度的增加,偏差也会越发严重,与其他测量误差情况相互结合,产生横向贯通误差。

因此施工人员必须加强对施工测量误差的重视,以免留下安全隐患。

1.地面施工测量误差控制措施第一,在测量起始控制点时,可利用强制对中标志缓解测量仪器导致的误差。

第二,应用卫星定位控制网,并将相互独立的基线共同组成一定数量的异步环,为卫星定位控制网增强精度与可靠性提供技术支撑。

第三,施工人员需要保障现场导线布设形式的科学性,可结合实际地质情况,运用附合导线或闭合导线等形式进行布设。

第四,保障现场布设附合导线边数与边长的合理性,边数不超过12条为佳,边长需要控制在100米以上,提升其边数与边长控制力度最大化的降低测量角误差。

第五,减少一定数量的控制点个数,增加每个控制点的间距,也能实现导线精度的提升[1]。

2.联系测量误差控制措施联系测量环节是地铁隧道掘进施工主要环节,实际施工期间,测量单位、施工单位以及总承包单位分别利用两井定向、一井定向、导线直接传递等方式进行测量,控制盾构掘进机进行作业。

《盾构施工测量技术》课件

《盾构施工测量技术》课件

无人化测量技术的应用
无人机测量
01
利用无人机技术,实现高效、快速、灵活的测量。
无人船、无人车测量
02
研发和采用无人船、无人车等新型测量装备,拓展测量领域和
应用范围。
远程控制技术
03
利用远程控制技术,实现测量设备的远程操控和管理,提高测
量效率和安全性。
THANKS
感谢观看
某地铁盾构隧道施工测量案例
总结词
地铁盾构隧道施工测量案例,涉及长距离、大断面、高精度要求等特点。
详细描述
该案例中,盾构施工测量技术应用于地铁盾构隧道,通过建立高精度控制网,进行盾构机定位和导向控制,确保 隧道施工的精度和安全性。同时,采用实时监测技术,对盾构机掘进过程中的动态数据进行采集和分析,及时调 整盾构机的姿态和参数,确保施工质量和进度。
测量过程中的技术要点
坐标系建立
根据工程需要,建立统一的测量坐标系,确 保测量数据的准确性和可靠性。
地面控制测量
利用地面控制点进行平面控制测量和高程控 制测量,确保盾构隧道施工的精度。
地下控制测量
在盾构隧道内进行平面控制测量和高程控制 测量,保证隧道贯通精度。
施工监测
对盾构隧道施工过程进行实时监测,及时发 现和解决施工中的问题。
结合人工智能技术,对测量数据 进行深度学习和分析,提高测量 数据的处理能力和应用价值。
高精度测量技术的提升
高精度定位技术
采用先进的定位技术,如GNSS、RTK等,实现高精度的位置测量 。
精密测量仪器
研发和采用精密测量仪器,提高测量数据的准确性和可靠性。
误差补偿技术
采用误差补偿技术,对测量数据进行修正和优化,提高测量精度。
盾构施工测量技术的发展历程

盾构施工专项测量施工方案

盾构施工专项测量施工方案

盾构施工专项测量施工方案
一、前言
盾构施工是一种现代化的地下工程施工方法,其施工需要精确的测量工作作为基础保障。

本文将介绍盾构施工中专项测量的施工方案,包括测量准备工作、实际施工过程中的测量方法和注意事项等内容。

二、测量准备工作
1. 确定测量任务
在进行盾构施工前,需要确定需要进行的测量任务,包括地表控制点的设置、隧道轴线控制等。

2. 准备测量设备
准备好合适的测量设备,包括测距仪、全站仪、水平仪等,确保设备的精度和准确性。

三、施工过程中的测量方法
1. 地表控制点设置
在盾构施工现场周围设置地表控制点,用于确定隧道的位置和方向。

2. 隧道轴线控制
通过测量隧道隧道轴线的位置和方向,确保隧道施工的准确性和质量。

3. 岩体位移监测
通过测量岩体的位移情况,监测盾构施工对周围岩体的影响,确保隧道施工的安全性。

四、注意事项
1. 测量精度
在进行施工测量时,要保证测量的精度,避免因测量不准确引起的施工质量问题。

2. 施工环境
考虑施工环境对测量的影响,采取相应的措施保证测量工作的顺利进行。

3. 实时监测
建立实时监测系统,及时掌握隧道施工过程中的测量数据,发现问题及时调整。

结语
盾构施工专项测量施工方案是保障盾构施工质量和安全的重要保障措施,通过
合理的测量工作可以确保施工的顺利进行。

希望本文所介绍的内容对盾构施工测量工作有所助益。

盾构施工测量与监测

盾构施工测量与监测

盾构施工测量与监测一、施工测量测量是盾构推进轴线与设计轴线一致的保证,是确保工程质量的前提和基础.采用GPS定位技术完成对业主所给导线网、水准网及其它控制点的检核.在盾构机上配备SLS—T APD导向系统指导盾构机推进,降低人工测量的频率。

同时,严格贯彻二级测量复核制度,精测组精测并交桩于工程项目部测量组,工程项目部测量组复核并负责施工放样测量,确保隧道贯通精度。

1、地表控制测量我方中标后,立即组织精测组根据业主提供的工程定位资料和测量标志资料,对所给导线网、水准网及其它控制点用GPS定位技术进行复测;同时测设施工过程中使用的固定桩,并将测量成果书报请监理工程师及业主审查、批准。

(1)引测近井导线点利用业主及监理工程师批准的测量成果书由精测组以最近的导线点为基点,引测至少三个导线点至每个端头井附近,布设成三角形,形成闭合导线网。

(2)引测近井水准点利用业主及监理工程师批准的水准网,由精测组以最近的水准点为基点、将水准点引测至端头井附近,测量等级达到国家二等。

每端头井附近至少布设两个埋设稳定的测点,以便相互校核.2、联系测量(1)平面坐标传递用陀螺定向法将地面坐标及方向传递到竖井隧道中,见下图。

陀螺法坐标传递示意图用逆转点法测出地面上CD 和井下Z1Z2的陀螺方位角。

用全站仪做边角测量,测出L1、L2、L3、L4、L5、L6的边长及∠1、∠2、∠5、∠6、∠7的角度.利用空间三角关系计算∠3、∠4的角度,再结合控制点C 的坐标推算出Z1、Z2、Z3三点的坐标。

以Z1Z2、Z3Z2起始边作为隧道推进的起始数据.在整个施工过程中,坐标传递测量至少进行三次。

(2)高程传递用检定后的钢尺,挂重锤10kg 用两台水准仪在井上井下同步观测,将高程传至井下固定点。

用6~8个视线高,最大高差差值≤2mm ,整个区间施工中,高程传递至少进行三次。

3、地下控制测量线Z3陀螺法坐标传递示意图井下导线∠3∠4T1L4L3F1∠6∠5Z1L6L2∠1B C 重垂T 线垂重地面导线L1∠2F D∠7L5Z2(1)地下平面控制测量先以竖井联系测量的井下起始边为支导线的起始边,待明挖区间(盾构始发井)与中间风井连通后,立即进行贯通测量以明挖区间的左右线中线为支导线的起始边,沿隧道设计方向布设导线,直线段导线边长≥200m,曲线段导线边≥100m布设一点.导线采用左右角观测,圆周角闭合差≤2″。

盾构法隧道施工测量精度控制措施

盾构法隧道施工测量精度控制措施

盾构法隧道施工测量精度控制措施摘要:本文介绍了从地铁盾构施工全过程中从施工测量技术方面提高贯通精度的控制措施。

关键词:零位测量法、联系测量、陀螺定向、交叉导线;盾构法隧道是指使用盾构机,一边控制开挖面及围岩不发生坍塌失稳,一边进行隧道掘进、出渣,并在机内拼装管片形成衬砌、实施壁后注浆,不扰动围岩而修筑隧道的方法。

盾构施工的主要原理就是尽可能在不扰动围岩的前提下完成施工,从而最大限度地减少对地面建筑物及地基内埋设物的影响。

盾构法隧道施工测量按施工工艺分为始发测量、地下导线测量、掘进轴线测量、接收到达测量。

1.盾构始发测量控制措施1.1 盾构机零位测量盾构始发测量,在盾构始发前,需要进行盾构机零位测量,确定盾构机姿态与盾构内布设的特征点之间几何关系,为后期掘进过程通过特征点位置调整盾构机姿态提供可靠的依据。

盾构机零位姿态测量常用的方法为分中法、侧边法进行测量。

侧边法的测量方法是在靠近盾首、盾尾处分别悬挂一根钢丝,钢丝下端悬挂重锤并置于油桶中,通过测量钢丝上的反射片坐标来计算盾构机首、尾的平面坐标。

盾首的钢丝悬挂在靠近刀盘和盾体的接缝处,盾尾的钢丝悬挂至靠近盾构(或铰接油缸)中盾与尾盾接缝处,钢丝至盾首、盾尾的距离用钢尺量出,取多次量取距离的平均值作为最终的计算依据。

当现场受到条件限制无法悬挂两根钢丝时,也可以悬挂一根钢丝,偏移计算出盾构中心线坐标。

高程测量:根据盾首、盾尾测量计算的平面坐标,将盾首、盾尾平面坐标测放至盾体顶面,利用全站仪三角高程直接测得盾首、盾尾处高程,通过反算得到盾首、盾尾的中心高程。

分中法测量:在盾首、盾中、盾尾按图1.1-4的方法找到盾体中心,使用全站仪分别测量盾首、盾中、盾尾中心C点的坐标,通过反算得到盾首和盾尾的坐标。

本次结合实际项目分别采用分中法、侧边法悬挂2根钢丝测量结果如下:虽然测量结果相近,但侧边法与设计值对比相差较小,如果现场有条件尽量采用侧边法悬挂2根钢丝进行施测。

盾构施工测量专项方案

盾构施工测量专项方案

一、方案概述本专项方案旨在为盾构施工提供精确的测量服务,确保施工过程符合设计要求,保障工程质量和施工安全。

本方案将详细阐述盾构施工测量的目的、内容、方法、精度要求以及实施步骤。

二、测量目的1. 确保盾构掘进方向、姿态和速度符合设计要求。

2. 监测盾构隧道结构的变形和受力情况,及时发现并处理异常情况。

3. 为施工管理和质量验收提供数据支持。

三、测量内容1. 地面控制测量:包括平面控制测量和高程控制测量。

2. 竖井联系测量:将地面控制网传递至竖井,建立竖井内的控制网。

3. 地下控制测量:包括平面控制测量和高程控制测量,用于指导盾构掘进。

4. 掘进施工测量:监测盾构姿态、掘进速度和隧道结构变形。

5. 竣工测量:对隧道结构进行测量,为质量验收提供依据。

四、测量方法1. 平面控制测量:采用GPS、全站仪等仪器进行测量,按照《城市轨道交通工程测量规范》GB50308的规定执行。

2. 高程控制测量:采用水准仪进行测量,按照《城市轨道交通工程测量规范》GB50308的规定执行。

3. 竖井联系测量:采用GPS、全站仪等仪器进行测量,将地面控制网传递至竖井。

4. 地下控制测量:采用全站仪进行测量,按照《地下铁道、轻轨交通工程测量规范》执行。

5. 掘进施工测量:采用全站仪进行测量,监测盾构姿态、掘进速度和隧道结构变形。

6. 竣工测量:采用全站仪进行测量,按照《地铁隧道工程盾构施工技术规范》DG/TJ08-2041-2008执行。

五、精度要求1. 地面控制测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。

2. 竖井联系测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。

3. 地下控制测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。

4. 掘进施工测量:盾构姿态精度应达到±0.5cm,掘进速度精度应达到±1cm/min,隧道结构变形精度应达到±0.5cm。

盾构施工测量技术要求

盾构施工测量技术要求

盾构施工测量技术要求为了进一步加强盾构施工测量的管理,更好的在掘进过程中监控盾构姿态,确保盾构掘进方向正确,并且使各相关单位、部门及时掌握盾构掘进姿态情况,现对盾构施工测量要求如下:一、控制测量1、地面控制测量与联系测量应同步进行,在隧道贯通前,测量次数不能少于四次。

宜在盾构始发前、隧道掘进至100m、300m以及距贯通面100~200m时分别进行一次。

当地下起始边方位角较差小于12″时,可取各次测量成果的平均值作为后续测量的起算数据指导隧道贯通。

2、地下平面控制点布设应采用强制对中装置,隧道内控制点间平均边长宜为150m,曲线隧道控制点间距不应小于60m。

地下控制点应避开强光源、热源、淋水等地方,控制点间视线距隧道壁应大于0.5m。

每次向前延伸地下控制导线前,应从地下起始边开始进行延伸测量。

3、地下控制点布设完毕,在隧道贯通前应至少测量三次,地下控制导线的起始边应取第1条规定的平均值。

重合点重复测量坐标值的较差应小于30×d/D(mm),其中d为控制导线长度,D为贯通距离,单位为米。

满足要求时,应取逐次平均值作为控制点的最终成果指导隧道贯通。

4、地下控制点延伸测设,施工单位每次向前延伸新的控制点时,新控制点的测量成果必须经过监理单位检验复核,第三方复测审批。

施工导线延伸布设新点时,测量成果需报送监理检验。

5、对于控制测量、联系测量必须遵循“施工单位先测,监理单位检验复核,第三方复测审批”的原则,施工单位的测量成果必须经过监理单位、第三方审批合格后,方能用于指导施工。

二、盾构姿态及管片姿态测量1、盾构机姿态测量的内容包括平面偏差、高程偏差、俯仰角、方位角、滚转角及切口里程;管片姿态测量内容至少包括平面偏差、高程偏差。

2、盾构机姿态测量标志不少于3个,且标志点间距离应尽量大。

3、对于配备导向系统的盾构机,在始发前,必须利用人工测量的方法测定盾构机的初始姿态,成果应与导向系统测得的成果一致;在始发10环内,每一环都应对盾构机姿态进行人工测量;在盾构机正常掘进过程中,盾构人工姿态测量应在导向系统换站后进行;在到达接收井前50环内应增加人工测量频率。

地铁盾构区间测量方案大全

地铁盾构区间测量方案大全

地铁盾构区间测量方案大全地铁隧道盾构区间的测量方案是确保隧道施工质量和安全的重要环节。

在盾构施工前、中、后期都要进行测量,以保证施工的准确性和合格性。

下面是一套较为完整的地铁隧道盾构区间测量方案,详细介绍了不同阶段的测量方法和步骤。

一、前期测量1.地质勘探:在施工前要进行地质勘探,包括地质红线勘探、地下水位勘探、地下管线勘探等,以确定施工过程中可能出现的困难和风险。

2.基本测量:进行工程控制点布设,确定控制网的桩号和坐标,建立起起始坐标系。

3.示坡测量:通过对工地场地的土方开挖示坡进行测量,来验证土方开挖的形状和坡度是否符合设计要求。

二、中期测量1.盾构控制:在盾构施工过程中,需要实时掌握盾构机头的位置和姿态,以确保隧道的准确推进。

通过在隧道内部安装测量仪器,如激光测距仪、全站仪等,实时监测盾构机的变化,并校正施工参数。

2.地表沉降监测:通过在盾构区间的地表上安装沉降测点,测量管道施工对地表沉降的影响,以了解施工对地下管线和建筑物的影响程度,及时采取相应的补救措施。

3.地下水位监测:在盾构区间附近进行井点测量,实时监测地下水位的变化,确保施工过程中地下水的变化不会对隧道施工和周边环境造成不利影响。

三、后期测量1.隧道精度测量:在盾构掘进结束后,对隧道的内外侧壁进行测量,以确定隧道的几何形状和尺度是否符合设计要求。

2.拱顶变形监测:用全站仪等仪器进行拱顶变形观测,以监测隧道拱顶的变形情况,确保拱顶的稳定性和安全性。

3.管道斜度测量:通过测量隧道内铺设的管道斜度和异型构造,查验隧道的排水情况和交通条件,同时要验证管道的几何尺寸和位置是否与设计一致。

4.管道应力监测:通过在管道上安装应力计等仪器,实时监测管道的应力变化,以了解施工过程中管道的受力情况和稳定性。

通过以上的测量方案,可以有效地控制和监测隧道盾构区间的施工过程,保证隧道的质量和安全,同时也为隧道的设计和后续的运营提供了重要的参考数据。

盾构施工测量

盾构施工测量

盾构施工测量技术盾构法隧道施工是一项综合性的施工技术,它是将隧道的定向掘进、运输、衬砌、安装等各工种组合成一体的施工方法。

其埋设深度可以很深,不受地面建筑、天气和交通等的影响,机械化和自动化程度很高,是一种先进的土层隧道施工方法,广泛应用于城市地铁、越江隧道等的施工中。

盾构施工测量主要是控制盾构的位置和推进方向,目的是确保盾构按照设计轴线推进,管片拼装后型后满足隧道轴线误差控制要求。

利用洞内导线点测定盾构机的位置(当前空间位置和轴线方向),通过推进油缸施以不同的推力,调整盾构的位置和推进方向,使盾构机的掘进按照设计的线路方向推进。

盾构推进只是盾构施工技术的一部分,在整个施工过程中,施工测量还包括地面测量(地面控制测量﹑沉降观测和井位放样等)﹑联系测量(方位传递﹑坐标传递和高程传递等)以及地下施工测量(地下导线点的测设、洞门钢环的安装、始发台的定位、反力架的定位、盾构始发测量﹑盾构掘进过程中的测量、隧道沉降测量﹑联络通道的施工测量、盾构到达测量、贯通测量、断面测量以及竣工测量等)。

每一步的测量工作都十分重要,直接影响下一步的施工。

在各项工作中,最为重要的是地面控制测量﹑联系测量﹑地下控制测量和盾构施工测量。

这些工作决定着隧道能否达到设计要求,盾构机能否准确进入接受井并确保隧道准确贯通。

一、地面控制测量1、地面平面控制测量对于隧道工程,地面控制测量的主要任务是建立合适的测量控制系统,提供可靠的地面控制点,为联系测量和地下控制测量提供起算依据,同时也作为以后复核测量和竣工测量的起算数据。

地面测量控制网的点位和起算数据由建设单位负责提供,一般要求暗挖隧道的地面控制网精度不应低于国家四等三角网测量的技术指标及精度要求,同时要根据盾构隧道的贯通长度、联系测量和地下控制导线的精度等条件,估算地面控制网应达到的精度。

施测时,以现有平面GPS控制点为依据布置平面控制点,建立地面导线控制网。

2、地面高程控制测量以现有的二等水准点从工作井至接收井布设水准线路,用此精密水准点来控制隧道的施工高程。

盾构施工测量技术

盾构施工测量技术

盾构隧道施工测量技术任何一个盾构测量项目的工作都是围绕这三大要素来展开。

从测量方案的制定到测量过程的实施都是为了如何保证三大要素的质量来最终保证隧道施工的精度。

地铁施工测量按服务性质分类可以分为施工控制测量、细部放样测量(铺轨基标测量)、竣工测量和其它测量等作业。

一、施工控制测量1、地面控制测量:维护施工期间地面的平面、高程主控制网完整,维持其可靠、可用;为施工方便加密地面控制点(包括地面工程、明挖工程的地面中桩)并维持其可靠、可用。

2、联系测量:明挖工程投点、定向,暗挖工程竖井投点、定向,向地下传递高程。

3、地下控制测量:明挖地下中桩体系控制测量,暗挖地下主导线控制测量,明、暗挖工程地下主水准网控制测量,进行分段贯通测量,平差地下平面、高程主控制网,照顾各段工程间的衔接。

贯通后平差确定地下主控制网的坐标、高程。

二、细部放样测量1、建筑物、构筑物的结构和装修工程放样,设备、管网安装工程放样,包括暗挖法中为施工导向,盾构机定位、纠偏和装配式衬砌的拼装等要求而进行的测量作业。

2、精确铺轨要求的测量作业。

重点是控制铺轨基标测设来保证轨道的设计位置和线路参数,同时亦保证行车隧道的限界要求。

三、竣工测量竣工测量主要包括与线路相关的线路结构竣工测量、线路轨道竣工测量、沿线设备竣工测量以及地下管线竣工测量等。

其他测量作业是指为工程前期、后期工作,为工程措施服务的测量作业和控制施工影响的地上、地下及周围建筑物的变形观测等测量作业。

盾构施工测量的主要内容:地面测量控制网的交接桩。

地面测量控制网点复核及加密。

贯通测量技术方案的制订。

联系测量。

地下控制测量(地下主控导线测量、施工导线测量)。

盾构机的导向测量。

竣工测量等等。

贯通误差:地铁的贯通测量是指盾构从始发井始发沿设计线路方向和坡度到达预留洞门贯通。

此时盾构中心与预留洞门中心的偏差即为贯通误差。

贯通误差包括测量误差和施工误差两部份。

地铁隧道的贯通施工影响环节多。

其影响因素主要有:1、地面控制测量误差2、竖井联系测量误差3、地下导线测量误差4、贯通处洞门中心坐标测量误差5、盾构姿态的定位测量误差一、施工测量质量管理目标和基本质量指标(GB50308-2008)(1) 质量指标:在任何贯通面上,地下测量控制网的贯通误差,横向中误差不超过±50mm,竖向中误差不超过±25mm。

盾构施工测量技术(DOC)

盾构施工测量技术(DOC)

盾构施工测量技术盾构是一种重要的地下建筑施工技术,也是地下铁道、管道等重要交通基础设施建设的关键技术之一。

在盾构施工中,测量技术是非常重要的一环,能够有效地保证施工的质量和进度。

本文将介绍盾构施工测量技术的相关内容。

一、盾构施工测量工作的目的盾构施工测量工作的主要目的是:1.确认隧道的轴线及其地貌特征;2.分析隧道的地质条件及稳定性;3.确定隧道工作面的位置和方向;4.监测隧道结构的位移和变形;5.评价和控制隧道施工质量。

二、盾构施工测量的方法盾构施工测量主要采用以下方法:1.传统测量法传统测量法主要包括三角测量、水平测量、高程测量、方位角等传统测量方法。

这种方法的优点是精度高,缺点是测量效率低,需要投入大量人力物力。

2.全站仪测量法全站仪是一种高精度的测量仪器,其能够满足盾构施工测量的高精度要求。

全站仪测量法是一种快速、高效的测量方法,能够准确地获取隧道轴线、隧道地貌、隧道变形等信息。

3.三维激光扫描法三维激光扫描法是一种先进的测量方法,它可以直接获取隧道内部的三维点云数据,对隧道的结构进行完整的建模和分析。

这种方法最大的优点是测量效率高,精度高,可以快速获取隧道内部信息。

三、盾构施工测量技术的实施盾构施工测量技术的实施主要包括以下几个阶段:1.规划阶段:在盾构施工规划阶段,要制定详细的测量方案,确定测量的范围和精度要求。

2.施工前期:在盾构施工的前期,要进行初步测量,确定盾构轴线和地貌等信息,以及确定隧道工作面的位置和方向。

3.施工中期:在盾构施工的中期,要采用全站仪、激光扫描等测量方法,对隧道轴线、地貌以及隧道结构进行测量和监测。

4.施工后期:在盾构施工的后期,要对隧道结构进行最终验收测量和结构监测,并进行开挖指数控制。

四、盾构施工测量技术的应用盾构施工测量技术在地下建筑施工中有着广泛的应用,包括地铁、管道、电缆隧道等建设项目。

盾构施工测量技术能够提升施工进度和质量,控制地下建筑施工质量和安全。

盾构法隧道测量

盾构法隧道测量

盾构法隧道测量
盾构法是修建地铁、隧道等地下项目中的一种常见方法。

在盾构法隧道施工过程中,测量工作是非常重要的环节之一,以确保施工的精度和安全。

下面是关于盾构法隧道测量的一些基本知识。

一、测量方法
1.定位测量
定位测量是确定盾构机前进位置和建筑物结构的位置。

包括定位测量的设备有钢筋探测仪、测量仪器、万能仪器、激光测距仪等。

2.导向测量
导向测量是确定盾构机推进方向和隧道的姿态和位置。

这种测量方法包括角度测量、方位测量和测高测量。

导向测量设备包括导向测量仪、方位仪、全站仪等。

二、测量标准
在盾构法隧道测量中,需要遵循国家和地方相应的标准规定。

比如,在测量高程时,需要使用校准合格的高程仪和三角测量法。

同时,在测量过程中需要考虑因素包括土层的不均匀性,地下水位的影响,以及隧道的变形等。

三、测量工作流程
盾构法隧道测量的流程包括准备工作、测量前期、进尺测量和数据处理等环节。

测量前期需要根据设计图纸和实际的地形情况确定测量基准点和控制点。

在进尺测量的过程中,需要记录盾构机的前进位置、姿态、深度以及地质情况
等数据。

数据处理需要使用专业软件进行,以得出相应的测量结果。

综上所述,盾构法隧道测量是非常重要的一环,需要进行严格的操作和技术保障。

在测量过程中需要注意安全,预防各种意外情况的发生。

同时,需要结合实际情况变化,及时调整工作方案,确保最终测量结果的准确性。

概述地铁盾构隧道工程测量技术相关内容

概述地铁盾构隧道工程测量技术相关内容

概述地铁盾构隧道工程测量技术相关内容1. 盾构隧道测量概述地下工程测量是指建设和运营地表下面工程建筑物需要进行的测量工作,包括地下工程勘察设计、施工和运营各个阶段的测量工作。

地下工程测量的任务是保证线状工程在规定误差范围内正确贯通,保证面状工程按设计要求竣工。

盾构方法以其独特的施工工艺特点和较高的技术经济优越性,在隧道施工中得到广泛应用,从18世纪末盾构机问世以来,与盾构施工相伴而生的盾构施工测量,一直在为盾构施工起着保驾护航的作用。

盾构法隧道工程施工,需要进行的测量工作主要包括以下几点。

(1)地面控制测量:在地面上建立平面和高程控制网;(2)联系测量:将地面上的坐标、方向和高程传到地下,建立地面地下统一坐标系统;(3)地下控制测量:包括地下平面和高程控制;(4)隧道施工测量:根据隧道设计进行放样,指导开挖及衬砌的中线和高程测量。

2. 隧道贯通误差介绍地下工程测量与地面工程测量相比,尽管测设方法有很多共同之处,但地下工程测量仍有其特殊性。

线状地下工程逐步开挖、施工面狭窄、不同工段之间不能通视,因此,测量工作不能互相照应,不便组织检核,出了差错很难及时发现,整个测量工作的正确性只有到开挖工段间贯通后才能得以证明。

可见侧量工作在地下工程建设中具有十分重要的作用,稍有疏忽必将造成无可挽回的损失。

盾构法隧道施工中,地面控制测量、联系测量、地下控制测量和细部放样的误差积累,将使开挖工作面的施工中线不能理想衔接,产生的错开现象称为贯通误差。

贯通误差在线路中线方向的投影长度称为纵向贯通误差(简称纵向误差),在垂直于中线方向的投影长度称为横向贯通误差(简称横向误差),在高程方向的投影长度称为高程贯通误差(简称高程误差)。

纵向误差只影响隧道中线的长度,与工程质量关系不大,对隧道贯通没有多大影响;高程误差仅影响接轨点的平顺(边掘进边铺轨的隧道尤为突出)或隧道的坡度,要求较高,实践表明,应用一定的测量方法,容易达到所需的精度要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁盾构施工测量技术
在进行盾构机组装时,VMT公司的测量工程师就已经在盾体上布置了盾构姿态测量的参考点(共21个),如图9。

并精确测定了各参考点在TBM坐标系中的三维坐标。

我们在进行盾构姿态的人工检测时,可以直接利用VMT公司提供的相关数据来进行计算。

其中盾体前参考点及后参考点是虚拟的,实际是不存在的):
图9 S267盾构机参考点的布置
盾构姿态人工检测的测站位置选在盾构机第一节台车的连接桥上,此处通视条件非常理想,而且很好架设全站仪。

只要在连接桥上的中部焊上一个全站仪的连接螺栓就可以了。

测量时,应根据现场条件尽量使所选参考点之间连线距离大一些,以保证计算时的精度,最好保证左、中、右各测量一两个点,这样就可以提高测量计算的精度。

例如在我们在选择S267盾构机的参考点时,即是选择的1、10、21三点作为盾构姿态人工检测的参考点。

3.3 盾构姿态的计算
3.3.1盾构姿态的计算原理
盾构机作为一个近似的圆柱体,在开挖掘进过程中我们不能直接测量其刀盘的中心坐标,只能用间接法来推算出刀盘中心的坐标。

图10盾构姿态计算原理图
如图A 点是盾构机刀盘中心,E 是盾构机中体断面的中心点,即AE 连线为盾构机的中心轴线,由A 、B 、C 、D 、四点构成一个四面体,测量出B 、C 、D 三个角点的三维坐标(x i ,y i , z i ),根据三个点的三维坐标(x i , y i , z i )分别计算出L AB , L AC , L AD , L BC , L BD ,L CD , 四面体中的六条边长,作为以后计算的初始值,在盾构机
掘进过程中L i 是不变的常量,通过对B 、C 、D 三点的三维坐标测量来计算出A
点的三维坐标。

同理,B 、C 、D 、E 四点也构成一个四面体,相应地求得E 点的三维坐标。

由A 、E 两点的三维坐标就能计算出盾构机刀盘中心的水平偏航,垂直偏航,由B 、C 、D 三点的三维坐标就能确定盾构机的仰俯角和滚动角,从而达到检测盾构机姿态的目的。

3.3.2通过AutoCAD 作图求解盾构姿态
通过几何解算盾构姿态方法的缺点是在内业计算时,如果用人工手算,其工作量相当大,而且难免出错,因此我们在进行解算时,是利用AutoCAD 进行作图求解,相对于用几何方法解算,速度要快很多。

其操作过程如下:
首先是把隧道中心线(三维坐标)通过建立CAD 脚本文件输入CAD 中,这个工作一个工地只要做一次。

然后是把所测参考点1、10、21的坐标(三维)输入到CAD 里面。

分别以1、10、21为球心,以1、10、21到前点的距离为半径画球,求三个球的交集。

用鼠标左键点击交集后的体,就可以找到两个端点,这两个端点到1、10、21的距离就分别等于1、10、21到前点的距离。

然后根据盾构掘进的方向,舍去其中一个点。

同样方法把后点在CAD 里画出来。

由于后点通过求交集的方法求出的两个端点距离很近,通过盾构机的掘进方向很南判断,于是通过前点到后点的距离是3.9491米来判断。

画出前后点的位置后,通过前后点向隧道中线做垂线,通过测量垂线在水平和垂直方向上偏离值来求解盾构机前后点的姿态。

盾构机的坡度=(为盾体前后参考点连线长度)。

根据测量平差理论可知,实际测量时,需要观测至少4个点位以上,观测的参考点越多,多余观测就越多,因此计算的精度就越高。

比较VMT 导向系统测得的盾构姿态值和人工检测的盾构姿态值,其精度基本上能达到±5mm 之内。

图11盾构姿态CAD计算示意图
4.管环检测
4.1管环测量概述
由于在盾构掘进过程中,刚拼装的管环还没有来得及注入双液浆加固,因此还不稳定,经常发生管环位移现象。

有时位移量很大,特别是上浮,位移量大常常引起管环限界超限。

因为地铁施工中规定,拼装好的管环允许最大限界值是±10㎝。

为了防止管环的侵限,我们首先是提高控制测量的精度外,其次是提高导线系统的精度,最后就是通过每天的管环测量,实测出管环的位移趋势,采取措施尽量减小位移量。

当然,管环测量还起到复核导向系统的作用。

4.2管环测量方法
根据管环的内径是2.7米, 采用铝合金制作一铝合金尺,铝合金尺长3.8米(可根据实际情况调整长度)。

在铝合金尺正中央,贴上一个反射贴片。

根据管环、铝合金尺、反射贴片的尺寸,就可以计算出实际上的管环中心与铝合金尺上反射贴片中心的高差。

测量时,首先用水平尺把铝合金尺精确整平,然后用全站仪测量出铝合金尺上反射贴片中心的三维坐标,就可以推算出实际的管环中心的三维坐标。

每次管环测量时,应重叠5环已经稳定了的管环,这样就可以消除测错的可能。

图12.管环测量示意图
图13管环中心标高推算示意图
4.3管环姿态计算
管环测量时,把管环检测外业数据直接存储在全站仪的内存里。

回到办公室后,通过徕卡测量办公室软件(Leica Survey –Office),将全站仪里面的管环测量外业数据下载,然后将其复制到EXCLE表格中编辑成CAD认识的三维坐标,然后将三维坐标数据复制到记事本程序里面保存,文件的后缀名必须是.SCR,如“管环检测外业数据.SCR”。

这样就把管环检测的外业数据编辑成了CAD的画点脚本文件。

通过CAD的脚本功能,就很方便快节地在CAD里面把点画出来。

打开AutoCAD,在模型状态下(一定要关闭“对象捕捉”命令),打开菜单栏的“工具(T)”选项,在下拉子菜单中选择“运行脚本(R…)”,或者在命令行中输入“.SCR”,两种方式都是运行脚本,AutoCAD便查找脚本文件。

操作者找
到要调用的脚本文件“管环检测外业数据.SCR” 后,直接打开它。

AutoCAD 便自动把点画出来了。

如下图14。

图14 管环姿态计算示意图
点位画出来后,就可以在CAD里通过查询命令直接量出管环的水平和垂直姿态了。

通过以上管环的测量和计算方法,解决了管环检测数据量大,计算难,测量时间长的问题。

大大提高管环检测的效率和准确度。

5. 结束语
由于盾构机的VMT导向系统必须有控制测量的支持才能运作,所以控制测量还是盾构隧道测量的基础。

为了保证隧道的顺利贯通,我们首先要做好控制测量,然后就是保证导向系统的正常运行,定期对盾构姿态进行人工检测,保证导向系统的正确可靠。

加强管环姿态检测,及时发现管环的位移趋势,防止管环安装侵限。

加强管环姿态的检测同时也是对导向系统的复核。

由于笔者才疏学浅,文中难免有不周全之处,恳请各位提出批评与建议。

相关文档
最新文档