过程控制系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《控制系统》课程设计课题:加热炉温度控制系统
系别:电气与电子工程系
专业:自动化
姓名:
学号:*******(44、32、11)
指导教师
河南城建学院
2010年12月29日
成绩评定·
一、指导教师评语(根据学生设计报告质量、答辩情况及其平时表现综合评定)。
二、评分(按下表要求评定)
课程设计成绩评定
一、设计目的:
通过对一个使用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。
二、设计要求:
设计一个加热炉温度控制系统,确定系统设计方案,画出系统框图,完成元器件的选择和调节器参数整定。
三、总体设计:
1.控制系统的设计思想
串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
2 .加热炉控制系统原理
加热炉控制系统以炉内温度为主被控对象,燃料油流量为副被控对象的串级控制系统。该控制系统的副回路由燃料油流量控制回路组成,因此,当扰动来自燃料油上游侧的压力波动时,因扰动进入副回路,所以,能迅速克服该扰动的影响。
由于炉内温度的控制不是单一因素所能实现的,所以,还要对空气的流量进行控制。空气的控制直接影响炉内燃烧的状况,不仅影响炉温,还直接影响了能源的利用率和环境的污染。所以,对空气的控制很有必要,其原理和燃料控制相同。
图2燃料串级控制系统流程
3.在考虑燃料、空气流量比例自动控制系统
考虑到空气、燃料的比例合理性,基于各方面因素的考虑,该设计只针对燃料、空气流量比例自动控制系统做以下说明。其控制系统流程图如下图所示。
图3交叉限制式串级燃烧自动系统
交叉限制式串级燃烧自动系统的工作原理,是利用最大、最小值选择器,当炉温低于设定值时,使系统为空气先行方式,而炉温高于设定值则为燃料先行方式,他可有效防止黑烟的产生。既节约能源减少污染,有保证了生产质量。
4. 调节规律的确定和主、副调节器的选用
(1)调节规律的确定
在串级控制系统中,主,副调节器起的作用不同。主调节器起定值控制作用,副调节器起随动控制作用,这是选择调节器规律的基本出发点。
主被控参数是工艺操作的主要指标,允许波动范围很小,一般要求无静差。又由于温度的控制有明显的滞后性,因此,主调节器应选PID调节规律。
副被控参数的设置是为了克服主要干扰对主参数的影响,因而可以允许在一定范围的变化,并允许有静差。为此,副调节器选择P调节规律。
(2)主、副调节器的选用
DDZ-III型仪表采用了集成电路和安全火花型防爆结构,提高了仪表精度、仪表可靠性和安全性,适应了大型化工厂、炼油厂的防爆要求。III型仪表具有以下主要特点:
(1)采用国际电工委员会(IEC)推荐的统一信号标准,现场传输信号为DC4~20mA,控制室联络信号为DC1~5V,信号电流与电压的转换电阻为250 。
(2)广泛采用集成电路,仪表的电路简化、精度提高、可靠性提高、维修工作量减少。
(3)整套仪表可构成安全火花型防爆系统。DDZ-III型仪表室按国家防爆规程进行设计的,而且增加了安全栅,实现了控制室与危险场所之间的能量限制于隔离,使仪表能在危险的场所中使用。
DDZ-III型PID调节器的结构框图如图2-1。主要由输入电路、给定电路、PID运算电路、手动与自动切换电路、输出电路和指示电路组成。
调节器接收变送器送来的测量信号(DC4~20mA或DC1~5V),在输入电路中与给定信号进行比较,得出偏差信号,然后在PD与PI电路中进行PID运算,最后由输出电路转换为4~20mA直流电流输出。
图2-4给出了温度变送器的原理框图,虽然温度变送器有多个品种、规格,以配合不同的传感元件和不同的量程需要,但他们的结构基本相同。
本设计采用DDZ-III型热电偶温度变送器
图4 DDZ-III型调节器结构框图
5.对主、副电路检测变送器的确定
(1)温度检测元件
热电偶作为温度传感元件,能将温度信号转换成电动势(mV)信号,配以测量毫伏的指示仪表或变送器可以实现温度的测量指示或温度信号的转换。具有稳定、复现性好、体积小、响应时间较小等优点、热电偶一般用于500°C以上的高温,可以在1600°C高温下长期使用。
热电阻也可以作为温度传感元件。大多数电阻的阻值随温度变化而变化,如果某材料具备电阻温度系数大、电阻率大、化学及物理性能稳定、电阻与温度的关系接近线性等条件,就可以作为温度传感元件用来测温,称为热电阻。热电阻分为金属热电阻和半导体热敏电阻两类。大多数金属热电阻的阻值随其温度升高而增加,而大多数半导体热敏电阻的阻值随温度升高而减少。
在使用热电偶时,由于冷端暴露在空气中,受周围环境温度波动的影响,且距热源较近,其温度波动也较大,给测量带来误差,为了降低这一影响,通常用补偿导线作为热电偶的连接导线。补偿导线的作用就是将热电偶的冷端延长到距离热源较远、温度较稳定的地方。补偿导线的作用如图2-2所示。
用补偿导线将热电偶的冷端延长到温度比较稳定的地方后,并没有完全解决冷端温度补偿问题,为此还要采取进一步的补偿措施。具体的方法有:查表法、仪表零点调整法、冰浴法、补偿电桥法以及半导体PN结补偿法。
采用热电阻法测量温度时,一般将电阻测温信号通过电桥转换成电压,当热电阻的连接导线很长时,导线电阻对电桥的影响不容忽视。为了消除导线电阻带来的测量误差,不管热电阻和测量一边之间的距离远近,必须使导线电阻的阻值