专题四 第1讲函数的图象与性质
三角函数的图像和性质知识点及例题讲解
![三角函数的图像和性质知识点及例题讲解](https://img.taocdn.com/s3/m/c2b61c1553d380eb6294dd88d0d233d4b14e3fb2.png)
三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 2 sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值 当22x k ππ=+时,max 1y =;当22x k ππ=- 时,min 1y =-.当2x k π=时,max 1y =;当2x k ππ=+时,min1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数. 在[]2,2k k πππ-上是增函数; 在[]2,2k k πππ+上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭上是增函数.对称性 对称中心(),0k π 对称轴2x k ππ=+对称中心,02k ππ⎛⎫+ ⎪⎝⎭对称轴x k π=对称中心,02k π⎛⎫⎪⎝⎭无对称轴函数 性质例作下列函数的简图(1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π]例利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:21sin )1(≥x 21cos )2(≤x3、周期函数定义:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做这个函数的周期。
注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一般称为周期)正弦函数、余弦函数:ωπ=2T 。
届数学统考第二轮专题复习第1讲函数的图像与性质的简单应用学案理含解析
![届数学统考第二轮专题复习第1讲函数的图像与性质的简单应用学案理含解析](https://img.taocdn.com/s3/m/58574e2df02d2af90242a8956bec0975f465a49c.png)
第1讲 函数的图像与性质的简单应用高考年份全国卷Ⅰ 全国卷Ⅱ 全国卷Ⅲ2020函数单调性的应用·T12对数大小的判断·T11 函数的奇偶性与单调性·T9函数的性质·T162019 函数图像的判断·T5函数的建模与应用·T4 函数图像的判断·T7 2018函数图像的判断·T3函数图像的判断·T71。
[2019·全国卷Ⅰ]函数f (x )=sinx+x cosx+x 2在[-π,π]的图像大致为( )A BC D图M1-1-12。
[2018·全国卷Ⅲ]函数y=-x 4+x 2+2的图像大致为 ( )图M1-1-23。
[2019·全国卷Ⅱ]若a〉b,则 ()A。
ln(a—b)>0 B。
3a〈3bC。
a3—b3〉0 D.|a|>|b|4。
[2020·全国卷Ⅱ]若2x-2y〈3—x-3-y,则()A.ln(y-x+1)〉0B.ln(y—x+1)〈0C.ln|x-y|〉0D。
ln|x-y|〈05.[2020·北京卷]已知函数f(x)=2x—x—1,则不等式f(x)〉0的解集是()A.(—1,1)B。
(-∞,—1)∪(1,+∞)C.(0,1)D。
(-∞,0)∪(1,+∞)6.[2020·全国新高考Ⅰ卷]若定义在R的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是()B。
[—3,—1]∪[0,1]C.[—1,0]∪[1,+∞)D.[-1,0]∪[1,3]7.[2020·全国卷Ⅲ]已知55〈84,134<85。
设a=log53,b=log85,c=log138,则()A。
a<b〈c B.b<a〈cC。
b<c〈a D.c<a〈b8。
[2020·全国卷Ⅲ]Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎,累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e-0.23(t-53)其中K为最大确诊病例数。
1.3.1 正弦函数的图象与性质 第一课时 课件(人教B版必修4)
![1.3.1 正弦函数的图象与性质 第一课时 课件(人教B版必修4)](https://img.taocdn.com/s3/m/cb3d06dfb9f3f90f76c61b42.png)
正弦函数的定义域、值域及单调 性问题 正弦函数的定义域、值域及单调性问题在高 考中多以选择题、填空题的形式出现,有时 也出现在解答题的容易题中,考查较基础,
难度要求不高.
例3 求下列函数的定义域、值域及单调递增
区间. π log 1 (1)y=2sin( -x);(2)y= sinx. 2 4
【思路点拨】 解答本题中(1)可先求出函数的定义 π 域和值域, 然后再把原式化为 y=-2sin(x- ), 借 4 助于 y=sinu 的单调性加以处理. 解答本题中(2)可先分析 sinx>0,得出函数的定义 域,然后借助于 y= log 1u 的单调性分析,求得单 2 调区间和值域.
(2)最小正周期的定义 周期 所有周期中 对 于 一 个 ______ 函 数 f(x) , 如 果 在 它 的 最小的正数 最小正数 __________存在一个____________,那么这个
_____________就叫做它的最小正周期.
思考感悟 2.是否所有周期函数都有最小正周期?并举例说 明? 提示:并不是所有周期函数都存在最小正周 期.例如,常数函数f(x)=C(C为常数),x∈R, 当x为定义域内的任何值时,函数值都是C,即对 于函数f(x)的定义域内的每一个值x,都有f(x+T) =C,因此f(x)是周期函数,由于T可以是任意不 为零的常数,而正数集合中没有最小者,所以f(x) 没有最小正周期.
【点评】 (1)在利用关键的五个点描点作图时 要注意, 被这五个点分隔的区间上函数的变化情 况,在 x=0,π,2π 附近,函数图象上升或下降 π 3π 得快一些,曲线“陡”一些;在 x= , 附近, 2 2 函数变化得慢一些,曲线变得“平缓”. (2)在解题过程中,常用“五点法”作出简图, 使计算更加快捷.
一次函数的图象与性质知识讲解及例题
![一次函数的图象与性质知识讲解及例题](https://img.taocdn.com/s3/m/4c93a837492fb4daa58da0116c175f0e7cd1198c.png)
一次函数的图象与性质(基础)【学习目标】1. 理解一次函数的概念,理解一次函数的图象与正比例函数的图象之间的关系;2. 能正确画出一次函数的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】要点一、一次函数的定义一般地,形如(,是常数,≠0)的函数,叫做一次函数.要点诠释:当=0时,即,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数,的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数(、为常数,且≠0)的图象是一条直线 ;当>0时,直线是由直线向上平移个单位长度得到的; 当<0时,直线是由直线向下平移||个单位长度得到的.2.一次函数(、为常数,且≠0)的图象与性质:y kx b =+y kx =y kx b =+y kx b =+k b k b y kx b =+y kx =k b y kx b =+k b k b y kx b =+y kx =b b y kx b =+y kx =b y kx b =+k b k3. 、对一次函数的图象和性质的影响:决定直线从左向右的趋势,决定它与轴交点的位置,、一起决定直线经过的象限.4. 两条直线:和:的位置关系可由其系数确定:(1)与相交; (2),且与平行;要点三、待定系数法求一次函数解析式一次函数(,是常数,≠0)中有两个待定系数,,需要两个独立条件确定两个关于,的方程,这两个条件通常为两个点或两对,的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数中有和两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的k b y kx b =+k y kx b =+b y k b y kx b =+1l 11y k x b =+2l 22y k x b =+12k k ≠⇔1l 2l 12k k =12b b ≠⇔1l 2l y kx b =+k b k k b k b x y y kx b =+k b k b解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【思路点拨】由于此函数的图象过(0,2),因此=2,可以设函数的解析式为,再利用过点(1.5,0),求出相应的值.【答案与解析】利用待定系数法求函数的解析式.解:设函数的解析式为.它的图象过点(1.5,0),(0,2)∴该函数的解析式为. 【总结升华】用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.举一反三:【变式1】已知一次函数的图象与正比例函数的图象平行且经过(2,1)点,则一次函数的解析式为________.【答案】 ;提示:设一次函数的解析式为,它的图象与的图象平行,则,又因为一次函数的图象经过(2,1)点,代入得1=2×2+.解得. ∴ 一次函数解析式为.b 2y kx =+k y kx b =+41.50322k b k b b ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩∴∴423y x =-+k b 2y x =23y x =-y kx b =+2y x =2k =b 3b =-23y x =-【变式2】已知函数y1=2x﹣3,y2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)求出函数图象与x轴围成三角形的面积.【答案】解:(1)函数y1=2x﹣3与x轴和y轴的交点是(1.5,0)和(0,﹣3),y2=﹣x+3与x轴和y轴的交点是(3,0)和(0,3),其图象如图:(2)设y1=2x﹣3,y2=﹣x+3的交点为点A,可得:,可得:,S△ABC=BC•1=×(3﹣1.5)×1=.类型二、一次函数图象的应用2、电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【思路点拨】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【答案与解析】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x .当x >100时,设y=ax +b ,则有,解得∴y=0.8x ﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x ﹣15,解得x=150.∴该用户该月用电150度.【总结升华】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力. 举一反三:【变式】小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校C ,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟【答案】D ;提示:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为100米/分.原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟.类型三、一次函数的性质3、已知一次函数.(1)当、是什么数时,随的增大而增大;(2)当、是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求、的取值范围.【答案与解析】解:(1),即>-2,为任何实数时,随的增大而增大;()()243y m x n =++-m n y x m n m n 240m +>m n y x(2)当、是满足即时,函数图象经过原点; (3)若图象经过一、二、三象限,则,即. 【总结升华】一次函数的图象有四种情况:①当>0,>0时,函数的图象经过第一、二、三象限,的值随的值增大而增大;②当>0,<0时,函数的图象经过第一、三、四象限,的值随的值增大而增大;③当<0,>0时,函数的图象经过第一、二、四象限,的值随的值增大而减小;④当<0,<0时,函数的图象经过第二、三、四象限,的值随的值增大而减小.4、已知点A (4,0)及在第一象限的动点P (x ,y ),且x+y=5,0为坐标原点,设△OPA 的面积为S .(1)求S 关于x 的函数解析式;(2)求x 的取值范围;(3)当S=4时,求P 点的坐标.【思路点拨】(1)根据题意画出图形,由x+y=5可知y=5﹣x ,再由三角形的面积公式即可得出结论;(2)由点P (x ,y )在第一象限,且x+y=5得出x 的取值范围即可;(3)把S=4代入(1)中的关系式求出x 的值,进而可得出y 的值.【答案与解析】解:(1)如图所示,∵x+y=5,∴y=5﹣x ,∴S=×4×(5﹣x )=10﹣2x ;(2)∵点P (x ,y )在第一象限,且x+y=5,∴0<x <5;(3)∵由(1)知,S=10﹣2x ,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).m n 24030m n +≠⎧⎨-=⎩23m n ≠-⎧⎨=⎩24030m n +>⎧⎨->⎩23m n >-⎧⎨<⎩y kx b =+k b y kx b =+y x k b y kx b =+y x k b y kx b =+y x k b y kx b =+y x【总结升华】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.举一反三:【变式】函数在直角坐标系中的图象可能是( ).【答案】B ;提示:不论为正还是为负,都大于0,图象应该交于轴上方,故选B.【巩固练习】一.选择题1. 已知一次函数的图象如图所示,那么的取值范围是( )A .B .C .D .2.关于一次函数y=﹣2x+3,下列结论正确的是( )A .图象过点(1,﹣1)B .图象经过一、二、三象限C .y 随x 的增大而增大D .当x >时,y <03. 已知一次函数的图象经过第一、二、三象限,则的取值范围是( )A. B. C. D. 4.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映面积S 与x 之间的函数关系式的图象是( )(0)y kx k k =+≠k k x (1)y a x b =-+a 1a >1a <0a >0a<k x k y +-=)21(k 0>k 0<k 210<<k 21<kA .B .C .D .5.已知直线和直线相交于点(2,),则、的值分别为( ). A .2,3 B .3,2 C .,2 D .,3 6. 如图弹簧的长度与所挂物体的质量关系为一次函数,则不挂物体时,弹簧长度为( ).A .7B .8C .9D .10二.填空题7. 如果直线经过第一、二、三象限,那么 0.8.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x +1图象上的两点,则a 与b 的大小关系是 .9. 已知一次函数的图象与直线平行, 则= .10. 一次函数的图象与轴的交点坐标是_____,与轴的交点坐标是______. 11.已知一次函数y=kx+b (k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则此一次函数的解析式为 .12.一次函数与两坐标轴围成三角形的面积为4,则=________.三.解答题13.已知直线y=kx+3经过点A (﹣4,0),且与y 轴交于点B ,点O 为坐标原点.(1)求k 的值;(2)求点O 直线AB 的距离;(3)过点C (0,1)的直线把△AOB 的面积分成相等的两部分,求这条直线的函数关系式.14.已知与成正比例,且当=1时,= 5y x =12y x b =-+c b c 12-12-cm cm cmcm y ax b =+ab 2y kx =-34y x =+k 113y x =-+x y 2y x b =+b 1-y 1+x x y(1)求与之间的函数关系式;(2)若图象与轴交于A 点,与交于B 点,求△AOB 的面积.15.某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分每人10元.(1)写出应收门票费(元)与游览人数(人)之间的函数关系式;(2)利用(1)中的函数关系计算:某班54名学生去该风景区游览时,为购门票共花了多少元?【答案与解析】一.填空题1. 【答案】A ;【解析】由题意知.2. 【答案】D ;【解析】解:A 、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B 、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C 、∵﹣2<0,∴y 随x 的增大而减小,故错误;D 、画出草图.∵当x >时,图象在x 轴下方,∴y <0,故正确.故选D .3. 【答案】C ;【解析】由题意知,且>0,解得4. 【答案】C ;【解析】∵点P (x ,y )在第一象限内,且x+y=6,∵y=6﹣x (0<x <6,0<y <6). ∵点A 的坐标为(4,0),∵S=×4×(6﹣x )=12﹣2x (0<x <6).5. 【答案】B ;【解析】点(2,)在直线上,故=2.点(2,2)在直线上,故,解得=3.6. 【答案】D ;【解析】5+=12.5,20+=20,解得=0.5,=10.二.填空题7. 【答案】>【解析】画出草图如图所示,由图象知随的增大而增大,可知>0;图象与轴的交点在轴上方,知>0,故>0.y x x y y x 10,1a a ->>∴120k ->k 210<<k c y x =c 12y x b =-+12b -+=b k b k b k b y x a y x b ab8. 【答案】a >b ;【解析】∵一次函数y=﹣2x +1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a >b .故答案为:a >b .9. 【答案】3;【解析】互相平行的直线相同.10.【答案】,【解析】令=0,解得=1;令=0,解得=3.11.【答案】y=x+2或y=﹣x+2.【解析】解:∵一次函数y=kx+b (k≠0)图象过点(0,2),∴b=2,设一次函数与x 轴的交点是(a ,0),则×2×|a|=2,解得:a=2或﹣2.把(2,0)代入y=kx+2,解得:k=﹣1,则函数的解析式是y=﹣x+2; 把(﹣2,0)代入y=kx+2,得k=1,则函数的解析式是y=x+2. 故答案是:y=x+2或y=﹣x+2.12.【答案】;【解析】一次函数与轴交点为,与轴交点为(0,),所以,解得=±4.三.解答题13. 【解析】解:(1)依题意得:﹣4k+3=0,解得k=;(2)由(1)得y=x+3,当x=0时,y=3,即点B 的坐标为(0,3).如图,过点O 作OP ⊥AB 于P ,则线段OP 的长即为点O 直线AB 的距离. ∵S △AOB =AB•OP=OA•OB,∴OP===;k ()3,0()0,1x y y x 4±x ,02b ⎛⎫-⎪⎝⎭y b 1||||422b b -=b(3)设所求过点C(0,1)的直线解析式为y=mx+1.S△AOB=OA•OB=×4×3=6.分两种情况讨论:①当直线y=mx+1与OA相交时,设交点为D,则S△COD=OC•OD=×1×OD=3,解得OD=6.∵OD>OA,∴OD=6不合题意舍去;②当直线y=mx+1与AB相交时,设交点为E,则S△BCE=BC•|x E|=×2×|x E|=3,解得|x E |=3,则x E =﹣3,当x=﹣3时,y=x+3=,即E 点坐标为(﹣3,).将E (﹣3,)代入y=mx+1,得﹣3m+1=,解得m=.故这条直线的函数关系式为y=x+1.14.【解析】解:(1)∵与成正比例,∴当=1时,=5解得=2∴(2)A(),B(0,3) =. 15.【解析】解:(1)由题意,得1-y 1+x ()11y k x -=+x y k 23y x =+3,02-12AOB S OA OB ∆=⨯1393224⨯⨯=25(020,)252010(20)(20,x x x y x x x <≤⎧=⎨⨯+->⎩且为整数且为整数)化简得: (2)把=54代入=10+300,=10×54+300=840(元). 所以某班54名学生去该风景区游览时,为购门票共花了840元.甲由B 地到A 地所用时间是:20÷=20分钟, 设甲由B 地到A 地的函数解析式是:,∵点(24,20)与(44,0)在此函数图象上,∴,解得:,∴甲由B 地到A 地函数解析式是:,(2)乙由A 地到B 地的函数解析式是:,即; 根据题意得:, 解得:, 则经过分钟相遇.25(020,)10300(20,x x x y x x x <≤⎧=⎨+>⎩且为整数且为整数)x y x y 1111212⎛⎫+ ⎪⎝⎭y kx b =+2420440k b k b +=⎧⎨+=⎩144k b =-⎧⎨=⎩44y x =-+711212y x ⎛⎫=- ⎪⎝⎭12y x =4412y x y x =-+⎧⎪⎨=⎪⎩883x =883。
第1讲 函数的图象与性质(学)
![第1讲 函数的图象与性质(学)](https://img.taocdn.com/s3/m/4b1d570e4a73f242336c1eb91a37f111f1850dd7.png)
第1讲 函数的图象与性质[考情分析] 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等,主要考查求函数的定义域、分段函数的函数值的求解或分段函数中参数的求解及函数图象的识别.难度属中等及以上.2.此部分内容多以选择题、填空题形式出现,有时在压轴题的位置,多与导数、不等式、创新性问题结合命题.考点一 函数的概念与表示例1 (1)若函数f (x )=log 2(x -1)+2-x ,则函数f ⎝⎛⎭⎫x 2的定义域为( )A .(1,2]B .(2,4]C .[1,2)D .[2,4)(2)设函数f (x )=⎩⎪⎨⎪⎧ 2x +1,x ≤0,4x ,x >0,则满足f (x )+f (x -1)≥2的x 的取值范围是________.跟踪演练1 (1)已知函数f (x +1)的定义域为(-2,0),则f (2x -1)的定义域为( )A .(-1,0) B.⎝⎛⎭⎫-12,12 C .(0,1) D.⎝⎛⎭⎫-12,0(2)已知实数a <0,函数f (x )=⎩⎪⎨⎪⎧x 2+2a ,x <1,-x ,x ≥1,若f (1-a )≥f (1+a ),则实数a 的取值范围是( ) A .(-∞,-2] B .[-2,-1]C .[-1,0)D .(-∞,0)考点二 函数的性质3.函数图象的对称中心或对称轴(1)若函数f (x )满足关系式f (a +x )=2b -f (a -x ),则函数y =f (x )的图象关于点(a ,b )对称.(2)若函数f (x )满足关系式f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b 2对称. 考向1 单调性与奇偶性例2 (1)(2020·新高考全国Ⅰ)若定义在R 上的奇函数f (x )在(-∞,0)上单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是( )A .[-1,1]∪[3,+∞)B .[-3,-1]∪[0,1]C .[-1,0]∪[1,+∞)D .[-1,0]∪[1,3](2)设函数f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e 2的最大值为M ,最小值为N ,则(M +N -1)2 021的值为________.考向2 奇偶性与周期性例3 (1)定义在R 上的奇函数f (x )满足f ⎝⎛⎭⎫x +32=f (x ),当x ∈⎝⎛⎦⎤0,12时,f (x )=12log (1)x -,则f (x )在区间⎝⎛⎭⎫1,32内是( )A .减函数且f (x )>0B .减函数且f (x )<0C .增函数且f (x )>0D .增函数且f (x )<0(2)已知函数f (x )的定义域为R ,当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)等于( )A .-2B .-1C .0D .2跟踪演练2 (1)(2018·全国Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于( )A .-50B .0C .2D .50(2)已知对任意实数x ,函数f (x )都满足f (-x )=f (x ),且当x ≥0时,f (x )=e x -sin x ,若实数a 满足f (log 2a )<f (1),则a 的取值范围是________.考点三 函数的图象核心提炼1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.考向1 函数图象的识别例4 (1)(2019·全国Ⅲ)函数y =2x 32x +2-x在[-6,6]上的图象大致为( )(2)已知某函数图象如图所示,则此函数的解析式可能是( )A .f (x )=1-e x 1+e x ·sin xB .f (x )=e x -1e x +1·sin x C .f (x )=1-e x 1+e x ·cos x D .f (x )=e x -1e x +1·cos x考向2 函数图象的变换及应用例5 (1)若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )(2)已知函数f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≤0,-x 2-3x ,x >0,若不等式|f (x )|≥mx -2恒成立,则实数m 的取值范围为( ) A .[3-22,3+22] B .[0,3-22]C .(3-22,3+22)D .[0,3+22]跟踪演练3 (1)(2020·天津市大港第一中学模拟)函数y =2|x |sin 2x 的图象可能是( )(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≤0,ln (x +1),x >0,若存在x 0∈R 使得f (x 0)≤ax 0-1,则实数a 的取值范围是( ) A .(0,+∞)B .[-3,0]C .(-∞,-3]∪[3,+∞)D .(-∞,-3]∪(0,+∞)专题强化练一、选择题1.函数y =-x 2+2x +3lg (x +1)的定义域为( ) A .(-1,3] B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3]2.设函数f (x )=⎩⎪⎨⎪⎧log 2(1-x ),x <0,22x -1,x ≥0,则f (-3)+f (log 23)等于( ) A.112 B.132 C.152D .103.(全国Ⅱ)设函数f (x )=ln|2x +1|-ln|2x -1|,则f (x )( )A .是偶函数,且在⎝⎛⎭⎫12,+∞单调递增B .是奇函数,且在⎝⎛⎭⎫-12,12单调递减C .是偶函数,且在⎝⎛⎭⎫-∞,-12单调递增 D .是奇函数,且在⎝⎛⎭⎫-∞,-12单调递减 4.设函数f (x )=4x 23|x |,则函数f (x )的图象大致为( )5.若函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥1,-x 2+ax +1,x <1在R 上是增函数,则a 的取值范围为( ) A .[2,3] B .[2,+∞) C .[1,3] D .[1,+∞)6.若定义域为R 的函数f (x )在(4,+∞)上为减函数,且函数y =f (x +4)为偶函数,则( )A .f (2)>f (3)B .f (2)>f (5)C .f (3)>f (5)D .f (3)>f (6)7.设函数f (x )=⎩⎪⎨⎪⎧ 2|x -a |,x ≤1,x +1,x >1,若f (1)是f (x )的最小值,则实数a 的取值范围是( ) A .[-1,2) B .[-1,0]C .[1,2]D .[1,+∞)8.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i 等于( )A .0B .mC .2mD .4m9.已知定义在R 上的函数f (x )是奇函数,且f (x )在(-∞,0)上是减函数,f (2)=0,g (x )=f (x +2),则不等式xg (x )≤0的解集是( )A .(-∞,-2]∪[2,+∞)B .[-4,-2]∪[0,+∞)C .(-∞,-4]∪[-2,+∞)D .(-∞,-4]∪[0,+∞)10.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2.则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值为( )A .-1B .1C .6D .1211.(2020·贵阳模拟)定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[-3,-2]时,f (x )=-x -2,则( )A .f ⎝⎛⎭⎫sin π6>f ⎝⎛⎭⎫cos π6 B .f (sin 3)<f (cos 3) C .f ⎝⎛⎭⎫sin 4π3<f ⎝⎛⎭⎫cos 4π3 D .f (2 020)>f (2 019)12.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+ax ,x ≤1,a 2x -7a +14,x >1,若∃x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2),则实数a 的取值范围是( ) A .(-∞,2) B .(-∞,2)∪(3,5)C .[2,3]D .[2,+∞)二、填空题13.(2020·江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=23x,则f(-8)的值是________.14.已知定义在R上的函数f(x)满足f(x+2)=-1f(x),当x∈(0,2]时,f(x)=2x+1,则f(2 020)+f(2 021)的值为________.15.已知函数f(x)=log a(8-ax)(a>0,且a≠1),若f(x)>1在区间[1,2]上恒成立,则实数a的取值范围是________.16.关于函数f(x)=lg x2+1|x|(x≠0,x∈R),有下列命题:①函数y=f(x)的图象关于y轴对称;②当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;③函数f(x)的最小值是lg 2;④当-1<x<0或x>1时,f(x)是增函数.其中正确命题的序号是________.。
高考二轮复习高考文科数学课标版第一讲 函数的图象与性质
![高考二轮复习高考文科数学课标版第一讲 函数的图象与性质](https://img.taocdn.com/s3/m/be090c92941ea76e59fa045f.png)
第一讲 函数的图象与性质A 组 基础题组1.函数f(x)=+的定义域为( )1x -1x A.[0,+∞)B.(1,+∞)C.[0,1)∪(1,+∞)D.[0,1)2.已知函数f(x)=3x -,则f(x)( )(13)xA.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数3.(2018湖北武汉调研)函数f(x)=log 2(x 2-4x-5)的单调递增区间是( )A.(-∞,-2) B.(-∞,-1)C.(2,+∞)D.(5,+∞)4.(2018河北石家庄模拟)已知f(x)=(0<a<1),且f(-2)=5, f(-1)=3,则f(f(-3))=( ){log 3x,x >0,a x+b,x ≤0A.-2B.2C.3D.-35.(2018湖南益阳、湘潭调研)函数f(x)=的图象大致是( )x 1-x26.(2018陕西质量检测一)设x ∈R,定义符号函数sgn x=则函数f(x)=|x|sgn x 的图{1,x >0,0,x =0,-1,x <0,象大致是( )7.(2018贵州贵阳模拟)已知函数f(x)是定义在R 上的奇函数,且当x ≥0时, f(x)=log 2(x+2)-1,则f(-6)=( )A.2 B. 4C.-2D.-48.已知函数f(x)=则下列结论正确的是( ){x 4+1,x >0,cos2x ,x ≤0,A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)9.奇函数f(x)的定义域为R,若f(x+2)为偶函数,则f(8)=( )A.-1B.0C.1D.-210.已知函数f(x)=,则下列结论正确的是( )2x -1A.函数f(x)的图象关于点(1,0)中心对称B.函数f(x)在(-∞,1)上是增函数C.函数f(x)的图象关于直线x=1对称D.函数f(x)的图象上至少存在两点A,B,使得直线AB ∥x 轴11.(2018四川成都模拟)已知定义在R 上的奇函数f(x)的图象关于直线x=1对称,且当x ∈[0,1]时, f(x)=log 2(x+1),则下列不等式正确的是( )A.f(log 27)<f(-5)<f(6)B.f(log 27)<f(6)<f(-5)C.f(-5)<f(log 27)<f(6)D.f(-5)<f(6)<f(log 27)12.(2018广东惠州模拟)已知函数f(x)=若函数f(x)的图象上关于原点对称的{kx -1,x ≥0,-ln(-x ),x <0,点有2对,则实数k 的取值范围是( )A.(-∞,0)B.(0,12)C.(0,+∞)D.(0,1)13.已知函数f(x)=若f(a)+f(1)=0,则实数a 的值为 .{2x,x >0,x +1,x ≤0,14.(2018广东惠州模拟)已知f(x)=x+-1,f(a)=2,则f(-a)= .1x 15.(2018河南洛阳第一次统考)若函数f(x)=ln(e x +1)+ax 为偶函数,则实数a= . 16.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x ∈R,不等式f(x)≥g(x)恒成立,则实数a 的取值范围是 .B 组 提升题组 1.(2018重庆六校联考)函数f(x)=的大致图象为( )sin πx x22.已知函数f(x)=e |ln x|-,则函数y=f(x+1)的大致图象为( )|x -1x|3.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t 之间的函数关系的是( )4.函数f(x)=的图象如图所示,则下列结论成立的是( )ax +b (x +c )2A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<05.(2018河南开封模拟)已知f(x)是定义在R 上周期为4的奇函数,当x ∈(0,2]时, f(x)=2x +log 2x,则f(2 015)=( )A.5 B. C.2 D.-2126.设函数f(x)=若f =2,则实数n 的值为( ){2x +n ,x <1,log 2x,x ≥1,(f(34)) A.-B.-C.D.541314527.∀x ∈,8x ≤log a x+1恒成立,则实数a 的取值范围是( )(0,13)A. B. C. D.(0,23)(0,12][13,1)[12,1)8.设曲线y=f(x)与曲线y=x 2+a(x>0)关于直线y=-x 对称,且f(-2)=2f(-1),则a=( )A.0B.C.D.113239.(2018福建福州模拟)已知函数f(x)=e x +e 2-x ,若关于x 的不等式[f(x)]2-af(x)≤0恰有3个整数解,则实数a 的最小值为( )A.1 B.2eC.e 2+1D.e 3+1e310.已知函数f(x)的定义域为R,且满足下列三个条件:①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有 >0;f (x 1)-f(x 2)x 1-x 2②f(x+4)=-f(x);③y=f(x+4)是偶函数.若a=f(6),b=f(11),c=f(2 017),则a,b,c 的大小关系正确的是( )A.a<b<cB.b<a<cC.a<c<bD.c<b<a 11.已知函数f(x)=的值域为R,则实数a 的取值范围是 . {(1-2a )x +3a ,x <1,ln x ,x ≥112.已知函数f(x)是定义在R 上的奇函数,当x ≥0时, f(x)=x 2,若对任意的x ∈[m-2,m],不等式f(x+m)-9f(x)≤0恒成立,则实数m 的取值范围是 .13.已知函数f(x)=若f(x-1)<f(2x+1),则x 的取值范围{3x 2+ln(1+x 2+x),x ≥0,3x 2+ln(1+x 2-x),x <0,为 .14.(2018陕西西安八校联考)函数f(x)在定义域R 内可导,若f(x)=f(2-x),且(x-1)f '(x)<0,设a=f(0),b=f,c=f(3),则a,b,c 的大小关系是 .(12)答案精解精析A 组 基础题组1.C 由题意知即0≤x<1或x>1.{x -1≠0,x ≥0,∴f(x)的定义域为[0,1)∪(1,+∞).2.B 易知函数f(x)的定义域为R,∵f(-x)=3-x -=-3x =-=-f(x),(13)-x (13)x[3x-(13)x ]∴f(x)为奇函数.又∵y=3x 在R 上为增函数,y=-在R 上为增函数,∴f(x)=3x -在R 上是增函数.故选B.(13)x(13)x3.D 由x 2-4x-5>0得x ∈(-∞,-1)∪(5,+∞).原函数f(x)=log 2(x 2-4x-5)由t=x 2-4x-5与y=log 2t 复合而成,当x ∈(-∞,-1)时,t=x 2-4x-5为减函数;当x ∈(5,+∞)时,t=x 2-4x-5为增函数.又y=log 2t 为增函数,所以函数f(x)=log 2(x 2-4x-5)的单调递增区间是(5,+∞).故选D.4.B 由题意得f(-2)=a -2+b=5①, f(-1)=a -1+b=3②.联立①②,结合0<a<1,得a=,b=1,所以f(x)=则f(-3)=+1=9,所以f(f(-12{log 3x,x >0,(12)x +1,x ≤0,(12)-33))=f(9)=log 39=2.故选B.5.B 易知函数f(x)的定义域为{x|x ≠±1}, f(-x)==-=-f(x),所以函数f(x)为奇函数.-x 1-(-x )2x 1-x 2当x ∈(0,1)时, f(x)=>0,排除D;当x ∈(1,+∞)时, f(x)=<0,排除A,C.故选B.x 1-x2x1-x26.C 函数f(x)=|x|sgn x=即f(x)=x,{x ,x ≠0,0,x =0,故函数f(x)=|x|sgn x 的图象为直线y=x.故选C.7.C 由题意,知f(-6)=-f(6)=-(log 28-1)=-3+1=-2,故选C.8.D 由f(-x)≠f(x)知f(x)不是偶函数,当x ≤0时, f(x)不是增函数,显然f(x)也不是周期函数,故选D.9.B 由奇函数f(x)的定义域为R,可得f(0)=0,由f(x+2)为偶函数,可得f(-x+2)=f(x+2),故f(x+4)=f((x+2)+2)=f(-(x+2)+2)=f(-x)=-f(x),则f(x+8)=f((x+4)+4)=-f(x+4)=-[-f(x)]=f(x),即函数f(x)的周期为8,所以f(8)=f(0)=0.故选B.10.A 由题知,函数f(x)=的图象是由函数y=的图象向右平移1个单位长度得到的,可得2x -12x 函数f(x)的图象关于点(1,0)中心对称,选项A 正确;函数f(x)在(-∞,1)上是减函数,选项B 错误;易知函数f(x)=的图象不关于直线x=1对称,选项C 错误;由函数f(x)的单调性及函数f(x)2x -1的图象可知函数f(x)的图象上不存在两点A,B,使得直线AB ∥x 轴,选项D 错误.11.C 因为奇函数f(x)的图象关于直线x=1对称,所以函数f(x)是以4为周期的周期函数,所以f(-5)=f(-1)=-f(1)=-1, f(6)=f(2)=f(0)=0.于是,结合题意可画出函数f(x)在[-2,4]上的大致图象,如图所示.又2<log 27<3,所以结合图象可知-1<f(log 27)<0,故f(-5)<f(log 27)<f(6).故选C.12.D 依题意,函数f(x)的图象上存在关于原点对称的点,可作出函数y=-ln(-x)(x<0)的图象关于原点对称的函数y=ln x(x>0)的图象,使得它与直线y=kx-1(x>0)的交点个数为2即可,当直线y=kx-1与函数y=ln x 的图象相切时,设切点为(m,ln m),又y=ln x 的导函数为y'=,则1x解得可得切线的斜率为1,结合图象可知k ∈(0,1)时,函数y=ln x 的图{km -1=ln m ,k =1m ,{m =1,k =1,象与直线y=kx-1有2个交点,即函数f(x)的图象上关于原点对称的点有2对.故选D.13.答案 -3解析 ∵f(1)=2>0,且f(1)+f(a)=0,∴f(a)=-2<0,故a ≤0.依题知a+1=-2,解得a=-3.14.答案 -4解析 因为f(x)=x+-1,所以f(a)=a+-1=2,所以a+=3,所以f(-a)=-a--1=--1=-3-1=-4.1x 1a 1a 1a (a +1a )15.答案 -12解析 ∵函数f(x)是偶函数,∴f(x)-f(-x)=ln(e x +1)+ax-ln(e -x +1)+ax=ln+2ax=lne x+1e -x +1e x +2ax=(1+2a)x=0恒成立.∴1+2a=0,即a=-.1216.答案 [-1,+∞)解析 如图,要使f(x)≥g(x)恒成立,则-a ≤1,∴a ≥-1.B 组 提升题组1.D 易知函数f(x)=为奇函数且定义域为{x|x ≠0},只有选项D 满足,故选D.sin πx x22.A 根据已知函数关系式可得f(x)=作出其图象,然后将其向左{e-ln x+(x -1x )=x,0<x ≤1,e ln x-(x -1x )=1x ,x >1.平移1个单位即得函数y=f(x+1)的图象,结合选项知A 正确.3.A 若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10 ℃,所以当t=12时,平均气温应该为10 ℃,故排除B;因为在靠近12月份时其温度小于10 ℃,因此12月份前的一小段时间内的平均气温应该大于10℃,故排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D.故选A.4.C 函数f(x)的定义域为{x|x ≠-c},由题中图象可知-c=x P >0,即c<0,排除B.令f(x)=0,可得x=-,则x N =-.又x N >0,所以<0.所以a,b 异号,排除A,D.故选C.ba ba ba 5.D 由题意得f(2 015)=f(4×504-1)=f(-1)=-f(1).又当x ∈(0,2]时, f(x)=2x +log 2x,故f(1)=2+log 21=2,所以f(2 015)=-2.故选D.6.D 因为f=2×+n=+n,当+n<1,即n<-时, f =2+n=2,解得n=-,不符合题意;(34)34323212(f(34))(32+n )13当+n ≥1,即n ≥-时, f =log 2=2,即+n=4,解得n=.故选D.3212(f(34))(32+n )32527.C 由各选项及题意可得解得≤a<1.{0<a <1,log a 13+1≥2,138.C 依题意得曲线y=f(x)即为-x=(-y)2+a(其中-y>0,即y<0,注意到点(x 0,y 0)关于直线y=-x 的对称点是点(-y 0,-x 0)),化简后得y=-,即f(x)=-,于是有-=-2,由此解得-x -a -x -a 2-a 1-a a=.故选C.239.C 因为f(x)=e x +e 2-x >0,所以由[f(x)]2-af(x)≤0可得0<f(x)≤a.令t=e x ,g(t)=t+(t>0),画出函e2t数g(t)的大致图象,如图所示,结合图象分析易知原不等式有3个整数解可转化为0<g(t)≤a 的3个解分别为1,e,e 2.又当t=e x 的值分别为1,e,e 2时,x=0,1,2.画出直线y=e 2+1,故结合函数图象可知a 的最小值为e 2+1.故选C.10.B ∵对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有 >0,f (x 1)-f(x 2)x 1-x 2∴函数f(x)在区间[4,8]上为增函数.∵f(x+4)=-f(x),∴f(x+8)=-f(x+4)=f(x),∴函数f(x)是周期为8的周期函数.∵y=f(x+4)是偶函数,∴函数f(x)的图象关于直线x=-4对称,又函数f(x)的周期为8,∴函数f(x)的图象也关于直线x=4对称.∴b=f(11)=f(3)=f(5),c=f(2 017)=f(252×8+1)=f(1)=f(7).又a=f(6),函数f(x)在区间[4,8]上为增函数,∴b<a<c.故选B.11.答案 [-1,12)解析 要使函数f(x)的值域为R,则有∴{1-2a >0,ln1≤1-2a +3a ,{a <12,a ≥-1,∴-1≤a<.1212.答案 [4,+∞)解析 依题意知函数f(x)在R 上单调递增,且当x ∈[m-2,m]时, f(x+m)≤9f(x)=f(3x),所以x+m ≤3x,即x ≥恒成立,于是有≤m-2,解得m ≥4,即实数m 的取值范围是[4,+∞).m 2m213.答案 (-∞,-2)∪(0,+∞)解析 若x>0,则-x<0, f(-x)=3(-x)2+ln(+x)=3x 2+ln(+x)=f(x),同理可得,当x<01+x 21+x 2时, f(-x)=f(x),且x=0时,f(0)=f(-0),所以f(x)是偶函数.因为当x>0时,函数f(x)单调递增,所以不等式f(x-1)<f(2x+1)等价于|x-1|<|2x+1|,整理得x(x+2)>0,解得x>0或x<-2.14.答案 b>a>c解析 因为f(x)=f(2-x),所以函数f(x)的图象关于直线x=1对称.因为(x-1)f '(x)<0,所以当x>1时, f '(x)<0,所以函数f(x)在(1,+∞)上单调递减;当x<1时, f '(x)>0,所以函数f(x)在(-∞,1)上单调递增.取符合题意的函数f(x)=-(x-1)2,则a=f(0)=-1,b=f=-,c=f(3)=-4,故b>a>c.(12)14。
函数的性质专题讲义
![函数的性质专题讲义](https://img.taocdn.com/s3/m/7d0d52a8f424ccbff121dd36a32d7375a417c672.png)
函数四大性质综合讲义1.函数的单调性(1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值3.(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。
2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。
高考数学复习考点知识与题型专题讲解训练04 函数的图象、零点及应用(含解析)
![高考数学复习考点知识与题型专题讲解训练04 函数的图象、零点及应用(含解析)](https://img.taocdn.com/s3/m/6dac605fc950ad02de80d4d8d15abe23482f0373.png)
高考数学复习考点知识与题型专题讲解训练专题04 函数的图象、零点及应用考点1 作函数的图象 1.作出下列函数的图象. (1)y =⎩⎨⎧-2x +3,x ≤1,-x 2+4x -2,x >1;(2)y =2x +2;【解析】(1)分段分别画出函数的图象,如图①所示.(2)y =2x +2的图象是由y =2x 的图象向左平移2个单位长度得到的,其图象如图②所示.考点2 识图与辨图2.已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )【答案】D【解析】法一:先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D. 法二:先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.3.(2021·浙江省诸暨市第二高级中学高三模拟)函数()21xy x e =-的图象是( )A .B .C .D .【答案】A【解析】因为()21xy x e =-,则()21xy x e '=+,1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()210x y x e '=+<,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()210x y x e '=+>,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,且12x <时,()210xy x e =-<,所以BCD 均错误,故选:A.4.(2021·吉林高三模拟)函数()6cos 2sin xf x x x=-的图象大致为( ).A .B .C .D .【答案】A 【解析】函数()6cos 2sin xf x x x=-为奇函数,所以排除选项BC ,又当0x >时,()f x 第一个零点为2x π=,所以令4x π=,则有222sin 0,cos0242x x ππ--=>=>,所以排除D.故选:C 考点3 函数图象的应用 考向1 研究函数的性质5.已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0) 【答案】C【解析】将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.6.(2021·山东烟台高三模拟)设函数()2,01,0x x f x x -⎧≤=⎨>⎩,则满足()()12f x f x +<的x 的取值范围是( ) A .(],1-∞- B .()0,∞+ C .()1,0- D .(),0-∞【答案】D【解析】作出函数()f x 的图象如下图所示:所以,函数()f x 在(),0-∞上为减函数,且当0x ≥时,()1f x =, 因为()()12f x f x +<,观察图象可得2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是(),0-∞.故选:D. 考向2 求不等式解集7.若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( ) A .(1,2] B.)1,22(C .(1,2) D .(2,2) 【答案】A【解析】要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].8.(2021·甘肃省会宁县第一中学高三模拟)已知)(f x 在R 上是可导函数,)(f x 的图象如图所示,则不等式)()(2230x x f x '-->解集为( )A .)()(,21,-∞-⋃+∞B .)()(,21,2-∞-⋃C .)()()(,11,02,-∞-⋃-⋃+∞D .)()()(,11,13,-∞-⋃-⋃+∞ 【答案】D【解析】原不等式等价于()22300x x f x '⎧-->⎪⎨>⎪⎩或()22300x x f x '⎧--<⎪⎨<⎪⎩,结合)(f x 的图象可得,3111x x x x ><-⎧⎪⎨-⎪⎩或或或1311x x -<<⎧⎨-<<⎩,解得1x <-或3x >或11x -<<.故选:D . 考点4 函数图象对称性的应用9.已知lga +lgb =0,函数f(x)=a x 与函数g(x)=-log b x 的图像可能是( )【答案】B【解析】∵lga +lgb =0,∴lgab =0,ab =1,∴b =1a .∴g(x)=-log b x =log a x ,∴函数f(x)与g(x)互为反函数,图像关于直线y =x 对称,故选B.10.(2021·云南高三模拟)已知函数()f x 是R 上的奇函数,且满足()()11f x f x =+-,当(]0,1x ∈,()ln f x x =,则下列关于函数()f x 叙述正确的是( )A .函数()f x 的最小正周期为1B .函数()f x 在()0,2021内单调递增C .函数()f x 相邻两个对称中心的距离为2D .函数()ln y f x x =+在区间()0,2021内有1010个零点 【答案】D【解析】由()()11f x f x =+-得:()()2f x f x +=,()f x ∴最小正周期为2,A 错误; 当(]0,1x ∈时,()ln f x x =,又()f x 为R 上的奇函数,则()00f =, 可得()f x 大致图象如下图所示:由图象可知:()f x 在()0,2021上没有单调性,B 错误;()f x 的对称中心为()()0,k k Z ∈,则相邻的对称中心之间距离为1,C 错误;()ln y f x x =+在区间()0,2021内的零点个数等价于()f x 与ln y x =-在()0,2021内的交点个数,在平面直角坐标系中画出()f x 与ln y x =-大致图象如下图所示:由图象可知:()f x 与ln y x =-在每个()()2,22k k k Z +∈内都有1个交点,且在区间内的交点横坐标等于或小于21k +,∴两个函数在()0,2021内有1010个交点,即()ln y f x x =+在区间()0,2021内有1010个零点,D正确.故选:D.11.(2021·山东淄博高三模拟)已知函数()y f x =的定义域为{|0}x x x ∈≠R ,,且满足()()0f x f x --=,当0x >时,()ln 1f x x x =-+,则函数()y f x =的大致图象为().A .B .C .D .【答案】D【解析】由()()0f x f x --=得函数()f x 为偶函数,排除A 、B 项, 又当0x >时,()ln 1f x x x =-+,∴(1)0f =,()20f e e =-<.故选:D 考点5 判断函数零点所在的区间12.设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间)1,1(e,(1,e)内均有零点B .在区间)1,1(e,(1,e)内均无零点C .在区间)1,1(e 内有零点,在区间(1,e)内无零点D .在区间)1,1(e内无零点,在区间(1,e)内有零点【答案】D【解析】法一:图象法 令f (x )=0得13x =ln x .作出函数y =13x 和y =ln x 的图象,如图, 显然y =f (x )在)1,1(e内无零点,在(1,e)内有零点.法二:定理法当x ∈),1(e e 时,函数图象是连续的,且f ′(x )=13-1x =x -33x <0,所以函数f (x )在),1(e e 上单调递减.又f )1(e =13e +1>0,f (1)=13>0,f (e)=13e -1<0,所以函数有唯一的零点在区间(1,e)内.13.(2021·黑龙江高三模拟)函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()A .()1,2B .()1,0-C .()0,1D .()2,1--【答案】D【解析】如图,绘出函数13xy ⎛⎫= ⎪⎝⎭与函数29y x =+的图像,结合图像易知,函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()2,1--,故选:D.考点6 判断函数零点(或方程根)的个数14.(2021·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3【答案】C【解析】解方程法,令f (x )+3x =0, 则⎩⎨⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.15.(2021·山东潍坊高三模拟)已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( ) A .()1,0- B .[]1,0-C .(0,1)D .[]0,1【答案】C【解析】因为函数()()g x f x m =-有3个零点,所以()()0g x f x m =-=有三个实根,即直线y m =与函数()y f x =的图象有三个交点.作出函数()y f x =图象,由图可知,实数m 的取值范围是(0,1).故选:C .16.(2021·浙江镇海中学高三模拟)函数4()log (||1)cos f x x x π=+-的零点个数为( ) A .9 B .8C .7D .6【答案】D【解析】令()4log (||1)x g x =+ ,因为10x +>恒成立,则()g x 的定义域为R , 由()()44log (||1)log (||1)x g x x g x --+=+==,所以()g x 为偶函数, 当0x >时,()4log (1)g x x +=,在()0,∞+上单调递增,令()cos h x x π=, 分别画出()g x 与()h x 的函数图象,由图可知,()g x 与()h x 有六个交点, 即函数4()log (||1)cos f x x x π=+-有六个零点.故选: D.考点7 函数零点的应用 考向1 根据零点的范围求参数17.若函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2) 【答案】C【解析】由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a -3)<0,解之得0<a<3.18.(2021·浙江高一期末)已知函数()()2log 1,1212,1x x x f x x ⎧-<-⎪=⎨-+≥-⎪⎩,若函数()()F x f x k =- 恰有3个零点,则实数k 的取值范围是( )A .52,2⎛⎤⎥⎝⎦B .()2,3C .(]3,4D .()2,+∞【答案】A【解析】函数()()F x f x k =- 恰有3个零点,即函数()y f x =与()h x k =的图象有三个交点,分别画出()y f x =与()h x k =的图象,如图所示,5(1)2f -=,观察图象可得,当522k <≤时,两图象有3个交点,即函数()()F x f x k =-恰有3个零点.故选:A.19.(2021·江西高三模拟)设函数,10()11,01(1)x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩,若函数()4y f x t =-在区间()1,1-内有且仅有一个零点,则实数的取值范围是( )A .1,4⎛⎫-+∞ ⎪⎝⎭B .1,04⎛⎫- ⎪⎝⎭C .1,4⎛⎫-∞- ⎪⎝⎭D .1,{0}4⎛⎤-∞- ⎥⎝⎦【答案】D【解析】因为()(),1011,011x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩所以(),1011,011x x f x x x -<≤⎧⎪=⎨+<<⎪-⎩,其图象如下:函数()4y f x t =-在区间()1,1-内有且仅有一个零点,等价于()40f x t -=在区间()1,1-内有且仅有一个实数根,又等价于函数()y f x =的图象与直线4y t =在区间()1,1-内有且仅有一个公共点. 于是41t ≤-或40t =,解得14t ≤-或0t =.故选:D 考向2 已知函数零点或方程根的个数求参数20.(2020·湖南高三模拟)已知函数2141,0()1,02x x x x f x x +⎧-+≥⎪=⎨⎛⎫<⎪ ⎪⎝⎭⎩,若()()g x f x a =-恰好有3个零点,则实数a 的取值范围为( ) A .[0,1) B .(0,1)C .1,12⎡⎫⎪⎢⎣⎭D .1,12⎛⎤ ⎥⎝⎦【答案】D【解析】由条件可知()0f x a -=()a f x ⇒=()()g x f x a =-恰好有3个零点,等价于y a =与()y f x =有3个交点,如图画出函数的图象,由图象可知112a <≤.故选:D21.(2021·安庆摸底)若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________.【答案】]2,41[-【解析】∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =2)412(-x -14,∵x ∈[-1,1],∴2x ∈]2,21[,∴2)412(-x -14∈]2,41[-∴实数a 的取值范围是]2,41[-考点8 用函数图象刻画变化过程22.甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ 【答案】B【解析】由题知速度v =st 反映在图象上为某段图象所在直线的斜率.由题知甲骑自行车速度最大,跑步速度最小,甲与图①符合,乙与图④符合.23.(2021·重庆高三模拟)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A【解析】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,xhr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得2223333222333r H vt H v h vt h h t H r r πππ⋅=⇒=⇒=⋅,而,,r H v 都是常数,即2323H v r π是常数,所以盛水的高度h 与注水时间t 的函数关系式是23323H v h tr π=⋅,203r H t v π≤≤,223323103H v h t r π-'=⋅>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同.故选:A 24.(2021·浙江高三模拟)如图,设有圆O 和定点C ,当l 从0l 开始在平面上绕O 匀速旋转(旋转角度不超过90︒)时,它扫过圆内阴影部分面积S 是时间t 的函数,它的图像大致是如下哪一种( )A .B .C .D .【答案】C【解析】当直线l 从初始位置0l 转到经过点C 的过程中阴影部分面积增加的越来越快,图像越来越“陡峭”;l 从过点C 的位置转至结束时阴影部分面积增加的越来越慢,图像越来越“平缓”,故选:C.考点9 应用所给函数模型解决实际问题25.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎨⎧C ,0<x ≤A ,C +B x -A ,x >A .已知某家庭2018年前三个月的煤气费如表: 月份 用气量 煤气费 一月份 4 m 3 4元 二月份 25 m 3 14元 三月份35 m 319元若四月份该家庭使用了20 m 3的煤气,则其煤气费为( ) A .11.5元 B .11元 C .10.5元 D .10元 【答案】A【解析】根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12x -5,x >5,所以f (20)=4+12×(20-5)=11.5.26.(2021·湖南高三期末)某工厂8年来某种产品年产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年到第八年每年的年产量保持不变. 其中说法正确的序号是________. 【答案】②④【解析】由图可知,前3年的产量增长的速度越来越慢,故①错误,②正确; 第三年后这种产品的产量保持不变,故③错误,④正确; 综合所述,正确的为:②④. 故答案为:②④.27.(【百强校】福建师范大学附属中学2020-2021学年高一上学期期末考试数学试题)如图所示,边长为 1的正方形PABC 沿 x 轴从左端无穷远处滚向右端无穷远处,点B 恰好能经过原点.设动点P 的纵坐标关于横坐标的函数解析式为()y f x =,则对函数()y f x =有下列判断:①函数()y f x = 是偶函数; ②()y f x =是周期为 4 的函数;③函数 ()y f x =在区间[10,12] 上单调递减; ④函数 ()y f x = 在区间[1,1] 上的值域是[1,2] 其中判断正确的序号是_______.(写出所有正确结论的序号) 【答案】①②④【解析】当2x 1-≤<-时,P 的轨迹是以A 为圆心,半径为1的14圆当1x 1-≤<时,P 的轨迹是以B 为圆心,半径为2的14圆 当1x 2≤<时,P 的轨迹是以C 为圆心,半径为1的14圆当2x 3≤≤时,P 的轨迹是以A 为圆心,半径为1的14圆 故函数的周期为4因此最终构成图象如下所示:①根据图象的对称性可知函数()y f x =是偶函数;故正确②由图可得()f x 的周期为4,故正确③函数()y f x =在区间[2,4]上为增函数,故在区间[10,12]上也是增函数,故错误 ④在区间[1,1]上的值域是[1,2],故正确 综上,正确的序号是①②④考点10 构建函数模型解决实际问题 考向1 构建二次函数模型28.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计) 【答案】2 500【解析】设围成的矩形场地的长为x m ,则宽为200-x4 m ,则S =x ·200-x 4=14(-x 2+200x ). 当x =100时,S max =2 500 (m 2).29.(2021·四川高三模拟)某市出租车的计价标准为1.2元/km ,起步价为6元,即最初3km (不含3km )计费6元.若某人乘坐该市的出租车去往13km 处的目的地,且一路畅通,等候时间为0,那么他需要支付的车费为_____. 【答案】19.2【解析】乘车距离为x km ,车费为y 元,由题意得:6,036 1.2,346 1.22,456 1.23,56x x y x x <<⎧⎪+≤<⎪⎪=+⨯≤<⎨⎪+⨯≤<⎪⎪⎩, 所以当13x =时,()6132 1.219.2y =+-⨯=元,所以他需要支付的车费为19.2元,故答案为:19.230(2021·河南郑州一中高三模拟)在“绿水青山就是金山银山”的环保理念指引下,结合最新环保法规和排放标准,各企业单位勇于担起环保的社会责任,采取有针对性的管理技术措施,开展一系列卓有成效的改造.已知某化工厂每月收入为100万元,若不改善生产环节将受到环保部门的处罚,每月处罚20万元.该化工厂一次性投资500万元建造垃圾回收设备,一方面可以减少污染避免处罚,另一方面还能增加废品回收收入.据测算,投产后的累计收入是关于月份x 的二次函数,前1月、前2月、前3月的累计收入分别为100.5万元、202万元和304.5万元.当改造后累计纯收入首次多于不改造的累计纯收入时,x =( )A .18B .19C .20D .21【答案】A【解析】不妨设投产后的累计收入2y ax bx c =++,则100.520242304.593a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩,解得1,100,02a b c ===, 211002y x x ∴=+, ∴改造后累计纯收入为215001005002y x x -=+-, 不改造的累计纯收入为()10020x -,令()21100500100202x x x +->-, 即212050002x x +->, 解得201014x >-+201014x <--,20101417.4x ∴>-+,x N *∈,x 的最小值为18.故选:A 考向2 构建指数函数、对数函数模型31.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况【答案】B【解析】设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.32.声强级1L (单位:dB )与声强I 的函数关系式为:11210lg 10I L -⎛⎫= ⎪⎝⎭.若普通列车的声强级是95dB ,高速列车的声强级为45dB ,则普通列车的声强是高速列车声强的( ) A .610倍B .510倍C .410倍D .310倍【答案】B【解析】设普通列车的声强为1I ,高速列车的声强为2I ,因为普通列车的声强级是95dB ,高速列车的声强级为45dB ,所以1129510lg 10I -⎛⎫= ⎪⎝⎭,2124510lg 10I -⎛⎫= ⎪⎝⎭, ()11129510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得12.5lg I -=,所以 2.5110I -=, ()22124510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得27.5lg I -=,所以7.5210I -=, 两式相除得 2.5517.52101010I I --==, 则普通列车的声强是高速列车声强的510倍.故选:B.33.(2020·重庆市酉阳第一中学校高三月考)为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,英国天文学家普森又提出了亮度的概念,并提出著名的普森公式:22112.51g E m m E -=-,联系两个天体的星等1m 、2m 和它们对应的亮度1E 、2E .这个星等尺度的定义一直沿用至今.已知南十字星座的“十字架三”星等是1.26,猎户星座的“参宿一”星等是1.76,则“十字架三”的亮度大约是“参宿一”的( )倍.(当x 较小时,2101 2.3 2.7x x x ≈++)A .1.567B .1.568C .1.569D .1.570 【答案】B【解析】设“十字架三”的星等是1m ,“参宿一”的星等是2m ,“十字架三”的亮度是1E ,“参宿一”的亮度是2E ,则1 1.26m =,2 1.76m =,设12E rE =, 两颗星的星等与亮度满足22112.51gE m m E -=-, 211.76 1.26 2.51g E E ∴-=-,0.21210E E =0.22101 2.30.2 2.7(0.2) 1.568r ∴=≈+⨯+⨯=,∴与r 最接近的是1.568,故选B . 考向3 构建分段函数模型34(2021·广东江门市·高三模拟)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.【答案】7916【解析】当01t ≤≤时,函数图象是一个线段,由于过原点与点()1,4,故其解析式为4,01y t t =≤≤,当 1t ≥时,函数的解析式为12t a y -⎛⎫= ⎪⎝⎭,因为()1,4M 在曲线上,所以1142a -⎛⎫= ⎪⎝⎭,解得 3a =, 所以函数的解析式为31,12t y t -⎛⎫=≥ ⎪⎝⎭, 综上,34(01)()1(1)2t t t y f t t -≤<⎧⎪==⎨⎛⎫≥ ⎪⎪⎝⎭⎩,由题意有340.2510.252t t -≥⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩,解得1165t t ⎧≥⎪⎨⎪≤⎩,所以1516t ≤≤, 所以服药一次治疗疾病有效的时间为17951616-=个小时,故答案为:7916. 35.(2020·福建三明市·三明一中高三期中)某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是21300,0300()245000,300x x x P x x ⎧-≤<⎪=⎨⎪≥⎩,则总利润最大时店面经营天数是__________,最大总利润是__________.【答案】200 10000元【解析】由题意,0300x ≤<时,221130010010000(200)1000022y x x x x =---=--+,200x ∴=时,10000max y =;300x ≥时,4500010010000350001005000y x x =--=-≤,200x ∴=天时,总利润最大为10000元 故答案为:200, 10000元。
第1讲 二次函数的图像及性质
![第1讲 二次函数的图像及性质](https://img.taocdn.com/s3/m/92b7c86fae45b307e87101f69e3143323868f57f.png)
第1讲二次函数的图形及性质题型1:二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=5x−1B.y=ax2+bx+c C.y=3x2+1D.y=x2+1x题型2:利用二次函数定义求字母的值2.已知y=(m+1)x|m−1|+2m是y关于x的二次函数,则m的值为()A.−1B.3C.−1或3D.0题型3:二次函数的一般形式3.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3A.2B.﹣2C.﹣1D.﹣4题型4:根据实际问题列二次函数4.一个矩形的周长为16cm,设一边长为xcm,面积为y cm2,那么y与x的关系式是【变式4-1】如图,用长为20米的篱笆(AB+BC+CD=20),一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽AB为x米,围成的花圃面积为y米2,则y关于x的函数关系式是.【变式4-2】某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x)B.y=(200+5x)(40﹣20﹣x)C.y=200(40﹣20﹣x)D.y=200﹣5x题型5:自变量的取值范围5..若y=(a−2)x2−3x+4是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0【变式5-1】函数y=√x+2的自变量取值范围是()x−1A.x≥−2B.−2≤x<1C.x>1D.x≥−2且x≠1【变式5-2】若y=(m+1)x m2−2m−1是二次函数,则m=,其中自变量x的取值范围是.22.1.2二次函数y=ax2的图像和性质二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图象.x y =2x 2 y =x 2 y =﹣2x 2 y =﹣x 2x ya>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.22.1.3二次函数y=a(x-h)²+k的图像和性质二次函数y=ax2+c(a≠0)的图象(1)(2)0 a>0 a<题型1:二次函数y=ax²+k的图象1.建立坐标系,画出二次函数y=﹣x2及y=﹣x2+3的图象.向上向下题型2:二次函数y=ax²+k的性质2.抛物线的开口方向是()A.向下B.向上C.向左D.向右【变式2-2】抛物线y=2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴题型3:二次函数y=a(x-h)²的图象3.画出二次函数(1)y=(x﹣2)2(2)y=(x+2)2的图象.课堂总结:题型4:二次函数y=a(x-h)²的性质4.对于二次函数y=﹣(x﹣1)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标为(1,0)D.当x<1时,y随x的增大而减小题型5:二次函数y=a(x-h )²+k 的图象和性质5.对于二次函数y =﹣5(x +4)2﹣1的图象,下列说法正确的是( ) A .图象与y 轴交点的坐标是(0,﹣1) B .对称轴是直线x =4C .顶点坐标为(﹣4,1)D .当x <﹣4时,y 随x 的增大而增大 【变式5-1】再同一直角坐标系中画出下列函数的图象 (1)y =(x ﹣2)2+3 (2)y =(x +2)2﹣3【变式5-2】画函数y =(x ﹣2)2﹣1的图象,并根据图象回答: (1)当x 为何值时,y 随x 的增大而减小.(2)当x 为何值时,y >0.【变式5-3】写出下列二次函数图象的开口方向、对称轴和顶点坐标. (1)y =5(x +2)2﹣3;(2)y =﹣(x ﹣2)2+3;(3)y =(x +3)2+6.二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: ()2y a x h k =-+()h k ,2y ax =()h k ,2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左h k加右减,上加下减”.题型6:二次函数几种形式之间的关系(平移)6.将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2【变式6-1】将抛物线向上平移2个单位长度,再向右平移1个单位长度,能得到抛物线y =2(x﹣2)2+3的是()A.y=2(x﹣1)2+1B.y=2(x﹣3)2+1C.y=﹣2(x﹣1)2+1D.y=﹣2x2﹣1【变式6-2】将二次函数y=x2﹣3的图象向右平移3个单位,再向上平移5个单位后,所得抛物线的表达式是.题型7:利用增减性求字母取值范围7.抛物线y=(k﹣7)x2﹣5的开口向下,那么k的取值范围是()A.k<7B.k>7C.k<0D.k>0【变式7-1】已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【变式7-2】二次函数y=(x﹣h)2+k(h、k均为常数)的图象经过P1(﹣3,y1)、P2(﹣1,y2)、P3(1,y3)三点.若y2<y1<y3,则h的取值范围是.题型8:识别图象位置8.如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.【变式8-1】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是()A.B.C.D.【变式8-2】已知m是不为0的常数,函数y=mx和函数y=mx2﹣m2在同一平面直角坐标系内的图象可以是()A.B.C.D.题型9:比较函数值的大小9.已知二次函数y=(x﹣1)2+h的图象上有三点,A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为()A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y2题型10:简单综合问题10.已知抛物线y=(x﹣5)2的顶点为A,抛物线与y轴交于点B,过点B作x轴的平行线交抛物线于另外一点C.(1)求A,B,C三点的坐标;(2)求△ABC的面积;(3)试判断△ABC 的形状并说明理由.【变式10-1】如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =x 2于点B 、C ,求BC 的长度.【变式10-2】在同一坐标系内,抛物线y =ax 2与直线y =x +b 相交于A ,B 两点,若点A 的坐标是(2,3).(1)求B 点的坐标;(2)连接OA ,OB ,AB ,求△AOB 的面积.22.1.4 二次函数y=ax 2+bx+c 的图象与性质二次函数一般式与顶点式之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.题型1:一般式化成顶点式-配方法1.将二次函数y=x2−4x+5用配方法化为y=(x−ℎ)2+k的形式,结果为()A.y=(x−4)2+1B.y=(x−4)2−1C.y=(x−2)2−1D.y=(x−2)2+1题型2:一般式化成顶点式-应用2.已知:二次函数y=x2﹣2x﹣3.将y=x2﹣2x﹣3用配方法化成y=a(x﹣h)2+k的形式,并求此函数图象与x轴、y轴的交点坐标.题型3:公式法求顶点坐标及对称轴3.已知二次函数 y =−12x 2+bx +3 ,当 x >1 时,y 随x 的增大而减小,则b 的取值范围是( ) A .b ≥−1B .b ≤−1C .b ≥1D .b ≤10a >0a <题型4:二次函数y=ax2+bx+c图像与性质4.若二次函数y=ax2+bx+c的图象如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0【变式4-2】二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是()A.y⩽9B.y⩽2C.y<2D.y⩽3 4题型5:利用二次函数的性质比较函数值5.函数y=﹣x2﹣2x+m的图象上有两点A(1,y1),B(2,y2),则()A.y1<y2B.y1>y2几种常考的关系式的解题方法题型6:二次函数y=ax2+bx+c图像与系数的关系6.已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是()A.B.C.D.【变式6-1】已知函数y=ax2+bx+c(a≠0)的对称轴为直线x=−4.若x1,x2是方程ax2+bx+c=0的两个根,且x1<x2,1<x2<2,则下列说法正确的是A.x1x2>0B.−10<x1<−9C.b2−4ac<0D.abc>0【变式6-2】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无且对称轴为直线x=12,0).其中正确结论有()论a,b,c取何值,抛物线一定经过(c2aA.1个B.2个C.3个D.4个【变式6-3】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线x=−1,点B的坐标为(1,0),则下列结论:①AB=4;②b2−4ac>0;③b>0;④a−b+c<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个7.二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32题型8:利用二次函数的性质求字母的范围8.已知二次函数y=x2+bx+1当0<x<12的范围内,都有y≥0,则b的取值范围是A.b≥0B.b≥﹣2C.b≥﹣52D.b≥﹣32a题型9:利用二次函数的性质求最值9.二次函数y=−x2+2x+4的最大值是.题型10:给定范围内的最值问题10.已知二次函数y=ax2+bx+1.5的图象(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为,最小值为.。
专题1.4.3 正切函数的性质与图象-20届高中数学同步讲义人教版(必修4)
![专题1.4.3 正切函数的性质与图象-20届高中数学同步讲义人教版(必修4)](https://img.taocdn.com/s3/m/410f43b7360cba1aa811dae4.png)
第一章 三角函数1.4.3 正切函数的性质与图象一、正切函数的性质 1.周期性由诱导公式可知,πtan πtan ,π,2()x x x x k k +=∈≠+∈R Z ,,因此 是正切函数的一个周期. 一般地,函数()(tan 0)y A x k A ωϕω=++≠的最小正周期π||T ω=.学科=网2.奇偶性正切函数的定义域为π{|,π,}2x x x k k ∈≠+∈R Z ,关于原点对称,由于()()()()sin tan cos x f x x x --=-=- ()sin tan cos xx f x x-==-=-,因此正切函数是 . 3.单调性和值域单位圆中的正切线如下图所示.利用单位圆中的正切线研究正切函数的单调性和值域,可得下表:角xππ022-→→ π3ππ22→→正切线AT 0-∞→→+∞ 0-∞→→+∞tan x增函数 增函数由上表可知正切函数在ππ(,)22-,π3π(,)22上均为增函数,由周期性可知正切函数的增区间为π(π,2k -+ ππ)()2k k +∈Z .此外由其变化趋势可知正切函数的值域为(,)-∞+∞或R ,因此正切函数 最值. 二、正切函数的图象利用正切线作出函数ππtan ,(,)22y x x =∈-的图象(如图). 作法如下:(1)作直角坐标系,并在y 轴左侧作单位圆.(2)把单位圆右半圆分成8等份,分别在单位圆中作出正切线. (3)描点.(横坐标是一个周期的8等分点,纵坐标是相应的正切线) (4)连线.根据正切函数的周期性,把上述图象向左、右扩展,就可以得到正切函数tan ,y x x =∈R ,且ππ(2x k k ≠+∈Z)的图象,我们把它叫做正切曲线(如图).正切曲线是被相互平行的直线ππ()2x k k =+∈Z 所隔开的无穷多支曲线组成的.K 知识参考答案:一、1.π 2.奇函数 3.没有K —重点 正切函数的性质与图象K —难点 正切函数的性质的应用,正切函数的图象的应用 K —易错不能正确利用正切函数的图象与性质解题1.正切函数的性质熟练掌握正切函数tan ,y x x =∈R 的性质: (1)定义域:π{|,π,}2x x x k k ∈≠+∈R Z ; (2)值域:R ;学-科网 (3)最小正周期:π; (4)奇偶性:奇函数; (5)单调性:在每一个开区间π(π,2k -+ππ)()2k k +∈Z 内均为增函数. 【例1】下列函数中,最小正周期为π2的是 A .y =sin(2x -π3) B .y =tan(2x -π3) C .y =cos(2x +π6)D .y =tan(4x +π6)【答案】B【解析】函数y =tan(2x -π3)的最小正周期T =π2,故选B .【例2】求函数πtan(3)3y x =-的定义域、值域,并判断它的奇偶性和单调性.【解析】由π33x -ππ2k ≠+得π5π318k x ≠+(k ∈Z ), 所以所求函数的定义域为π5π{|,318k x x x ∈≠+R 且,k ∈Z }; 值域为R ;函数πtan(3)3y x =-的定义域不关于原点对称,因此该函数既不是奇函数又不是偶函数;正切函数tan y x =在区间π(π,2k -+ππ)()2k k +∈Z 上为增函数, 因此令πππ323k x -+<-ππ2k <+,解得ππ183k x -+<5ππ183k <+()k ∈Z , 即函数πtan(3)3y x =-的单调递增区间为ππ5ππ(,)()183183k k k -++∈Z .【易错启示】正切函数是奇函数,但是函数()tan y x ωϕ=+一般不具有奇偶性, 需要先求出定义域,再进行判断.【名师点睛】(1)正切函数tan y x =的定义域为π{|,π,}2x x x k k ∈≠+∈R Z ,这是解决正切函数相关问题首先要关注的地方.(2)求函数(n )ta y A x ωϕ=+的单调区间时,将x ωϕ+视为整体,代入函数tan y x =的单调区间即可,注意,A ω的符号对单调区间的影响. 2.正切函数的性质的应用(1)利用正切函数的单调性比较两个正切值的大小,实际上是将两个角利用函数的周期性或诱导公式放在一个单调区间内比较大小.(2)三角函数与二次函数的综合问题,一般是研究函数的值域或最值,求解方法是通过换元或整体代换将问题转化为二次函数型的函数值域问题,对于新引入的元或整体,要注意其范围的变化. 【例3】比较下列各组数的大小: (1)13πtan4与17πtan 5; (2)tan1,tan 2,tan 3,tan 4.【名师点睛】(1)比较三角函数值的大小,主要利用函数单调性及单位圆,有时可以利用引进中间量等方法.(2)有关正切函数值大小的比较,一般将角化到同一单调区间内,再利用函数的单调性处理. 【例4】求函数y =-tan 2x +10tan x -1,x ∈[π4,π3]的值域.【解析】由x ∈[π4,π3],得tan x ∈[1,3],令tan x =t ,则t ∈[1,3].∴y =-tan 2x +10tan x -1=-t 2+10t -1=-(t -5)2+24. 由于1≤t ≤3, ∴8≤y ≤103-4,故函数的值域是[8,103-4].【名师点睛】利用换元法求解问题时,往往容易忽视元的范围的变化,导致错解.如该题,如果不注意元的取值范围的限制,直接求解二次函数的值域,显然就会扩大所求函数的值域而得到错解. 3.正切函数的图象及其应用 (1)tan y x =的周期性:函数sin y x =及cos y x =的周期是其对应函数sin ,cos y x y x ==周期的一半,而函数tan y x =的图象是把tan y x =在x 轴下方的图象翻折到x 轴上方,但其周期与tan y x =的周期相等,均为π. (2)解三角不等式的方法一般有两种:学-科网一是利用三角函数线,借助于单位圆在直角坐标系中找出角的区域,再求出不等式的解集;二是利用三角函数图象,先在一个周期内求出x 的范围,再在整个定义域上求出不等式的解集.利用正切函数的图象求角的范围时,主要是利用其单调性.这是数形结合思想方法的一个具体应用. 【例5】作出函数y =|tan x |的图象,并根据图象求其最小正周期和单调区间. 【答案】B【解析】y =|tan x |=⎩⎨⎧tan x ,x ∈⎣⎡⎭⎫k π,k π+π2k ∈Z -tan x ,x ∈⎝⎛⎦⎤k π-π2,k πk ∈Z ,其图象如图所示.由图象可知,函数y =|tan x |的最小正周期T =π,单调增区间的⎣⎡⎭⎫k π,k π+π2(k ∈Z );单调减区间为⎝⎛⎦⎤k π-π2,k π(k ∈Z ). 【名师点睛】要作出函数y =|tan x |的图象,可先作出y =tan x 的图象,然后将其在x 轴上方的图象保留,而将其在x 轴下方的图象翻到上方(即作出其关于x 轴对称的图象),就可得到y =|tan x |的图象. 【例6】求下列函数的定义域: (1)函数y =tan x +1+lg(1-tan x );(2)函数y =tan(sin x ).(2)∵对任意x ∈R ,-1≤sin x ≤1, ∴函数y =tan(sin x )总有意义, 故函数y =tan(sin x )的定义域为R . 4.正确利用函数性质求解【例7】若函数y =tan(2x +θ)的图象的一个对称中心为(π3,0),且-π2<θ<π2,则θ的值是________. 【错解】因为函数y =tan x 的图象的对称中心为(k π,0),其中k ∈Z ,所以2x +θ=k π,其中x =π3.所以θ=k π-2π3,k ∈Z .由于-π2<θ<π2,∴k =1时,θ=π-2π3=π3.【错因分析】错解主要是误认为正切函数图象的对称中心的坐标是(k π,0)(其中k ∈Z ),但由正切函数的图象发现:点(k π+π2,0)(其中k ∈Z )也是正切曲线的对称中心,因此正切函数图象的对称中心的坐标是(k π2,0)(其中k ∈Z ). 【答案】-π6或π3.【正解】易知函数y =tan x 的图象的对称中心为(k π2,0),其中k ∈Z ,所以2x +θ=k π2,其中x =π3,即θ=k π2-2π3,k ∈Z .因为-π2<θ<π2,所以当k =1时,θ=-π6;当k =2时,θ=π3.即θ=-π6或π3.1.函数y =tan x 在其定义域上的奇偶性是 A .奇函数 B .偶函数C .既奇且偶的函数D .非奇非偶的函数2.函数y =tan (π2–x )(ππ044x x ⎡⎤∈-≠⎢⎥⎣⎦,且)的值域为 A .[–1,1] B .[–1,+∞)C .(–∞,1)D .(–∞,–1]∪[1,+∞)3.函数πtan 24y x ⎛⎫=- ⎪⎝⎭的定义域是A .πππ3π2828k k k ⎛⎫-+∈ ⎪⎝⎭Z ,,B .π3πππ44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,,C .ππππ2424k k k ⎛⎫-+∈ ⎪⎝⎭Z ,,D .π5πππ44k k k ⎛⎫++∈ ⎪⎝⎭Z ,,4.函数t =tan (3x +π3)的图象的对称中心不可能是 A .(–π9,0) B .(π18,0)C .π018⎛⎫- ⎪⎝⎭,D .5π018⎛⎫- ⎪⎝⎭, 5.函数πtan 4y x ⎛⎫=- ⎪⎝⎭的单调递增区间为A .()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,B .(k π,k π+π)(k ∈Z )C .()3ππππ44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,D .()π3πππ44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,6.下列关于函数y =tan (x +π3)的说法正确的是 A .在区间(–π6,5π6)上单调递增 B .最小正周期是π C .图象关于点(π4,0)成中心对称 D .图象关于直线x =π6成轴对称 7.函数f (x )=tan x 在ππ34⎡⎤-⎢⎥⎣⎦,上的最小值为___________.8.已知ππ2α⎛⎫∈ ⎪⎝⎭,,且1+tan α≥0,则角α的取值范围是___________.9.函数f (x )=5tan (3x +π4)+2的最小正周期T =___________. 10.函数y =3tan (2x +π3)的最小正周期为___________. 11.观察正切曲线,满足条件tan x >1的x 的取值范围是___________. 12.求函数y =tan (π–23x )的定义域、单调区间和对称中心.学-科网13.根据三角函数图象,写出满足下列条件的x 的取值范围.(1)-32<cos x <0;(2)3tan x -3≥0.14.下列各式中正确的是A .tan47π>tan 37π B .tan (–134π)<tan (–175π) C .tan4>tan3D .tan281°>tan665°15.直线y =–1与y =tan x 的图象的相邻两个交点的距离是A .π2B .πC .2πD .与a 的值的大小有关16.函数y =tan ⎝⎛⎭⎫12x -π3在一个周期内的大致图象是17.已知函数y =tan(2x +φ)的图象过点(π12,0),则φ可以是A .-π6B .π6C .-π12D .π1218.函数y =tan (sin x )的值域为A .[–π4,π4] B .[–22,22]C .[–tan1,tan1]D .以上均不对19.判断函数f (x )=lg tan x +1tan x -1的奇偶性.20.设函数()πtan 23x f x ⎛⎫=- ⎪⎝⎭.(1)求函数f (x )的定义域和最小正周期; (2)求f (x )的单调增区间; (3)求不等式–1≤f (x )≤3的解集.21.求函数y =tan (3x –π3)的定义域、值域,并指出它的周期性、奇偶性、单调性.22.若函数f (x )=tan 2x -a tan x (|x |≤π4)的最小值为-6,求实数a 的值.23.已知函数()π3tan 64x f x ⎛⎫-⎪⎝⎭=. (1)求f (x )的最小正周期和单调递减区间; (2)试比较()πf 与3π2f ⎛⎫⎪⎝⎭的大小.1 2 3 4 5 6 14 15 16 17 18 ADACDBCBAAC1.【答案】A【解析】正切函数y =tan x 的定义域是(–π2+k π,π2+k π)k ∈Z ,定义域关于原点对称,且对于定义域内的任意x ,满足f (–x )=tan (–x )=–tan x =–f (x ),所以函数y =tan x 在其定义域上是奇函数.故选A .3.【答案】A【解析】πtan 24y x ⎛⎫=- ⎪⎝⎭=–tan (2x –π4),要使原函数有意义,则ππππ2π242k x k -+<-<+,解得ππ3ππ8282k k x -+<<+,k ∈Z ,∴函数πtan 24y x ⎛⎫=- ⎪⎝⎭的定义域是πππ3π2828k k k ⎛⎫-+∈ ⎪⎝⎭Z ,,,故选A . 4.【答案】C【解析】因为正切函数y =tan x 图象的对称中心是(π2k ,0),k ∈Z .令3x +ππ32k =,解得x =ππ–69k ,k ∈Z ;所以函数y =tan (3x +π3)的图象的对称中心为(ππ–69k ,0),k ∈Z ;当k =0、1、–1时,得ππ–69k =–π9、π18、–5π18,所以A 、B 、D 选项是函数图象的对称中心.故选C . 5.【答案】D【解析】对于函数πtan 4y x ⎛⎫=- ⎪⎝⎭,令k π–π2<x –π4<k π+π2,求得k π–π4<x <k π+3π4,可得函数的增区间为(k π–π4,k π+3π4),故选D .7.【答案】3-【解析】由于函数f (x )=tan x 在(–π2,π2)上单调递增,故函数f (x )=tan x 在ππ34⎡⎤-⎢⎥⎣⎦,上单调递增,故当x =–π3时,函数f (x )取得最小值为–3,故答案为:3-. 8.【答案】[3π4,π) 【解析】1+tan α≥0,∴tan α≥–1,解得–π4+k π≤α<π2+k π,k ∈Z .又α∈(π2,π),∴3π4≤α<π,即α的取值范围是[3π4,π).故答案为:[3π4,π). 9.【答案】π3【解析】根据正切函数的图象与性质得:函数f (x )=5tan (3x +π4)+2的最小正周期为:T =ππ3ω=.故答案为:π3. 10.【答案】2π【解析】函数y =3tan (2x +π3)的最小正周期为:T =ππ12ω==2π.故答案为:2π. 11.【答案】(ππ4k +,ππ2k +),k ∈Z 【解析】观察正切曲线:当tan x =1时,x =ππ4k +,k ∈Z ,由tan x >1,可得ππππ42k x k +<<+.故答案为:(ππ4k +,ππ2k +),k ∈Z .12.【解析】对于函数y =tan (π–23x ), 令12x –π3≠k π+π2,k ∈Z , 解得x ≠2k π+5π3,k ∈Z ,故函数y 的定义域为{x |x ≠2k π+5π3,k ∈Z }. 令k π–ππ–223x <<k π+π2,k ∈Z , 解得2k π–π3<x <2k π+5π3,k ∈Z , 故函数y 的单调增区间为(2k π–π3,2k π+5π3),k ∈Z ;无单调减区间. 令ππ–232x k =,k ∈Z , 求得x =k π+2π3,k ∈Z , 故函数y 图象的对称中心为(k π+2π3,0),k ∈Z . 13.【解析】(1)如图所示.由图象可知,满足不等式的x 的取值范围为(2k π+π2,2k π+5π6)∪(2k π+7π6,2k π+3π2),k ∈Z .(2)如图所示.由3tan x -3≥0,得tan x ≥33. 由图象可知,满足不等式的x 的取值范围为[π6+k π,π2+k π),k ∈Z .14.【答案】C【解析】函数y =tan x 在(–π2,π2)上单调递增.A ,tan 47π=tan (–37π),∴tan 47π<tan 37π,故A 错误.B ,tan (–134π)=tan (–π4),tan (–175π)=tan (–2π5),则tan (–134π)>tan (–175π),故B 错误.C ,tan4=tan (4–π),tan3=tan (3–π),则tan (4–π)>tan (3–π),即tan4>tan3,故C 正确.D ,tan281°=tan (–79°),tan665°=tan (–55°),则tan281°<tan665°,故D 错误,故选C . 15.【答案】B【解析】直线y =–1与y =tan x 的图象的相邻两个交点的距离正好等于y =tan x 的一个周期,即直线y =–1与y =tan x 的图象的相邻两个交点的距离为π,故选B .学-科网 16.【答案】A【解析】∵函数y =tan ⎝⎛⎭⎫12x -π3的最小正周期为2π,因此可排除B 、D ,选项C 中,当x =π3时,y ≠0,因此排除C ,故选A . 17.【答案】A【解析】解法一:验证:当φ=-π6时,2x +φ=2×π12-π6=π6-π6=0,∴tan(2x +φ)=0,满足题意,故φ可以是-π6.解法二:由题意,得2×π12+φ=k π(k ∈Z ),∴φ=k π-π6(k ∈Z ),令k =0时,φ=-π6,故φ可以是-π6.18.【答案】C【解析】∵–1≤sin x ≤1,且函数y =tan t 在t ∈[–1,1]上是单调增函数,∴tan (–1)≤tan t ≤tan1,即–tan1≤tan (sin x )≤tan1,∴函数y =tan (sin x )的值域为[–tan1,tan1].故选C . 19.【解析】由tan x +1tan x -1>0,得tan x >1或tan x <-1.故函数f (x )的定义域为(k π-π2,k π-π4)∪(k π+π4,k π+π2)(k ∈Z ).又f (-x )+f (x )=tan()1lg tan()1x x -+--+lg tan x +1tan x -1=tan 1tan 1lg()tan 1tan 1x x x x -+⋅+-=0,即f (-x )=-f (x ).∴f (x )为奇函数.(3)由题意,k π–π4≤π23x -≤k π+π3, 可得不等式–1≤f (x )≤3的解集π4π{|2π2π}63x k x k k +≤≤+∈Z ,. 21.【解析】由ππ3π32x k -≠+,解得π5π318k x ≠+,k ∈Z ; ∴所求的定义域为π5π{|}318k x x x k ∈≠+∈R Z ,且,; 函数的值域为R , 周期为T =ππ3ω=, f (x )的定义域不关于原点对称,∴f (x )是非奇非偶的函数; 令–π2+k π<3x –ππ32<+k π,k ∈Z , 解得–π18+π3k <x <5π18+π3k ,k ∈Z , ∴函数y 在区间()πππ5π318318k k k ⎛⎫-+∈ ⎪⎝⎭Z ,上是增函数.③若a2≥1,即a ≥2时,二次函数在[-1,1]上单调递减,∴y min =1-a =-6, ∴a =7,综上所述,a =-7或7. 23.【解析】(1)∵()ππ3tan()3tan()6446x x f x =-=--, ∴函数的最小正周期为4πT =. 由πππππ,2462x k k k -<-<+∈Z ,得4π8π4π4π,33k x k k -<<+∈Z , ∴函数()π3tan 64x f x ⎛⎫-⎪⎝⎭=的单调增区间为4π8π4π,4π,33k k k ⎛⎫-+∈ ⎪⎝⎭Z ,∴函数()π3tan 64x f x ⎛⎫-⎪⎝⎭=的单调减区间为4π8π4π,4π,33k k k ⎛⎫-+∈ ⎪⎝⎭Z ,(2)()πππππ3tan 3tan 3tan 641212f ⎛⎫⎛⎫=-=-=-⎪ ⎪⎝⎭⎝⎭,3ππ3π5π5π3tan 3tan 3tan 2682424f ⎛⎫⎛⎫⎛⎫=-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵π5ππ012242<<<, ∴π5πtan tan1224<,∴π5π3tan3tan 1224->-,即()3ππ2f f ⎛⎫> ⎪⎝⎭.【思路分析】(1)将函数化为()π3tan()46x f x =--,然后根据正切函数的周期和单调性求解. (2)由题意可得()π3π5ππ3tan,3tan 12224f f ⎛⎫=-=- ⎪⎝⎭,根据函数tan y x =在区间π0,2⎛⎫⎪⎝⎭上的单调性可得π5πtantan 1224<,从而可得()3ππ2f f ⎛⎫> ⎪⎝⎭.【名师点睛】解决函数()tan()f x A x ωϕ=+有关问题的思路:(1)采用整体代换的解题方法,即把x ωϕ+看作一个整体,然后根据正切函数的有关性质求解. (2)解题时要注意参数,A ω的符号对解题结果的影响,特别是解决与单调性有关的问题时一定要注意.。
第1讲函数
![第1讲函数](https://img.taocdn.com/s3/m/8d9efc43e518964bcf847c8e.png)
第1讲 函数、基本初等函数的图象与性质1.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ).A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |2.已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( ).A .10个B .9个C .8个D .1个3.函数y =x 13的图像是( ).4.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=__________. 热点一 函数及其表示该类题型主要涉及求函数定义域、值域、解析式以及抽象函数问题.【例1】 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ).A .12B .45C .2D .0 (2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域.热点二 函数图象及其应用该部分主要考查以下内容:(1)知式选图或知图定式;(2)利用图象研究函数的单调性、最值、零点;(3)利用图象研究方程、不等式问题.【例2】 已知函数f (x )=x 3-3x 2+1,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,-x 2-6x -8,x ≤0,关于方程g [f (x )]-a =0(a 为正实数)的根的叙述有下列四个命题:①存在实数a ,使得方程恰好有3个不同的实根;②存在实数a ,使得方程恰好有4个不同的实根;③存在实数a ,使得方程恰好有5个不同的实根;④存在实数a ,使得方程恰好有6个不同的实根.其中真命题的个数是( ).A .0B .1C .2D .3拓展延伸设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )的图象是( ).热点三 函数性质的综合应用该类题目往往把函数的奇偶性、单调性、周期性、最值、解析式等综合在一起进行考查,求解这类问题时,一是要紧扣奇偶性、单调性的定义及有关的结论,二是要把各种性质之间的联系充分利用好.【例3】 设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f(x -1),已知当x ∈[0,1]时,f (x )=⎝⎛⎫121-x ,则①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈[3,4]时,f (x )=⎝⎛⎭⎫12x -3.其中所有正确命题的序号是__________.拓展延伸设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( ).A .-12B .-14C .14D .12第2讲 函数与方程及函数的实际应用1.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ).A .⎝⎛⎭⎫-14,0B .⎝⎛⎭⎫0,14 C .⎝⎛⎭⎫14,12 D .⎝⎛⎭⎫12,34 2.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ).A .60件B .80件C .100件D .120件3.方程|x |=cos x 在(-∞,+∞)内( ).A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根4.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ).A .(1,10)B .(5,6)C .(10,12)D .(20,24) 热点一 确定函数的零点函数的零点不是点,是方程f (x )=0的根,即当函数的自变量取这个实数时,其函数值等于零.函数的零点也就是函数y =f (x )的图象与x 轴的交点的横坐标.【例1】 设函数f (x )=13x -ln x (x >0),则y =f (x )( ). A .在区间⎣⎡⎦⎤1e ,1,(1,e )内均有零点 B .在区间⎣⎡⎦⎤1e ,1,(1,e )内均无零点 C .在区间⎣⎡⎦⎤1e ,1内有零点,在区间(1,e )内无零点D .在区间⎣⎡⎦⎤1e ,1内无零点,在区间(1,e )内有零点拓展延伸方程|x |=cos x 在(-∞,+∞)内( ).A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根热点二 函数零点的应用函数与方程虽然是两个不同的概念,但它们之间存在着密切的联系,方程f (x )=0的根就是函数y =f (x )的图象与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0.然后通过方程进行研究,许多有关方程的问题可以用函数的方法解决.反之,许多函数问题也可以用方程的方法来解决.【例2】 (1)m 为何值时,f (x )=x 2+2mx +3m +4.①有且仅有一个零点?②有两个零点且均比-1大?(2)若函数F (x )=|4x -x 2|+a 有4个零点,求实数a 的取值范围.拓展延伸已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,那么在区间[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R 且k ≠-1)有4个不同的根,求k 的取值范围.热点三 函数的实际应用该类题目解题的关键是认真审题,将实际语言抽象转化为函数、方程、不等式等数学语言,从而用相关数学知识求解.【例3】 通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f (t )表示学生注意力随时间t (分钟)的变化规律(f (t )越大,表明学生注意力越集中),经过试验分析得知:f (t )=⎩⎪⎨⎪⎧ -t 2+24t +100,0<t ≤10.240,10<t ≤20.-7t +380,20<t ≤40.(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?拓展延伸某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用f (x );(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.第3讲 导数及其应用1.已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln x x -1. 2.设f (x )=ln x ,g (x )=f (x )+f ′(x ).(1)求g (x )的单调区间和最小值;(2)讨论g (x )与g (1x)的大小关系; (3)求a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立. 3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ).A .y =x -1B .y =-x +1C .y =2x -2D .y =-2x +24.(2010课标全国卷,文21)设函数f (x )=x (e x -1)-ax 2.(1)若a =12,求f (x )的单调区间; (2)若当x ≥0时f (x )≥0,求a 的取值范围.5.曲线y =x e x +2x +1在点(0,1)处的切线方程为__________.热点一 利用导数研究曲线的切线确定或应用曲线的切线斜率或切线方程是近几年高考命题的热点,常与函数的图象、性质、几何图形性质交汇命题.主要以选择题、填空题的形式来考查.有时也渗透在解答题之中.难度一般不大.【例1】 设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求y =f (x )的解析式;(2)证明曲线y =f (x )上任一点处的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.拓展延伸设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =__________.热点二 利用导数研究函数的单调性利用导数研究函数的单调性问题,常与函数的其他性质相结合,且函数中一般含有参数,填空题为中低档难度,一般还是以解答题的形式出现,属于中高档题.【例2】 已知函数f (x )=x 2+a ln x .(1)当a =-2时,求函数f (x )的单调递减区间;(2)若函数g (x )=f (x )+2x在[1,+∞)上单调,求实数a 的取值范围. 拓展延伸已知函数f (x )=x -2x+a (2-ln x ),a >0.讨论f (x )的单调性. 热点三 利用导数研究函数极值和最值问题该类型题目近几年高考主要考查以下内容:求给定函数的最大值、最小值与极值问题;已知给定函数的最大值、最小值、极值,求函数中参数的取值范围问题.命题时常与函数的其他性质相结合,选择题、填空题一般为中低档难度,解答题多属中高档题.【例3】 已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围.(2)若x =-13是f (x )的极值点,求f (x )在[1,a ]上的最大值. (3)在(2)的条件下,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点?若存在,请求出实数b 的取值范围;若不存在,试说明理由.拓展延伸已知函数f (x )=x (ln x +m ),g (x )=a 3x 3+x . (1)当m =-2时,求f (x )的单调区间;(2)若m =32时,不等式g (x )≥f (x )恒成立,求实数a 的取值范围. 热点四 利用导数解决实际生活中的优化问题解决实际应用问题的关键在于建立数学模型和目标函数,把“问题情景”译为数学语言,找出问题的主要关系,并把问题的主要关系近似化、形象化,抽象成数学问题,再化归为常规问题,选择合适的数学方法求解,不同的设参方法会得到不同的数学模型.【例4】 甲方是一农场,乙方是一工厂,乙方生产需占用甲方的资源,甲方每年向乙方索赔以弥补经济损失并获得一定的净收入.乙方在赔付甲方前,年纯收入P (元)与年产量t (吨)满足函数关系P =2 000t ;若乙方每生产一吨产品必须赔付甲方S (元)(以下称S 为赔付价格),则其年利润为Q (元).(1)求乙方的年利润Q (元)关于年产量t (吨)的函数表达式,并求出当年利润Q (元)最大时的年产量;(2)甲方每年受乙方生产影响的经济损失为y =0.002t 2(元),在乙方按照获得最大年利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格S 是多少?(净收入=获赔金额-经济损失)思路点拨:(1)将Q 表示成t 的函数,用换元法求最值;(2)将甲方净收入表示成S 的函数,利用函数求最大值.拓展延伸(2011江苏高考,17)请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm ).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.。
第一讲:反比例函数的概念和图像性质
![第一讲:反比例函数的概念和图像性质](https://img.taocdn.com/s3/m/9efb524c25c52cc58bd6bea9.png)
第一讲:反比例函数概念 一、一般地,形如xky =(k 为常数,且0≠k )的函数称为反比例函数。
注意:①分母中含有自变量x ,且指数为1.②比例系数0≠k③自变量x 的取值为一切非零实数。
反比例函数表达式的三种形式① xky =②kx y =1-③ k xy =二、求函数解析式的方法:待定系数法 对于解析式xky =,中只有一个待定系数,因此只需要一对对应的x 、y 的值即可。
例1:下列函数中,是反比例函数的有①x y 5=; ②x y 4.0=; ③2x y =; ④2=xy ; ⑤πx y =; ⑥xy 5-=;⑦12-=x y ; ⑧31-=xy ; ⑨)0(2≠=a a xay 为常数且; ⑩x y 52-=;例2:如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是 ;如果自变量取值为—1时,函数值为2,次反比例函数的关系式是 ; 例3:计划修建铁路1200km ,那么铺轨天数y (天)是每日铺轨量x 的反比例函数吗? 解:因为 ,所以y 是x 的反比例函数;例4:一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么,列出a 关于b 的函数关系式为例5:在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。
(1)求I 与R 之间的函数关系式;(2)当电流I=0.5安培时,求电阻R 的值。
思考:你还能举出哪些生活中的反比例函数例子?提升训练:1.已知:,21y y y +=1y 与2x 成正比例,2y 与x 成反比例,且当3,1==y x ;当1,1=-=y x ,求21-=x 时,y 的值?2.已知y 与x-1成反比例,并且x =-2时y =7,求:(1)求y 和x 之间的函数关系式; (2)当x=8时,求y 的值(3)y =-2时,x 的值。
3.已知y =y 1-y 2,y 1与x 成正比例,y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3.求(1)y 与x 之间的函数关系式.(2)自变量x 的取值范围.(3)当x =14时,y 的值.第二讲:反比例函数的图像和性质 1.通过描点法画x y 2=和xy 3-=的函数图像 2.反比例函数的图像是双曲线。
【3年高考2年模拟】2019高考二轮文数考点难点重点:第一讲 函数的图象与性质
![【3年高考2年模拟】2019高考二轮文数考点难点重点:第一讲 函数的图象与性质](https://img.taocdn.com/s3/m/0b0fdd33650e52ea55189879.png)
第一讲函数的图象与性质A组基础题组+的定义域为()1.函数f(x)=-A.[0,+∞)B.(1,+∞)C.[0,1)∪(1,+∞)D.[0,1)2.已知函数f(x)=3x-,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数3.(2018湖北武汉调研)函数f(x)=log2(x2-4x-5)的单调递增区间是()A.(-∞,-2)B.(-∞,-1)C.(2,+∞)D.(5,+∞)4.(2018河北石家庄模拟)已知f(x)=(0<a<1),且f(-2)=5,f(-1)=3,则f(f(-3))=()A.-2B.2C.3D.-35.(2018湖南益阳、湘潭调研)函数f(x)=的图象大致是()-6.(2018陕西质量检测一)设x∈R,定义符号函数sgn x=则函数f(x)=|x|sgn x的图象大-致是()7.(2018贵州贵阳模拟)已知函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=log2(x+2)-1,则f(-6)=()A.2B. 4C.-2D.-48.已知函数f(x)=则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)9.奇函数f(x)的定义域为R,若f(x+2)为偶函数,则f(8)=()A.-1B.0C.1D.-210.已知函数f(x)=,则下列结论正确的是()-A.函数f(x)的图象关于点(1,0)中心对称B.函数f(x)在(-∞,1)上是增函数C.函数f(x)的图象关于直线x=1对称D.函数f(x)的图象上至少存在两点A,B,使得直线AB∥x轴11.(2018四川成都模拟)已知定义在R上的奇函数f(x)的图象关于直线x=1对称,且当x∈[0,1]时,f(x)=log2(x+1),则下列不等式正确的是()A.f(log27)<f(-5)<f(6)B.f(log27)<f(6)<f(-5)C.f(-5)<f(log27)<f(6)D.f(-5)<f(6)<f(log27)12.(2018广东惠州模拟)已知函数f(x)=---若函数f(x)的图象上关于原点对称的点有2对,则实数k的取值范围是()A.(-∞,0)B.C.(0,+∞)D.(0,1)13.已知函数f(x)=若f(a)+f(1)=0,则实数a的值为.14.(2018广东惠州模拟)已知f(x)=x+-1,f(a)=2,则f(-a)=.15.(2018河南洛阳第一次统考)若函数f(x)=ln(e x+1)+ax为偶函数,则实数a=.16.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是.B组提升题组1.(2018重庆六校联考)函数f(x)=的大致图象为()2.已知函数f(x)=e|ln x|--,则函数y=f(x+1)的大致图象为()3.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是()4.函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<05.(2018河南开封模拟)已知f(x)是定义在R上周期为4的奇函数,当x∈(0,2]时,f(x)=2x+log2x,则f(2015)=()A.5B.C.2D.-26.设函数f(x)=若f=2,则实数n的值为()A.-B.-C.D.7.∀x∈,8x≤log a x+1恒成立,则实数a的取值范围是()A. B. C. D.8.设曲线y=f(x)与曲线y=x2+a(x>0)关于直线y=-x对称,且f(-2)=2f(-1),则a=()A.0B.C.D.19.(2018福建福州模拟)已知函数f(x)=e x+e2-x,若关于x的不等式[f(x)]2-af(x)≤0恰有3个整数解,则实数a的最小值为()A.1B.2eC.e2+1D.e3+10.已知函数f(x)的定义域为R,且满足下列三个条件:>0;①对任意的x1,x2∈[4,8],当x1<x2时,都有--②f(x+4)=-f(x);③y=f(x+4)是偶函数.若a=f(6),b=f(11),c=f(2017),则a,b,c的大小关系正确的是()A.a<b<cB.b<a<cC.a<c<bD.c<b<a11.已知函数f(x)=-的值域为R,则实数a的取值范围是.12.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2,若对任意的x∈[m-2,m],不等式f(x+m)-9f(x)≤0恒成立,则实数m的取值范围是.13.已知函数f(x)=-若f(x-1)<f(2x+1),则x的取值范围为.14.(2018陕西西安八校联考)函数f(x)在定义域R内可导,若f(x)=f(2-x),且(x-1)f'(x)<0,设a=f(0),b=f,c=f(3),则a,b,c的大小关系是.答案精解精析A组基础题组1.C由题意知-即0≤x<1或x>1.∴f(x)的定义域为[0,1)∪(1,+∞).2.B易知函数f(x)的定义域为R,∵f(-x)=3-x--=-3x=--=-f(x),∴f(x)为奇函数.又∵y=3x在R上为增函数,y=-在R上为增函数,∴f(x)=3x-在R上是增函数.故选B.3.D由x2-4x-5>0得x∈(-∞,-1)∪(5,+∞).原函数f(x)=log2(x2-4x-5)由t=x2-4x-5与y=log2t复合而成,当x∈(-∞,-1)时,t=x2-4x-5为减函数;当x∈(5,+∞)时,t=x2-4x-5为增函数.又y=log2t为增函数,所以函数f(x)=log2(x2-4x-5)的单调递增区间是(5,+∞).故选D.4.B由题意得f(-2)=a-2+b=5①,f(-1)=a-1+b=3②.联立①②,结合0<a<1,得a=,b=1,所以f(x)=则f(-3)=-+1=9,所以f(f(-3))=f(9)=log39=2.故选B.5.B易知函数f(x)的定义域为{x|x≠±1},f(-x)=---=--=-f(x),所以函数f(x)为奇函数.当x∈(0,1)时,f(x)=->0,排除D;当x∈(1,+∞)时,f(x)=-<0,排除A,C.故选B.6.C函数f(x)=|x|sgn x=即f(x)=x,故函数f(x)=|x|sgn x的图象为直线y=x.故选C.7.C由题意,知f(-6)=-f(6)=-(log28-1)=-3+1=-2,故选C.8.D由f(-x)≠f(x)知f(x)不是偶函数,当x≤0时,f(x)不是增函数,显然f(x)也不是周期函数,故选D.9.B由奇函数f(x)的定义域为R,可得f(0)=0,由f(x+2)为偶函数,可得f(-x+2)=f(x+2),故f(x+4)=f((x+2)+2)=f(-(x+2)+2)=f(-x)=-f(x),则f(x+8)=f((x+4)+4)=-f(x+4)=-[-f(x)]=f(x),即函数f(x)的周期为8,所以f(8)=f(0)=0.故选B.的图象是由函数y=的图象向右平移1个单位长度得到的,可得函10.A由题知,函数f(x)=-数f(x)的图象关于点(1,0)中心对称,选项A正确;函数f(x)在(-∞,1)上是减函数,选项B错误;易的图象不关于直线x=1对称,选项C错误;由函数f(x)的单调性及函数f(x)的图知函数f(x)=-象可知函数f(x)的图象上不存在两点A,B,使得直线AB∥x轴,选项D错误.11.C因为奇函数f(x)的图象关于直线x=1对称,所以函数f(x)是以4为周期的周期函数,所以f(-5)=f(-1)=-f(1)=-1,f(6)=f(2)=f(0)=0.于是,结合题意可画出函数f(x)在[-2,4]上的大致图象,如图所示.又2<log27<3,所以结合图象可知-1<f(log27)<0,故f(-5)<f(log27)<f(6).故选C.12.D依题意,函数f(x)的图象上存在关于原点对称的点,可作出函数y=-ln(-x)(x<0)的图象关于原点对称的函数y=ln x(x>0)的图象,使得它与直线y=kx-1(x>0)的交点个数为2即可,当直线y=kx-1与函数y=ln x的图象相切时,设切点为(m,ln m),又y=ln x的导函数为y'=,则-解得可得切线的斜率为1,结合图象可知k∈(0,1)时,函数y=ln x的图象与直线y=kx-1有2个交点,即函数f(x)的图象上关于原点对称的点有2对.故选D.13.答案-3解析∵f(1)=2>0,且f(1)+f(a)=0,∴f(a)=-2<0,故a≤0.依题知a+1=-2,解得a=-3.14.答案-4解析因为f(x)=x+-1,所以f(a)=a+-1=2,所以a+=3,所以f(-a)=-a--1=--1=-3-1=-4.15.答案-解析∵函数f(x)是偶函数,∴f(x)-f(-x)=ln(e x+1)+ax-ln(e-x+1)+ax=ln-+2ax=lne x+2ax=(1+2a)x=0恒成立.∴1+2a=0,即a=-.16.答案[-1,+∞)解析如图,要使f(x)≥g(x)恒成立,则-a≤1,∴a≥-1.B组提升题组1.D易知函数f(x)=为奇函数且定义域为{x|x≠0},只有选项D满足,故选D.2.A根据已知函数关系式可得f(x)=----作出其图象,然后将其向左平移1个单位即得函数y=f(x+1)的图象,结合选项知A正确.3.A若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10℃,所以当t=12时,平均气温应该为10℃,故排除B;因为在靠近12月份时其温度小于10℃,因此12月份前的一小段时间内的平均气温应该大于10℃,故排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D.故选A.4.C函数f(x)的定义域为{x|x≠-c},由题中图象可知-c=x P>0,即c<0,排除B.令f(x)=0,可得x=-,则x N=-.又x N>0,所以<0.所以a,b异号,排除A,D.故选C.5.D由题意得f(2015)=f(4×504-1)=f(-1)=-f(1).又当x∈(0,2]时,f(x)=2x+log2x,故f(1)=2+log21=2,所以f(2015)=-2.故选D.6.D因为f=2×+n=+n,当+n<1,即n<-时,f=2+n=2,解得n=-,不符合题意;当+n≥1,即n≥-时,f=log2=2,即+n=4,解得n=.故选D.7.C由各选项及题意可得解得≤a<1.8.C依题意得曲线y=f(x)即为-x=(-y)2+a(其中-y>0,即y<0,注意到点(x0,y0)关于直线y=-x的对称点是点(-y0,-x0)),化简后得y=---,即f(x)=---,于是有--=-2-,由此解得a=.故选C.9.C因为f(x)=e x+e2-x>0,所以由[f(x)]2-af(x)≤0可得0<f(x)≤a.令t=e x,g(t)=t+(t>0),画出函数g(t)的大致图象,如图所示,结合图象分析易知原不等式有3个整数解可转化为0<g(t)≤a的3个解分别为1,e,e2.又当t=e x的值分别为1,e,e2时,x=0,1,2.画出直线y=e2+1,故结合函数图象可知a的最小值为e2+1.故选C.10.B∵对任意的x1,x2∈[4,8],当x1<x2时,都有->0,-∴函数f(x)在区间[4,8]上为增函数.∵f(x+4)=-f(x),∴f(x+8)=-f(x+4)=f(x),∴函数f(x)是周期为8的周期函数.∵y=f(x+4)是偶函数,∴函数f(x)的图象关于直线x=-4对称,又函数f(x)的周期为8,∴函数f(x)的图象也关于直线x=4对称.∴b=f(11)=f(3)=f(5),c=f(2017)=f(252×8+1)=f(1)=f(7).又a=f(6),函数f(x)在区间[4,8]上为增函数,∴b<a<c.故选B.11.答案-2019版《3年高考2年模拟》(二轮)专有资源11 / 11解析 要使函数f(x)的值域为R,则有 - - ∴ -∴-1≤a< .12.答案 [4,+∞)解析 依题意知函数f(x)在R 上单调递增,且当x ∈[m-2,m]时, f(x+m)≤9f(x)=f(3x),所以x+m ≤3x,即x ≥ 恒成立,于是有 ≤m-2,解得m ≥4,即实数m 的取值范围是[4,+∞).13.答案 (-∞,-2)∪(0,+∞)解析 若x>0,则-x<0, f(-x)=3(-x)2+ln( 2+ln( 同理可得,当x<0时, f(-x)=f(x),且x=0时,f(0)=f(-0),所以f(x)是偶函数.因为当x>0时,函数f(x)单调递增,所以不等式f(x-1)<f(2x+1)等价于|x-1|<|2x+1|,整理得x(x+2)>0,解得x>0或x<-2.14.答案 b>a>c解析 因为f(x)=f(2-x),所以函数f(x)的图象关于直线x=1对称.因为(x-1)f '(x)<0,所以当x>1时, f '(x)<0,所以函数f(x)在(1,+∞)上单调递减;当x<1时, f '(x)>0,所以函数f(x)在(-∞,1)上单调递增.取符合题意的函数f(x)=-(x-1)2,则a=f(0)=-1,b=f =- ,c=f(3)=-4,故b>a>c.。
第1讲二次函数的图象和性质复习课件(共39张PPT)
![第1讲二次函数的图象和性质复习课件(共39张PPT)](https://img.taocdn.com/s3/m/b255613259fafab069dc5022aaea998fcc2240f6.png)
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.
2015届(理科数学)二轮复习课件_专题四_三角函数与平面向量_第1讲_三角函数图象与性质
![2015届(理科数学)二轮复习课件_专题四_三角函数与平面向量_第1讲_三角函数图象与性质](https://img.taocdn.com/s3/m/3f7ce668f5335a8102d22067.png)
的图像向右平移 个单位,所的图像关于 y 轴对称,则 的最小正值是 .
π 解析:由题意知,平移后所得函数为 f(x)=sin (2x-2 + ), 4
若其图象关于 y 轴对称,
π 则 sin (-2 + )=±1, 4
π π 所以-2 + =kπ+ (k∈Z), 4 2 kπ π 所以 =- (k∈Z), 2 8 3π 当 k=-1 时, 取得最小正值 . 8
π π y=|cos x|,③y=cos(2x+ ),④y=tan(2x- )中,最小正周期 6 4
为π 的所有函数为( A ) (A)①②③ (B)①③④ (C)②④ (D)①③
解析:①最小正周期为π,②最小正周期为π,③最小正周期
π 为π,④最小正周期为 .故选 A. 2
π 3.(2014 高考安徽卷,理 11)若将函数 f(x)=sin (2x+ ) 4
得图象对应的函数解析式是(
)Leabharlann (A)y=cos 2x+sin 2x (B)y=cos 2x-sin 2x (C)y=sin 2x-cos 2x (D)y=sin xcos x
解析:(1)由图象可知 因此ω=2.
3 5π π 3π 2π T= -(- )= ,所以 T=π,即 =π, 12 4 3 4
2 sin(2x+
3π )的图象, 4 3π )=-sin 2x+cos 2x=cos 2x-sin 2x,故选 B. 4
而 y= 2 sin(2x+
题后反思 (1)已知函数 y=Asin(ωx+ )(A>0,ω>0)的 图象求解析式时,常采用待定系数法,由图中的最高点、 最低点求 A;由函数的周期确定ω;由图象上的关键点确 定 .
第1讲 三角函数的图象与性质
![第1讲 三角函数的图象与性质](https://img.taocdn.com/s3/m/6caafa0627284b73f24250fb.png)
1.以图象为载体,考查三角函数的最值、单调性、 对称性、周期性.
2.考查三角函数式的化简、三角函数的图象和性质、 角的求值,重点考查分析、处理问题的能力,是高考的 必考点.高考命题以中低档题为主,题型全面,大多呈 现在客观题 3~9 或第 14 题的位置上.
热点 1 三角函数的概念与同角关系(自主演练) 1.三角函数:设 α 是一个任意角,它的终边与单位 圆交于点 P(x,y),则 sin α=y,cos α=x,tan α=xy.各象 限角的三角函数值的符号:一全正,二正弦,三正切,四 余弦. 2.同角关系:sin2α+cos2α=1,csoins αα=tan α.
①f(x)是偶函数;②f(x)在区间π2,π单调递增; ③f(x)在[-π,π]有 4 个零点;④f(x)的最大值为 2.
其中所有正确结论的编号是( )
A.①②④
B.②④
C.①④
D.①③
解析:f(-x)=sin |-x|+|sin (-x)|=sin |x|+|sin x| =f(x),又 f(x)的定义域为 R,所以 f(x)是偶函数,①正确.
[思维升华] 1.涉及与圆及角有关的函数建模问题(如钟表、摩天 轮、水车等),常常借助三角函数的定义求解.应用定义 时,注意三角函数值仅与终边位置有关,与终边上点的 位置无关. 2.应用诱导公式时要弄清三角函数在各个象限பைடு நூலகம்的 符号;利用同角三角函数的关系化简过程要遵循一定的 原则,如切化弦、化异为同、化高为低、化繁为简等.
部分图象如图所示,若 x1,x2∈-π6,π3,且 f(x1)=f(x2), 则 f(x1+x2)=( )
A.1
1 B.2
2 C. 2
3 D. 2
解析:(1)由三角函数的图象可知,T4=π6--1π2=π4, 所以 T=π,ω=2,所以 f(x)=2sin(2x+φ).
第13讲 必修4第一章三角函数的图像与性质(教师版)
![第13讲 必修4第一章三角函数的图像与性质(教师版)](https://img.taocdn.com/s3/m/e6d2ddcf69eae009591bec62.png)
11.α是第一象限角,tan α=34,则sin α=()A.45 B.35C.-45D.-35解析:选B tan α=sin αcos α=34,sin2α+cos2α=1,且α是第一象限角,所以sin α=35.2.(2013·安徽名校模拟)已知tan x=2,则sin2x+1=()A.0 B.95 C.43 D.53解析:选B sin2x+1=2sin2x+cos2xsin2x+cos2x=2tan2x+1tan2x+1=95.3.(2013·西安模拟)已知2tan α·sin α=3,-π2<α<0,则sin α=()A.32B.-32 C.12D.-12解析:选B由2tan α·sin α=3得,2sin2αcos α=3,即2cos2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-3 2.4.若cos α+2sin α=-5,则tan α=()A.12B.2 C.-12D.-2解析:选B∵cos α+2sin α=-5,结合sin2α+cos2α=1得(5sin α+2)2=0,∵sin α=-255,cos α=-55,∵tan α=2.5.化简sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-αcos π+α+sin π-α·cos ⎝ ⎛⎭⎪⎫π2+αsin π+α=________.解析:原式=cos α·sin α-cos α+sin α-sin α-sin α=-sin α+sin α=0.答案:01.(教材改编)函数y =12sin x ,x ∵[-π,π]的单调性是( )A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎡⎦⎤-π2,π2上是增函数,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上都是减函数 C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎡⎦⎤π2,π和⎣⎡⎦⎤-π,-π2上是增函数,在⎣⎡⎦⎤-π2,π2上是减函数 答案 B2.函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∵Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π8,k ∵Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∵Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∵Z 答案 D解析 由2x ≠k π+π2,k ∵Z ,得x ≠k π2+π4,k ∵Z ,∵y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∵Z . 3.若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( )A.23B.32 C .2 D .3 答案 B解析 ∵f (x )=sin ωx (ω>0)过原点,∵当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数; 当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增,在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∵ω=32. 4.(2015·安徽)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( ) A .f (2)<f (-2)<f (0) B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2) 答案 A解析 由于f (x )的最小正周期为π, ∵ω=2,即f (x )=A sin(2x +φ),又当x =2π3时,2x +φ=4π3+φ=2k π-π2(k ∵Z ),∵φ=2k π-11π6(k ∵Z ),又φ>0,∵φmin =π6,故f (x )=A sin(2x +π6).于是f (0)=A sin π6,f (2)=A sin ⎝⎛⎭⎫4+π6=A sin ⎣⎡⎦⎤π-⎝⎛⎭⎫4+π6=A sin ⎝⎛⎭⎫5π6-4, f (-2)=A sin ⎝⎛⎭⎫-4+π6=A sin ⎝⎛⎭⎫13π6-4=A sin ⎣⎡⎦⎤π-⎝⎛⎭⎫13π6-4=A sin ⎝⎛⎭⎫4-7π6. 又∵-π2<5π6-4<4-7π6<π6<π2,又f (x )在⎝⎛⎭⎫-π2,π2上单调递增, ∵f (2)<f (-2)<f (0),故选A.5.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 答案 5 3π4+2k π(k ∵Z )解析 函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5, 此时x +π4=π+2k π(k ∵Z ),即x =3π4+2k π(k ∵Z ).1.用五点法作正弦函数和余弦函数的简图跟踪练习1 (1)函数y =lg(sin x )+cos x -12的定义域为__________________________.(2)函数y =sin x -cos x +sin x cos x 的值域为______________________________________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∵Z(2)⎣⎡⎦⎤-12-2,1 解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k πk ∵Z ,-π3+2k π≤x ≤π3+2k πk ∵Z , ∵2k π<x ≤π3+2k π(k ∵Z ),∵函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∵Z .(2)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t 22,且-2≤t ≤ 2.∵y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.∵函数的值域为⎣⎡⎦⎤-12-2,1.题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∵Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∵Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∵Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∵Z ) (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 (1)B (2)⎣⎡⎦⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∵Z )得,踪练习3 (1)已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. (2)已知函数f (x )=sin x +a cos x 的图象关于直线x =5π3对称,则实数a 的值为( )A .- 3B .-33 C. 2 D.22答案 (1)2或-2 (2)B解析 (1)∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∵x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∵f ⎝⎛⎭⎫π6=±2.(2)由x =5π3是f (x )图象的对称轴,可得f (0)=f ⎝⎛⎭⎫10π3, 解得a =-33.1、 (2014陕西,2,5分,∵∵∵)函数f(x)=cos 的最小正周期是( )A. B.π C.2π D.4π 思路点拨 根据公式T=计算.[答案] B [解析] T===π.故选B.2、(2013江苏,1,5分,∵∵∵)函数y=3sin的最小正周期为________.[答案]π[解析]由题意知ω=2,所以T==π.3、(2015山东烟台模拟,∵∵∵)求下列函数的最小正周期:(1)y=sin;(2)y=|sin x|.思路点拨(1)利用公式求最小正周期;(2)可利用图象法求最小正周期.[答案]答案见解析[解析](1)y=sin,其中ω=2,∵T==π.(2)函数y=|sin x|的图象如下图所示,可知其最小正周期为π.4、(2015四川,5,5分,∵∵∵)下列函数中,最小正周期为π的奇函数是()A.y=sinB.y=cosC.y=sin 2x+cos 2xD.y=sin x+cos x思路点拨利用函数的奇偶性逐项验证.[答案]B[解析]A中,y=cos 2x,最小正周期为π,为偶函数,不符合题意;B中,y=-sin 2x,最小正周期为π,且为奇函数,符合.C,D为非奇非偶的函数.5、(2014陕西西安模拟,∵∵∵)下列函数中是奇函数的是()A.y=-|sin x|B.y=sin(-|x|)C.y=sin |x|D.y=x·sin |x|思路点拨利用f(-x)=-f(x)进行判断.[答案]D[解析]四个函数的定义域都是R,设f(x)=x·sin|x|,则f(-x)=(-x)·sin|-x|=-x·sin|x|=-f(x),∵y=x·sin|x|是奇函数,故选D.6、(2014广东,5,5分,∵∵∵)下列函数为奇函数的是()A.y=2x-B.y=x3sin xC.y=2cos x+1D.y=x2+2x思路点拨根据奇函数的定义判断.[答案]A[解析]由函数奇偶性的定义知,B、C中的函数为偶函数,D中的函数为非奇非偶函数,只有A中的函数为奇函数,故选A.7、(2012天津,6,5分,∵∵∵)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos 2x,x∵RB.y=log2|x|,x∵R且x≠0C.y=,x∵RD.y=x3+1,x∵R思路点拨根据选项中各个函数的性质判断,有一定的综合性.[答案]B[解析]函数y=cos 2x在区间上单调递减,在区间上单调递增,不合题意,排除A;函数y=是奇函数,排除C;y=x3+1是非奇非偶函数,排除D;y=log2|x|=是偶函数,且在(0,+∞)上是增函数,故选B.8、(2012大纲全国,3,5分,∵∵∵)若函数f(x)=sin (φ∵[0,2π])是偶函数,则φ=()A. B. C. D.思路点拨根据特例来求解.[答案]C[解析]∵f(x)是偶函数,∵=+kπ(k∵Z).∵φ=π+3kπ(k∵Z),又φ∵[0,2π],∵φ=π.9、(2014安徽,14,5分,∵∵∵)若函数f(x)(x∵R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=则f+f=________.思路点拨根据函数的周期性将待求函数值的自变量值转化到分段函数中的定义域范围内,结合奇函数性质求解.[答案][解析]∵f(x)是以4为周期的奇函数,∵f=f=f,f=f=f.∵当0≤x≤1时, f(x)=x(1-x),∵f=×=.∵当1<x≤2时, f(x)=sin(πx),∵f=sin=-.又∵f(x)是奇函数,∵f=-f=-,f=-f=.∵f+f=-+=.10、(2012课标全国,9,5分,∵∵∵)已知ω>0,函数f(x)=sin在单调递减,则ω的取值范围是()A. B. C. D.(0,2]思路点拨利用正弦函数的单调性及单调区间求解.[答案]A[解析]由<x<π得+<ωx+<ωπ+,又y=sin α在(k∵Z)上递减,∵解得由ω>0知+2k>0,∵k>-.若要不等式组有解,则+4k≤+2k,解得k≤,又k∵Z,∵k=0,∵≤ω≤,故选A.11、(2011安徽,9,5分,∵∵∵)已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤对x∵R恒成立,且f>f(π),则f(x)的单调递增区间是()A. (k∵Z)B. (k∵Z)C. (k∵Z)D. (k∵Z)思路点拨恒成立问题可转化为最值问题,然后根据单调区间等知识求解.[答案]C[解析]∵f(x)≤恒成立,∵=1.∵+φ=+kπ,k∵Z.∵φ=+kπ,k∵Z.又∵f>f(π),即sin(π+φ)>sin(2π+φ),∵-sin φ>sin φ,∵2sin φ<0,∵sin φ<0.∵当k=1时,φ=+π=,满足sin φ<0,∵f(x)=sin=-sin.∵要求f(x)的单调递增区间,只需2kπ+≤2x+≤2kπ+,k∵Z,即kπ+≤x≤kπ+,k∵Z.∵f(x)的单调递增区间是(k∵Z).12、(2015上海长宁区一模,∵∵∵)设ω>0,若函数f(x)=2sin ωx在上单调递增,则ω的取值范围是________.思路点拨∵ω>0,先求出f(x)=2sin ωx的单调递增区间,而是其中的一个子集,由集合关系,求出ω的取值范围.[答案][解析]三角函数f(x)=2sin ωx的图象如图.由图知f(x)在上是单调增函数,结合题意得解得0<ω≤.13、(2014福建,7,5分,∵∵∵)已知函数f(x)=则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)思路点拨分段函数问题可以考察各段函数的性质,或结合图象判断.[答案]D[解析]作出f(x)的图象如图所示,可排除A,B,C,故D正确.14、(2014课标∵,6,5分,∵∵∵)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图象大致为()思路点拨列出函数y=f(x)的表达式后判断函数的图象,或取x的几个特殊值来验证.[答案]C[解析]由题图可知:当x=时,OP∵OA,此时f(x)=0,排除A、D;当x∵时,OM=cos x,设点M到直线OP 的距离为d,则=sin x,即d=OMsin x=sin xcos x,∵f(x)=sin xcos x=sin 2x≤,排除B,故选C.15、(2013江西改编,∵∵∵)设f(x)=2sin,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是________.思路点拨对已知条件“对任意实数x都有|f(x)|≤a”的理解是解答关键,把此条件转化为函数f(x)的最大值问题.[答案] [2,+∞) [解析] ∵≤1,∵≤2,即对任意实数x,有|f(x)|≤2,要使|f(x)|≤a 恒成立,只要a 不小于|f(x)|的最大值即可,∵a≥2.[方法与技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.4.对于已知函数的单调区间的某一部分确定参数ω的范围的问题:首先,明确已知的单调区间应为函数的单调区间的子集;其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解. [失误与防范]1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.3.三角函数的最值可能不在自变量区间的端点处取得,直接将两个端点处的函数值作为最值是错误的.A 组 专项基础训练 (时间:35分钟)1.对于函数f (x )=sin ⎝⎛⎭⎫πx +π2,下列说法正确的是( ) A .f (x )的周期为π,且在[0,1]上单调递增B .f (x )的周期为2,且在[0,1]上单调递减C .f (x )的周期为π,且在[-1,0]上单调递增D .f (x )的周期为2,且在[-1,0]上单调递减 答案 B解析 因为f (x )=sin ⎝⎛⎭⎫πx +π2=cos πx ,则周期T =2,在[0,1]上单调递减,故选B. 2.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3B .0C .-1D .-1-3 答案 A解析 利用三角函数的性质先求出函数的最值.∵0≤x ≤9,∵-π3≤π6x -π3≤7π6,∵sin ⎝⎛⎭⎫π6x -π3∵⎣⎡⎦⎤-32,1.由2k π-π2≤2x +π4≤2k π+π2,k ∵Z ,解得k π-3π8≤x ≤k π+π8,k ∵Z .当k =0时,-3π8≤x ≤π8,故选C.12.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C .2 D .3答案 B解析 ∵ω>0,-π3≤x ≤π4,∵-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∵ω≥32.13.(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 答案 π解析 ∵f (x )在⎣⎡⎦⎤π6,π2上具有单调性, ∵T 2≥π2-π6, ∵T ≥2π3.∵f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3,∵f (x )的一条对称轴为x =π2+2π32=7π12.又∵f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6, ∵f (x )的一个对称中心的横坐标为π2+π62=π3.∵14T =7π12-π3=π4,∵T =π. 14.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图,则f (π24)=________. 答案 3解析 由题中图象可知,此正切函数的半周期等于3π8-π8=π4,即最小正周期为π2,所以ω=2.∵g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∵Z .。
专题4 三角函数的图象与性质-重难点题型精讲(举一反三)(新高考地区专用)(解析版)
![专题4 三角函数的图象与性质-重难点题型精讲(举一反三)(新高考地区专用)(解析版)](https://img.taocdn.com/s3/m/56c56198fc0a79563c1ec5da50e2524de518d07b.png)
专题4.7 三角函数的图象与性质-重难点题型精讲1.正弦函数与余弦函数的图象(1)正弦函数的图象①根据三角函数的定义,利用单位圆,我们可以得到函数y=,x∈[0,2π]的图象,如图所示.②五点法观察图,在函数y=,x∈[0,2π]的图象上,以下五个点:,1),( π,0),(-1),(2π,0)在确定图象形状时起关键作用.描出这五个点,函数y=,x∈[0,2π]的图象形状就基本确定了.因此,在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图.这种作图的方法叫做“五点(画图)法”.(2)余弦函数的图象①图象变换法作余弦函数的图象由诱导公式六,我们知道,而函数x∈R的图象可以通过正弦函数y=,x∈R的图象向左平移个单位长度而得到.所以将正弦函数的图象向左平移个单位长度,就得到余弦函数的图象,如图所示.②五点法作余弦函数的图象类似于正弦函数图象的作法,从余弦函数y=,x∈R的图象可以看出,要作出函数y=在[0,2]上的图象,起关键作用的五个点是:(0,1),(,0),(,-1),(,0),(2,1).先描出这五个点,然后把这五个点用一条光滑的曲线连接起来就得到了函数y=在[0,2]上的简图,再通过左右平移(每次移动2个单位长度)即可得到余弦函数y=,x∈R的图象.(3)正弦曲线、余弦曲线正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线.它们是具有相同形状的“波浪起伏”的连续光滑曲线.2.正弦函数与余弦函数的性质(1)周期函数①定义:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.②最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.(2)正弦函数与余弦函数的性质正弦函数与余弦函数的图象与性质如下表:3.正弦型函数的性质的性质4.正切函数的性质与图象(1)正切函数的图象及性质(2)三点两线法作正切曲线的简图类比于正、余弦函数图象的五点法,我们可以采用三点两线法作正切函数的简图.“三点”是指点(-,-1),(0,0),(,1);“两线”是指直线x=-和x=.在三点、两线确定的情况下,可以大致画出正切函数在区间(-上的简图.5.余切函数的图象及性质正切函数的图象及性质:的图象先向右平移个单位长度,再以x轴为对称轴上下翻折,可得的图象.余切函数的图象与性质如下表:【题型1 三角函数的定义域和值域(最值)】【方法点拨】求与三角函数有关的函数的值域(最值)的常用方法有:(1)借助三角函数的有界性、单调性求解;(2)转化为关于的二次函数求解.注意求三角函数的最值对应的自变量x的值时,要考虑三角函数的周期性.【例1】(2022·甘肃·高二开学考试)函数f(x)=tan(x+π4)的定义域为()A.{x|x≠kπ+π4,k∈Z}B.{x|x≠2kπ+π4,k∈Z}C.{x|x≠kπ−π4,k∈Z}D.{x|x≠kπ,k∈Z}【解题思路】根据正切函数的定义域可得结果.【解答过程】因为x+π4≠kπ+π2,k∈Z,所以x≠kπ+π4,k∈Z.故f(x)的定义域为{x|x≠kπ+π4,k∈Z}.故选:A.【变式1-1】(2022·四川省高三阶段练习(理))若x∈[π4,2π3],则函数f(x)=3sin x cos x+√3sin2x的值域为( ) A .[0,3√32]B .[0,√32] C .[0,√3]D .[0,3+√3]【解题思路】利用二倍角公式和辅助角公式化简原式为f (x )=√3sin(2x -π6)+√32,结合正弦函数的图像和性质,求解即可. 【解答过程】由题意,f (x )=3sin x cos x +√3sin 2x =32sin2x +√32(1-cos2x )=√3×(√32sin2x -12cos2x )+√32=√3×(cos π6sin2x -sin π6cos2x )+√32=√3sin(2x -π6)+√32,当x ∈[π4,2π3]时,有2x -π6∈[π3,7π6],当2x -π6=π2,即x =π3时,f (x )max =f (π3)=√3+√32=3√32; 当2x -π6=7π6,即x =2π3时,f (x )min =f (2π3)=0.即函数f (x )的值域为[0,3√32].故选:A.【变式1-2】(2022·福建省高二阶段练习)函数f (x )=sinx +cos (x +π6)的值域为( ) A .[−2,2]B .[−√3,√3]C .[−1,1]D .[−√32,√32] 【解题思路】利用两角和的余弦公式和辅助角公式进行化简,即可得到答案 【解答过程】解:函数f (x )=sinx +cos (x +π6)=sinx +√32cosx −12sinx =√32cosx +12sinx =cos (x −π6),∵x ∈R ,∴cos (x −π6)∈[−1,1],∴函数的值域为[−1,1], 故选:C .【变式1-3】(2022·全国·高一单元测试)若x ∈[−π3,2π3],则函数y =cos 2(x +π6)+sin (x +2π3)的最大值与最小值之和为( )A .12B .1C .74D .√2【解题思路】利用诱导公式可化简函数为y =(cos (x +π6)+12)2−14,根据余弦型函数值域的求法可求得cos(x+π6)∈[−√32,1],结合二次函数最值的求法可求得y的最大值和最小值,加和即可求得结果.【解答过程】y=cos2(x+π6)+sin(x+2π3)=cos2(x+π6)+sin(π2+x+π6)=cos2(x+π6)+cos(x+π6)=(cos(x+π6)+12)2−14,当x∈[−π3,2π3]时,x+π6∈[−π6,5π6],∴cos(x+π6)∈[−√32,1],∴当cos(x+π6)=1时,y max=94−14=2;当cos(x+π6)=−12时,y min=−14;∴y max+y min=2−14=74.故选:C.【方法点拨】证明一个函数是否为周期函数或求函数周期的大小常用以下方法:(1)定义法:即对定义域内的每一个x值,看是否存在非零常数T使f(x+T)=f(x)成立,若成立,则函数是周期函数且T是它的一个周期.(2)公式法:利用三角函数的周期公式来求解.(3)图象法:画出函数的图象,通过图象直观判断即可.【例2】(2023·广东·高三学业考试)函数f(x)=sin(x2−π4)的最小正周期是()A.π2B.πC.2πD.4π【解题思路】利用正弦函数的周期求解.【解答过程】f(x)的最小正周期为T=2π12=4π.故选:D.【变式2-1】(2023·广东·高三学业考试)函数f(x)=cos(12x+π6)的最小正周期为()A.π2B.πC.2πD.4π【解题思路】利用余弦型函数的周期公式进行求解.【解答过程】∵f(x)=cos(12x+π6),∴f(x)最小正周期T=2π12=4π.故A,B,C错误.故选:D.【变式2-2】(2022·甘肃临夏·高二期末(理))函数f(x)=cos(ωx+π6)(ω>0)的最小正周期为π,则f(π2)=()A.−√32B.−12C.12D.√32【解题思路】由周期求出ω,从而可求出f(x),进而可求出f(π2).【解答过程】因为函数f(x)的最小正周期为π,ω>0,所以ω=2ππ=2,得f(x)=cos(2x+π6),所以f(π2)=cos(2×π2+π6)=−cosπ6=−√32.故选:A.【变式2-3】(2022·广东佛山·高三阶段练习)在下列函数中,最小正周期为π且在(0,π2)为减函数的是()A.f(x)=sin|2x|B.f(x)=cos(2x+π6)C.f(x)=|cosx|D.f(x)=tan(2x−π4)【解题思路】根据三角函数的图像性质,逐个选项进行判断即可得出答案.【解答过程】对于A,f(x)=sin|2x|的图像关于y轴对称,在(0,π2)为增函数,不符题意,故A错;对于B,f(x)=cos(2x+π6)的最小正周期为π,x∈(0,π2),2x+π6∈(π6,7π6),不是减函数,不符题意,故B错;对于C,f(x)=|cosx|的最小正周期为π,在(0,π2)为减函数,符合题意,故C对;对于D,f(x)=tan(2x−π4)的最小正周期为π2,不符题意,故D错;故选:C.【题型3 三角函数的奇偶性】【方法点拨】掌握正弦、余弦、正切函数的奇偶性相关知识,结合具体题目,灵活求解.【例3】(2022·广东·高三学业考试)若函数f(x)=sin(x+φ)是偶函数,则φ可取一个值为()A.−πB.−π2C.π4D.2π【解题思路】根据偶函数的定义得φ=kπ+π2,k∈Z,结合选项可确定答案.【解答过程】∵函数f(x)=sin(x+φ)是偶函数,∴f(−x)=f(x),即sin(−x+φ)=sin(x+φ).∴−x+φ=x+φ+2kπ或−x+φ+x+φ=π+2kπ,k∈Z.当−x+φ=x+φ+2kπ时,可得x=−kπ,不满足函数定义.当−x+φ+x+φ=π+2kπ时,φ=kπ+π2,k∈Z,若φ=kπ+π2=−π,解得k=−32∉Z,故A错误;若φ=kπ+π2=−π2,解得k =−1∈Z ,故B 正确; 若φ=kπ+π2=π4,解得k =−14∉Z ,故C 错误;若φ=kπ+π2=2π,解得k =32∉Z ,故D 错误;故选:B.【变式3-1】(2022·全国·高一)下列函数中,在其定义域上是偶函数的是( ) A .y =sinxB .y =|sinx |C .y =tanxD .y =cos (x −π2)【解题思路】根据奇偶性定义,结合三角函数的奇偶性可直接得到结果.【解答过程】对于A ,∵y =sinx 定义域为R ,sin (−x )=−sinx ,∴y =sinx 为奇函数,A 错误;对于B ,∵y =|sinx |定义域为R ,|sin (−x )|=|−sinx |=|sinx |,∴y =|sinx |为偶函数,B 正确;对于C ,∵y =tanx 定义域为(kπ−π2,kπ+π2)(k ∈Z ),即定义域关于原点对称,tan (−x )=−tanx ,∴y =tanx 为奇函数,C 错误;对于D ,∵y =cos (x −π2)=sinx 定义域为R ,sin (−x )=−sinx ,∴y =cos (x −π2)为奇函数,D 错误. 故选:B.【变式3-2】(2022·北京高三阶段练习)函数f (x )=cos x +cos2x 是( ) A .奇函数,且最大值为2 B .偶函数,且最小值为-98 C .奇函数,且最小值为-98D .偶函数,且最大值为98【解题思路】利用函数奇偶性的定义可判断出函数f (x )的奇偶性,利用二次函数的基本性质可求得函数f (x )的最值.【解答过程】函数f (x )的定义域为R ,f (-x )=cos (-x )+cos (-2x )=cos x +cos2x =f (x ), 故函数f (x )为偶函数,因为-1≤cos x ≤1,则f (x )=2cos 2x +cos x -1=2(cos x +14)2-98, 所以,f (x )min =-98,f (x )max =2+1-1=2.故选:B.【变式3-3】(2022·广西·模拟预测(理))若将函数f (x )=sin2x −√3cos2x 的图象向右平移m (m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( ) A .π6B .π3C .2π3D .5π6【解题思路】首先对f (x )化简得到f (x )=2sin (2x −π3),再写出平移后的解析式y =2sin (2x −2m −π3),因为其为奇函数,则−2m −π3=k π,k ∈Z ,解出m 即可得到最小值.【解答过程】f (x )=sin2x −√3cos2x =2(12sin2x −√32cos2x)=2sin (2x −π3),向右平移m(m >0)个单位后得到函数y =2sin [2(x −m )−π3]=2sin (2x −2m −π3),由于是奇函数,因此,得−2m −π3=k π,k ∈Z ,m =−π6−k π2,k ∈Z.又∵m >0,则当k =−1时,m 的最小值是π3,故选:B.【方法点拨】掌握正弦、余弦、正切函数的对称性相关知识,结合具体题目,灵活求解.【例4】(2022·安徽·高三开学考试)函数f (x )=tan (2x −π3)的图象的一个对称中心为( ) A .(π12,0)B .(7π12,0)C .(−5π12,0)D .(−π12,0)【解题思路】根据正切型函数的对称中心为(k π2,0) k ∈Z ,求解即可. 【解答过程】由2x −π3=k π2,k ∈Z ,可得x =k π4+π6,k ∈Z ,当k =0时,x =π6,当k =1时,x =π4+π6=5π12,当k =2时,x =8π12=23π, 当k =−1时,x =−π4+π6=−π12, 当k =−2时,x =−4π12=−13π, 当k =−3时,x =−7π12,所以(−π12,0)为f (x )图象的一个对称中心, 故选:D.【变式4-1】(2022·河南·高三阶段练习(理))已知函数f (x )=2cos (ωx −π6)(ω>0)在[0,2π]内恰有三条对称轴,则ω的取值范围是( ) A .[43,116)B .(43,116]C .[1312,1912)D .(1312,1912]【解题思路】根据余弦函数的性质可得2π≤2ωπ−π6<3π,进而即得. 【解答过程】因为0≤x ≤2π, 所以−π6≤ωx −π6≤2ωπ−π6, 所以2π≤2ωπ−π6<3π, 解得1312≤ω<1912.故选:C.【变式4-2】已知函数f(x)=sin (12x −π6),则结论正确的是( )A .f (x )的图象关于点(5π3,0)中心对称B .f (x )的图象关于直线x =−π3对称C .f (x )在区间(−π,π)内有2个零点D .f (x )在区间[−π2,0]上单调递增【解题思路】A 、B 应用代入法判断对称轴和对称中心;C 、D 根据给定区间求12x −π6的范围,结合正弦型函数的性质求零点和单调性. 【解答过程】A :f(5π3)=sin (12×5π3−π6)=sin2π3≠0,故(5π3,0)不是对称中心,错误;B :f(−π3)=sin[12×(−π3)−π6]=−sin π3≠±1,故x =−π3不是对称轴,错误;C :在x ∈(−π,π),则12x −π6∈(−2π3,π3),故f(x)=0,可得12x −π6=0,所以x =π3为f (x )在(−π,π)内的唯一零点,错误;D :在x ∈[−π2,0],则12x −π6∈[−5π12,−π6],故f(x)=sin (12x −π6)递增,正确. 故选:D.【变式4-3】(2022·贵州·高三阶段练习(文))已知函数f (x )=2cos (ωx +φ)(ω>0,0<φ<π)的相邻两条对称轴之间的距离为2π,且为奇函数,将f (x )的图象向右平移π3个单位得到函数g (x )的图象,则函数g (x )的图象( ) A .关于点(−5π3,0)对称B .关于点(π2,0)对称 C .关于直线x =−π3对称D .关于直线x =π2对称【解题思路】两个相邻对称轴的为半个周期,奇函数可以确定f (x )为正弦函数,由此条件得出f (x )的解析式,再根据平移得出g (x )的解析式,根据解析式写出对称中心和对称轴的通式即可得出答案.【解答过程】由相邻两条对称轴之间的距离为2π可知T2=2π,即T =4π,ω=2πT ,ω=12, 因为f (x )为奇函数,根据0<φ<π可知φ=π2,f (x )=2sin 12x , g (x )=2sin (12(x −π3))=2sin (12x −π6),对称中心:12x −π6=k π(k ∈Z ),x =2k π+π3(k ∈Z ),故A 正确,B 错误;对称轴:12x −π6=π2+k π(k ∈Z ),x =2k π+4π3(k ∈Z ),故C 、D 错误;故选:A.【方法点拨】三角函数的单调性问题主要有:三角函数的单调区间的求解、比较函数值的大小、根据三角函数的单调性求参数;结合具体条件,根据三角函数的图象与性质进行求解即可.【例5】(2022·江西·高三阶段练习(理))函数y =sin (π6−2x)(x ∈[0,π])为增函数的区间是( ) A .[0,π3]B .[π12,7π12]C .[π3,5π6]D .[5π6,π]【解题思路】根据三角函数单调性的求法求得正确答案. 【解答过程】y =sin (π6−2x)=−sin (2x −π6),2k π+π2≤2x −π6≤2k π+3π2,k π+π3≤x ≤k π+5π6,k ∈Z , 令k =0可的y =sin (π6−2x)(x ∈[0,π])的递增区间为[π3,5π6]. 故选:C.【变式5-1】(2022·河南信阳·一模(理))已知函数f (x )=2√3cos (x -π2)cos x -2sin 2x ,若f (x )在区间[m ,π4]上单调递减,则实数m 的取值范围( )A .[π6,π4]B .[π3,π2]C .[π6,π4)D .[π6,π3)【解题思路】利用三角恒等变换,化简三角函数,利用正弦型函数的单调性,建立不等式组,可得答案.【解答过程】f (x )=2√3cos (x -π2)cos x -2sin 2x =2√3sin x cos x -2·1-cos2x 2=√3sin2x -1+cos2x=2(√32sin2x +12cos2x)-1 =2sin (2x +π6)-1,由x ∈[m ,π4],则2x +π6∈[2m +π6,2π3],由题意,[2m +π6,2π3]⊆[π2,3π2],则π2≤2m +π6<2π3,解得π6≤m <π4. 故选:C.【变式5-2】(2022·江苏·高三阶段练习)已知a =log 168,b =πln0.8,c =sin2.5,则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .a <b <cD .a <c <b【解题思路】由对数的运算法则求出a ,又πln0.8,sin2.5分别可看做y =πx ,y =sinx 的函数值,考虑构造指数函数和正弦函数,利用函数的单调性对其值进行估计,又因为ln0.8估值困难,故考虑利用与函数y =lnx 近似的有理函数y =1−1x 对其大小进行估值,最后求得答案.【解答过程】由题意,a =log 168=log 2423=34=0.75, 设f (x )=lnx +1x −1,则f ′(x )=1x −1x 2=x−1x 2,当0<x <1时,f ′(x )<0,函数f (x )在(0,1)上单调递减,当x >1时,f ′(x )>0,函数f (x )在(1,+∞)上单调递增,所以f (0.8)>f (1),即ln0.8+54−1>0,所以ln0.8>−14,因为函数y =πx 在(−∞,+∞)上单调递增,所以πln0.8>π−14,又(π−14)−4=π,(34)−4=25681≈3.16,所以(34)−4>(π−14)−4,因为y =x−4在(0,+∞)单调递减,所以34<π−14,所以πln0.8>34,故b >a , 因为3π4<2.5<5π6,函数y =sinx 在(π2,π)上单调递减,所以sin 5π6<sin2.5<sin3π4,所以12<sin2.5<√22,所以sin2.5<34,即c <a ,所以c <a <b , 故选:A.【变式5-3】(2022·内蒙古·高三阶段练习(文))若函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,则ω的最大值为( )A .37 B .34C .14D .1【解题思路】由题知ωx +π4∈(π4,7π4ω+π4),再根据函数y =√2cosx 在(0,π)上单调递减可得7π4ω+π4≤π,进而解不等式求解即可.【解答过程】解:因为函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,所以7π4≤12T =πω,解得0<ω≤47,因为x ∈(0,7π4),所以ωx +π4∈(π4,7π4ω+π4),因为函数y =√2cosx 在(0,π)上单调递减, 所以,函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,则有7π4ω+π4≤π,解得ω≤37,所以ω的取值范围是ω∈(0,37],即ω的最大值为37. 故选:A.【方法点拨】解决正(余)弦型函数性质的综合应用问题的思路: (1)熟练掌握函数或的图象,利用基本函数法得到相应的函数性质,然后利用性质解题.(2)直接作出函数图象,利用图象形象直观地分析并解决问题. 【例6】已知函数f (x )=4sinxcos (x +π6)+1.(1)求f (x )的最小正周期及单调区间; (2)求f (x )在区间[−π6,π4]上的最大值与最小值.【解题思路】(1)先利用三角恒等变换化简得到f (x )=2sin (2x +π6),从而利用T =2π|ω|求出最小正周期,再利用整体法求解函数的单调区间;(2)根据x ∈[−π6,π4]求出2x +π6∈[−π6,2π3],从而结合函数图象求出最大值为2,最小值为−1.【解答过程】(1)因为f (x )=4sinx (cosxcos π6−sinxsin π6)+1=2√3sinxcosx −2sin 2x +1 =√3sin2x +cos2x =2sin (2x +π6) 所以f (x )的最小正周期T =2π2=π;令−π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得:[−π3+k π,π6+k π],k ∈Z , 令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得:[π6+k π,2π3+k π],k ∈Z ,单调增区间为[−π3+k π,π6+k π],k ∈Z ,单调减区间为[π6+k π,2π3+k π],k ∈Z ;(2)已知x ∈[−π6,π4],所以2x +π6∈[−π6,2π3],当2x +π6=π2,即x =π6时,f (x )取得最大值,最大值为2, 当2x +π6=−π6,即x =−π6时,f (x )取得最小值,最小值为-1, 所以f (x )在区间[−π6,π4]上的最大值为2,最小值为−1.【变式6-1】(2022·陕西·高三阶段练习(文))已知函数f (x )=4sin (ωx +φ)(ω>0,|φ|<π2)图象的一条对称轴为直线x =−π12,这条对称轴与相邻对称中心之间的距离为π8.(1)求f (x );(2)求f (x )在[−π24,π4]上的值域.【解题思路】(1)先求出周期,由此求出ω的值,利用对称轴方程求出φ,即可得到函数的解析式;(2)根据自变量的范围求得4x −π6∈[−π3,5π6],根据正弦函数的取值求得函数的值域【解答过程】(1)因为函数f(x)图象的对称轴与相邻对称中心之间的距离为π8, 所以T =π2,故ω=2πT=4,又f(x)的图象的一条对称轴方程为x =−π12, 则4×(−π12)+φ=π2+k π,k ∈Z ,即φ=5π6+k π,k ∈Z ,又|φ|<π2,所以φ=−π6, 故f(x)=4sin (4x −π6);(2)因为x ∈[−π24,π4],所以4x −π6∈[−π3,5π6],所以sin (4x −π6)∈[−√32,1],所以4sin (4x −π6)∈[−2√3,4], 故f (x )在[−π24,π4]上的值域为[−2√3,4].【变式6-2】(2021·天津·高一期末)已知函数f (x )=2√3cos 2(π2+x)-2sin(π+x )cos x -√3 (1)求f (x )的最小正周期及单调递减区间; (2)求f (x )在区间[π4,π2]上的最值;(3)若f (x 0-π6)=1013,x 0∈[3π4,π],求sin2x 0的值.【解题思路】(1)根据三角恒等变换可得f (x )=2sin (2x -π3),然后根据三角函数的性质即得;(2)根据正弦函数的性质即得;(3)由题可得sin (2x 0-2π3)=513,然后根据同角关系式及和差角公式即得. 【解答过程】(1)因为f (x )=2sin x cos x +2√3sin 2x -√3 =sin2x -√3cos2x =2sin (2x -π3). 所以f (x )的最小正周期T =2π2=π,∵π2+2k π≤2x -π3≤3π2+2k π,k ∈Z ,∴5π12+k π≤x ≤11π12+k π,所以f (x )的单调递减区间为[5π12+k π,11π12+k π](k ∈Z);(2)由(1)知f (x )的单调递减区间为[5π12+k π,11π12+k π](k ∈Z),∵x ∈[π4,π2],∴f (x )在[π4,5π12]上单调递增,在[5π12,π2]上单调递减,又f (5π12)=2sin π2=2,f (π4)=2sin π6=1,f (π2)=2sin2π3=√3,故f (x )min =1,f (x )max =2; 另解:∵x ∈[π4,π2], ∴t =2x -π3∈[π6,2π3],∵y =sin t 在t ∈[π6,π2]单调递增,在[π2,2π3]上单调递减, ∴当t =π2时,(sin t )max =1,f (x )max =2×1=2, ∴当t =π6时,(sin t )min =12,f (x )min =2×12=1; (3)∵f (x 0-π6)=1013,∴sin (2x 0-2π3)=513, 由x 0∈[3π4,π],得2x 0-2π3∈[5π6,4π3],∴cos (2x 0-2π3)=-1213, ∴sin2x 0=sin [(2x 0-2π3)+2π3]=sin (2x 0-2π3)cos2π3+cos (2x 0-2π3)sin 2π3=513×(-12)+(-1213)×√32=-5+12√326. 【变式6-3】(2022·黑龙江·高三阶段练习)已知函数f (x )=[(1+√2)sin x -cos x]⋅[(1-√2)sin x -cos x]. (1)求f (x )的最小正周期T 和单调递减区间;(2)四边形ABCD 内接于⊙O ,BD =2,锐角A 满足f (3A4)=-1,求四边形ABCD 面积S 的取值范围.【解题思路】(1)利用三角函数恒等变换公式对函数化简变形得f (x )=√2cos (2x +π4),从而可求出最小正周期,再由2kπ≤2x +π4≤2kπ+π(k ∈Z )求出其单调区间,(2)由f (3A4)=-1,求得A =π3,再由圆的性质可得C =2π3,设AB =a ,AD =b ,BC =c ,CD =d ,分别在△ABD 和△CBD 中利用余弦定理结合基本不等式可得0<ab ≤4,0<cd ≤43,从而可求出四边形ABCD 面积S 的取值范围.【解答过程】(1)[(1+√2)sin x -cos x]⋅[(1-√2)sin x -cos x]=[(sin x -cos x )+√2sin x]⋅[(sin x -cos x )-√2sin x]=(sin x -cos x )2-2sin 2x =sin 2x -2sin x cos x +cos 2x -2sin 2x=1-2sin 2x -sin2x =cos2x -sin2x=√2cos (2x +π4), ∴f (x )=√2cos (2x +π4) ∴T =π.由2kπ≤2x +π4≤2kπ+π(k ∈Z ),得kπ-π8≤x ≤kπ+3π8(k ∈Z ),所以f (x )单调递减区间为[kπ-π8,kπ+3π8](k ∈Z ). (2)由于f (3A4)=-1,根据(1)得√2cos (2×3A 4+π4)=-1,∵0<A <π2,∴A =π3,C =2π3.分别设AB =a ,AD =b ,BC =c ,CD =d .因BD =2,分别在△ABD 和△CBD 中由余弦定理得a 2+b 2-2ab cos π3=4,c 2+d 2-2cd cos2π3=4,∴a 2+b 2=4+ab ,c 2+d 2=4-cd .∵a 2+b 2≥2ab ,c 2+d 2≥2cd ,等号在a =b =2,c =d =2√33时成立,∴4+ab ≥2ab ,4-cd ≥2cd ,解得0<ab ≤4,0<cd ≤43. ∴0<ab +cd ≤163.等号在a =b =2,c =d =2√33时成立,∵S =12ab sin A +12cd sin C =√34(ab +cd ), 所以S 的取值范围是(0,4√33].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 函数的图象与性质
A 组 基础达标
1. 已知函数f (x )为奇函数,且该函数有三个零点,那么三个零点之和为________.
2. 若函数f (x )=4x -a x ·2x
为奇函数,则实数a =________.
3. 若f (x )是定义在R 上的周期为3的函数,且f (x )=⎩
⎪⎨⎪⎧x 2+x +a ,0≤x ≤2,-6x +18,2<x ≤3, 则f (a +1)=________.
4. 已知偶函数f (x )满足f (x )=x 3-8(x ≥0),那么{x |f (x -2)>0}=________.
5. (2019·通州、海门、启东期末)已知函数f (x )的周期为4,且当x ∈(0,4]时,f (x )=⎩⎨⎧cos πx 2
,0<x ≤2,log 2⎝⎛⎭⎫x -32,2<x ≤4, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12 的值为________.
6. 已知函数f (x )=⎩
⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0, g (x )=f (x )+x +a .若g (x )存在2个零点,则实数a 的取值范围是________.
7. 如图,已知直线y =kx 与函数y =6x 的图象交于A ,B 两点,过点B 作x 轴的垂线,垂足为C ,BC 分别与函数y =2x 和y =3x 交于D ,E 两点,连接AD .当AD ∥x 轴时,线段CE 的长度为________.
(第7题)
8. (2019·海安中学)已知函数f (x )=⎩
⎪⎨⎪⎧x e x ,x ≤0,2-|x -1|,x >0, 若函数g (x )=f (x )-m 有两个零点x 1,x 2,则x 1+x 2=________.
9. 已知函数y=f(x)在定义域[-1,1]上既是奇函数又是减函数.
(1) 求证:对任意的x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0;
(2) 若f(1-a)+f(1-a2)<0,求实数a的取值范围.
B 组 能力提升
1. (2019·启东一中)已知函数y 1=x 3与y 2=⎝⎛⎭⎫12 x -2 的图象的交点为(x 0,y 0),若x 0∈(n ,
n +1),n ∈N ,则x 0所在的区间是________.
2. (2019·南方凤凰台密题)已知函数f (x )=x +2|x |+2
,x ∈R ,那么f (x 2-2x )<f (2-x )的解集是________.
3. 设f (x )是定义在R 上且周期为4的函数,在区间(-2,2]上,其函数解析式是f (x )=⎩
⎪⎨⎪⎧x +a ,-2<x ≤0,|1-x |,0<x ≤2, 其中a ∈R .若f (-5)=f (5),则f (2a )=________. 4. 已知λ∈R ,函数f (x )=⎩
⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ. 当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________.
5. 已知函数f (x )=⎩⎪⎨⎪⎧1-|2x -3|,x ≤3,12
x -1,x >3, 若函数g (x )=f (x )-ax 有3个不同的零点,则实数a 的取值范围是________.
6. 已知函数f (x )=x 2-2ax +b ,a ,b ∈R .
(1) 若f (x )在区间[1,2]上的值域也是[1,2],求a ,b 的值;
(2) 若对任意的x 都有f (x -2)=f (-x ),且y =f (f (x ))有且只有2个零点,求实数b 的取值范围.
7. (2019·新海高级中学)已知函数g (x )=ax 2-2ax +1+b (a ≠0,b <1)在区间[2,3]上有最
大值4,最小值1,设f (x )=g (x )x
. (1) 求a ,b 的值;
(2) 方程f (|2x -1|)+k ⎝⎛⎭
⎫2|2x -1|-3 =0有三个不同的实数解,求实数k 的取值范围.。