等差数列
等差数列
数列专题(一)——等差数列1.等差数列定义:⇔∈=-+为常数d N n d a a n n ),(*1数列}{n a 为等差数列。
2.等差数列的通项公式1(1)n a a n d =+-; 3.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 4.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=;(4)n S 为等差数列}{n a 的前n 项和,则数列,...,,232m m m m m S S S S S --也是等差数列. 基础题1.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.82.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。
3.设等差数列}{n a 的前n 项和为n S ,若2,11952-=+-=a a a ,则当n S 取最小值时,n 等 于( ) A. 9 B. 8 C. 7 D. 64.(15年广东理科)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a +=5.(15年新课标2文科)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.已知等差数列}{n a 中,其前n 项和为n S ,36,963==S S ,则._______987=++a a a 提高题1.(15年新课标2理科)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.2.已知等差数列}{n a 中,若,0,031110119<⋅<+a a a a 且数列}{n a 的前n 项和n S 有最大值,那么n S 取得最小正值时n 等于( ) A. 20 B. 17 C. 19 D. 213.已知等差数列}{n a 中,其前n 项和为n S ,且满足35124,2a a a a a n n n -=-=++,则7S =( ) A. 7 B. 12 C. 14 D. 214.在等差数列}{n a 中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( ) A. 9 B. 10 C. 11 D. 125.设n n T S ,分别是等差数列}{},{n n b a 的前n 项和,且5959=T S ,则35b a的值为_________.6.(15年福建文科)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.7.【2015高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬∙⎩⎭的前n 项和为21nn +. (I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .一、等差数列3.等差数列的通项公式1(1)n a a n d =+-; 2.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 3.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=. 基础题2.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.8 答案:C5.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。
等差数列公式大全
等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m)d ⇒ d=m n a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则m n a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。
8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 9、n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ①首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ②首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 10、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a ,奇s -偶s =d n 2 偶奇s s =122+nna a 11、等差数列的判别方法:⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N*)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p,q 为常数) ⇔ {n a }是等差数列 ⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。
等差数列
(2) 4, 8, 12, 16, 20 ,…
a1 4 d a 2 a1 4 an a1 (n 1)d 4 (n 1) 4
a n 4n
(3) 7, 4, 1, -2, -5, …
a1 7 d a 2 a1 3 an a1 (n 1)d 7 (n 1) ( 3)
Sn
n(a1 a n )
求和公式2: S n na 1
d
例 在等差数列中: (1)已知 a1 5, a10 15,求 S10 ; (2)已知 a1 5, d 3,求 S 20 .
解 (1)S10
10 (a1 a10 ) 2 10 (5 15) 2
四、前n项的求和公式
Sn a1 a 2 a 3 an
求和公式1:
Sn
n(a1 a n ) 2
例 求1ห้องสมุดไป่ตู้100的所有整数之和.
解 a1 1、d 1
S100 100 (1 100) 2
50 101 5050
2 将 an a1 (n 1)d 代入,得: Sn n(a1 a1 (n 1)d) 2 2na 1 n(n 1)d 2 n(n 1) 2
Sn 999 n(a1 a n ) 2 n( 20 54) 2
n 27
a 27 a1 26d
54 20 26d
d
34 26
17 13
4.在等差数列中 a15 10, d 2, 求S16 .
解 a15 a1 14d
10 a1 14 2 a1 38
a1 a4 a1 a1 3d 2a1 3 ( 2) 10 a1 8
等差数列(经典)
有 G2 ab或者G ab
3、若等比数列 an 的首项是 a1 ,公比是 q ,则 an a1qn1
4、通项公式的变形:
an amqnm
5、若an 是等比数列,且 m n p q ,则 aman apaq ;( m 、 n 、 p 、 q * )
6 若an是比差数列,且 m n 2 p,则aman a2p :( m 、 n 、 p N* )
二.等比数列:
1、如果一个数列从第 2 项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等差数列,
这个常数称为等比数列的公比。用
an1 q an an q(n
表示 1)
.
an1
2、由三个数 a ,G,b 组成的等比数列可以看成最简单的等比数列,则 G 称为 a 与 b 的等比中项.则
有 2A a b,A a b . 2
3、若等差数列 an 的首项是 a1 ,公差是 d ,则 an a1 n 1d .
4、通项公式的变形:
an am n md .
5、若an 是等差数列,且 m n p q ,则 am an ap aq ;( m 、 n 、 p 、 q * )
数列知识点总结
一.等差数列:
1、如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,
这个常数称为等差数列的公差.用
an an1 an1 an
常数(n 常数(n
2, 且n N*)
N
*) 表示
2、由三个数 a , ,b 组成的等差数列可以看成最简单的等差数列,则 称为 a 与 b 的等差中项.则
等差中项法 2an an-1 an(1 n 2)
只要满足一个条件
那么 an等差数例
等差数列定义
等差数列定义
等差数列是一种常见的数列,其定义为:一个数列中,相邻两项之差都是固定值,这个固定值称为等差数列的公差,通常用字母 d 表示。
例如,数列 1,4,7,10,13,16 就是一个等差数列,其中,公差为 3。
等差数列的通项公式是:an = a1 + (n-1)d,其中 an 表示等差数列的第 n 项,a1 表示等差数列的第一项,n 表示数列中的项数,d 表示公差。
等差数列的性质有:
1. 公差相等性质:一个数列中,相邻两项之差都是固定值,这个固定值称为等差数列的公差,公差相等。
2. 首项性质:等差数列的第一项称为首项,通常用 a1 表示。
3. 末项性质:等差数列的最后一项称为末项,通常用 an 表示。
4. 项数性质:等差数列中项的数量称为项数,通常用 n 表示。
5. 总和性质:等差数列的前 n 项和称为总和,通常用 Sn 表示。
通过这些性质,可以求解等差数列的各种问题。
例如,可以根据已知的等差数列前几项和公差,求出数列的通项公式和第 n 项的值;也可以根据已知的等差数列前几项,求出数列的前 n 项和。
等差数列在数学中有广泛的应用,例如在科学和工程中,可以用等差数列描述时间、距离、速度等变化规律;在金融领域中,可以用等差数列描述资金的增长和降低等变化规律。
等差数列的概念
等差数列的概念等差数列是指数列中相邻两项之差恒定的数列。
在数学中,等差数列是一种重要的数列类型,具有广泛的应用。
它在数学、物理、经济等领域都有着重要的地位和作用。
一、等差数列的定义等差数列的定义比较简单,即数列中任意两项之差都相等。
数列的通项公式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
二、等差数列的性质1. 公差:等差数列中相邻两项之差称为公差,常用字母d表示。
公差可以是正数、负数或零,代表着数列中每一项之间的间隔。
2. 首项和末项:等差数列中的第一项为首项,常用字母a1表示;最后一项为末项,常用字母an表示。
3. 通项公式:等差数列的通项公式可以用来表示数列中任意一项的值。
根据公式an = a1 + (n-1)d,我们可以轻松地求得数列中任意一项的值。
4. 总和公式:等差数列的前n项和可以用总和公式来表示。
总和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项和。
5. 递推关系:等差数列中的每一项都可以通过前一项加上公差得到。
这种递推关系使得我们可以通过已知条件计算出其他项的值。
三、等差数列的应用等差数列在数学上具有广泛的应用,它们可以通过表达式和性质来解决各种问题。
1. 数学应用:等差数列常常用来解决一次方程和一次不等式的问题。
通过等差数列的性质和公式,我们可以求解未知项的值,计算前n项和,判断数列的增减性等。
2. 物理应用:等差数列在物理学中也有重要的应用。
例如,物体匀速运动的位移、速度和加速度等可以通过等差数列来表示和计算。
3. 经济应用:等差数列在经济学中的应用也非常广泛。
例如,在贷款计算和投资分析中,我们常常需要利用等差数列的公式来计算每期的利息、本金和回报率等。
四、等差数列的例题分析为了更好地理解等差数列的概念和应用,我们来看几个例题。
例题1:已知等差数列的首项为2,公差为3,求该数列的前5项和。
解法:根据等差数列的总和公式Sn = (n/2)(a1 + an),代入已知条件,得到S5 = (5/2)(2 + 2 + 3×4) = 35。
等差数列
3.设 {an} 是一个公差为 d(d0) 的等差数列, 它的前 10 项和 S10=110, 且 a1, a2, a4 成等比数列. (1)证明: a1=d; (2)求公差 d 的 值和数列 {an} 的通项公式.
(1)证: ∵a1, a2, a4 成等比数列, ∴a22=a1a4. 而 {an} 是等差数列, 有 a2=a1+d, a4=a1+3d.
∵b1=-29, 公差 d=2, ∴T15=15(-29)+1572=-225.
故所求前 n 项和的最小值为 -225.
7.已知等差数列 {an} 的首项是 2, 前 10 项之和是 15, 记An=a2 +a4+a8+…+a2n (nN*), 求 An 及 An 的最大值. 解: 设等差数列 {an} 的公差是 d, 由已知: a1=2 且 10a1+45d=15. 1 解得: a1=2d=- 9 . ∴An=a2+a4+a8+…+a2n=na1+d[1+3+7+…+(2n-1)] =na1+d(2+22+23+…+2n-n) 1 (19n+2-2n+1). 2n2-2 1 = =2n- 9 ( 2-1 -n) 9 求 An 的最大值有以下解法: 法1: 由 a1>0, d<0, 则有 a1>a2>…>ak≥0>ak+1>…. 由 ak=2- 1 ( k 1) ≥0 得 k≤19. 由 k=2n≤19(nN*) 得 n≤4. 9 即在数列 {a2n} 中, a21>a22>a23>a24 >0>a25>…. ∴当 n=4 时, An 的值最大, 其最大值为: 4+1)= 46 . {An}max= 1 (19 4+2 2 9 9
等差数列的概念、性质及其应用
等差数列的概念、性质及其应用等差数列是数学中的一种常见数列形式,也是初等数学中较为基础的概念之一。
它在数学、物理等领域中都有广泛的应用。
本文将围绕等差数列展开,介绍等差数列的概念、性质及其应用。
一、等差数列的概念等差数列是指数列中的任意两个相邻项之间的差恒定的数列。
设数列的首项为a1,公差为d,则数列中的任意一项可以表示为an=a1+(n-1)d。
其中,a1为首项,d为公差,n为项数。
二、等差数列的性质1. 通项公式:等差数列的通项公式为an=a1+(n-1)d,通过这个公式可以计算出等差数列中任意一项的值。
2. 首项和末项:等差数列的首项为a1,末项为an,根据通项公式可得an=a1+(n-1)d。
3. 公差:等差数列中任意两个相邻项之间的差称为公差,常用字母d表示。
4. 项数:等差数列中项的个数称为项数,常用字母n表示。
5. 求和公式:等差数列的前n项和可以通过求和公式Sn=n/2*(a1+an)来计算。
三、等差数列的应用等差数列在实际应用中有着广泛的应用,以下列举几个常见的应用场景:1. 金融领域:等差数列常用于计算利息、贷款等金融问题中。
例如,某人每月存款1000元,存款期限为10个月,假设存款的年利率为5%,那么可以通过等差数列的求和公式计算出存款的总金额。
2. 物理学:等差数列可以用来描述物体在匀速运动中的位移变化。
例如,某物体以每秒10米的速度匀速向前运动,可以通过等差数列的通项公式计算出物体在任意时间点的位置。
3. 数学研究:等差数列是数学中的一个重要概念,研究等差数列的性质有助于深入理解数列的规律和数学推理的方法。
等差数列是数学中的一个重要概念,它在数学、物理、金融等领域中都有广泛的应用。
通过等差数列的概念、性质及其应用的介绍,我们可以更好地理解等差数列的本质和作用,进一步拓展数学思维,并将其运用到实际问题中。
希望本文能对读者对等差数列有更深入的了解和应用提供帮助。
等差数列的概念
a2 4 1 3
等差数列的通项公式 如果一个数列 a1 , a 2 , a3 , …,an , …
是等差数列,它的公差是d,那么
a2 a1 d
a3 a2 d (a1 d ) d a1 2d a4 a3 d (a1 2d ) d a1 3d a5 a4 d (a1 3d ) d a1 4d
完成实际问题解答
小结:
1. {an}为等差数列 an+1- an=d an+1=an+d an= a1+(n-1) d an= kn + b (k、b为常数)
2. a、b、c成等差数列 b为a、c 的等差中项AA ac b 2b= a+c 2 【说明】 an am 3.更一般的情形,an= am+(n - m) d ,d= nm am+an=ap+aq 4.在等差数列{an}中,由 m+n=p+q
am+an=ap+aq
1、在等差数列{an}中,由 m+n=p+q
由p=q
2、 在等差数列{an}中a1+an
=
2ap=am+an a2+ an-1 = a3+ an-2 = …
练习
1 .在等差数列{an}中 (1) 已知 a6+a9+a12+a15=20,求a1+a20 分析:由 a1+a20 = a6+ a15 = a9 +a12 及 a6+a9+a12+a15=20, 可得a1+a20=10 (2)已知 a3+a11=10,求 a6+a7+a8
等差数列公式大全
等差数列公式大全
数列公式又称为等差数列公式,它指的是一组以等差数列形式列出来的数列函数。
1.一般项公式:an=a1+(n-1)d。
2.和公式:Sn=n(a1+an)/2。
3.等比数列的一般项公式:an=a1*q^(n-1)。
4.等比数列的和公式:Sn=a1*(1-q^n)/(1-q)。
5.等比级数的和公式:S=a1/(1-q)。
6.飞利浦及公式:Sn=a1+(n-1)*d+(n-1)*(n-2)*c/2。
7.等差数列的最后一项公式:an=(a1+an-1)/2+d。
8.三项和公式:Sn=a1+an+an-1。
9.等差数列的公差公式:d=[an-a1]/n-1。
10.二项和公式:Sn=a1+an。
11.等差数列的方程:x+a=n(x+d)。
12.栢西秋-埃泽勒等比数列的和公式: Sn=a1*[1-qn+n(1-q)]/ (1-q)^2。
13.等差数列的前n项和公式:Sn=n(a1+an)/2。
14.亚里士多德等比数列的和公式:Sn=a1(qn-1)/(q-1)。
15.等差数列的最大项公式:an=a1+(n-1)*d。
等差数列
等差数列一.等差数列的主要内容1,等差数列的基本知识2,等差数列的项3,等差数列的和等差数列的基本知识(一)数列的基本知识(1)1,2,3,4,5,6……(2)2,4,6,8,10,12……(3)5,10,15,20,25,30像这样按一定顺序排列的一列数叫数列。
其中每一个数叫叫做这个数列的项,在第1个位置上的数叫这个数列的第1项(首项),在最后1个位置上的数叫这个数列的末项,在第几个位置上的数就叫第几项。
(二)等差数列的基本数列(1)1,2,3,4,5,6……(公差=1)(2)2,4,6,8,10,12……(公差=2)(3)5,10,15,20,25,30 (公差=5)从第2项起,每一项与前一项的差都相等,像这样的数列就是等差数列,这个数就叫等差数列的公差。
数列:1,3,5,7,9,11……第2项:3=1+2 首项+公差×1 1=2-1第3项:5=1+2×2 首项+公差×2 2=3-1第4项:7=1+2×3 首项+公差×3 3=4-1第5项:9=1+2×4 首项+公差×(5-1)第6项:11=1+2×5 首项+公差×(6-1)等差数列的某一项=首项+公差×(项数-1)例1 已知数列2,5,8,11,14……求(1)它的第十项是多少?(2)它的第98项是多少?(3)197是这个数列中的第几项?(4)这个数列被几除有相同的余数?分析:首项=2 公差=3解:(1)第10项:2+3×(10-1)=29(2)第98项:2+3×(98-1)=293(3)2+3×(X -1)=1973×(X -1)=197-2X-1 =(197-2)÷3X =(197-2)÷3+1=66(项)等差数列的项数=(末项-首项)÷公差+1 分析:被除数=余数+除数×商等差数列的某一项= 2 + 3 ×(项数- 1)(4)这个数列每一项除以3都余2.等差数列的每一项除以它的公差,余数相同。
等差数列公式大全
等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m)d ⇒ d=m n a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则m n a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。
8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若.,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 9、n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ①首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ②首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 10、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n.a 21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a ,奇s -偶s =d n 2偶奇s s =122+nna a 11、等差数列的判别方法: ⑴定义法:1+n a -n a =d (d 为常数) ⇔{n a }是等差数 ⑵中项公式法:21+n a =n a +a 2n +(n ∈N*)⇔{n a }是等差数列 ⑶通项公式法: n a =pn+q (p,q 为常数)⇔{n a }是等差数列 ⑷前n项和公式法: n s =An 2+Bn (A,B 为常数)⇔{n a }是等差数列。
等差数列四种判定方法
等差数列四种判定方法等差数列是数学中的一个重要的概念,在高中数学中也经常涉及到。
在判断等差数列的时候,常常有四种方法。
这篇文章将为大家介绍等差数列的四种判定方法,分别为通项公式、公差、前两项差、后两项差。
掌握这些方法,可以更加准确的判断一个数列是否为等差数列。
一、通项公式等差数列通项公式为:an = a1 + (n - 1)dan表示第n项,a1表示第一项,d表示公差。
在使用通项公式判断等差数列时,可以先求出前几项的值,然后利用通项公式求出后面的项,再与实际值进行比较,判断是否为等差数列。
已知一个数列的前五项为1、3、5、7、9,要判断它是否为等差数列。
首先可以看出,这个数列的公差为2,于是可以利用通项公式求出后面的项:a6 = a1 + (6 - 1)d = 1 + 5 × 2 = 11将求得的a6、a7与实际值比较,发现它们与数列中的后两项9、11并不相等,因此这个数列不是等差数列。
二、公差公差是等差数列中相邻两项之差的固定值。
在判断一个数列是否为等差数列时,可以先求出前两项的差,然后比较后面各项之间的差,看是否相等。
如果相等,则说明这个数列是等差数列。
然后比较后面各项之间的差:a3 - a2 = 2发现它们之间的差都是2,因此这个数列是等差数列。
三、前两项差总结等差数列的判定方法有四种,分别为通项公式、公差、前两项差、后两项差。
不同的方法在不同的情况下使用,可以选择合适的方法进行判断。
在求等差数列的和、第n项等问题时,也可根据不同的情况选择不同的方法求解。
除了判定等差数列的四种方法以外,还有一些其他的相关内容需要了解。
一、等差数列的求和公式对于一个等差数列a1,a2,……,an,它们的和Sn可以通过下列公式求得:Sn = (a1 + an)×n/2a1为数列的首项,an为数列的末项,n为数列的项数。
应用等差数列求和公式可以快速计算等差数列的和,节省手工计算的时间。
已知一个等差数列的首项a1为1,公差d为2,项数n为10,要求这个数列的和。
等差数列公式大全-等差公式大全
等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m )d ⇒ d=m n a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a ,A ,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n ,p ≠q ,则m n a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。
8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 9、n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ①首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ②首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 10、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n.a 21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++n n a a ,奇s -偶s =d n 2 偶奇s s =122+nna a 11、等差数列的判别方法:⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N *)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p ,q 为常数) ⇔ {n a }是等差数列⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。
等差数列的性质
等差数列的性质应用:
例4、已知一个等差数列前n项和为25, 前2n项的和为100,求前3n项和。
解:Sn、S2n - Sn、S3n - S2n 为等差数列
S3n - S 2n = 125 S3n = 225
等差数列的性质应用:
例5、若 an 、bn 为等差数列,前n项
和分别为 Sn、Tn
则证明: an = S 2n-1
求 S24
解: a1 + a24 = a5 + a20 = a10 + a15
a1 + a24 = 1 故 s24 = 12
等差数列的性质应用:
例2、已知等差数列an 的前10项之和
为140,其中奇数项之和为125 , 求第6项。
解:由已知 a1 + a2 + + a10 = 140
a1 + a3 + a5 + a7 + a9 = 125
则 a2 + a4 + a6 + a8 + a10 = 15 5a6 = 15 故 a6 = 3
等差数列的性质应用:
例3、已知一个等差数列的总项数为奇数, 且奇数项之和为77,偶数项之和为 66,求中间项及总项数。
解:由 S奇 - S偶 = 中间项
得中间项为11 又由 S奇 + S偶 = 143 得 n =13
bn
T2 n-1
证明:右= S2n-1 = a1 + a2n-1
T2 n -1
b1 + b2n-1
= an =左
bn
等差数列的性质应用:
例如:设 Sn 、Tn 分别是两个等差
数列 an 和 bn 的前n项和,
等差数列知识点总结
等差数列知识点总结等差数列是数学中常见且重要的概念,它在数学、物理、经济学等领域都有广泛应用。
了解等差数列的性质和运算规律对于理解数学问题和解题非常有帮助。
本文将对等差数列的定义、通项公式、求和公式以及常见问题进行总结。
一、等差数列的定义等差数列由一系列有规律的数构成,这些数之间的差值保持不变。
等差数列的全体数可以用以下表示形式来描述:an = a1 + (n - 1)d其中an表示等差数列的第n个数,a1表示等差数列的首项,d表示公差,n表示项数。
二、等差数列的性质1. 公差等差数列中相邻两项之间的差值称为公差。
公差可以为正、零或负。
当公差为正时,数列递增;当公差为负时,数列递减。
2. 通项公式等差数列的通项公式用来表示数列中任意一项与首项之间的关系。
通项公式可表示为:an = a1 + (n - 1)d3. 前n项和等差数列前n项和表示数列的前n项之和,通常用Sn表示。
前n 项和公式可表示为:Sn = (n/2)(a1 + an)其中n为项数,a1为首项,an为第n项。
三、等差数列的运算规律1. 求任意项的值根据通项公式,我们可以计算等差数列中任意一项的值。
已知首项a1、公差d和项数n,可以使用以下公式求得第n项的值:an = a1 + (n - 1)d2. 求前n项和已知首项a1、公差d和项数n,可以使用前n项和公式计算等差数列的前n项和Sn。
具体计算步骤如下:(1)求得第n项an的值;(2)代入前n项和公式,得到Sn的值。
3. 求公差如果已知等差数列的两个相邻项或任意两项的值,可以通过求差的方式计算出公差。
公式如下:d = an - an-1四、等差数列的常见问题1. 求等差数列的第n项的值已知首项a1、公差d和项数n,可以使用通项公式计算等差数列的第n项的值。
具体计算步骤如下:an = a1 + (n - 1)d2. 求等差数列的前n项和已知首项a1、公差d和项数n,可以使用前n项和公式计算等差数列的前n项和Sn。
等差数列
1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );【例1】设S n 是数列{a n }的前n 项和,且S n =2n 2-5n ,证明数列{a n }是等差数列。
2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈,首项为1a ,公差为d ,末项为n a 推广:d m n a a m n )(-+=,从而mn a a d mn --=;总结:等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 说明:等差数列的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
【例1】等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为( )A .48B .49C .50D .51【例2】首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ 【例3】设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于( )A.120B.105C.90D.75【例4】若数列{a n }的前n 项和S n =n 2-10n(n =1,2,3,…),则此数列的通项公式为_______________;数列{na n }中数值最小的项是第_______项。
3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项及其延展【例1】如果等差数列{}n a 中,34512712,___.a a a a a a ++=+++=那么【例2】已知1,a ,b 成等差数列,3,a +2,b +5成等比数列,则等差数列的公差为( )A .3或-3B .3或-1C .3D .-3【例3】在等差数列{}n a 中,1910a a +=,则5a 的值为( )A 、5B 、6C 、8D 、10【例4】已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为______.【例5】等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为( )A .21n a n =+B .21n a n =-C .23n a n =-D .25n a n =-4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d≠0时,S n 是关于n 的二次式且常数项为0)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项:()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)【例1】)设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.24【例2】设n S 是等差数列{}n a 的前n 项和,若363,24S S ==,则9__.a = 【例3】设等差数列{}n a 的前n 项和为n S ,若924972,___.S a a a =++=则【例4】设{}n a 是公差为-2的等差数列,如果a 1+a 4+….. + a 97 =50,那么a 3+a 6+ a 9+….. + a 99 =( )A.-182B.-78C.-148D.-82【例5】(1)已知等差数列{}n a 的前5项之和为25,第8项等于15,求第21项。
高中数学等差数列基本公式
1.等差数列基本公式:末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)×公差和=(首项+末项)×项数÷22.通项公式:等差数列的通项公式为:a n=a1+(n-1)d (1)前n项和公式前n项和公式为:S n=na1+n(n-1)d/2或S n=n(a1+a n)/2 (2) 以上n均属于正整数.3.推论:1.从(1)式可以看出,a n是n的一次函数(d≠0)或常数函数(d=0),(n,a n)排在一条直线上,由(2)式知,S n是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.2.从等差数列的定义、通项公式,前n项和公式还可推出:a1+a n=a2+a n-1=a3+a n-2=…=a k+a n-k+1,k∈{1,2,…,n}3.若m,n,p,q∈N*,且m+n=p+q,则有a m+a n=a p+a q,S2n-1=(2n-1)a n,S2n+1=(2n+1)a n+1,S k,S2k-S k,S3k-S2k,…,S nk-S(n-1)k…4.若m+n=2p,则a m+a n=2a p4.其他推论:和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1首项=2倍和÷项数-末项末项=2倍和÷项数-首项末项=首项+(项数-1)×公差推论3:证明:若m,n,p,q∈N*,且m+n=p+q,则有若m,n,p,q∈N*,且m+n=p+q,则有a m+a n=a p+a q如a m+a n=a1+(m-1)d+a1+(n-1)d=2a1+(m+n-2)d同理得,a p+a q=2a1+(p+q-2)d又因为m+n=p+q ;a1,d均为常数所以若m,n,p,q∈N*,且m+n=p+q,则有a m+a n=a p+a q注:1.常数列不一定成立2.m,p,q,n大于等于自然数等差中项在等差数列中,等差中项:一般设为Ar,A m+A n=2A r,所以A r为A m,A n的等差中项,且为数列的平均数.且任意两项a m,a n的关系为:a n=a m+(n-m)d它可以看作等差数列广义的通项公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当n 7时,Tn 20 17 (23 3n)
(20 23- 3n)n 3 n2 43 n
2
22
当n 7时,Tn a1 a2 a7 a8 an
77 1 4 (3n 23)
77 (1 3n - 23)(n - 7) 3 n2 43 n 154
2
22
Tn
3
2
3 n2 2 n2
43 n 2
43 n 154 2
(n 7, n N*) (n 8, n N*)
2a1
nd
d
0
n d 2a1 而 d 2a1 1 2a1 (15,16)
d
d
d
n最小值为16。
分析二:a8 0 S15 15a8 0
a9 a8 a8 a9 0 S16 8(a1 a16)
8(a8 a9) 0 n的最大值为16。
1、等差数列中,Sm n, Sn m, 则Smn _-(_m__+_n_)。
从第二项起为等差数列;
1、公差与通项
例1、(2006年高考全国)设{an}是公差 为正数的等差数列,a1 a2 a3 15, a1 a2 a3 80,则a11 a12 a13 __B___。
A 120 B 105 C 90 D 75
练习、等差数列中,am n, an m,
则amn ___0___。
解: m n m n n
mn
mnn
n m
Smn m
m n mn n
mn
m
Smn m n。
例4、等差数列中,S4 62,S6 75, 设Tn a1 a2 an ,求Tn。
解:S4 4a1 6d 62
a1
20
S6 6a1 15d 75 d 3
an 3n 23
1 2
设S偶 32t, S奇 27t,
则32t 27t 59t 354t 6
S偶 S奇 6项
例5、两等差数列{an}、{bn}前n项和
之比 Sn 2n 1 ,则 a7 _2_5_。 Tn 2n 1 b7 27
1、运用等差数列的公差与首项; 2、运用整体思想解题; 3、运用等差数列性质解题。
分析:若转化为首项与公差,则
am an
a1 (m 1)d n a1 (n 1)d m
d
1
amn am nd 0, 但计算稍复杂。 解:d am an amn am
mn mnm
nm mn
1
amn n n
amn
0。
2、整 体 思 想
例2、等差数列公差d 1,S99 99, 则a3 a6 a9 a99 __6_6__。
例6、等差数列中,a8 0, a9 a8 , 则使Sn 0的n的最小值为__1_6___。
分析一:转化为首项与公差
a1 7d 0 a1 7d, a9 a8
a1
8d
a1
7d
a1
15 2
d
15 2
d
a1
7d
15 a1 ( 7 d 0)
2d
Sn
0
na1
n(
n 2
1)
d
0
n d; 2
2 若n为奇数,S奇 S偶 an1 ;
2
(4)等差数列的通项an是n的 _一__次___ 函数或恒为_常__数___(d 0);
(5){Sn }为等差数列。 n
(6)若d
0, Sn
d 2
n2
(a1
d )n, 2
Sn为n的二次函数且常数项为0。
若Sn an2 bn c(c 0),则{an}
练习、(2006年江西文)等差数列公差{an}
前项和为Sn ,若OB a1 OA a200 OC,且A,
B,C三点共线(该线不过点O),则S200 ____1_0__0___
3S、n ,
Sn
,
S等n
n
例3、等差数列中,S10 100, S100 10,则S110 __-_1_1_0__。
1、等差数列关键是抓住定义,及其首项 与公差两大要素; 2、要注意把握好数列中的规律,多运 用整体思想和对称思想;
3、能灵活运用等差数列的性质:
(1)an am (n m)d,则d
an am nm
(2)若m n p q,则
am an ap aq ;
(3)等差数列有n项:
1 若n为偶数,S偶 S奇
4、 S奇、S偶
例4、等差数列前12项和为354,前 12项中偶数项之和与奇数项之和的 比为32:27,求公差。
分析:若化为首项与公差,则12a1 66d
354, 6a1 36d 32 ,可求d 5,但计算繁。 6a1 30d 27
解:由已知:SS偶奇: SS奇偶
354 32:27
2、等差数列中,a1 0,3a4 7a7, 则当Sn最大时,n ____。
3、设{an}为等差数列,Sn为{an}前n项和,
S7
7,S15
75,Tn为{
Sn n
}前n项和,求Tn。
分析:若转化为首项与公差,则计算相当
复杂,若考虑到{Sn }为等差数列,则比较 n
简单。 Sm Sn
Smn Sn