微生物遗传育种论文格式及要点最后工学高等教育教育专区

合集下载

微生物遗传育种知识点汇总

微生物遗传育种知识点汇总
第三节DNA复制转录翻译
复制:通过复制,遗传信息能够在细胞带间传递,同时是转录翻译的前奏。
转录:在一个DNA模板上合成一个与之互补的RNA链,mRNA,A,tRNA。
翻译:是蛋白质生物合成过程中的第一步。翻译是根据中心法则,将成熟的mRNA解码,并生成对应的特定氨基酸序列的过程。
3.1DNA复制
3、遗传与变异是生物界的共同特征,它们之间是辩证统一的。
2.1经典遗传学简述
一、分离定律
1、概念:(1)基因型:生物体全部遗传因子的总称。(2)表型:生物体表现出来的性状的总和。(3)杂交、亲本(P)、子一代(F1)、子二代(F2)、相对性状、显性、隐性。
2、Mendel:单因子杂交实验。
3、分离定律内容:控制一对相对性状的等位基因在形成配子时彼此分离,每个配子只能获得一个等位基因。
1、DNA的半保留复制模型;2、DNA的二向复制模型(θ模型);3、DNA的滚环复制模型。
3.2转录
1、转录的起始:(1)全酶与模板的DNA接触,生成非专一的,不稳定的复合物在模板上移动;(2)起始识别:全酶与-35序列结合,产生封闭的酶-启动子二元复合物;(3)全酶紧密地结合在-10序列处,模板DNA局部变性,形成开放的启动子二元复合体;(4)酶移动到I,第一个rNTP转录开始,σ因子释放,形成酶-启动子-rNTP三元复合体。
四、基因
1、孟德尔“遗传因子”——生物性状遗传的符号。
2、基因——位于染色体上的遗传功能单位。
(1)等位基因:一对同源染色体同一基因座上的一对基因。等位基因之间存在相互作用——显隐性关系。一个二倍体细胞中等位基因的关系:(1)完全显性:一个等位基因的功能已足够使某个性状表现。(2)不完全显性:当性状的表现对等位基因的功能有数量上的要求。(3)共显性:杂合子同时表现出双亲的特性。

微生物的遗传变异和育种要点︰四个概念︰遗传型表型

微生物的遗传变异和育种要点︰四个概念︰遗传型表型

第一節微生物的遺傳變異的概述遺傳和變異是生物體最本質的屬性之一。

所謂遺傳,講的是發生在親子間的關係,即指生物的上一代將自己的一整套遺傳因子穩定地傳遞給下一代的行為或功能,它具有極其穩定的特性。

而變異是指子代與親代之間的不相似性。

遺傳是相對的,變異是絕對的。

遺傳保證了物種的存在和延續,而變異推展了物種的進化和發展。

在學習遺傳、變異內容時,先應清楚掌握以下幾個概念︰(一)遺傳型又稱基因型,指某一生物個體所含有的全部遺傳因子即基因組所攜帶的遺傳訊息。

遺傳型是一種內在可能性或潛力,其實質是遺傳物質上所負載的特定遺傳訊息。

具有某遺傳型的生物只有在適當的環境條件下,透過自身的代謝和發育,才能將它具體化,即產生表型。

(二)表型指某一生物體所具有的一切外表特徵及內在特性的總和,是其遺傳型在合適環境下透過代謝和發育而得到的具體體現。

所以,它與遺傳型不同,是一種現實性。

(三)變異指在某種外因或內因的作用下生物體遺傳物質架構或數量的改變,亦即遺傳型的改變。

變異的特點是在群體中以極低的機率(一般為10-5~10-10)出現,性狀變化的幅度大,且變化后的新性狀是穩定的、可遺傳的。

(四)飾變指一種不涉及遺傳物質架構改變而只發生在轉錄、翻譯水準上的表型變化。

其特點是整個群體中的幾乎每一個體都發生同樣變化;性狀變化的幅度小;因其遺傳物質不變,故飾變是不遺傳的。

例如,Serratia marcescens(粘質沙雷氏菌)在25℃下培養時,會產生深紅色的靈杆菌素,它把菌落染成鮮血似的。

可是,當培養在37℃下時,群體中的一切個體都不產色素。

如果重新降溫至25℃,所有個體又可恢復產色素能力。

所以,飾變是與變異有著本質差別的另一種現象。

上述的S.marcescens產色素能力也會因發生突變而消失,但其機率僅10-4,且這種消失是不可恢復的。

從遺傳學研究的角度來看,微生物有著許多重要的生物學特性︰微生物架構簡單,個體易于變異;營養體一般都是單倍體;易于在成分簡單的合成培養基上大量生長繁殖;繁殖速度快;易于累積不同的最終代謝產物及中間代謝物;菌落形態特徵的可見性與多樣性;環境條件對微生物群體中各個體作用的直接性和均一性;易于形成營養缺陷型;各種微生物一般都有相應的病毒;以及存在多種處于進化過程中的原始有性生殖模式等。

微生物的遗传和育种

微生物的遗传和育种

微生物育种的社会和经济影响
社会影响
随着微生物遗传和育种技术的不 断发展,人们需要关注相关的伦 理、安全和环境问题,以确保技 术的可持续发展和应用。
经济影响
微生物育种技术的发展有望为工 业、农业、医药等领域带来巨大 的经济效益,同时也需要关注技 术的成本和商业化前景。
感谢您的观看
THANKS
土壤修复
微生物育种技术可用于土壤修复领域,通过改良土壤中微生物的种 类和数量,改善土壤质量,提高土壤肥力。
空气净化
某些微生物具有降解空气中有害物质的能力,通过微生物育种技术 可以改良这些微生物的降解能力,用于空气净化。
05
未来展望
基因编辑技术的发展
基因编辑技术
随着CRISPR等基因编辑技术的发展, 科学家们能够更精确、高效地修改微 生物基因,从而改良微生物的性状和 生产性能。
代谢工程育种
代谢途径分析
对微生物的代谢途径进行分析, 了解各代谢途径之间的相互关系 和调控机制。
代谢流量调控
通过调节代谢途径中的关键酶活 性或改变代谢流量的方向,以提 高目标产物的合成效率。
细胞工厂构建
通过基因工程技术对微生物进行 改造,构建具有特定代谢特征的 细胞工厂,实现目标产物的定向 生产。
基因编辑的应用
基因编辑技术有望在医药、农业、工 业等领域发挥重要作用,例如用于生 产新型药物、改良农作物、提高微生 物产物的产量和品质等。
合成生物学在微生物育种中的应用
合成生物学
合成生物学是一门新兴的交叉学科,旨 在通过设计和构建人工生物系统来改良 和优化生物功能。
VS
微生物育种中的应用
合成生物学在微生物育种中具有广阔的应 用前景,例如通过设计和构建人工微生物 来生产燃料、化学品、药物等,同时也有 助于解决环境问题和粮食安全问题。

微生物的遗传变异和育种

微生物的遗传变异和育种

不同物种的染色体数量和基因组大小
5、基因水平 、 基因是生物体内一切具有自主复制能力的最小遗 传功能单位。 传功能单位。 原核生物通过组成操纵子系统调控基因的表达 真核生物一般无操纵子结构 6、密码子水平 、 遗传密码是指DNA链上决定各具体氨基酸的特定 遗传密码是指 链上决定各具体氨基酸的特定 核苷酸排列顺序。 核苷酸排列顺序。 遗传密码的信息单位是密码 每一密码子由3个核苷酸序列即 个核苷酸序列即1个三联体所 子,每一密码子由 个核苷酸序列即 个三联体所 组成。 组成。 7、核苷酸水平:是一个最低突变单位或交换单 、核苷酸水平: 位。
肺炎链球菌
RII(Rough) : 粗糙型菌落,不致病 ( 粗糙型菌落, SIII(Smooth):光滑型菌落,致病 :光滑型菌落,
R型菌 型菌
加热杀死 S型菌 型菌
S型菌 型菌
R型菌+加热杀死S型 型菌+加热杀死S
+

怎么来的呢? 怎么来的呢?
合理的解释: 合理的解释:
活的无毒( 活的无毒(R)型细菌受到 了死的有毒(S)型细菌的影响, 了死的有毒( 型细菌的影响, 转化为有毒( 转化为有毒(S)型
(二)微生物的基因组结构
基因组:是指存在于细胞或病毒中的所有基因。 基因组:是指存在于细胞或病毒中的所有基因。
I、大肠杆菌 、 的基因组: 的基因组:
(1) 双链环状的 双链环状的DNA分子(单倍体) 分子( 分子 单倍体) (2) 遗传信息的连续性 (3) 功能相关的结构基因组成操纵子结构 操纵子( 操纵子(operon): ) 功能相关的几个基因前后相连, 功能相关的几个基因前后相连,再加上一个共同 的调节基因和一组共同的控制位点(启动子、 的调节基因和一组共同的控制位点(启动子、 操作子等)在基因转录时协同动作。 操作子等)在基因转录时协同动作。 基因:是合成一种功能蛋白或RNA分子所必须的 基因:是合成一种功能蛋白或 分子所必须的 全部DNA序列. 全部 序列. 序列 (4) 结构基因的单拷贝及 结构基因的单拷贝及rRNA基因的多拷贝 基因的多拷贝 (5) 基因组的重复序列少而短

微生物育种论文

微生物育种论文

微生物遗传育种课程论文论文题目:班级:姓名:学号:指导老师:食用菌的转化研究及应用摘要:随着现代食品行业的飞速发展,食用菌在现在生活中发挥越来越重要的地位。

但是传统食用菌新菌株具有育种周期长、定向性较差的特点,近年来遗传转化技术的发展给食用菌新菌株的培育开辟了一条新的途径,有望解决这一问题。

本文综述了食用菌分子水平遗传转化的方法、筛选标记和遗传转化应用的进展。

关键词:食用菌,转化,筛选标记Translational research and applications of edible fungiAbstract: With the rapid development of the modern food industry, edible fungi now plays an increasingly important role in the life . But traditional new strains of edible fungi breeding cycle longer, less directional characteristics, the development of genetic transformation technology in recent years to the cultivation of new strains of edible fungi has opened up a new way, which is expected to address the issue. This paper reviews the methods of molecular level for genetic transformation of edible fungi, selection markers and genetic transformation application progress.Key words: mushroom, transformation, selection markers食用菌已经与我们的生活紧紧相关,如酵母的发酵作用能制造酒类、馒头、面包、单细胞蛋白等多种食品[1]。

微生物育种论文

微生物育种论文

生产抗生素微生物育种技术研究进展摘要:自1929 年英国细菌学家弗来明发现青霉素,1943年瓦克斯曼等发现链霉素以来,人们不断从微生物代谢产物中提取出抗生素,并开发出半合成抗生素,抗生素生产得到了空前的发展。

但纵观整个抗生素市场,一些抗生素产生菌产素水平低,生产成本相对较高,从而严重削弱了其市场竞争力,影响了抗生素工业化生产进程。

可见微生物的产素水平高低决定抗生素是否具有开发价值。

诱变育种技术是最早在抗生素上应用的1种育种技术,通过将物理、化学、生物因素作用于抗生菌,人为使其遗传物质发生变异,从中选育出高产菌株。

由于该技术操作简便、速度快、收效大,且诱变手段多样,因此是实验室及生产上最常用的高产菌株的育种方式。

目前,常见的诱变方法包括3种:物理因素、化学因素和生物因素。

关键词:抗生素;微生物育种一、自然突变选育最初,菌种的选育主要是从自然界自发突变的菌群中筛选。

如早在几千年前,我国劳动人民在酿酒、制醋时就已经注意种曲的质量,并在生产实践中不断从自然界选择良曲。

尽管这是原始的人工选择方法,但在生产中发挥了很重要的作用。

[1]微生物菌种的自然突变率一般都很低,突变幅度也不大,因此,单纯依赖微生物群体的自然突变选育高产菌株远不能满足生产需要。

二、紫外线诱变育种紫外线的光谱范围在40~390 nm,而DNA的嘌呤和嘧啶可以吸收的紫外线光谱通常为260 nm。

因此能诱发生物突变的有效波长范围是200~300 nm,最有效的波长为253.7 nm,这一波长的诱变效应相当于波长260nm的紫外线。

当紫外线照射微生物时不能引起电离,其作用是使物质分子或原子中的轨道从基态跃迁到激发态,紫外光子本身作为能量被物质吸收。

由于紫外线穿透性很弱,所以被广泛用作微生物诱变剂。

紫外辐射使DNA分子形成嘧啶二聚体,阻碍碱基正常配对,并可能引起突变或死亡。

另外嘧啶二聚体的形成,还会阻碍双链的解开,从而影响DNA的复制和转录。

[2]紫外线对各种微生物的诱变效应因菌种不同而存在很大差异。

微生物遗传育种论文

微生物遗传育种论文

工业微生物诱变育种技术及其应用刘世双(山东农业大学)摘要诱变育种是目前国内外最常用的工业微生物育种技术。

本文综述了几种普遍和新型的物理和化学诱变育种技术及其机理和应用状况,并对这些育种技术存在的问题进行分析,提出了解决问题的有关建议。

通过对当今分子生物学技术的飞速发展和应用的分析,对未来利用基因重组和基因工程等技术进行微生物定向诱变育种进行了展望。

关键词微生物;诱变育种;机制Mutation Breeding Techonologyand Its Application of Industrial MicroorganismLIU Shishuang(Shandong Agricultural University)Abstract mutition breeding is the most common breeding techonology of industrial microorganism at home and abroad untill now. this article generalize several commonly and newly physical and chemical breeding techonology and analyse some major problems,proposing related suggestions.through the analysis of the rapid development of molecular biology and its application,I give my hopes to the application recombinant DNA technology and genetic engineering in microbial-directed mutagenesis breeding.Key words microorganism;mutition breeding;mechanism工业微生物能产生人类生产生活必不可少的药物、食品、化工产品等生物制剂,具有极大的市场潜力和社会价值。

微生物遗传与育种

微生物遗传与育种

一、诱变育种:采用物理和化学等因素对出发菌株进行诱变处理,然后运用合理的筛选程序及适当的筛选方法把符合要求的优良变异菌株筛选出来的一种育种技术。

二、重组育种:利用不同微生物菌株间遗传物质的重组而实现的工业微生物育种技术。

三、重组DNA技术:在体外构建重组DNA分子并导入宿主内表达,从而获得重组工业微生物菌种的育种技术。

分离规律、独立分配规律和连锁遗传是遗传学的三大基本规律。

分离规律分离规律是遗传学中最基本的一个规律。

它从本质上阐明了控制生物性状的遗传物质是以自成单位的基因存在的。

基因作为遗传单位在体细胞中是成双的,它在遗传上具有高度的独立性,因此,在减数分裂的配子形成过程中,成对的基因在杂种细胞中能够彼此互不干扰,独立分离,通过基因重组在子代继续表现各自的作用。

这一规律从理论上说明了生物界由于杂交和分离所出现的变异的普遍性。

独立分配规律(又称自由组合定律) 该定律是在分离规律基础上,进一步揭示了多对基因间自由组合的关系,解释了不同基因的独立分配是自然界生物发生变异的重要来源之一。

独立分配定律是指两对以上独立基因的分离和重组,是对分离规律的发展。

因此分离定律的应用完全适用于独立分配规律。

连锁遗传规律1900年孟德尔遗传规律被重新发现后,人们以更多的动植物为材料进行杂交试验,其中属于两对性状遗传的结果,有的符合独立分配定律,有的不符。

摩尔根以果蝇为试验材料进行研究,最后确认所谓不符合独立遗传规律的一些例证,实际上不属独立遗传,而属另一类遗传,即连锁遗传。

于是继孟德尔的两条遗传规律之后,连锁遗传成为遗传学中的第三个遗传规律。

所谓连锁遗传定律,就是原来为同一亲本所具有的两个性状,在F2中常常有连系在一起遗传的倾向,这种现象称为连锁遗传。

连锁遗传定律的发现,证实了染色体是控制性状遗传基因的载体。

通过交换的测定进一步证明了基因在染色体上具有一定的距离的顺序,呈直线排列。

这为遗传学的发展奠定了坚实地科学基础。

微生物的遗传变异与育种

微生物的遗传变异与育种
变异(variation): 指生物体在某种外因或内因的作 用下所引起的遗传物质结构或数量的改变。即遗传 型的改变。变异频率一般为10-5~10-10、变化后新性 状稳定,可遗传。
饰变(modification):指不涉及遗传物质结构而只 发生在转录、翻译水平上的表型变化,不遗传。
第一节 遗传变异的物质基础
间接引起置换的诱变剂:碱基类似物, 如5-溴尿嘧啶,5-氨基尿嘧啶,8-氮鸟2氨基嘌呤,6-氯嘌呤等。
其作用是:通过活细胞的代谢活动掺入 到DNA分子中。
2、移码突变:DNA序列中一个或少数几个核苷酸增加或缺失
而使该处后面的全部遗传密码的阅读框架改变,进一步引起 转录和转译错误的基因突变。
(1)、移码突变的种类
作用机制:它们的结构与一个嘌呤-嘧啶对很相似,能 嵌入两个相邻的DNA碱基对间,使双螺旋部分解开, 造成碱基增添或缺失。
3、染色体畸变:某些强烈理化因子引起染色体结构上 的缺失、重复、插入、移位和倒位,以及染色体数目 的变化。
诱变剂:电离辐射、烷化剂、亚硝酸等
作用机制
(二)、自发突变:生物体在无人工干预下自然 发生的低频率突变,约为10-6
存在菌:根癌土壤杆菌或根癌农杆菌
(5)、Ri质粒 与Ti质粒相似,但不形成癌,仅生出可再生新植株的 毛状根。
作用:毛状根离体培养,可合成次生代谢物,可作外 源基因的载体。
存在菌:根瘤菌属
(6)、mage质粒(巨大质粒) 含有与共生固氮相关的基因。存在于根瘤菌属。
(7)、降解性质粒
作用:可为降解复杂有机物的酶编码,如CAM(樟 脑)质粒、OCT(辛烷)质粒、TOL(甲苯)质粒、 XYL(二甲苯)质粒、NAP(萘)质粒等。
1、碱基置换: 一对碱基被另一对碱基所置换。 (1)、种类 ①转换:从一种嘌呤变到另一嘌呤 或从一种

微生物遗传育种论文

微生物遗传育种论文

离子注入微生物诱变育种的研究与应用进展郝瑶 11生工1班 20110801111摘要:离子束作为一种新的诱变源虽然在微生物上的应用起步较晚,但成果显著。

这项技术适用于多种微生物,也可以和其它方法结合对菌种进行复合诱变。

这一技术在对微生物诱变育种的研究中,表现出比传统诱变方法高的诱变效率,利用离子注入进行微生物菌种改良已在生产实践中得到广泛的应用,并取得了显著的经济效益和社会效益。

该研究对离子注入微生物诱变育种的理论研究进展和实际应用情况进行了综述。

关键词:离子注入;微生物育种;诱变;综述1 引言离子束作为一种生物品种改良的新技术是由中国科学院等离子体物理研究所[1-2]于1986年开创的,经过近30年的发展,这方面的研究无论在理论上还是实际应用上都取得了一定的进展,已在诱变育种、植物转基因、生命起源和进化以及环境辐射与人类健康等方面取得了一些重要的阶段性研究结果,其中在微生物诱变育种的研究中,利用离子注入进行微生物菌种改良已在生产实践中得到广泛的应用,并取得了较好的研究成果和良好的生产效益[3]。

经过近20多年的发展,无论从理论上还是实际应用中,离子束生物技术已在诱变育种、创造生物体新种质的实用技术研究中取得了一定的进展,为生物的遗传改良开辟了新途径。

2 离子束生物技术的机理和优点2.1 离子束生物技术的作用机理借助于低能离子注入技术使生物体的特征特性发生本质变化,进而对生物体进行遗传改良是离子束生物技术的主导思想,离子生物技术是将能量为几万至几十万伏的离子束射入生物体内,在离子束的能量、质量和电荷三因素作用下,使基因产生突变,再从这些变异的种子中选出优良变异种质,经过培育而成为新品种。

因此,能量、质量、电荷成为离子束生物技术作用的核心,能量沉积效应[4]、质量沉积效应[5]、电荷交换效应[6]是目前离子束生物技术的主要理论依据。

其中,能量沉积指注入的离子与生物体大分子发生一系列碰撞并逐步失去能量,而生物大分子逐步获得能量进而发生键断裂、原子被击出位、生物大分子留下断键或缺陷的过程;质量沉积指注入的离子与生物大分子形成新的分子;动量传递会在分子中产生级联损伤;电荷交换会引起生物分子电子转移造成损伤,从而使生物体产生死亡、自由基间接损伤、染色体重复、易位、倒位或使DNA分子断裂、碱基缺失等多种生物学效应。

微生物的遗传与育种论文

微生物的遗传与育种论文

工业微生物遗传育种学原理与应用综述摘要:本文综述了工业微生物遗传育种的历史地位,介绍了遗传育种的方法和机理,并对其前景进行了展望。

关键词:工业微生物;遗传育种;方法;机理前言:工业微生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造,去除不良性质,增加有益新性状,以提高产品的产量和质量的一种育种方法,使我们获得所需要的高产、优质和低耗的菌种,其目的是改良菌种的特性,使其符合工业生产的要求。

本文主要从工业微生物遗传育种的历史地位、方法与技术、理论机理和发展前景综述了工业微生物育种的研究进展。

1 历史地位工业微生物遗传育种技术是工业发酵工程的核心技术,在其作用下人们获得了许多的高产优质菌株,为生产实践发展起了强大的推动作用。

2 机理及方法2.1 自然选育不经人工处理,利用微生物的自然突变进行菌种选育的过程称为自然选育。

这种选育方法简单易行,可以达到纯化菌种,防止菌种退化,稳定生产,提高产量的目的。

但是自然选育的效率低,因此经常要与诱变育种交替使用,以提高育种效率。

2.2 诱变育种微生物的诱变育种,是以人工诱变手段诱变微生物基因突变,改变遗传结构和功能,通过筛选,从多种多样的变异体中筛选出产量高、性状优良的突变株,并且找出发挥这个变株最佳培养基和培养条件,使其在最合适的环境下合成有效产物[2]。

诱变育种和其他育种方法相比,具有速度快、收益大、方法简单等优点,是当前菌种选育的一种主要方法。

但是诱变育种缺乏定向性,因此诱变突变必须与大规模的筛选工作相配合才能收到良好的效果。

2.3 杂交育种杂交是指在细胞水平上进行的一种遗传重组方式。

杂交育种是利用两个或多个遗传性状差异较大的菌株,通过有性杂交、准性杂交、原生质体融合和遗传转化等方式,而导致其菌株间的基因的重组,把亲代的优良性状集中在后代中的一种育种技术。

通过杂交育种不仅可克服因长期诱变造成的菌株活力下降,代谢缓慢等缺陷,也可以提高对诱变剂的敏感性,降低对诱变剂的“疲劳”效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)结构合理、行文流畅、逻辑严谨、学术语言规范(20分 )
3)观点鲜明、资料翔实、立论深刻、有所创新(30分) 4)注释与参考文献(文献数量、种类、外文文献)(10分
) 5)规范程度:题目、内容提要、关键词、正文、注释、参
考文献(20分) 6)总结全文的主要论点和发展方向,指出目前研究中尚需
解决的问题及研究成果的意义和价值。(10分) 7)字数不少于4000字,每少100字扣1分。
1、题名(黑体,小三,居中)
2、姓名、班级、学号(仿宋、小四、居中)
3、摘要:对全文进行概括,提出研究目的与意义 ,论文主要内容,150字左右(五号,楷体,首行 缩进2字符,行距固定值20磅。“摘要”二字加粗 )
检测细胞内 ATP 水平。
分子生物学家和细胞生物学家利用报告基因研究基 因的表达和调控。
将报告基因引入细胞 DNA 使之与某一特定分子事 件相关,可以为这一分子事件带来可测性。通常检 测的分子事件是基因功能,具有可测性的是发光。
目前,市场上有许多发光报告基因出售。包括:萤 火虫荧光素酶( firefly luciferase ),β-半乳糖 苷酶( B -galactosidase ),β-葡萄糖苷酸酶(B -glucuronidase , GUS ),碱性磷酸酶( alkaline phosphatase ),和人生长激素( human growth hormone , hGH )。
(1)、分子靶点筛选模型---细胞信号通路筛选系统
外界信号从细胞表面传递到细胞内,或者直接穿 过细胞膜进入到细胞质和细胞核,最终影响某些基 因的转录。在这个传递过程中,某些特殊的细胞或 一些病理状况下,可能是其中的一条或几条通路起 作用,药物可以根据需要对这些通路进行阻断。
使用信号通路筛选系统,可直接对药物作用的 分子机制有所了解。
4、关键词:3~8个(五号,楷体,首行缩进2字符 ,各关键词之间加分号;最后一词之后不加标点符 号。 “关键词”三字加粗)
5、正文五号宋体(全文所有西文字体均采用 Times New Roman),首行缩进2字符,行距固定 值20磅。
6、前言:简要介绍研究背景,研究现状(不要与 摘要重复)
Hale Waihona Puke 7、正文标题采用编码格式,一级标题加粗,示例 如下:
第六章 高通量筛选技术 1、简述表面展示技术的方法。 2、什么是报告基因?作为报告基因,在遗传选择 和筛选检测方面应具备哪些条件?常见报告基因有 哪些?
写一篇与微生物遗传育种相关的综述。字数 不低于4000字。
期末成绩=平时20%+实验20%+论文60%
课程论文占60%,其评分标准如下:
1)选题新颖(热点问题的研究、空白问题的探索、老问题 的新视野)(10分)
高 通 量 平 行 合 成 仪
液相芯片检测仪
微 孔 过 滤 板
条形码(barcode)是将宽度不等的多个黑条和空白,按 照一定的编码规则排列,用以表达一组信息的图形标识 符。常见的条形码是由反射率相差很大的黑条(简称条) 和白条(简称空)排成的平行线图案。条形码可以标出 物品的生产国、制造厂家、商品名称、生产日期、图书 分类号、邮件起止地点、类别、日期等许多信息,因而 在商品流通、图书管理、邮政管理、银行系统等许多领 域都得到了广泛的应用。
高通量细胞筛选技术(high-throughput cell-based screening technology) 是以高通量方式研究基因功 能最有效的方法之一。通常,基因功能的初步筛选 在96 孔或384 孔板上进行,通过基因转染将候选基 因导入细胞,或直接将基因表达产物加入细胞培养
液中。
是20世纪80年代后期发展起来的一种筛选新技术。它集计 算机控制、自动化操作、高灵敏度检测、数据结果自动采集和 处理于一体,实现了筛选的快速、微量、灵敏和大规律,日筛 选量达到数万甚至数十万样品次,是筛选技术和方法的一大进 步。
高通量筛选(High throughput screening,HTS)技术 是指以分子水平和细胞水平的实验方法为基础,以 微板形式作为实验工具载体,以自动化操作系统执 行试验过程,以灵敏快速的检测仪器采集实验结果 数据,以计算机对实验数据进行分析处理,同一时 间对数以千万样品检测,并以相应的数据库支持整 体运转的技术体系。
筛选测定方法基于要研究的生物学或医学问题,例 如,要研究抗血管生成活性,选用内皮细胞进行细胞 生长、分化、迁移和粘附等分析测定;研究免疫调 节活性,可选择淋巴细胞或造血细胞进行细胞生长 和分化的分析测定;研究神经营养因子活性,可选用 神经细胞进行细胞存活、突起生长测定。除上述与 细胞表型或形态学相关的检测指标外,细胞信号转 导通路、糖代谢、能量产生和代谢产物分析 (metabolic control analysis) 等代谢通路也是基因 功能重要的研究内容。
ATP的发光检测方法可以检测样品中的所有 微生物,因而被用于检测水中的大肠杆菌含 量,包括饮用水和用于oil field injection , cooling system 以及纸加工过程的工业用水 。ATP的发光检测方法还可以用于药品,化 妆品,牛奶以及其它食品的微生物控制。
1、样品库 2、初筛和复筛 3、活性化合物 4、深入筛选 5、获得少量先导化合物 6、确证筛选药物药理学研究 7、侯选药物 8、临床前研究
微生物遗传育种论文格式及要点 最后工学高等教育教育专区
我国药物高通量筛选起步较晚,且不规范,仅有十多年的研究历史。 1996年中国医学科学院引进国内第一台Bionek2000型实验自动化工 作站; 1998年又引进全国第一台Topcount微量闪烁计数器,使放射配基实 验、放射免疫实验等技术微量化、自动化。 上海药物研究所、北京军事医学科学院分别成立了药物筛选专门机构, 开始从事大规模筛选工作。 西安交通大学药学院贺浪冲教授首创的细胞膜色谱(CMC)为化合物 的体外高通量筛选提供了高选择性、高特异性、高效率的筛选手段。CMC 已成功用于钙离子拮抗剂受体配体结合反应的研究,目前正在进行心血管化 学合成药物的高通量筛选和中药有效部位及有效成分的寻找。今年将建立 CMC自动化筛选体系,促进我国药物高通量筛选技术的全面发展 。
EXCEL
微孔板的使用和光学检测法 工程菌株的裂解 报告基因 流式细胞技术 蛋白质芯片
化学发光指化学反应过程中发射出来的光,又称冷 光;
生物发光是化学发光的一种,专指由酶催化的化学 反应过程中发射出的光。
化学和生物发光经常被用于测定样品中未知成分的 量,并且在过去的十年里在基因表达和基因调控的 研究中发挥着非常重要的作用。
Whatman过滤型做孔板是种多孔形状物体,便于快速和 批量处理样品。板上刻有号码适合于各种微孔板配用仪 器和白动控制装置。
Boekel 微孔板振荡器的特点 独立设定温度,振荡速度和混合时间; 混匀器可以编程设定运行一定时间或者瞬时混合3秒; 内置的盖可以减少污染,样品挥发或者噪音的危险。
一次性吸取 大量液体, 然后每次按 动按钮,仅 仅释放小量 等体积的液 体。大量液 体进行等体 积分装
高灵敏度,低成本,快速以及使用简单使得发光检 测仪成为理想的基因表达研究工具。
所有活细胞都含有 ATP 。 ATP 可以从细胞中提取出 来,用萤火虫荧光素酶检测。在这个发光反应中, ATP 是限制性反应物。
因此,到达发光检测仪光电倍增管的光与样品中 ATP 的含量成比例,相应的与提取 ATP 所用的细胞数成 比例。ATP发光检测方法已经使用了几十年。
结合抗体芯片技术、多路测定技术 (multiplexing) 等新的检测方法,高通量细胞 筛选的应用更为广泛。另外,随着荧光成像读 板仪(fluorescence image plate reader ,FLIPR) 、定量PCR、高通量荧光激活细胞分类器 (HT-FACS) 等检测方法和技术的不断发展和 应用,灵敏度和重现性这两个高通量细胞筛选 的关键问题也逐步得以解决。
1 空间诱发微生物突变的作用机制研究 2 微生物空间诱变的研究与进展 2.1空间诱变对微生物产酶活性的影响 2.2空间诱变对微生物产次级代谢产物活性的影响 2.3 …… 3 问题和展望 3.1 ……
9、正文最后要有结语(或展望)。对全文作总结, 可指出目前研究中存在的问题,今后发展的方向。
(2)、细胞膜表面受体筛选模型
a.G蛋白耦联受体:受体与GTP结合的调节蛋白的耦联 ,在细胞内产生cAMP,从而将外界信号跨膜传递到细胞 内。如趋化因子受体、β-受体阻断剂等。
b.催化受体:为单跨膜受体,分为胞外区,跨膜区和 胞内区。当细胞因子与胞外区结合后,引起多个受体单体 的聚合,每个聚合体的受体单体可以是同一类型,也可以 不同。如EPO、G-CSF、GH受体2个同样的单体;IL-1, GM-CSF,IL-6受体是2个不同的单体;TNF-α是3个同样 的单体;IL-2是3个不同的受体。
c.离子通道耦联受体 :细胞表面一些神经递质的受体 ,自身是一些离子通道,或者与离子通道相耦联。当与配 体结合时,受体构象改变,通道开放,离子进出细胞,引 起电兴奋。
第四章 微生物杂交育种 1、放线菌杂交方法有哪些?简述每种方法的具体 过程?
第五章 基因工程育种 1、简述基因体外定位诱变的方法。
1.大容量,可自动处理12个96孔反应板或480个试管的样品。 2.特别适合于HPLC或LC/MS的样品处理。 3.使用709软件,有易用的图示管架编辑器。 4.无论开口试管或密封试管都有很高精确度。5.Micro215进样量可低至0.5ul。 6.多通道215自动样品处理系统可同时处理8个样品。
第一步是选择分子靶。选择的依据是来源于国际医 学生物学的新成果。目前国际常用的分子靶有以 下几类:A、细胞膜受体;B、离子通道蛋白;C 、酶蛋白;D、细胞核受体;E、转运蛋白。
第二步是建立稳定表达分子靶的生物体系。
靶是蛋白---克隆相对应的蛋白,在大肠杆菌 中表达和提纯;
相关文档
最新文档