《等差数列》第一课时教案
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教材分析本课时的教材为《等差数列》第一节,主要内容是介绍等差数列的概念、性质以及求和公式。
其中,等差数列是初中数学中的重点难点内容之一,有着广泛的应用和重要的意义。
因此,本节课的重点是通过生动形象的案例和实际问题,引导学生直观理解什么是等差数列、等差数列的通项公式、首项、公差以及等差数列的求和公式等重要概念和技巧,进而提高学生对等差数列的掌握能力和理解水平。
二、教学目标1.知识目标:(1) 掌握等差数列的概念、性质,以及求和公式;(2) 了解等差数列的通项公式、首项、公差等关键概念。
2.能力目标:(1) 发现、分析等差数列中的规律,并描述规律;(2) 理解和掌握解决等差数列问题的思路和方法。
3.情感目标:(1) 培养学生的求知欲和探究精神,积极主动地参与课堂活动;(2) 通过生动的案例和实际问题,激发学生学习等差数列的兴趣与好奇心。
三、教学过程设计1.导入环节通过呈现一道有趣的问题,引发学生对等差数列的探究和思考,并带领学生逐步认识和感受等差数列的规律性和内在联系。
问题:解决一道数学谜题,有三个数字,第一个数字是0,第三个数字是8,这三个数字构成了一个等差数列,那么这个等差数列的首项、公差以及通项公式分别是多少?2.讲授环节讲解等差数列的定义和判定方法,并呈现一些具体的案例,帮助学生更好地把握等差数列的概念和特点。
解释等差数列的通项公式的含义和作用,通过具体的案例帮助学生理解和掌握等差数列的通项公式的推导和应用方法。
(3) 等差数列的性质介绍等差数列的两个重要性质:公差不变和任意三项构成等差数列,分别从概念、证明和应用三个方面进行讲解。
3.练习环节通过设计具有启发式和探究性的案例和练习题,让学生在思考和实践中加深对等差数列的理解和掌握。
例:已知等差数列的首项为3,公差为4,求这个等差数列的前10项,以及前10项之和。
4.总结与拓展总结本节课所学的内容,帮助学生梳理自己的学习收获和掌握情况,同时拓展孕育学生对等差数列更深层次的理解和思考。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计【摘要】本文主要介绍了《等差数列》第一课时的教学设计。
在阐述了课时主题和目标。
在正文中,包括了教学内容、教学重点、教学方法、教学步骤和教学资源等内容。
具体来说,教学内容包括等差数列的定义和性质,教学重点在于引导学生理解等差数列的概念和解题方法,教学方法主要以示例引导学生学习,教学步骤分为引入、讲解、练习和总结等环节,教学资源则是指教材、教具等教学辅助工具。
在进行了课时总结和教学反思,帮助教师总结教学经验和改进教学策略。
通过本文的介绍,有助于教师更好地设计和完成《等差数列》第一课时的教学任务。
【关键词】等差数列、第一课时、教学设计、目标、教学内容、教学重点、教学方法、教学步骤、教学资源、课时总结、教学反思1. 引言1.1 课时主题:《等差数列》第一课时教学设计《等差数列》是高中数学中非常重要的一个概念,它在数学和其他学科中都有广泛的应用。
第一课时的教学设计是为了帮助学生建立对等差数列的基本概念和认识,为后续学习打下坚实的基础。
本课时的主题是《等差数列》第一课时教学设计,旨在引导学生了解等差数列的定义、性质和相关计算方法,培养学生的数学思维和分析能力。
通过本课时的学习,学生将能够掌握等差数列的基本概念,理解等差数列的规律,掌握等差数列的通项公式和前n项和公式,培养学生的数学建模能力和解决问题的能力。
希望通过本课时的设计,能够激发学生对数学的兴趣,提高他们的学习成绩,为他们的未来学习和生活打下坚实的数学基础。
1.2 课时目标1. 理解等差数列的定义和性质,能够判断一个数列是否为等差数列;2. 能够求解等差数列的通项公式和前n项和公式;3. 能够应用等差数列的性质和公式解决实际问题;4. 培养学生的逻辑思维能力和数学推理能力;5. 激发学生对数学的兴趣,提高数学学习的积极性。
2. 正文2.1 1. 教学内容本课时的教学内容主要包括等差数列的定义、求公差、求首项、求项数以及等差数列的性质和应用。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计课程目标:
1. 了解等差数列的定义和特点。
2. 掌握等差数列的通项公式和前n项和公式。
3. 能够应用等差数列的知识解决简单的实际问题。
教学重点:
教学过程:
第一步:引入
1. 引导学生回顾初一学过的数列知识,思考数列的特点。
2. 引出本课主题——等差数列。
3. 通过图示,让学生感知等差数列的特点。
第二步:探究
1. 让学生自己找规律,确定等差数列的通项公式。
第三步:总结
第四步:练习
1. 在白板上提供一些等差数列的题目,让学生在课堂上解决。
第五步:归纳
1. 让学生总结本节课所学的知识点,填写知识点总结表格。
2. 引导学生思考等差数列在生活中的应用。
第六步:拓展
3. 提供一些等比数列和等差数列混合的题目进行练习。
板书设计:
通项公式
前n项和公式
实际应用
练习题:
1. 求下列等差数列的通项公式:
(1)2,4,6,8,…;(2)5,1,-3,-7,…。
3. 甲、乙两人在一起锻炼身体,甲从1kg开始,每天增加1kg,乙从3kg开始,每天增加0.5kg。
问第几天两人的重量相等?该天各重多少?
4. 一条铁路上两站的距离为150公里,汽车由前一站以每小时50公里的速度上行,1.5小时后发现比原定时间晚45分钟到达后一站;若改以60公里每小时的速度上行,则比原定时间早36分钟到达后一站。
求原定的车速是多少?。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教学目标1. 知识目标:掌握等差数列的概念和性质,能够计算等差数列的通项公式和前n 项和公式;2. 能力目标:能够通过观察一组数字判断是否为等差数列,并能够使用等差数列的性质解决实际问题;3. 情感目标:培养学生对数学的兴趣和热爱,增强学生的逻辑思维和问题解决能力。
二、教学内容本课时的教学内容是等差数列的概念、性质和求解方法。
三、教学重难点重点:等差数列的概念和性质;难点:如何确定等差数列的公差和首项。
四、教学过程1. 导入(5分钟)教师可以通过以下问题引入本堂课的内容:(1)小明每天早上7点半从家里出发去上学,他到学校的时间大约是每天都一样的,你能想一种方法来表示每天出发的时间吗?(2)玩具车比赛时,小红从起点出发,每秒钟车程增加5米,你能想一种方法来表示她的车程吗?2. 概念讲解(10分钟)(1)引导学生观察给出的一组数字:3,6,9,12,……(2)提问:这组数字有什么特点?如何表示它们之间的关系?(3)解释等差数列的概念:如果一个数列中,从第二个数起,每一个数都与它的前一个数之差相等,那么这个数列就叫做等差数列。
3. 性质讲解(10分钟)(1)引导学生观察等差数列的差值:3,3,3,3,……(2)提问:差值与等差数列的哪些性质有关?(3)解释等差数列的性质:等差数列的差值叫做公差,用d表示;首项是等差数列中的第一个数,用a1表示。
4. 计算公式(15分钟)(1)引导学生观察等差数列的前两项和差值:1,3,6,10,……(2)提问:如何求等差数列的第n项和,有没有公式呢?(3)解释等差数列的通项公式:如果一个等差数列的第一项是a1,公差是d,那么它的第n项是an=a1+(n-1)d。
(4)解释等差数列的前n项和公式:如果一个等差数列的第一项是a1,公差是d,它的前n项和是Sn=(n/2)(a1+an)。
5. 计算练习(20分钟)(1)教师板书几道等差数列的题目,让学生通过计算找出答案。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教学目标1. 知识与技能:学生能够理解等差数列的定义、性质和通项公式,掌握等差数列的求和公式,掌握等差数列的应用题目解题方法。
2. 过程与方法:培养学生的逻辑思维和数学分析能力,引导学生探究、发现等差数列的规律,培养学生的数学建模能力。
3. 情感态度与价值观:引导学生态度认真,积极主动参与课堂讨论和课后习题练习,培养学生对数学的兴趣和信心。
二、教学内容1. 等差数列的定义和性质2. 等差数列的通项公式3. 等差数列的求和公式4. 等差数列的应用题目解题方法四、教学过程设计1. 导入(5分钟)教师通过举例引入等差数列的概念,让学生了解等差数列是指数列中任意两个相邻的项之差都是一个常数,称为公差。
引导学生思考公差与等差数列的关系。
2. 概念讲解(15分钟)通过实例,教师讲解等差数列的定义和性质,包括首项、公差、通项公式和前n项和公式。
并通过图示和例题,让学生理解等差数列的规律和特点。
4. 错题讲解(10分钟)针对学生在课堂练习中出现的典型错误进行讲解和订正,并强调等差数列的解题方法和答题技巧。
5. 练习与巩固(20分钟)教师让学生进行练习题目,巩固等差数列的求和公式和应用题目解题方法。
鼓励学生积极思考,主动参与课堂讨论。
6. 课堂小结(5分钟)教师对本节课的内容进行小结,强调等差数列的主要知识点和解题方法,提醒学生巩固复习。
五、教学手段1. 板书2. 多媒体教学3. 举例分析4. 练习和讨论通过本节课的设计和实施,能够引导学生深刻理解等差数列的概念和性质,掌握等差数列的通项公式、求和公式和解题方法,培养学生的逻辑推理和数学分析能力,提高学生的数学学习兴趣和自信心。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计课时:第一课时教学目标:1. 理解等差数列的概念和特点;2. 能够求解等差数列的通项公式;3. 能够判断数列是否是等差数列,并求出等差数列的公差;4. 能够应用等差数列解决实际问题。
教学重点:1. 理解等差数列的概念和特点;2. 能够求解等差数列的通项公式。
教学准备:1. 教师准备教学课件和多媒体设备;2. 学生准备课本、作业本和笔记本等学习材料。
教学过程:Step 1 导入新课(5分钟)1. 教师通过多媒体展示几个数字的排列,让学生思考这些数字之间是否有规律;2. 通过问答的形式引导学生发现数字之间的规律,并引出等差数列的概念。
Step 2 探究等差数列的特点(15分钟)1. 教师通过示例展示等差数列的特点,如公差相同、相邻项之间的差恒定等;2. 引导学生根据示例找出两个差恒定的数字序列,让学生自主发现等差数列的特点。
Step 3 等差数列的通项公式(30分钟)1. 教师通过多媒体展示等差数列的通项公式,并解释公式中各项的含义;2. 引导学生通过示例计算等差数列的通项,培养学生运用公式解题的能力。
Step 5 应用等差数列解决实际问题(20分钟)1. 教师通过示例展示如何应用等差数列解决实际问题,如计算某年龄段人口数量、计算等差数列中的某一项等;2. 引导学生通过实际问题的变化,灵活运用等差数列解决实际问题。
Step 6 小结与反馈(10分钟)1. 教师对本节课的重点知识进行总结,并强调学生需要继续巩固的内容;2. 鼓励学生讨论本课的问题和困惑,并互相解答。
教学反思:通过本课的设计与实施,学生能够初步理解等差数列的概念和特点,并掌握求解等差数列的通项公式的方法。
但在判断数列是否为等差数列及求公差的部分,学生存在一定的困难,需要加强练习和巩固。
在应用等差数列解决实际问题的环节,也需要引导学生加强问题分析和解决能力,更好地应用所学知识。
等差数列第一课时教学设计.
等差数列第一课时教学设计.
【教学目标】
1. 理解等差数列的概念,掌握等差数列的通项公式;
2. 逐步灵活应用等差数列的概念和通项公式解决问题.
3. 通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想.
【教学重点】
等差数列的概念及其通项公式.
【教学难点】
等差数列通项公式的灵活运用.“等差”的理解
【教学方法】
本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.
【教学过程】。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计教学目标:1. 能够理解等差数列的定义和性质。
2. 能够通过给定前几项,判断数列是等差数列,并能求出公差。
3. 能够根据给定的前几项和公差,求出数列的通项公式。
4. 能够应用等差数列的概念和公式解决实际问题。
教学难点:1. 根据前几项和公差求等差数列的通项公式。
2. 应用等差数列解决实际问题。
教学准备:1. 教材《高中数学(上)》第四章第五节。
2. 教学用板书。
教学过程:一、导入(5分钟)1. 大声读出“等差数列”三个字,并向学生解释等差数列是什么。
2. 通过举例子让学生感受等差数列的特点,如:1, 4, 7, 10,…。
二、探究等差数列的性质(15分钟)1. 师生团队探讨:上一个例子中的数列是否是等差数列?为什么?2. 教师给出等差数列的定义:“若一个数列中任意相邻的两项之差保持不变,则该数列称为等差数列。
”3. 教师提问并鼓励学生思考:如何判断一个数列是等差数列?如果是等差数列,如何求出公差?4. 指导学生通过分析相邻两项之差的规律,并引入公差的概念。
三、求等差数列的公差和通项公式(15分钟)1. 教师给出公差的定义:“等差数列中相邻两项的差称为公差。
”并示例求出前一步提到的例子中的公差。
2. 教师引导学生观察相邻两项之差与项数之间的关系,并得出公差与项数之间的关系式。
3. 教师引导学生观察数列的项与项数之间的关系,并得出通项公式。
4. 通过例题让学生熟悉求等差数列的公差和通项公式的过程。
四、应用等差数列解决实际问题(20分钟)1. 教师给出相关实际问题,如:“如果我们每天存储20元,按此规律,第n天共存储了多少元?第n天的存储总额与第n-1天的存储总额之差是多少?”2. 学生小组合作解题,并向全班汇报解题思路和答案。
3. 教师点评学生的解题思路,并提醒学生注意实际问题与等差数列的联系。
五、巩固练习与拓展延伸(20分钟)1. 学生个体完成课本上相关练习题。
2. 学生讨论并解决一些拓展问题,如:“如果已知等差数列的前3项和为30,公差为4,请问该等差数列的首项为多少?”3. 教师巡回辅导学生,并展示正确答案。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教学目标:1. 知识目标:学生能够了解等差数列的定义、性质和常用公式,并能够应用等差数列的概念解决实际问题。
2. 能力目标:学生能够熟练运用等差数列的公式进行计算,并能够分析和解决实际问题。
3. 情感目标:培养学生对数列概念的兴趣,激发学生对数学的学习热情。
二、教学重点和难点:1. 教学重点:等差数列的定义、常用公式和应用。
2. 教学难点:能够应用等差数列的概念解决实际问题。
三、教学过程:第一步:导入(5分钟)教师通过引入数列的概念,引出等差数列,并通过一些实际例子向学生解释等差数列的定义和特点。
第二步:讲解与示范(15分钟)1. 教师通过幻灯片或板书介绍等差数列的定义和性质;2. 教师通过实际例子讲解等差数列的常用公式和应用;3. 教师通过示范计算等差数列的一些典型问题,引导学生掌握等差数列的求和公式和通项公式。
第三步:练习与讨论(20分钟)1. 学生进行课堂练习,通过计算具体的等差数列题目加深对于等差数列的理解;2. 学生进行小组讨论,就等差数列的应用问题展开讨论,并通过展示解题思路和方法,培养学生的分析问题和解决问题的能力。
第四步:总结梳理(5分钟)教师对本节课的内容进行总结梳理,并强调等差数列的重要性和应用。
第五步:作业布置(5分钟)教师布置相关的练习题目,要求学生通过练习巩固本节课的内容,并引导学生思考如何将等差数列的概念应用到实际生活中。
四、教学手段:1. 幻灯片或板书2. 练习题目3. 学生讨论小组六、教学反思:本节课通过引入数列的概念,引出等差数列,并通过实际例子向学生解释等差数列的定义和特点。
通过讲解和示范,学生能够初步理解等差数列的概念和特点。
通过练习和讨论,学生能够加深对等差数列的理解,并且培养学生分析问题和解决问题的能力。
通过总结梳理,学生能够对本节课的内容有一个清晰的理解。
通过作业布置,学生能够通过练习巩固本节课的内容,并应用等差数列的概念解决实际问题。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教学目标:1. 知识与技能目标:学生能够理解等差数列的定义,并能够利用等差数列的通项公式计算等差数列的前n 项和。
2. 过程与方法目标:培养学生的逻辑思维和抽象思维能力,学会利用数学方法解决实际问题。
3. 情感、态度与价值观目标:引导学生对数列的规律产生兴趣,培养学生的数学思维和解决问题的兴趣。
二、教学重点:1. 理解等差数列的定义。
2. 理解等差数列的通项公式。
3. 计算等差数列的前n项和。
四、教学过程设计:1. 导入(5分钟):教师询问学生曾经听说过等差数列吗?并简要介绍等差数列的概念。
然后,给学生出示一个数字序列:2, 5, 8, 11, ...,让学生观察并找出序列中的规律。
2. 概念讲解(10分钟):教师介绍等差数列的定义:若一个数列中,从第二个数起,每一个数都是前一个数加上一个固定的数d,则称该数列为等差数列,其中d称为公差。
然后,再给学生解释上个例子中的规律,即公差为3。
3. 通项公式讲解(15分钟):教师引导学生进行讨论,询问学生如何计算等差数列的第n项。
然后,教师引导学生进行归纳,得出等差数列的通项公式:An = A1 + (n-1)d,其中An表示第n项,A1表示首项,d表示公差。
4. 实例分析(10分钟):教师给学生提供一个等差数列的实例:3, 7, 11, 15, ...,然后让学生根据所学的知识计算该等差数列的前5项和。
5. 练习与巩固(15分钟):教师出示几个等差数列,让学生计算其前n项和,并在黑板上进行解答。
6. 拓展(10分钟):教师出示一个问题:已知等差数列的前五项和为15,求该等差数列的公差。
引导学生运用所学的知识解决问题。
7. 归纳总结(5分钟):教师帮助学生总结本节课所学的知识点,并强调等差数列的重要性。
五、板书设计:等差数列通项公式:An = A1 + (n-1)d公差的求法:已知等差数列的前n项和为Sn,公差为d,则公差d可由Sn与n的关系求得。
数学等差数列教案(优秀5篇)
数学等差数列教案(优秀5篇)高一数学等差数列教案篇一一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的`极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
二、学生学习情况分析教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。
三、设计思想1.教法⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑴分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑴讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
2.学法引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计教学目标:1、通过学习,掌握等差数列的定义及其性质;2、培养学生观察、分析和解决问题的能力;3、培养学生合作学习的能力;4、通过实际生活中的例子,激发学生对数学的兴趣。
教学重点:1、等差数列的定义;2、等差数列的通项公式;3、等差数列的前n项和公式。
教学准备:1、教师准备计算机及投影仪;2、教师准备图表和实际问题的例子;3、学生准备笔记本和课本。
教学过程:一、导入(5分钟)通过一个实际生活中的例子引入等差数列的概念,树木的年龄。
二、新知呈现(15分钟)三、示范演练(20分钟)选取一些典型的等差数列题目,通过教师示范解题,引导学生运用等差数列的性质和公式解决问题。
四、合作学习(20分钟)将学生分成小组,每个小组选择一个等差数列的例子,通过合作讨论解答问题,并将结果展示给全班。
五、巩固练习(15分钟)学生独立完成练习题,对学生的掌握情况进行评价。
六、总结反思(10分钟)教师对本节课的重点内容进行总结,并提醒学生课后复习。
教学辅导、鼓励学生积极参与课堂活动,及时纠正学生的错误,激发学生对数学的兴趣和学习的动力。
教学设计的难点和解决方案:难点:学生理解并运用等差数列的通项公式和前n项和公式。
解决方案:通过多种实例和计算展示其应用,帮助学生理解和记忆公式,并设计合适的练习题让学生加深印象和应用能力。
难点:运用等差数列的性质解决实际问题。
解决方案:选取一些具有实际意义的例子,通过示范演练和小组合作学习,引导学生运用等差数列的性质解决问题,激发学生思考和分析问题的能力。
通过以上设计,能够培养学生对等差数列的兴趣,掌握等差数列的定义及其性质,并能够运用等差数列的公式解决实际问题。
通过合作学习和课后复习巩固,提高学生的学习效果和学习兴趣。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教学目标1. 知识与能力:(1)掌握等差数列的概念;(2)了解等差数列的性质和特点;(3)能够求解等差数列的通项公式和前n项和公式;(4)能够运用等差数列解决实际问题。
2. 过程与方法:(1)通过讲解、示范和练习的方式教学;(2)引导学生进行思维的碰撞,培养学生的逻辑思维能力;(3)激发学生的学习兴趣,提高学生的学习动力。
3. 情感态度价值观:(1)培养学生的合作精神和团队意识;(2)鼓励学生勇于探索、勇于实践,培养学生的探究精神。
二、教学重难点1. 教学重点:等差数列的概念、性质和公式的求解。
2. 教学难点:等差数列的前n项和公式的推导。
三、教学过程1. 导入(5分钟)呈现一组数字序列:2,4,6,8,10,……,让学生观察并找出规律。
看出这组数列是等差数列,每一项与前一项的差均相等。
2. 概念讲解(10分钟)(1)教师引导学生总结等差数列的概念:在一个数列中,从第二项起,每一项与它的前一项之差等于一个常数d,这个数列称为等差数列,公差d即为等差数列中的两项之差。
(2)举例讲解,让学生理解等差数列的基本概念。
3. 性质讲解(10分钟)(1)等差数列中,任意三项成等差数列;(2)任意等差数列的前n项和公式的关键在于首项和末项的和与次首项和次末项的和相等;(3)讲解等差数列的通项公式和前n项和公式的求法。
4. 公式的求解(15分钟)(1)教师讲解等差数列的通项公式和前n项和公式的求法;(2)通过例题讲解,让学生掌握等差数列的公式求解方法。
5. 练习(15分钟)(1)教师布置练习题,让学生独立完成;(2)对学生进行辅导和指导;(3)检查学生的答题情况,及时给予反馈。
6. 拓展应用(10分钟)讲解等差数列在实际生活中的应用,如日常生活中的数学应用题、物理运动问题等。
7. 总结与归纳(5分钟)教师对本节课的主要内容进行总结,并提出下节课的预习任务,鼓励学生多加练习,巩固所学知识。
等差数列教案第一课时市公开课一等奖教案省赛课金奖教案
等差数列教案第一课时一、教学目标:1. 理解等差数列的概念,能够正确地列出等差数列的通项公式;2. 掌握等差数列的求和公式,能够用求和公式计算等差数列的和;3. 能够应用等差数列的概念和公式解决实际问题。
二、教学重点:1. 理解等差数列的概念,能够正确地列出等差数列的通项公式;2. 掌握等差数列的求和公式,能够用求和公式计算等差数列的和。
三、教学难点:能够应用等差数列的概念和公式解决实际问题。
四、教学过程:1. 导入(5分钟)教师可以通过提问的方式导入,例如:“小明种植了一排树木,第一棵树距离大门10米,第二棵树距离第一棵树20米,第三棵树距离第二棵树30米,以此类推,你能发现什么规律?这些数之间有什么特点?”2. 概念解释(15分钟)引导学生讨论并总结出等差数列的概念:“等差数列是指数之间的差值相等的数列。
在等差数列中,我们称这个差值为公差,用d表示。
”教师可以给出示例,如1, 3, 5, 7, ...等,并解释数列中的每个数依次加上公差d就可以得到下一个数。
3. 列出通项公式(15分钟)通过示例引导学生找出等差数列的通项公式。
以示例1, 3, 5, 7, ...为例,学生可以发现每个数都可以表示为a + (n-1)d的形式,其中a为第一个数,n为项数,d为公差。
因此,该等差数列的通项公式为an = a + (n-1)d。
4. 使用通项公式求值(15分钟)教师通过例题演示如何使用通项公式求等差数列中的某一项的值。
例如:“求等差数列1, 3, 5, 7, ...中第10项的值。
”学生可以利用通项公式an = a + (n-1)d,将a设为1,d设为2,n设为10,代入公式计算得到an的值为...5. 求等差数列的和(15分钟)引导学生思考如何求等差数列的和,并给出等差数列求和的公式:Sn = n/2 (2a + (n-1)d),其中Sn表示等差数列的和。
教师通过例题演示如何使用求和公式计算等差数列的和。
等差数列教学设计(一课时)
2.2.1《等差数列》教案设计教材分析1.教案内容分析本节课是《普通高中课程规范实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。
主要内容是等差数列定义和等差数列的通项公式。
2.地位与作用数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.教案目标知识目标1.理解并掌握等差数列的定义,能用定义判断一个数列是否为等差数列;2.掌握等差数列的通项公式.能力目标1.通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。
2.培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识.情感目标通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.教案重难点重点1.等差数列的概念;2.等差数列的通项公式的推导过程及应用.难点理解等差数列“等差”的特点及通项公式的含义.教案设想本课教案,重点是等差数列的概念,在讲概念时,通过创设情境引导学生理解概念,进一步引导学生通过概念来判断一个数列是否是等差数列。
整个过程以学生自主思考、合作探究、教师适时点拨为主,真正体现课堂教案中学生的主体作用。
教案过程教案环节教师活动学生活动设计意图环节一环节1 创设情境,提出问题在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:(1)1682,1758,1834,1910,1986,()你能预测出下一次的大致时间吗?主持人问: 最近的时间什么时候可以看到哈雷慧星?天文学家陈丹说: 2062年左右。
通常情况下,从地面到10公里的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗学生活动通过情景引出数列,观察发现其规律,并通过规律填写内容。
《等差数列》第一课时教案
《等差数列》第一课时教案一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点根据教学大纲的要求我确定本节课的教学重点为:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。
同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
二、教法分析针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计教学目标:1.了解等差数列的定义和性质;2.掌握等差数列的通项公式及其推导过程;3.能够计算等差数列的前n项和。
教学难点:等差数列通项公式的推导。
教学准备:投影仪、黑板、粉笔、课件、举例用的物件(如铅笔、橡皮擦等)。
教学过程:Step 1:导入(5分钟)引入等差数列的概念,让学生回忆一下对等差数列的认识。
然后,通过举几个简单的例子,引导学生思考等差数列有什么特点。
Step 2:引入(10分钟)通过投影仪或者黑板展示等差数列通项公式an+b的推导过程,通过多个具体的例子,帮助学生理解等差数列的通项公式。
Step 3:练习(15分钟)提供一些练习题,要求学生计算给定等差数列的前n项和。
教师可以提供一些简单的等差数列,让学生上台演算,并帮助分析解题思路和方法。
Step 4:总结(10分钟)总结等差数列的定义、性质和通项公式。
并通过实例验证通项公式的正确性。
Step 5:拓展(10分钟)引导学生思考等差数列的应用领域,如金融、统计等方面,并展示一些实际应用案例。
Step 6:课堂练习(10分钟)布置若干道练习题,要求学生在课堂上完成,并检查答案。
Step 7:课堂小结(5分钟)回顾本节课所学的内容,并对学生的表现给予肯定和鼓励。
教学反思:通过这节课的教学,学生对等差数列的概念和性质有了初步的了解,并能正确运用等差数列的通项公式进行求解。
课堂氛围活跃,学生的参与度较高,但是对于一些更复杂的推导过程还不够理解。
今后在教学中,可以通过更多的实例和例题帮助学生更好地掌握等差数列的推导过程,同时扩大教学内容,让学生更好地理解等差数列的应用。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计教学目标:1. 了解等差数列的概念和性质;2. 掌握等差数列的通项公式及其推导方法;3. 能够应用等差数列的通项公式解决实际问题。
教学准备:1. 教材《等差数列》;2. 教学工具:黑板、粉笔、投影仪。
教学步骤:Step 1 引入导入(5分钟)1. 定义等差数列:等差数列是指一个数列中,从第二项起,每一项与它的前一项的差都相等。
2. 举例说明等差数列:如2,5,8,11,14,...,其中公差为3。
Step 2 理解等差数列的性质(10分钟)1. 性质一:等差数列的任意三项可以构成一个等差数列。
2. 性质二:等差数列的前n项和可以表示为Sn = (a1 + an) * n / 2,其中a1为首项,an为末项,n为项数。
3. 通过例题讲解以上性质。
Step 3 推导等差数列的通项公式(15分钟)1. 通过观察等差数列的特点,向学生提问“如何通过前一项的值得到后一项的值?”引导学生思考。
2. 引导学生发现等差数列的通项公式为an = a1 + (n-1)d,其中d为公差。
3. 通过代入数列的首项和公差,推导等差数列的通项公式。
Step 4 应用等差数列的通项公式解决实际问题(20分钟)1. 通过例题讲解如何应用等差数列的通项公式解决实际问题。
2. 引导学生思考和讨论如何根据问题提取出等差数列的相关信息,并代入通项公式求解。
Step 5 小结巩固(5分钟)1. 通过复习等差数列的概念、性质、通项公式,以及解决实际问题的方法,巩固学生的学习成果。
2. 提出问题,检查学生对等差数列的理解程度。
Step 6 作业布置(5分钟)1. 布置练习题,让学生独立完成并检查答案。
2. 鼓励学生多做练习,巩固所学内容。
教学反思:本节课通过清晰的教学目标和重点难点,帮助学生理解了等差数列的概念和性质,掌握了等差数列的通项公式及其推导方法,并能够应用等差数列的通项公式解决实际问题。
通过提问、讲解和实例演示等教学方法,激发了学生的积极性和思考能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等差数列》第一课时教案
一、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据教学大纲的要求我确定本节课的教学重点为:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。
同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
二、教法分析
针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,
六个教学环节构成。
(一)复习引入:
1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。
(N﹡;解析式)
通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。
2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①
3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②
通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。
由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二) 新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。
强调:
①“从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一个数列公差0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0。