必修4《第二章平面向量》单元测试卷(答案)
高一下学期人教版A版必修4第二章平面向量单元测试及答案
必修4第二章平面向量单元测试班级 座位号 姓名 分数一、选择题:本大题共有10小题,每小题5分,共50分. 题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题(每题5分,共50分)1.若向量a =(1,1),b =(2,5),c =(3,x ),满足条件(8a -b )·c =30,则x =( )A.6B.5C.4D.3 2.已知两个力1F 、2F 的夹角为90°,它们的合力F 的大小为10 N ,合力F 与1F 的夹角为60°,则1F 的大小为( )A.35 NB.5 NC.10ND.25 N 3.下列命题:①两个向量相等,则它们的起点相同,终点相同;②若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a ; ③若|a|=|b|,则a =b 或a =-b ; ④若a ∥b ,b ∥c ,则a ∥c ;⑤若非零向量a ,b 满足||a +b =||a -b ,则a ⊥b ; ⑥对于任意向量a ,b ,有|a +b|≥|a -b|; 其中正确的个数是( ) A .2B .3C .4D .54.若平面向量b 与向量)2,1(-=a 的夹角是o 180,且53||=b ,则=b ( )A )6,3(-B )6,3(-C )3,6(-D )3,6(-5.设点(2,0)A ,(4,2)B ,若点P 在直线AB 上,且AB =2AP ,则点P 的坐标为( )A (3,1)B (1,1)-C (3,1)或(1,1)- D 无数多个6.已知向量03≠=b a ,且关于x 的方程03222=⋅++b a a x x 有实根,则a 与b 夹角的取值范围是( )A.⎥⎦⎤⎢⎣⎡6π,0B. ⎥⎦⎤⎢⎣⎡π,3πC. ⎥⎦⎤⎢⎣⎡32π,3π D. ⎥⎦⎤⎢⎣⎡π,6π 7.已知平面向量a =(1,-3),b =(4,-2),b a +λ与b 垂直,则λ等于( )A.-1B.1C.-2D.2 8.向量(2,3)a =,(1,2)b =-,若ma b +与2a b -平行,则m 等于A 2-B 2 C.21 D 12-9.已知O 为原点,点A 、B 的坐标分别为A (a ,0)、B (0,a ),其中常数a >0,点P 在线段AB 上,且有AB t AP = (0≤t ≤1),则OP OA ⋅的最大值为( )A.aB.2aC.3aD.2a10.在△ABC 中,D 是BC 的中点,AB=4,AC=3,则=⋅BC AD ( ) A 7- B 2 C 27-D 72二、填空题(每题5分,共20分)11.已知a =(2,3),b =(-4,7),则b 在a 方向上的投影为 . 12.已知向量(1,2)a →=,(2,3)b →=-,(4,1)c →=,若用→a 和→b 表示→c ,则→c =13.若||1,||2,a b c a b ===+,且c a ⊥,则向量a 与b 的夹角为14.已知)1,2(=a 与)2,1(=b ,要使b t a +最小,则实数t 的值为___________三、解答题(每题15分,共30分) 15.已知(1,2)a =,)2,3(-=b ,当k 为何值时, (1)ka b +与3a b -垂直?(2)ka +b 与3a -b 平行?平行时它们是同向还是反向?16.如图2,在平行四边形ABCD , CD CF CB CE AD AB 32,31,====b a ,. (1)用a ,b 表示EF ;(2)若4,1==b a ,∠DAB =60°,分别求EF 和FE AC ⋅的值.图2参考答案及点拨一、1.C 点拨:()()()30318,33,68=+=⋅=⋅-x x c b a , ∴x =4.故选C. 2.B 点拨:1F =⋅F cos60°=5 N. 3.A4. A 设(,2),0b ka k k k ==-<,而53||=b ,则2535,3,(3,6)k k b ==-=-5.C 设(,)P x y ,由AB =2AP得2AB AP =,或2AB AP =-,(2,2),(2,)AB AP x y ==-,即(2,2)2(2,),3,1,x y x y =-==(3,1)P ;(2,2)2(2,),1,1,x y x y =--==-(1,1)P -6.B 点拨:设a ,b 的夹角为θ,∵关于x 的方程03222=⋅++b a a x x 有实根,∴∆=b a a ⋅-2442≥0,即b a a ⋅≥62.∴θcos 62b a a ⋅≥,又∵03≠=b a .∴21cos ≤θ,∵π≤≤θ0,∴ππ≤≤θ3. 7.C 点拨:()23,4--+=+λλλb a , ∵b a +λ与b 垂直,∴()()()()020********,423,4=+=---+=-⋅--+λλλλλ, ∴2-=λ.8.D (2,3)(1,2)(21,32)ma b m m m m +=+-=-+2(2,3)(2,4)(4,1)a b -=--=-,则121128,2m m m -+=+=-9.D 点拨: ∵AB t AP =,∴ ()()OB t OA t OA OB t OA AP OA OP +-=-+=+=1(),,at at a -=∴()t a OP OA -=⋅12,∵10≤≤t ,∴2a OP OA ≤⋅.10.c二、9.13 点拨: b 在a 方向上的投影为a b a ⋅=1313=13. 10. →→-b a 2 设c x a y b →=+,则(,2)(2,3)(2,23)x x y y x y x y +-=-+= 24,231,2,x y x y x y -=+===- 11.0120 221()0,0,cos 2a b a a b a a a b a ba bθ-+=+====-,或画图来做12.45-22222()2585a t b a t b a t a bt b t t +=+=++=++,当45t =-时即可三、13.解:(1,2)(3,2)(3,22)ka b k k k +=+-=-+3(1,2)3(3,2)(10,4)a b -=--=-(1)()ka b +⊥(3)a b -,得()ka b +(3)10(3)4(22)2380,19a b k k k k -=--+=-== (2)()//ka b +(3)a b -,得14(3)10(22),3k k k --=+=- 此时1041(,)(10,4)333ka b +=-=--,所以方向相反 14.答图2分析:(1)利用向量的三角形法则和向量相等及其运算即可得出; (2)利用数量积运算法则和性质即可得出. 解:(1)如答图2所示,.313231323132b a +-=+-=-=-=AD AB CB CD CE CF EF(2) ∵,60,4,1︒=∠==DAB b a ∴.260cos =︒⋅⋅=⋅b a b a∴3329194943132222=+⋅-=⎪⎭⎫⎝⎛+-=b b a a b a EF . 易知b a +=+=AD AB AC ,∴()43163232313132313222-=-+=-⋅+=⎪⎭⎫ ⎝⎛-⋅+=⋅b b a a b a b a FE AC .。
(典型题)高中数学必修四第二章《平面向量》测试卷(答案解析)
一、选择题1.已知向量()2,3a =,()4,2b =,那么向量a b -与a 的位置关系是( ) A .平行B .垂直C .夹角是锐角D .夹角是钝角2.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .33.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .30,(1,)3⎛⋃+∞ ⎝⎭C .33⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞4.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17115.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦6.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==7.在ABC 中,D 是BC 的中点,E 是AD 的中点,那么下列各式中正确的是( ) A .DB DC =B .2AD DE =C .2AB AC AD += D .AB AC BC -=8.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( ) A .8B .4C .6D .39.已知O 是三角形ABC 内部一点,且20OA OB OC ++=,则OAB ∆的面积与OAC ∆的面积之比为( ) A .12B .1C .32D .210.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若10AC =2BC =,0GA GB GC ++=,则AB CG=( )A .3B C .2D .211.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ; ②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =; ④若//a b ,则一定存在唯一的实数λ,使得a b λ=. A .①③B .①④C .②③D .②④二、填空题13.已知单位向量,a b 满足1a b +=,则|a b -=___________. 14.设1e ,2e 是单位向量,且1e ,2e 的夹角为23π,若12a e e =+,122b e e =-,则a 在b 方向上的投影为___________. 15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 16.已知点()0,1A ,()3,2B,向量()4,3AC =,则向量BC =______.17.在梯形ABCD 中,//AB CD ,2AB BC ==,1CD =,120BCD ∠=︒,P ,Q分别为线段BC 和CD 上的动点,且BP BC λ=,16DQ DC λ=,则AP BQ 的最大值为_____________.18.已知非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=.若n →⊥t m n →→⎛⎫+ ⎪⎝⎭,则实数t的值为_____________.19.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.20.已知(2,1)a =,(3,4)b =,则a 在b 的方向上的投影为________.三、解答题21.在ABC 中,3AB =,6AC =,23BAC π∠=,D 为边BC 的中点,M 为中线AD 的中点.(1)求中线AD 的长;(2)求BM 与AD 的夹角θ的余弦值.22.在平面直角坐标系xOy 中,已知点()1,2A -,()1,1B ,()3,1C -. (Ⅰ)求AB 的坐标及AB ;(Ⅱ)当实数t 为何值时,()tOC OB AB +. 23.已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积. 24.设()2,0a →=,(3b →=.(1)若a b b λ→→→⎛⎫-⊥ ⎪⎝⎭,求实数λ的值;(2)若(),m x a y b x y R →→→=+∈,且23m =,m →与b →的夹角为6π,求x ,y 的值. 25.设非零向量a ,b 不共线.(1)若(),1a t =,()5,b t =,且//a b ,求实数t 的值;(2)若OA a b =+,2OB a b =+,3OC a b =+.求证:A ,B ,C 三点共线. 26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先根据题中所给的向量的坐标,结合向量数量积运算法则,求得其数量积为负数,从而得到其交集为钝角. 【详解】因为()2,3a =,()4,2b =,222()23(2432)131410a b a a a b -⋅=-⋅=+-⨯+⨯=-=-<,所以向量a b -与a 的位置关系是夹角为钝角, 故选:D. 【点睛】该题考查的是有挂向量的问题,涉及到的知识点有向量数量积的运算律,数量积坐标公式,根据数量积的符号判断其交集,属于简单题目.2.A解析:A 【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A .3.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a 所满足的条件,最后求得结果. 【详解】 由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO ⋅<,即2310a -<,或2220a -+<,从而0a <或1a >. 故选:B. 【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.4.D解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可.【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222mOD AB mAB nAC AB nAC -=--=-, 同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=, 所以129502nm -⨯-=,联立方程组124502129502mn n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811 mn⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m-=.故选D【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.5.B解析:B【分析】作出图形,可求得线段MN的中点Q的轨迹方程为2234x y+=,由平面向量加法的平行四边形法则可得出2PM PN PQ+=,求得PQ的取值范围,进而可求得PM PN+的取值范围.【详解】由1MN =,可知OMN为等边三角形,设Q为MN 的中点,且3sin602OQ OM==Q的轨迹为圆2234x y+=,又()3,4P,所以,33PO PQ PO-≤≤+,即3355PQ≤≤+.由平面向量加法的平行四边形法则可得2PM PN PQ+=,因此2103,103PM PN PQ ⎡⎤+=∈-+⎣⎦.故选:B. 【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.6. B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.7.C解析:C 【解析】依题意ABC 如图所示:∵D 是BC 的中点 ∴DB CD =,故A 错误 ∵E 是AD 的中点 ∴2AD ED =,故B 错误∵AB AD DB =+,AC AD DC =+∴2AB AC AD DB AD DC AD +=+++=,故C 正确∴()AB AC AD DB AD DC DB DC CB -=+-+=-=,故D 错误 故选C8.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF . 【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D. 【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.9.A解析:A 【解析】由题意,O 是'AB C ∆的重心,'2OB OB =,所以OAB ∆的面积与OAC ∆的面积之比为12.故选A . 点睛:本题考查平面向量的应用.由重心的结论:若0OA OB OC ++=,则O 是ABC ∆的重心,本题中构造'AB C ∆,O 是'AB C ∆的重心,根据重心的一些几何性质,求出面积比值.10.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以2101,12AB CE CG CG===∴== 本题选择B 选项.11.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③. 【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λbc ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B. 【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.【分析】根据条件两边平方进行数量积运算可求得然后根据即可求得答案【详解】因为所以所以所以故答案为:【点睛】思路点睛:该题考查的是有关向量模的求解问题解题思路如下:(1)首先根据题中条件结合向量模的平【分析】根据条件1a b +=两边平方,进行数量积运算可求得21a b ⋅=-,然后根据2()a b a b -=-即可求得答案.【详解】因为1a b ==,1a b +=,所以2222()2221a b a b a a b b a b +=+=+⋅+=+⋅=,所以21a b ⋅=-, 所以22()223a b a b a b a b -=-=-=-⋅=,【点睛】思路点睛:该题考查的是有关向量模的求解问题,解题思路如下:(1)首先根据题中条件,结合向量模的平方等于向量的平方,求得21a b ⋅=-; (2)之后再应用向量的模的平方等于向量的平方来求解.14.【分析】根据平面向量数量积的定义求出与并计算出平面向量的模再利用公式即可求解【详解】由平面向量的数量积的定义可得即所以在方向上的投影为故答案为:【点睛】本题主要考查了平面向量的数量积的定义以及向量的【分析】根据平面向量数量积的定义求出12e e ⋅与a b ⋅,并计算出平面向量b 的模b ,再利用公式,即可求解. 【详解】由平面向量的数量积的定义,可得1221211cos11()322e e e e π⋅=⋅=⨯⨯-=-,222222111111()(2)22122a b e e e e e e e e ⋅=+-=+⋅-=--=,22221112221(2)4444()172e e e e e e b =-=-⋅+=-⨯-+=,即7b =,所以a 在b 方向上的投影为1727a b b⋅==.故答案为:714. 【点睛】本题主要考查了平面向量的数量积的定义,以及向量的投影的应用,其中解答中熟记平面向量的数量积的计算公式,以及向量的投影的计算是解答本题的关键,着重考查了推理与运算能力,属于中档试题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①得:22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, ,设()1cos30,sin 30=,2OC λλ⎫=︒︒⎪⎪⎝⎭, 又()(()1,0OC mOA nOB m n m =+=+=,得()1,=22m λ⎛⎫ ⎪ ⎪⎝⎭,即=212m λλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.【分析】根据向量的坐标运算即可求出【详解】因为所以故答案为:【点睛】本题考查了向量的坐标运算向量模的坐标公式属于基础题目【分析】根据向量的坐标运算即可求出. 【详解】 因为()0,1A ,()3,2B,所以()3,1AB =,()()()4,33,11,2BC AC AB =-=-=,21BC ==【点睛】本题考查了向量的坐标运算,向量模的坐标公式,属于基础题目.17.【分析】根据平面向量的线性运算与数量积运算求的解析式根据题意求出的取值范围再根据对勾函数的性质求最大值【详解】解:梯形中则解得;设则在上单调递增;时取得最大值故答案为:【点睛】本题主要考查了平面向量解析:76【分析】根据平面向量的线性运算与数量积运算,求AP BQ 的解析式,根据题意求出λ的取值范围,再根据对勾函数的性质求最大值. 【详解】解:梯形ABCD 中,//AB CD ,2AB BC ==,1CD =,120BCD ∠=︒,BP BCλ=,16DQ DCλ=,则61()()()()6AP BQ AB BP BC CQ AB BC BC CDλλλ-=++=++2611666AB BC AB CD BC CB CDλλλλ--=+++26116122cos12021221()662λλλλ--=⨯⨯︒-⨯⨯+⨯+⨯⨯⨯-125536λλ=+-,011016λλ⎧⎪⎨⎪⎩,解得116λ;设125()536fλλλ=+-,则()fλ在1,16⎡⎤⎢⎥⎣⎦上单调递增;1λ∴=时()fλ取得最大值76,故答案为:76.【点睛】本题主要考查了平面向量的线性运算以及平面向量的数量积的运算问题,同时也考查了函数的最值问题,其中解答中根据向量的线性运算和数量积的运算,求得AP BQ的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档题.18.【分析】利用向量的数量积公式向量垂直的性质直接直解【详解】非零向量满足=⊥解得故答案为:【点睛】本题主要考查了向量的数量积公式向量垂直的性质等基础知识考查运算能力属于中档题解析:4-【分析】利用向量的数量积公式、向量垂直的性质直接直解.【详解】非零向量m→,n→满足4m→=3n→,cos m→〈,13n→〉=,n→⊥t m n→→⎛⎫+⎪⎝⎭,n→∴⋅22+||||cos,||t m n t m n n t m n m n n→→→→→→→→→→⎛⎫+=⋅=<>+⎪⎝⎭223||||034t n n →→=⨯+=, 解得4t =-, 故答案为:4- 【点睛】本题主要考查了向量的数量积公式、向量垂直的性质等基础知识,考查运算能力,属于中档题.19.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果.【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==,2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.20.2【分析】根据向量在的方向上的投影为结合向量的数量积的坐标运算和模的计算公式即可求解【详解】由题意向量可得则在的方向上的投影为故答案为:【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应解析:2 【分析】根据向量a 在b 的方向上的投影为a b b⋅,结合向量的数量积的坐标运算和模的计算公式,即可求解. 【详解】由题意,向量(2,1)a =,(3,4)b =,可得231410a b ⋅=⨯+⨯=,2345b =+=,则a 在b 的方向上的投影为1025a b b⋅==. 故答案为:2. 【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应用,以及向量的投影的概念与计算,其中解答熟记平面向量的数量积、模及投影的计算公式是解答的关键,着重考查推理与运算能力.三、解答题21.(12 【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+,所以()293117199361681616BM=⨯-⨯-+⨯=,从而3194BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以27cos8BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以D ⎛ ⎝⎭,AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos819BM AD BM ADθ⋅===. 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(Ⅰ)(2,1)AB =-,5AB =Ⅱ)3t = 【分析】(Ⅰ)根据点A ,B 的坐标即可求出(2,1)AB =-,从而可求出||AB ;(Ⅱ)可以求出(13,1)tOC OB t t +=-+,根据()//tOC OB AB +即可得出2(1)(1)(13)30t t t +---=-=,解出t 即可.【详解】(Ⅰ)∵()1,2A -,()1,1B ,∴(2,1)AB =- ∴2||2AB ==(Ⅱ)∵()3,1C -,∴(13,1)tOC OB t t +=-+. ∵()tOC OB AB +∴2(1)(1)(13)30t t t +---=-=,∴3t =【点睛】考查根据点的坐标求向量的坐标的方法,根据向量的坐标求向量长度的方法,以及平行向量的坐标关系.23.(1)23π;(23) 【分析】(1)将已知条件中的式子展开,利用公式求得6a b ⋅=-,根据向量夹角公式求得1cos 2θ=-,结合角的范围,求得结果;(2)利用向量的模的平方和向量的平方是相等的,从而求得结果; (3)根据向量所成角,求得三角形的内角,利用面积公式求得结果. 【详解】(1)因为(23)(2)61a b a b -⋅+=, 所以2244361aa b b-⋅-=.又4,3a b ==, 所以6442761a b -⋅-=, 所以6a b ⋅=-, 所以61cos 432a ba b θ⋅-===-⨯. 又0≤θ≤π,所以23πθ=. (2)2222()2a b a b a a b b +=+=+⋅+ =42+2×(-6)+32=13,所以13a b +=; (3)因为AB 与BC 的夹角23πθ=, 所以∠ABC =233πππ-=. 又4,3AB a BC b ====,所以S △ABC =14322⨯⨯⨯= 【点睛】该题考查的是有关向量与解三角形的综合题,涉及到的知识点有向量数量积,向量夹角公式,向量的平方和向量模的平方是相等的,三角形面积公式,属于简单题目. 24.(1)12λ=;(2)1x =,1y =或1x =-,2y =. 【分析】(1)根据向量垂直的坐标运算即可求解;(2)由模的向量坐标运算及夹角的向量坐标运算联立方程即可求解. 【详解】(1)∵()2,0a →=,(b →=,∴()2,a b λλ→→-=-,∵a a b λ→→→⎛⎫-⊥ ⎪⎝⎭, ∴0a b b λ→→→⎛⎫-⋅= ⎪⎝⎭,即240λ-=, ∴12λ=. (2)∵()2,0a →=,(b →=,∴()2m x a y b x y →→→=+=+,又m →=,∴()222312x y y ++=,又cos 62m bm bπ→→→→⋅===, 即23x y +=,由()22231223x y y x y ⎧++=⎪⎨+=⎪⎩, 解得11x y =⎧⎨=⎩或12x y =-⎧⎨=⎩,∴1x =,1y =或1x =-,2y =.【点睛】本题主要考查了向量的坐标运算,考查了垂直关系,夹角公式,模的运算,属于中档题. 25.(1)2)证明见解析. 【分析】(1)利用平面向量的坐标运算和共线定理列方程求出t 的值;(2)根据条件得到2AC AB =且有公共点A ,即可得到结论. 【详解】解:(1)∵(),1a t =,()5,b t =,且//a b ,故250t t -=⇒=, 即实数t 的值为:5±;(2)证明:∵OA a b =+,2OB a b =+,3OC a b =+. ∴AB OB OA b =-=,2AC OC OA b =-=,即2AC AB =且有公共点A , 故A ,B ,C 三点共线. 【点睛】本题考查向量平行的坐标表示,用向量法证明三点共线,属于基础题.26.(12 【分析】(1)利用定义得出a b ⋅,再结合模长公式求解即可;(2)先得出()a a b ⋅+,再由数量积公式得出a 与a b +的夹角的余弦. 【详解】 (1)313cos32a b π⋅=⨯⨯=2223()||2||122a b a b a a b b ∴+=+=+⋅+=+⨯=(2)235()||122a ab a a b ⋅+=+⋅=+= 5()2cos ,26113a ab a a b a a b⋅+∴+===⨯⋅+ 【点睛】本题主要考查了利用定义求模长以及求夹角,属于中档题.。
高一数学必修4平面向量测试题(含答案)
A.
63
65
B.65C.
13
5
D.13
4.已知a,b均为单位向量,它们的夹角为60°,那么a3b=()
A.7B.10C.13D.4
5.已知ABCDEF是正六边形,且AB=a,AE=b,则BC=()
1abB.1(ba)C.a+1bD.1(ab)A.2()
14、已知向量a3,b(1,2),且ab,则a的坐标是_________________。
15、ΔABC中,A(1,2),B(3,1),重心G(3,2),则C点坐标为________________。
16.如果向量a与b的夹角为θ,那么我们称a×b为向量a与b的“向量积”,a×b是一个
向量,它的长度|a×b|=|a||b|sinθ,如果|a|=4, |b|=3,a·b=-2,则
3
A.B.C三点共线。
2
19. 已知a3,b2,a与b的夹角为
0
60,c3a5b,dma3b;
(1)当m为何值时,c与d垂直?(2)当m为何值时,c与d共线?
20、已知平面上三个向量a,b,c的模均为1,它们相互之间的夹角均为120°.
(1)求证:(a-b)⊥c;(2)若|ka+b+c|>1(k∈R),求k的取值范围.
222
6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5a-3b,则下列关系
式中正确的是()
AAD=BCB.AD=2BCC.AD=-BCD.AD=-2BC
7.设
e与e2是不共线的非零向量,且ke1+e2与e1+ke2共线,则k的值是()
1
A. 1B.-1C.1D.任意不为零的实数
高一数学必修四第二章平面向量测试题及答案
一、选择题:( 本大题共10 小题,每题 4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的 .)1.设点P 〔3,-6〕,Q 〔-5,2〕,R 的纵坐标为-9,且P 、Q 、R 三点共线,那么R 点的横坐标为〔 〕。
A 、-9B 、-6C 、9D 、6 2. =(2,3), =(-4,7) ,那么 在 b 上的投影为〔 〕。
b A 、B、C 、D 、3.设点A 〔1,2〕,B 〔3,5〕,将向量按向量 =〔-1,-1〕平移后得向量为〔〕。
A 、〔2,3〕B 、〔1,2〕C 、〔3,4〕D 、〔4,7〕4.假设(a+b+c)(b+c-a)=3bc ,且sinA=sinBcosC ,那么 ABC 是〔 〕。
A 、直角三角形 B 、等边三角形C 、等腰三角形 D 、等腰直角三角形5.| |=4,| b|=3, 与b 的夹角为60°,那么| +b|等于〔 〕。
A 、B、C、D 、6.O 、A 、B 为平面上三点,点C 分有向线段所成的比为 2,那么〔 〕。
A 、B、C 、D、7.O 是 ABC 所在平面上一点,且满足条件 , 那么点O 是 ABC 的〔 〕。
A 、重心 B 、垂心 C 、内心D 、外心 8.设 、b 、 均为平面内任意非零向量且互不共线,那么以下4个命题: (1)( ·b)2= 2·b 2 (2)| +b |≥| -b|(3)| +b|2=(+b)2(4)(b)-(a)b与不一定垂直。
其中真命题的个数是〔〕。
A、1B、2C、3D、49.在ABC中,A=60°,b=1,,那么等于〔〕。
A、B、C、D、10.设、b不共线,那么关于x的方程x2+b x+=0的解的情况是〔〕。
A、至少有一个实数解B、至多只有一个实数解C、至多有两个实数解D、可能有无数个实数解二、填空题:〔本大题共4小题,每题4分,总分值16分.〕.11.在等腰直角三角形ABC中,斜边AC=22,那么ABCA=_________12.ABCDEF为正六边形,且AC=a,AD=b,那么用a,b表示AB为______.13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。
数学北师大版高中必修4北师大版—高中数学必修4第二章平面向量单元测试(含答案)
数学必修4第二章平面向量单元测试一、选择题:共10小题,每小题5分,总共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列说法中错误的是( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的 2. 下列命题正确的是( )A.向量与是两平行向量 C.若=,则A 、B 、C 、D 四点构成平行四边形 B .若→a 、→b 都是单位向量则→a =→b D.两向量相等的充要条件是它们的始点、终点相同 3. 在平行四边形ABCD 中, BC +DC +BA 等于( ) A. BC B . C.D.AC4. 已知A (m ,-n ),B (―m ,n ),点C 分所成的比为―2,那么点C 的坐标为( ) A .(m ,n ) B.(-3m ,3n ) C.(3m ,-3n ) D.(-m ,n )5. 已知OA =(2,8), OB =(-7,2),则31AB 等于( ) A.(3,2)B .(310,35--) C.(-3,-2)D.(-35,4) 6. 已知单位向量→a 、→b ,则下面正确的式子是( )A. →a ·→b =1 B. →a 2=→b 2 C. →a =→b D. |→a |-|→b |=→0 7. 下列命题正确的是( )A 、向量AB 的长度与向量BA 的长度相等。
B 、两个有共同起点且相等的向量,其终点可能不同。
C 、若非零向量AB 与是共线向量,则A 、B 、C 、D 四点共线。
D 、若→a 平行→b 且→b 平行→c ,则→a 平行→c 。
8. 已知非零向量→a 、→b ,则|→a +→b |= |→a |+|→b | 的充分必要条件是( ) A 、→a 与→b 同向 B 、→a =→b C 、→a 与→b 平行 D 、 →a 与→b 反向 9. 已知||=5,||=8,则||的取值范围为 ( )A 、(3,8)B 、[3,8]C 、 (3,13)D 、[3,13]10.F(x)=x 2+6x+11的图象按向量→a 平移得到y= x 2的图象,则向量→a =( ) A 、(-3,2) B 、[3,2] C 、 (3,-2) D 、(-3,-2) 二、填空题:共5小题,每小题5分,总共25分,把答案填在题中横线上. 11. +BC +CA =0为“A 、B 、C 是三角形三个顶点”的 条件. 12. 已知P 点的内分点,且:=:=a,则a= 。
(好题)高中数学必修四第二章《平面向量》检测卷(含答案解析)
一、选择题1.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( ) A .23B .72C .103D .432.已知向量,a b ,满足||1,||2a b ==,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤,则向量,a b 的夹角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,63ππ⎡⎤⎢⎥⎣⎦D .20,3π⎡⎤⎢⎥⎣⎦3.延长正方形CD AB 的边CD 至E ,使得D CD E =.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,若λμAP =AB +AE ,下列判断正确的是( )A .满足2λμ+=的点P 必为CB 的中点 B .满足1λμ+=的点P 有且只有一个C .λμ+的最小值不存在D .λμ+的最大值为34.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-1 5.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .6.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A.3 B.2 C .52D.327.已知非零向量,OA a OB b==,且BC OA⊥,C为垂足,若(0)OC aλλ=≠,则λ等于( )A.a ba b⋅B.2a ba⋅C.2a bb⋅D.a ba b⋅8.如图,正方形ABCD的边长为6,点E,F分别在边AD,BC上,且2DE AE=,2CF BF=.若有(7,16)λ∈,则在正方形的四条边上,使得PE PFλ=成立的点P有()个.A.2 B.4 C.6 D.09.已知抛物线2:4C y x=的焦点为F,准线为l,P是l上一点,Q是直线PF与C 的一个交点,若2FP QF=,则||QF=()A.8 B.4 C.6 D.310.已知O是三角形ABC内部一点,且20OA OB OC++=,则OAB∆的面积与OAC∆的面积之比为()A.12B.1 C.32D.211.已知ABC∆为等边三角形,则cos,AB BC=( )A .3B.12-C.12D312.ABC是边长为23的正三角形,O是ABC的中心,则()()OA OB OA OC+⋅+=()A.2 B.﹣2 C.634-D.634-二、填空题13.已知平面向量,,a b c满足()()||2,||2||a cbc a b a b-⋅-=-==.则c的最大值是________.14.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为1F,2F,且12F F=,1F与2F的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力; ②θ的范围为[]0,π; ③当2πθ=时,1F G =;④当23πθ=时,1F G =.其中正确结论的序号是______.15.已知向量2a =,1b =,223a b -=,则向量a ,b 的夹角为_______. 16.设123,,e e e 为单位向量,且()312102e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为__________. 17.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 18.已知点()0,1A ,()3,2B,向量()4,3AC =,则向量BC =______.19.已知夹角为θ的两个单位向量,a b ,向量c 满足()()0a c b c -⋅-=,则c 的最大值为______.20.已知a →,b →为单位向量,2c a b →→→=-,且,3a b π→→<>=,则,a c →→〈〉=________.三、解答题21.已知在等边三角形ABC 中,点P 为线段AB 上一点,且()01AP AB λλ=≤≤. (1)若等边三角形ABC 的边长为6,且13λ=,求CP ; (2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围. 22.已知||6a =,||4=b ,(2)(3)72a b a b -⋅+=-. (1)求向量a ,b 的夹角θ; (2)求|3|a b +.23.已知a ,b ,c 是同一平面内的三个向量,其中()1,2a =,()3,b k =-,()2,4c =-.(1)若()//(2)ma c a c +-,求m ; (2)若()a a b ⊥+,c a b λμ=+,求λμ+.24.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标.25.对于任意实数a ,b ,c ,d ,表达式ad bc -称为二阶行列式(determinant ),记作a b c d,(1)求下列行列式的值:①1001;②1326;③251025--; (2)求证:向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=;(3)讨论关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解的条件,并求出解.(结果用二阶行列式的记号表示).26.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值; (2)若2t =,求向量a ,b 的夹角.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=2.B解析:B 【分析】根据向量不等式得到7a b +≤,平方得到1a b ⋅≤,代入数据计算得到1cos 2α≤得到答案. 【详解】由||1a =,||2b =,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤ 可得:()()27a b c a b c a c b c +⋅≤+⋅≤⋅+⋅≤ 可得:()227a b +⋅≤,7a b +≤平方得到2227a b a b ++⋅≤,即1a b ⋅≤1cos 1,cos ,23a b a b παααπ⋅=⋅≤∴≤∴≤≤故选:B 【点睛】本题考查了向量夹角的计算,利用向量三角不等式的关系进行求解是解题的关键.3.D解析:D 【解析】试题分析:设正方形的边长为1,建立如图所示直角坐标系,则,,,,A B C D E 的坐标为(0,0),(1,0),(1,1),(0,1),(1,1)-,则(1,0),(1,1)AB AE ==-设(,)AP a b =,由λμAP =AB +AE 得(,)(,)a b λμμ=-,所以{a b λμμ=-=,当P 在线段AB 上时,01,0a b ≤≤=,此时0,a μλ==,此时a λμ+=,所以01λμ≤+≤;当P 在线段BC 上时,,此时,1b a b μλμ==+=+,此时12b λμ+=+,所以13λμ≤+≤;当P 在线段CD 上时,,此时1,1a a μλμ==+=+,此时2a λμ+=+,所以13λμ≤+≤;当P 在线段DA 上时,0,01,a b =≤≤,此时,b a b μλμ==+=,此时2b λμ+=,所以02λμ≤+≤;由以上讨论可知,当2λμ+=时,P 可为BC 的中点,也可以是点D ,所以A 错;使1λμ+=的点有两个,分别为点B 与AD 中点,所以B 错,当P 运动到点A 时,λμ+有最小值0,故C 错,当P 运动到点C 时,λμ+有最大值3,所以D 正确,故选D .考点:向量的坐标运算.【名师点睛】本题考查平面向量线性运算,属中档题.平面向量是高考的必考内容,向量坐标化是联系图形与代数运算的渠道,通过构建直角坐标系,使得向量运算完全代数化,通过加、减、数乘的运算法则,实现了数形的紧密结合,同时将参数的取值范围问题转化为求目标函数的取值范围问题,在解题过程中,还常利用向量相等则坐标相同这一原则,通过列方程(组)求解,体现方程思想的应用.4.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大, 而由x+y=11x ⎧⎨=⎩ 可得A (1,0),此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
高中数学必修四第二章《平面向量》单元测试卷及答案
高中数学必修四第二章《平面向量》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.设3,sin 2α⎛⎫= ⎪⎝⎭a ,1cos ,3α⎛⎫= ⎪⎝⎭b ,且∥a b ,则锐角α为( )A .30︒B .60︒C .75︒D .45︒2.下列命题正确的是( ) A .单位向量都相等B .若a 与b 共线,b 与c 共线,则a 与c 共线C .若|a +b |=|a -b |,则a ·b =0D .若a 与b 都是单位向量,则a ·b =1.3.设向量()2,3a m m =-+,()21,2b m m =+-,若a 与b 的夹角大于90°,则实数m 的取值范围是( ) A .4,23⎛⎫- ⎪⎝⎭B .()4,2,3⎛⎫-∞-+∞ ⎪⎝⎭C .42,3⎛⎫- ⎪⎝⎭D .()4,2,3⎛⎫-∞+∞ ⎪⎝⎭4.平行四边形ABCD 中,AC 为一条对角线,若()2,4AB =,()1,3AC =,则AD BD ⋅等于( )A .8B .6C .8-D .6-5.已知1=a ,6=b ,()2⋅-=a b a ,则向量a 与向量b 的夹角是( ) A .6πB .4π C .3π D .2π 6.关于平面向量a ,b ,c ,有下列四个命题: ①若a ∥b ,a ≠0,则存在λ∈R ,使得b =λa ; ②若a ·b =0,则a =0或b =0;③存在不全为零的实数λ,μ使得c =λa +μb ; ④若a ·b =a ·c ,则a ⊥(b -c ). 其中正确的命题是( ) A .①③B .①④C .②③D .②④7.已知|a |=5,|b |=3,且12⋅-a b =,则向量a 在向量b 上的投影等于( ) A .4-B .4C .125-D .1258.设O ,A ,M ,B 为平面上四点,()1OM OB OA λλ=+-⋅,且()1,2λ∈,则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,B ,M 四点共线9.P 是△ABC 内的一点,()13AP AB AC =+,则△ABC 的面积与△ABP 的面积之比为( ) A .32B .2C .3D .610.在△ABC 中,2AR RB =,2CP PR =,若AP mAB nAC =+,则m n +等于( ) A .23B .79 C .89D .111.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )等于( ) A .45-B .35-C .0D .3512.定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np .下面说法错误的是( ) A .若a 与b 共线,则a ⊙b =0 B .a ⊙b =b ⊙aC .对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b )D .(a ⊙b )2+(a ·b )2=|a |2|b |2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.设向量a =(1,2),b =(2,3),若向量λa +b 与向量()4,7--c =共线,则λ=________. 14.a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________.15.已知向量a =(6,2),14,2⎛⎫=- ⎪⎝⎭b ,直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的方程为________.16.已知向量()2,1OP =,()1,7OA =,()5,1OB =,设M 是直线OP 上任意一点(O 为坐标原点),则MA MB ⋅的最小值为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,以向量OA =a ,OB =b 为边作AOBD ,又13BM BC =,13CN CD =,用a ,b 表示OM 、ON 、MN .18.(12分)已知a ,b 的夹角为120°,且|a |=4,|b |=2, 求:(1)(a -2b )·(a +b ); (2)|a +b |; (3)|3a -4b |.19.(12分)已知)1=-a ,12⎛= ⎝⎭b ,且存在实数k 和t ,使得x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ,试求2k t t+的最小值.20.(12分)设()2,5OA =,()3,1OB =,()6,3OC =.在线段OC 上是否存在点M ,使MA ⊥MB ?若存在,求出点M 的坐标;若不存在,请说明理由.21.(12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,求实数t 的取值范围.22.(12分)已知线段PQ 过△OAB 的重心G ,且P 、Q 分别在OA 、OB 上,设OA =a ,OB =b ,OP m =a ,OQ n =b .求证:113m n+=.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】D【解析】31sin cos 23αα⨯=,sin 21α=,290α=︒,45α=︒.故选D .2.【答案】C【解析】∵|a +b |2=a 2+b 2+2a ·b ,|a -b |2=a 2+b 2-2a ·b ,||+-=a b a b . ∴0⋅a b =.故选C . 3.【答案】A【解析】∵a 与b 的夹角大于90°,∴0⋅<a b ,∴()()()()221320m m m m -+++-<,即23280m m -<-,∴423m -<<.故选A .4.【答案】A【解析】∵()1,1AD BC AC AB ==-=--,∴()()()1,12,43,5BD AD AB =-=---=--,∴()()1,13,58AD BD ⋅=--⋅--=. 故选A . 5.【答案】C【解析】∵()22-=⋅-=a b a a b a ,∴3⋅a b =,∴31cos ,·162a b ⋅〈〉===⨯a b a b ,∴,3a b π〈〉=.故选C . 6.【答案】B【解析】由向量共线定理知①正确;若a ·b =0,则a =0或b =0或a ⊥b ,所以②错误;在a ,b 能够作为基底时,对平面上任意向量,存在实数λ,μ使得c =λa +μb , 所以③错误;若⋅⋅a b =a c ,则()0-=a b c ,所以()⊥-a b c ,所以④正确, 即正确命题序号是①④,所以B 选项正确. 7.【答案】A【解析】向量a 在向量b 上的投影为12cos ,43a b ⋅⋅〈〉=⋅==-=-a b a b a a a b b . 故选A . 8.【答案】B【解析】∵()()1OM OB OA OA OB OA λλλ=+-⋅=+-,∴AM AB λ=,λ∈(1,2),∴点B 在线段AM 上,故选B . 9.【答案】C【解析】设△ABC 边BC 的中点为D ,则22ABC ABD ABP ABP S S ADS S AP==△△△△. ∵()1233AP AB AC AD =+=,∴32AD AP =,∴32AD AP =.∴3ABC ABP S S =△△.故选C . 10.【答案】B【解析】2224133393AP AC CP AC CR AC AB AC AB AC ⎛⎫=+=+=+-=+ ⎪⎝⎭,故有417939m n +=+=.故选B . 11.【答案】B【解析】由已知得435=--b a c ,将等式两边平方得()()22435=--b a c ,化简得35⋅=-a c .同理由534--c =a b 两边平方得a ·b =0,∴()35=⋅+=⋅-⋅a b c a b +a c .故选B . 12.【答案】B【解析】若a =(m ,n )与b =(p ,q )共线,则mq -np =0,依运算“⊙”知a ⊙b =0,故A 正确.由于a ⊙b =mq -np ,又b ⊙a =np -mq ,因此a ⊙b =-b ⊙a ,故B 不正确.对于C ,由于λa =(λm ,λn ),因此(λa )⊙b =λmq -λnp ,又λ(a ⊙b )=λ(mq -np )=λmq -λnp ,故C 正确.对于D ,(a ⊙b )2+(a ·b )2=m 2q 2-2mnpq +n 2p 2+(mp +nq )2=m 2(p 2+q 2)+n 2(p 2+q 2)=(m 2+n 2)(p 2+q 2)=|a |2|b |2,故D 正确.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】2【解析】∵a =(1,2),b =(2,3),∴()()(),22,32,23λλλλλ=++++a b =. ∵向量λa +b 与向量()4,7--c =共线,∴-7(λ+2)+4(2λ+3)=0.∴λ=2. 14.【答案】7 【解析】∵()222222125552511310134920⎛⎫==+-⨯+-⨯⨯--⋅=⎝=⨯- ⎪⎭a b a b a b a b .∴|5a -b |=7.15.【答案】2390x y --=【解析】设P (x ,y )是直线上任意一点,根据题意,有()()()23,12,30AP x y ⋅+=-+⋅-=a b ,整理化简得2390x y --=. 16.【答案】8-【解析】设()2,OM tOP t t ==,故有()()()2212,752,152012528MA MB t t t t t t t ⋅=--⋅--=-+=--, 故当t =2时,MA MB ⋅取得最小值8-.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】1566OM =+a b ,2233ON =+a b ,1126MN =-a b .【解析】BA OA OB =-=-a b .∴11153666OM OB BM OB BC OB BA =+=+=+=+a b .又OD =+a b .1122226333ON OC CN OD OD OD =+=+==+a b ,∴221511336626MN ON OM =-=+--=-a b a b a b .18.【答案】(1)12;(2)(3)【解析】(1)1cos1204242⎛⎫⋅=︒=⨯⨯-=-⎪⎝⎭a b a b.(a-2b)·(a+b)=a2-2a·b+a·b-2b2=42-2×(-4)+(-4)-2×22=12.(2)∵|a+b|2=(a+b)2=a2+2a·b+b2=16+2×(-4)+4=12.∴+=a b.(3)|3a-4b|2=9a2-24a·b+16b2=9×42-24×(-4)+16×22=16×19,∴34-=a b19.【答案】74 -.【解析】由题意有2=a,1=b.∵1102⋅=-=a b,∴⊥a b.∵x·y=0,∴[a+(t2-3)b](-k a+t b)=0.化简得334t tk-=.∴()()222117432444k tt t tt+=+-=+-.即2t=-时,2k tt+有最小值为74-.20.【答案】存在,M点的坐标为(2,1)或2211,55⎛⎫⎪⎝⎭.【解析】设OM tOC=,t∈[0,1],则()6,3OM t t=,即M(6t,3t).()26,53MA OA OM t t=-=--,()36,13MB OB OM t t=-=--.若MA⊥MB,则()()()()263653130MA MB t t t t⋅=--+--=.即45t2-48t+11=0,13t=或1115t=.∴存在点M,M点的坐标为(2,1)或2211,55⎛⎫⎪⎝⎭.21.【答案】1417,,22⎛⎛⎫---⎪⎪⎝⎭⎝⎭.【解析】由向量2t e1+7e2与e1+t e2的夹角为钝角,得()()121212122727t tt t+⋅+<+⋅+e e e ee e e e,即(2t e1+7e2)·(e1+t e2)<0.整理得:()222112222770t t t++⋅+<e e e e.(*)∵|e1|=2,|e2|=1,〈e1,e2〉=60°.∴e1·e2=2×1×cos 60°=1,∴(*)式化简得:2t 2+15t +7<0.解得:172t -<<-.当向量2t e 1+7e 2与e 1+t e 2夹角为180°时,设2t e 1+7e 2=λ(e 1+t e 2) (λ<0). 对比系数得270t t λλλ=⎧⎪=⎨⎪<⎩,∴14142t λ⎧=-⎪⎨=-⎪⎩,∴所求实数t 的取值范围是141417,,222⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 22.【答案】见解析. 【解析】证明 如右图所示, ∵()()1122OD OA OB =+=+a b ,∴()2133OG OD ==+a b . ∴()111333PG OG OP m m ⎛⎫=-=+-=-+ ⎪⎝⎭a b a a b .PQ OQ OP n m =-=-b a . 又P 、G 、Q 三点共线,所以存在一个实数λ,使得PG PQ λ=.∴1133m n m λλ⎛⎫-+=- ⎪⎝⎭a b b a ,∴11033m m n λλ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭a +b . ∵a 与b 不共线,∴103103m m n λλ⎧-+=⎪⎪⎨⎪-=⎪⎩①②,由①②消去λ得:113m n +=单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.向量()2,3=a ,()1,2=-b ,若m +a b 与2-a b 平行,则m 等于( ) A .2-B .2C .12D .12-2.设向量()1,0a =,11,22⎛⎫= ⎪⎝⎭b ,则下列结论中正确的是( )A .=a bB .⋅a bC .-a b 与b 垂直D .∥a b3.已知三个力()12,1=--f ,()3,2=-2f ,()4,3-=3f 同时作用于某物体上一点,为使物体保持平衡,现加上一个力4f ,则4f 等于( ) A .()1,2--B .()1,2-C .()1,2-D .()1,24.已知正方形ABCD 的边长为1,AB =a ,BC =b ,AC =c ,则++a b c 的模等于( )A .0B .2CD .5.若a 与b 满足1==a b ,60,〈〉=︒a b ,则+⋅⋅a a a b 等于( )A .12B .32C .1D .26.若向量()1,1=a ,()1,1-b =,()1,2-c =,则c 等于( ) A .1322-+a bB .1322-a bC .3122-a bD .3122-+a b7.若向量()1,1=a ,()2,5=b ,()3,x =c ,满足条件()830-⋅=a b c ,则x =( ) A .6B .5C .4D .38.向量()4,3BA =-,向量()2,4BC =-,则△ABC 的形状为( ) A .等腰非直角三角形 B .等边三角形 C .直角非等腰三角形D .等腰直角三角形9.设点A (1,2)、B (3,5),将向量AB 按向量()1,1=--a 平移后得到A B ''为( ) A .(1,2)B .(2,3)C .(3,4)D .(4,7)10.若(),2λa =,()3,5-b =,且a 与b 的夹角是钝角,则λ的取值范围是( ) A .10,3⎛⎫+∞ ⎪⎝⎭B .10,3⎡⎫+∞⎪⎢⎣⎭C .10,3⎛⎫-∞ ⎪⎝⎭D .10,3⎛⎤-∞ ⎥⎝⎦11.在菱形ABCD 中,若AC =2,则CA AB ⋅等于( ) A .2 B .-2C .cos AB AD .与菱形的边长有关12.如图所示,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量的数量积中最大的是( )A .1213P P P P ⋅B .1214P P P P ⋅C .1215P P P P ⋅D .1216P P P P ⋅二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知向量()2,1=-a ,()1,m =-b ,()1,2=-c ,若()+∥a b c ,则m =________. 14.已知向量a 和向量b 的夹角为30°,2=a ,3=b ,则向量a 和向量b 的数量积⋅a b =________.15.已知非零向量a ,b ,若1==a b ,且⊥a b ,又知()()234k +⊥-a b a b , 则实数k 的值为________.16.如图所示,半圆的直径AB =2,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则()PA PB PC +⋅的最小值是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知a ,b ,c 在同一平面内,且()1,2=a . (1)若5=c ,且∥c a ,求c ; (2)若5=b ,且()()22+⊥-a b a b ,求a 与b 的夹角.。
(好题)高中数学必修四第二章《平面向量》测试(含答案解析)
一、选择题1.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )A .3 B .2 C .12D .232.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-13.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .30,(1,)⎛⎫⋃+∞ ⎪⎝⎭C .3,1⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞4.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( ) A .7793⎛⎫ ⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭,C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭,5.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .6.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,222]B .[0,2]C .[222,222]-+D .[222,2]-8.已知向量a ,b 满足||3,||2a b ==,且对任意的实数x ,不等式a xb a b +≥+恒成立,设a ,b 的夹角为θ,则tan θ的值为( )A B .2-C .D 9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .0B .4,C .16,0D .4,010.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .411.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .⎡⎣B .2⎣C .⎤⎦D .[]0,312.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ; ②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =; ④若//a b ,则一定存在唯一的实数λ,使得a b λ=. A .①③B .①④C .②③D .②④二、填空题13.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.14.已知向量(12,2)a t =-+,(2,44)b t =-+,(1,)c λ=(其中t ,)R λ∈.若(2)c a b ⊥+,则λ=__.15.向量,a b 满足(1,3),2,()(3)12a b a b a b ==+⋅-=,则a 在b 方向上的投影为__________.16.已知向量2a =,1b =,223a b -=,则向量a ,b 的夹角为_______. 17.如图,正方形ABCD 的边长为2,E 是以CD 为直径的半圆弧上一点,则AD AE ⋅的最大值为______.18.在△ABC 中,BD =2DC ,过点D 的直线与直线AB ,AC 分别交于点E ,F ,若AE =x AB ,AF =y AC (x >0,y >0),则x +y 的最小值为_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.在ABC 中,3AB =,6AC =,23BAC π∠=,D 为边BC 的中点,M 为中线AD 的中点.(1)求中线AD 的长;(2)求BM 与AD 的夹角θ的余弦值. 22.已知()3,0a =,(1,3)b =. (Ⅰ)求a b ⋅和b 的值;(Ⅱ)当()k k ∈R 为何值时,向量a 与k +a b 互相垂直? 23.已知123PP P 三个顶点的坐标分别为123(cos ,sin ),(cos ,sin ),(cos ,sin )P P P ααββγγ,且1230OP OP OP ++=(O 为坐标原点).(1)求12POP ∠的大小; (2)试判断123PP P 的形状.24.如图,在正方形ABCD 中,点E 是BC 边上中点,点F 在边CD 上.(1)若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λ+μ的值.(2)若AB =2,当AE BF ⋅=1时,求DF 的长.25.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值. 26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果.【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B ACy A =+-≥-=+=,即23AG ≥, 当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.2.A解析:A【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩ 可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( ) A .1 B .3 C .7 D .32.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .16 3.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)4.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90° B .60° C .45° D .30°5.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A 2B .1C .2D .226.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 7.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A 5B .5C .42D 31 8.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .09.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( )A .8B .4C .6D .310.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23πC .3πD .6π 11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题:①若1AB λ=,1AC μ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心;③若1λμ+=,且0μ>,则点P 在线段BC 上;④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内.其中真命题为______14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______. 19.在矩形ABCD 中,2AB =,1AD =,动点P 满足||1AP =,设向量AP AB AD λμ=+,则λμ+的取值范围为____________.20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.已知a ,b ,c 在同一平面内,且()1,2a =.(1)若35c =,且//a c ,求c ;(2)若2b =,且()()2a b a b +⊥-,求a 与b 的夹角的余弦值. 23.已知()()1,,3,2a m b ==-.(1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值;(2)若2t =,求向量a ,b 的夹角.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值;(2)若a b ⊥,求||a .26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题.【详解】设a 、b 所成角为θ,由||||2==a b ,2a b, 则1cos 2θ=,因为0θπ≤≤ 所以3πθ=, 记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离,由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为 P 到,A Q 两点的距离和最小,()P x 在直线y =上, ()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力. 2.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.C解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -, 设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--, 当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=,当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.4.C【详解】 由题意可得22(2)15b =-+=,所以2cos ,52a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C.5.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值.【详解】如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.C解析:C【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论.【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥, ABC ∴为直角三角形.故选:C .【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.7.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】 由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B. 【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.8.C解析:C【分析】建立平面直角坐标系,()0,P t ,t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,(0,2C ,设()0,P t ,其中2t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.9.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF .【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.10.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.11.B解析:B【分析】 由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题. 12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③.【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λb c ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B.【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断.【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:3【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到CD ==⎭2OA OB AB -≤=,得到||OA OD ⎛= 范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==, 所以||2,||2||AB OA OB ==, 取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=, 解得228CB CA +=,所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号,所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤. 【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322-18.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】由已知得应用向量的运算律求出关系利用三角换元结合正弦函数的有界性即可求解【详解】在矩形中令其中最小值最大值分别为的取值范围为故答案为:【点睛】本题考查向量的模长以及向量的数量积运算解题的关键解析:⎡⎢⎣⎦. 【分析】由已知得2||1AP =,应用向量的运算律,求出,λμ关系,利用三角换元结合正弦函数的有界性,即可求解. 【详解】在矩形ABCD 中,,0AB AD AB AD ⊥∴⋅=22222222||()41AP AB AD AB AD λμλμλμ=+=+=+=,令12cos ,sin ,cos sin sin()22λθμθλμθθθϕ==+=+=+,其中1tan 2ϕ=,λμ+最小值、最大值分别为22-,λμ+的取值范围为55,⎡⎤-⎢⎥⎣⎦. 故答案为:55,⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量的模长以及向量的数量积运算,解题的关键用换元法将问题转化为求三角函数的最值,属于中档题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.22.(1)()3,6c =或()3,6c =--;(2)10-. 【分析】(1)设(),c x y =,由平面向量平行的坐标表示及模的坐标表示可得2y x=⎧=即可得解;(2)由平面向量垂直可得()()20a b a b +⋅-=,再由平面向量数量积的运算可得1a b ⋅=-,最后由cos ,a ba b a b⋅=⋅即可得解. 【详解】(1)设(),c x y =,因为()1,2a =,//a c ,35c =,所以235y x x y =⎧+=⎪⎩36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩, 所以()3,6c =或()3,6c =--;(2)因为()1,2a =,所以14a =+又()()2a b a b +⊥-,2b =,所以()()22225220a b a b aa b ba b +⋅-=+⋅-=+⋅-⨯=,所以1a b ⋅=-, 所以cos ,5a b a b a b⋅===⨯⋅【点睛】本题考查了平面向量共线及模的坐标表示,考查了平面向量数量积的应用及运算求解能力,属于中档题. 23.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ;(2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,55a b b a b b a b⋅=⋅==-.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题. 24.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk=-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =, 又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =.【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果. 【详解】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。
(压轴题)高中数学必修四第二章《平面向量》检测卷(有答案解析)
一、选择题1.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .62.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( )A .12B .12C D .13.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D4.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC ++=D .ED 在BC 方向上的投影为765.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(1⎤⎦B .(1⎤⎦C .1⎤⎦D .)1,+∞6.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .37.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==8.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C .3D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +10.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .411.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-12.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,23AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______14.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,) OC mOA nOB m n R =+∈,则mn等于.16.已知ABC的三边长3AC=,4BC=,5AB=,P为AB边上任意一点,则()CP BA BC⋅-的最大值为______________.17.已知ABC∆中,3AB=,5AC=,7BC=,若点D满足1132AD AB AC=+,则DB DC⋅=__________.18.已知向量()()2,3,1,2==-a b,若ma b+与2a b-平行,则实数m等于______. 19.已知点O是ABC∆内部一点,并且满足230OA OB OC++=,BOC∆的面积为1S,ABC∆的面积为2S,则12SS=______.20.如图,在四边形ABCD中,60B∠=︒,2AB=,6BC=,1AD=,若M,N是线段BC上的动点,且||1MN=,则DM DN⋅的取值范围为_________.三、解答题21.在ABC中,3AB=,6AC=,23BACπ∠=,D为边BC的中点,M为中线AD 的中点.(1)求中线AD的长;(2)求BM与AD的夹角θ的余弦值.22.在直角坐标系xoy中,单位圆O的圆周上两动点A B、满足60AOB∠=︒(如图),C 坐标为()1,0,记COAα∠=(1)求点A与点B纵坐标差A By y-的取值范围;(2)求AO CB ⋅的取值范围;23.在OAB 的边OA ,OB 上分别有一点P ,Q ,已知:1:2OP PA =,:3:2OQ QB =,连接AQ ,BP ,设它们交于点R ,若OA a =,OB b =.(1)用a 与b 表示OR ;(2)过R 作RH AB ⊥,垂足为H ,若1a =,2b =,a 与b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,求BHBA的范围.24.如图,在ABC 中,1AB AC ==,120BAC ∠=.(Ⅰ)求AB BC 的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC →→→=+,其中,x y R ∈. 求xy 的最大值.25.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.2.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫- ⎪ ⎪⎝⎭,设c 的坐标为(),x y ,由已知可得2214x y ⎛+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,022x y x y ⎫⎫--⋅---=⎪⎪⎪⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以,02⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值,因为圆到原点的距离为2,所以圆上的点到原点的距离的最小值为122-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题3.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||22b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.4.D解析:D 【分析】利用CE AB ⊥,判断出A 错误;由2AD DC =结合平面向量的基本定理,判断出选项B 错误;以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,写出各点坐标,计算出OA OB OC ++的值,判断出选项C 错误;利用投影的定义计算出D 正确. 【详解】由题E 为AB 中点,则CE AB ⊥,0AB CE ⋅=,所以选项A 错误;由平面向量线性运算得2133BD BC BA =+,所以选项B 错误; 以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,()0,0E ,1,0A ,()1,0B -,(3C ,1233D ⎛ ⎝⎭,设()0,O y ,(3y ∈,()1,BO y =,123,33DO y ⎛=-- ⎝⎭, //BO DO ,所以,3133y y -=-,解:32y =, 32OA OB OC OE OE OE ++=+==,所以选项C 错误; 123,33ED ⎛⎫= ⎪ ⎪⎝⎭,(1,3BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,故选:D . 【点睛】本题考查平面向量数量积的应用,考查平面向量基本定理,考查投影的定义,考查平面向量的坐标表示,属于中档题.5.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.7.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.8.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+,所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.9.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.10.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零,所以当232cos622b b a b taaaπ⋅=-=-=-时,()g t 取得最小值1,所以22233321222b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题11.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭,∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.12.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=.以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.17.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-,所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-=⎪ ⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.18.【分析】由向量坐标的数乘及加减法运算求出与然后利用向量共线的坐标表示列式求解【详解】解:由向量和所以由与平行所以解得故答案为:【点睛】本题考查了平行向量与共线向量考查了平面向量的坐标运算属于基础题解析:12-【分析】由向量坐标的数乘及加减法运算求出ma b +与2a b -,然后利用向量共线的坐标表示列式求解. 【详解】解:由向量(2,3)a =和(1,2)b =-,所以()()()2,31,221,32m m m b m a ++=-=-+,()()()22,321,24,1a b -=--=-,由ma b +与2a b -平行,所以4(32)(21)0m m ++-=. 解得12m =-. 故答案为:12-. 【点睛】本题考查了平行向量与共线向量,考查了平面向量的坐标运算,属于基础题.19.【分析】将化为再构造向量和得出比例关系最后求解【详解】因为所以分别取的中点则所以即三点共线且如图所示则由于为中点所以所以故答案为:【点睛】本题考查向量的线性运算但是在三角形中考查又和三角形面积综合在解析:16【分析】将230OA OB OC ++=化为()2OA OC OB OC +=-+,再构造向量()12OA OC +和()12OB OC +,得出比例关系,最后求解12.S S【详解】因为230OA OB OC ++=,所以()2OA OC OB OC +=-+,分别取AC ,BC 的中点D ,E ,则2OA OC OD +=,2OB OC OE +=. 所以2OD OE =-,即O ,D ,E 三点共线且2OD OE =.如图所示,则13OBC DBC S S ∆∆=,由于D 为AC 中点,所以12DBC ABC S S ∆∆=,所以16OBC ABC S S ∆∆=. 故答案为:16【点睛】本题考查向量的线性运算,但是在三角形中考查,又和三角形面积综合在一起,属于中档题.20.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围. 【详解】如图,建立平面直角坐标系,(3A ,(3D ,(),0M x ,()1,0N x +,(2,3DM x =--,(1,3DN x =--,[]0,5x ∈,()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+ ⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15,所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.三、解答题21.(1)332;(257【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+, 所以()293117199361681616BM=⨯-⨯-+⨯=,从而319BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以2757cos 831933BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以0,2D ⎛ ⎝⎭,0,2AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫ ⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos8BM AD BM AD θ⋅=== 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(1)[ 1.1]A B y y -∈-;(2)31,22⎡⎤-⎢⎥⎣⎦. 【分析】(1)根据三角函数的定义写出点A 与点B 纵坐标,从而将A B y y -表示成关于α的三角函数;(2)写出向量数量积的坐标运算,即AO CB OA BC ⋅=⋅,再利用三角函数的有界性,即可得答案;【详解】由题意得:()sin ,sin 60A B y y αα︒==-,∴A B y y -()1sin sin 60sin sin cos 22ααααα︒⎛⎫=--=-⋅-⋅ ⎪ ⎪⎝⎭1sin sin 223πααα⎛⎫=+=+ ⎪⎝⎭ 02απ<,∴1sin 13πα⎛⎫-≤+≤ ⎪⎝⎭,∴[ 1.1]A B y y -∈-.(2)()()() (cos ,sin )1cos 60,sin 60AO CB OA BC αααα︒︒⋅=⋅=⋅---- ()()cos cos cos 60sin sin 60ααααα︒︒=-⋅--⋅- ()22133cos sin cos sin cos sin cos 2ααααααα=-+-⋅+⋅ 1cos 2α=-, 02απ≤<,3111cos 1cos 222αα∴-≤≤⇒-≤-≤, ∴31,22AO CB ⎡⎤⋅∈-⎢⎥⎣⎦. 【点睛】根据三角函数的定义及三角恒等变换、三角函数的有界性是求解本题的关键.23.(1)1162OR a b =+;(2)171,422⎡⎤⎢⎥⎣⎦. 【分析】(1)利用,,A R Q 三点共线和,,B R P 三点共线,结合平面向量共线定理,可构造方程组求得结果;(2)设BHt BA =,利用0BH AB ⋅=,结合平面向量线性运算将两个向量转化为用,a b 表示的向量,利用平面向量数量积的运算律可整理得到t 关于cos θ的函数形式,利用cos θ的范围即可求得结果.【详解】(1)设OR OA OQ λμ=+,,,A R Q 三点共线,1λμ∴+=,又:3:2OQ QB =,35OQ OB ∴=,35OR OA OB μλ∴=+;设OR mOP nOB =+,同理可得:1m n +=,3m OR OA nOB =+, ,OA OB 不共线,335m n λμ⎧=⎪⎪∴⎨⎪=⎪⎩,51331m n m n ⎧+=⎪∴⎨⎪+=⎩,解得:1212m n ⎧=⎪⎪⎨⎪=⎪⎩,1162OR OA OB ∴=+, 即1162OR a b =+. (2)设BH t BA =,则BH tBA =,()()1162RH BH BR tBA OR OB t OA OB OA OB ⎛⎫=-=--=--- ⎪⎝⎭ 11116262t OA t OB t a t b ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 又AB OB OA b a =-=-,BH AB ⊥,0BH AB ∴⋅=,()2211112262623t a t b b a t a t b t a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴-+-⋅-=-+-+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦14134244cos 54cos cos 06363t t t t t θθθ⎛⎫=-+-+-=-+-= ⎪⎝⎭, 整理可得:134cos 138cos 136354cos 3024cos 33024cos t θθθθθ--===+---, 2,33ππθ⎡⎤∈⎢⎥⎣⎦,11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,171,422t ⎡⎤∴∈⎢⎥⎣⎦, 即BHBA 的取值范围为171,422⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查了平面向量线性运算和数量积运算的综合应用,处理数量积运算问题时,通常利用线性运算将所求向量进行等价转化,利用模长和夹角已知的两个向量来表示所求向量,如本题中利用,a b 表示出,BH AB ,再结合数量积的运算律来进行求解. 24.(Ⅰ)32-;(Ⅱ)1. 【分析】(I )建立坐标系,求出向量坐标,代入数量积公式计算;(II )利用向量坐标运算,得到三角函数,根据三角函数求出最大值.【详解】(Ⅰ)()AB BC AB AC AB →→→→→⋅=⋅- 213122AB AC AB →→→=⋅-=--=-. (Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,13(,)22C -. 设(cos ,sin )P θθ,[0,]3θ2π∈,由AP x AB y AC →→→=+,得13(cos ,sin )(1,0)(2x y θθ=+-. 所以3cos ,sin 22y x y θθ=-=. 所以3cos sin 3x θθ=+,33y θ=, 2232311sin cos sin 2cos 233333xy θθθθθ=+=+- 2311(2cos 2)3223θθ=-+ 21sin(2)363πθ=-+, 因为2[0,]3πθ∈,72[,]666πππθ-∈-. 所以,当262ππθ-=,即3πθ=时,xy 的最大值为1. 【点睛】本题主要考查了平面向量的数量积运算,向量的坐标运算,正弦型函数的图象与性质,属于中档题.25.(1)3BC =;72BE =;(2)是定值,78. 【分析】 (1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】(1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒=∴3BC =又()12BE BO BC =+ ∴()22211372132134424BE BO BC BO BC ⎛⎫=++⋅=++⨯⨯⨯= ⎪⎝⎭ ∴7BE = (2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<,则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=,故310 CGCB.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
(典型题)高中数学必修四第二章《平面向量》测试题(有答案解析)
一、选择题1.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1 B .2C .3D .42.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .3.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒4.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .325.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .66.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A B .1C .2D .8.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .5±D 9.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-10.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23π C .3π D .6π 二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭;② A 、B③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号)15.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.18.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知向量a 与b 的夹角为3π,且1a =,2b =. (1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值. 23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围.25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.2.C解析:C 【解析】,,又,,则,故选3.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之. 【详解】 由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +3,|122e e -+3, 设向量1212,2a e e b e e =+=-+的夹角为α,则312cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则121222221122cos x y x yθ=+⋅+.4.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =,∴225AB OA OB += , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴4525D ⎝⎭;则45254525OE OD λλ⎫===⎪⎪⎝⎭⎝⎭, 45255,EA ⎛⎫= ⎪ ⎪⎭;∵34OE EA ⋅=, ∴2454525354⎫⎫⋅-=⎪⎪⎪⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为))452511ED OD OE λλ⎛⎫=-=-- ⎪⎪⎝⎭, 当34λ=时,5512ED ⎛== ⎝⎭;当14λ=时,353532ED ==⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A.5.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.6.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解. 【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.7.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.8.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合||cos a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 9.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.10.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:3⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值.【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确. 对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 12e ,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.15.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭, 据此有:233GB ⎛⎫=-- ⎪⎝⎭,4233GC ⎛⎫=-⎪⎭, 结合平面向量数量积的坐标运算法则可得:222203339GB GC ⎛⎛⎫⎛⎫⋅=--⨯-=- ⎪ ⎪⎝⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC ∆的边长为4cos3023︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,3),D(2,0)-, 由||1AP =,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M 为PC 中点,即有3cos 3sin (2M θθ++,则2223cos3sin||3=3+2BMθθ⎛⎫++⎛⎫-+⎪⎪ ⎪⎝⎭⎝22(3cos)(33sin)376cos63sin4θθθθ-+-+=+=3712sin64πθ⎛⎫+-⎪⎝⎭=,当sin16πθ⎛⎫-=⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494.【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】延长BC作圆M的切线设切点为A1切线与BD的交点D结合数量积的几何意义可得点A运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC作圆M的切线设切点为A1切解析:2-【分析】延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,结合数量积的几何意义可得点A运动到A1时,CA在CB上的投影最小,设CP x=,将结果表示为关于x的二次函数,求出最值即可.【详解】如图,延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,由数量积的几何意义,CA CB⋅等于CA在CB上的投影与CB之积,当点A运动到A1时,CA在CB上的投影最小;设BC中点P,连MP,MA1,则四边形MPDA1为矩形;设CP=x,则CD=2-x,CB=2x,CA CB⋅=()()222224212x x x x x--⋅=-=--,[]02x∈,,所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.18.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而minMN==故答案为: 7【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.19.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】 由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++,所以1 13519kkλλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.20.【分析】由已知得由得由不等式可知再由得最后由可得解【详解】由得即由得即由得由得所以故答案为:【点睛】本题考查了向量及其模的运算考查了向量的夹角公式和基本不等式考查了计算能力属于中档题解析:0,3π⎡⎤⎢⎥⎣⎦【分析】由已知,得22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①,由+①②,得226a b+=,由不等式可知3a b ≤,再由-①②,得32a b⋅=,最后由cos,a ba ba b⋅=可得解.【详解】由3a b+=,3a b-=,得()()2239baab⎧⎪⎨⎪-==+⎩,即22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①由+①②,得226a b+=,即226a b+=由-①②,得32a b⋅=由222a b a b +≥,得3a b ≤1cos ,2a b a b a b⋅=≥所以,0,3a b π≤≤.故答案为:0,3π⎡⎤⎢⎥⎣⎦【点睛】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1;(2. 【分析】(1)由已知利用平面向量数量积公式可得1a b ⋅=,平方后根据向量数量积的运算可求||a b +的值.(2)结合(1),根据已知条件,由向量夹角的余弦公式即可求解.【详解】(1)向量a 与b 的夹角为3π,且||1a =,||2b =, ∴||||cos a b a b a ⋅=<,112cos12132b π>=⨯⨯=⨯⨯=.222||()2142a b a b a b a b ∴+=+=++⋅=++=.(2)设向量a b +与向量a 的夹角θ,22()||27cos ||||||||||||71a b a a a b a a b a b a a b a a b a θ+⋅+⋅+⋅∴=====+⋅+⋅+⋅⨯. 【点睛】本题主要考查了向量数量积的运算及计算公式,向量夹角的余弦公式,属于中档题.23.(1)π3;(2) 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】 (1)设向量a 与b 的夹角θ, ()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得:()222a b a b -=-==. 【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】 (1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围. 【详解】 (1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点, 所以53,44M ⎛⎫ ⎪ ⎪⎝⎭,132N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以31,22t M ⎛⎫+ ⎪ ⎪⎝⎭,(13N t -. 所以()()223113*********t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1;当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型.25.(1)()26f x sin x π⎛⎫=- ⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】 (1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=-⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴. (3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴. 【详解】(1)()()21122ωωωωωω=-=-f x sin x sin x x sin x xcos x ,1222226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1, 故函数f (x )的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ;(3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<, 令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =.因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<, 则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ,使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=, 故310CGCB =. 【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
第二章平面向量单元综合测试卷(带答案新人教A版必修4 )
第二章平面向量单元综合测试卷(带答案新人教A版必修4 )第二章平面向量单元综合测试卷(带答案新人教A版必修4 ) (120分钟 150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2013•三明高一检测)化简 - + - 得( ) A. B. C. D.0 2.已知a,b都是单位向量,则下列结论正确的是( ) A.a•b=1 B.a2=b2C.a∥b a=bD.a•b=0 3.已知A,B,C为平面上不共线的三点,若向量 =(1,1),n=(1,-1),且n• =2,则n• 等于( ) A.-2 B.2 C.0 D.2或-2 4.点C在线段AB上,且 = ,若 =λ,则λ等于( ) A. B. C.- D.- 5.若a=(1,2),b=(-3,0),(2a+b)∥(a-mb),则m= ( ) A.- B. C.2 D.-2 6.(2013•牡丹江高一检测)已知a+b=(1,2),c=(-3,-4),且b⊥c,则a在c方向上的投影是( ) A. B.-11C.-D.11 7.(2013•兰州高一检测)若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为( ) A.30° B.60° C.120° D.150° 8.已知△ABC满足2= • + • + • ,则△ABC是( ) A.等边三角形B.锐角三角形 C.直角三角形 D.钝角三角形9.(2013•西城高一检测)在矩形ABCD中,AB= ,BC=1,E是CD上一点,且• =1,则• 的值为( ) A.3 B.2 C. D. 10.已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c= ( ) A. B. C. D.11.(2013•六安高一检测)△ABC中,AB边上的高为CD,若 =a, =b,a•b=0,|a|=1,|b|=2,则 = ( ) A. a- b B. a- b C. a- b D. a- b 12.在△ABC所在平面内有一点P,如果 + + = ,则△PAB与△ABC 的面积之比是( ) A. B. C. D. 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知a=(2,4),b=(-1,-3),则|3a+2b|= . 14.已知向量a=(1, ),b=(-2,2 ),则a与b的夹角是. 15.(2013•江西高考)设e1,e2为单位向量.且e1,e2的夹角为,若a=e1+3e2,b=2e1,则向量a在b 方向上的射影为. 16.(2013•武汉高一检测)下列命题中:①a∥b 存在唯一的实数λ∈R,使得b=λa;②e为单位向量,且a∥e,则a=±|a|e;③|a•a•a|=|a|3;④a与b共线,b与c共线,则a与c共线;⑤若a•b=b•c且b≠0,则a=c. 其中正确命题的序号是. 三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知梯形ABCD中,AB∥CD,∠CDA=∠DAB=90°,CD=DA= AB. 求证:AC⊥BC. 18.(12分)(2013•无锡高一检测)设 =(2,-1), =(3,0), =(m,3). (1)当m=8时,将用和表示. (2)若A,B,C三点能构成三角形,求实数m应满足的条件. 19.(12分)在边长为1的等边三角形ABC中,设=2 , =3 . (1)用向量,作为基底表示向量 . (2)求• . 20.(12分)(2013•唐山高一检测)已知a,b,c是同一平面内的三个向量,其中a=(1,2). (1)若|b|=2 ,且a∥b,求b的坐标. (2)若|c|= ,且2a+c与4a-3c垂直,求a与c的夹角θ. 21.(12分)(能力挑战题)已知a=(1,cosx),b=(,sinx),x∈(0,π). (1)若a∥b,求的值. (2)若a⊥b,求sinx-cosx的值. 22.(12分)(能力挑战题)已知向量a,b满足|a|=|b|=1, |ka+b|= |a-kb|(k>0,k∈R). (1)求a•b 关于k的解析式f(k). (2)若a∥b,求实数k的值. (3)求向量a与b夹角的最大值.答案解析 1.【解析】选D. - + - = + - = - =0. 2.【解析】选B.因为a,b都是单位向量,所以|a|=|b|=1,所以|a|2=|b|2,即a2=b2.3.【解析】选B.因为n• =n•( - ) =n• -n• ,又n• =(1,-1)•(1,1)=1-1=0,所以n• =n• =2.4.【解析】选C.由 = 知,| |∶| |=2∶3,且方向相反(如图所示),所以 =- ,所以λ=- .5.【解析】选A.因为a=(1,2),b=(-3,0),所以2a+b=(-1,4),a-mb=(1+3m,2),又因为(2a+b)∥(a-mb),所以(-1)×2=4(1+3m),解得m=- . 【拓展提升】证明共线(或平行)问题的主要依据 (1)对于向量a,b,若存在实数λ,使得b=λa,则向量a与b共线(平行). (2)a=(x1,y1),b=(x2,y2),若x1y2-x2y1=0,则向量a∥b. (3)对于向量a,b,若|a•b|=|a|•|b|,则a与b共线. 向量平行的等价条件有两种形式,其一是共线定理,其二是共线定理的坐标形式.其中,共线定理的坐标形式更具有普遍性,不必考虑向量是否为零和引入参数的存在性及唯一性. 6.【解析】选C.a•c=[(a+b)-b]•c=(a+b)•c-b•c. 因为a+b=(1,2),c=(-3,-4),且b⊥c,所以a•c=(a+b)•c =(1,2)•(-3,-4)=1×(-3)+2×(-4)=-11,所以a在c方向上的投影是 = =- . 7.【解析】选C.因为c=a+b,c⊥a,所以c•a=(a+b)•a=a2+b•a=0,所以a•b=-a2=-|a|2=-12=-1,设向量a与b的夹角为θ,则cosθ= = =- ,又0°≤θ≤180°,所以θ=120°. 8.【解析】选C.因为= • + • + • ,所以2= • + • + • ,所以•( - - )= • ,所以•( - )= • ,所以• =0,所以⊥ ,所以△ABC是直角三角形. 【变式备选】在四边形ABCD中, =a+2b, =-4a-b, =-5a-3b,其中a,b不共线,则四边形ABCD为( ) A.平行四边形 B.矩形 C.梯形 D.菱形【解析】选C.因为 = + + =-8a-2b=2 ,所以四边形ABCD为梯形. 9.【解析】选B.如图所示,以A为原点,AB所在直线为x轴建立平面直角坐标系. A(0,0),B( ,0),C( ,1),设点E 坐标为(x,1),则 =(x,1), =( ,0),所以• =(x,1)•( ,0)= x=1,x= ,所以• = •( ,1)= × +1×1=2. 10.【解析】选D.设c=(x,y),则c+a=(x+1,y+2), a+b=(1,2)+(2,-3)= ,因为(c+a)∥b,c⊥(a+b),所以即解得所以c= . 【误区警示】解答本题易混淆向量平行和垂直的坐标表示,导致计算错误. 11.【解析】选D.因为a•b=0,所以⊥ ,所以AB= = ,又因为CD⊥AB,所以△ACD∽△ABC,所以 = ,所以AD= = = ,所以 = = = (a-b)= a- b. 12.【解题指南】先对 + + = 进行变形,分析点P所在的位置,然后结合三角形面积公式分析△PAB与△ABC的面积的关系. 【解析】选A.因为 + + = = - ,所以2 + =0, =-2 =2 ,所以点P是线段AC的三等分点(如图所示). 所以△PAB与△ABC的面积之比是 . 13.【解析】因为3a+2b=3(2,4)+2(-1,-3) =(6,12)+(-2,-6)=(4,6),所以|3a+2b|= =2 . 答案:2 14.【解析】设a与b的夹角为θ,a•b=(1,)•(-2,2 )=1×(-2)+ ×2 =4, |a|= =2,|b|= =4,所以cosθ= = = ,又0°≤θ≤180°,所以θ=60°. 答案:60° 15.【解析】设a,b的夹角为θ,则向量a在b方向上的射影为|a|cosθ=|a| = ,而a•b=(e1+3e2)•2e1=2+6cos =5,|b|=2,所以所求射影为 . 答案: 16.【解析】①错误.a∥b且a≠0 存在唯一的实数λ∈R,使得b=λa;②正确.e为单位向量,且a∥e,则a=±|a|e;③正确. = = = ;④错误.当b=0时,a与b共线,b与c共线,则a与c不一定共线;⑤错误.只要a,c在b方向上的投影相等,就有a•b=b•c. 答案:②③17.【证明】以A为原点,AB所在直线为x轴,建立直角坐标系如图,设AD=1,则A(0,0),B(2,0), C(1,1),D(0,1),所以 =(-1,1), =(1,1),• =-1×1+1×1=0,所以AC⊥BC. 18.【解析】(1)当m=8时, =(8,3),设 =x +y ,则 (8,3)=x(2,-1)+y(3,0)=(2x+3y,-x),所以所以所以 =-3 + . (2)因为A,B,C三点能构成三角形,所以,不共线, =(1,1), =(m-2,4),所以1×4-1×(m-2)≠0,所以m≠6. 19.【解析】(1) = + =- + . (2) • = •(- + ) = •(- )+ • =| |•| |cos150°+ | |•| |cos30° = ×1× + × ×1× =- . 20.【解析】(1)设b=(x,y),因为a∥b,所以y=2x;① 又因为|b|=2 ,所以x2+y2=20;② 由①②联立,解得b=(2,4)或b=(-2,-4). (2)由已知(2a+c)⊥(4a-3c),(2a+c)•(4a-3c)=8a2-3c2-2a•c=0,又|a|= ,|c|= ,解得a•c=5,所以cosθ= = ,θ∈[0,π],所以a与c的夹角θ= . 21.【解题指南】一方面要正确利用向量平行与垂直的坐标表示,另一方面要注意同角三角函数关系的应用. 【解析】(1)因为a∥b,所以sinx= cosx⇒tanx= ,所以 = = =-2. (2)因为a⊥b,所以 +sinxcosx=0⇒sinxcosx=- ,所以(sinx-cosx)2=1-2sinxcosx= . 又因为x∈(0,π)且sinxcosx<0,所以x∈ ⇒sinx-cosx>0,所以sinx-cosx= . 22.【解题指南】(1)先利用a2=|a|2,将已知条件两边平方,然后根据数量积定义和运算律化简、变形求f . (2)先根据k>0和a∥b,判断a与b同向,再利用数量积的定义列方程求k的值. (3)先用求向量a与b夹角的公式表示出夹角的余弦值,再利用配方法求余弦值的最小值,最后根据余弦函数的单调性求夹角的最大值. 【解析】(1)由已知|ka+b|= |a-kb| 有|ka+b|2=( |a-kb|)2,k2a2+2ka•b+b2=3a2-6ka•b+3k2b2. 又因为|a|=|b|=1,得8ka•b=2k2+2,所以a•b= 即f(k)= (k>0). (2)因为a∥b,k>0,所以a•b= >0,则a与b同向. 因为|a|=|b|=1,所以a•b=1,即 =1,整理得k2-4k+1=0,所以k=2± ,所以当k=2± 时,a∥b. (3)设a,b的夹角为θ,则cosθ= =a•b = = = .当 = ,即k=1时,cosθ取最小值,又0≤θ≤π,所以θ= . 即向量a与b夹角的最大值为 .。
(典型题)高中数学必修四第二章《平面向量》测试卷(包含答案解析)
一、选择题1.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A 1B .221-C .231-D 12.已知1a =,2b =,则a b a b ++-的最大值等于( )A .4B C .D .53.ABC 中,AD DC =,点M 在BD 上,且满足37AM AB t AC =+,则实数t 的值为( ) A .67B .47C .27D .594.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形B .钝角三角形C .直角三角形D .不确定5.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-6.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-7.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C D .38.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( ) A .8B .4C .6D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b +B .3255a b + C .2133a b +D .1233a b +10.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-11.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( )A .6B .83C .127D .412.设非零向量a 与b 的夹角是23π,且a a b =+,则22a tb b+的最小值为( )A 3B 3C .12D .1二、填空题13.记集合{|X x b a xc ==+且||||4}a b a b ++-=中所有元素的绝对值之和为(,)S a c ,其中平面向量a ,b ,c 不共线,且||||1a c ==,则(,)S a c 的取值范围是______________.14.已知ABC ,AB AC ⊥,2AB =,12AC =,如果P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,那么PB PC ⋅的值等于________.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 16.设向量a ,b ,c ,满足1a b ==,12a b ⋅=-,a c -与b c -的夹角为60︒,则c 的最大值等于________17.在ABC 中,22AB =26AC =G 为ABC 的重心,则AG BC ⋅=________.18.已知夹角为θ的两个单位向量,a b ,向量c 满足()()0a c b c -⋅-=,则c 的最大值为______.19.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O .已知AC BC =,AC BC ⊥,AD BD ⊥,且O 是AC 的中点,若2AD AB CD CB ⋅-⋅=,则AC BD ⋅的值为__________.20.已知向量(1,3)a =,1(2,)2b =-,若单位向量c 与2a b -平行,则c =___________.三、解答题21.已知()3,2a =-,()2,1b =,O 为坐标原点.(1)若ma b +与2a b -的夹角为钝角,求实数m 的取值范围; (2)设OA a =,OB b =,求OAB 的面积.22.对于任意实数a ,b ,c ,d ,表达式ad bc -称为二阶行列式(determinant ),记作a b c d,(1)求下列行列式的值: ①1001;②1326;③251025--;(2)求证:向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=;(3)讨论关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解的条件,并求出解.(结果用二阶行列式的记号表示). 23.已知向量()1,2a =,(),1b x =. (1)若|2|||a b a b -=+,求实数x 的值; (2)若2x =,求2a b -与a b +的夹角.24.如图一,在平面直角坐标系xOy 中,O 为坐标原点,()11,A x y ,()22,B x y ,请根据以下信息,处理问题(1)和(2).信息一:O 为坐标原点,()22,OB x y =,若将OB 顺时针旋转90︒得到向量'OB ,则()22',OB y x =-,且'OB OB =;信息二:()22,OB x y =与()11,OA x y =的夹角记为θ,()22',OB y x =-与()11,OA x y =的夹角记为α,则sin cos θα=;信息三:1sin 2OAB S OA OB θ=⋅⋅△;信息四:11122122x y x y x y x y =-,叫二阶行列式.(1)求证:112212OAB x y S x y =△,(外层“”表示取绝对值);(2)如图二,已知三点()2,1M ,()3,4N ,()1,6Q ,试用(1)中的结论求MNQ △的面积.25.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值.26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =. (1)若()a a b ⊥+,求实数k 的值;(2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC +=由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立. 因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 2.C解析:C 【分析】利用基本不等式得到222a b a b a b a b ++-++-≤,然后利用平面向量数量积运算求解. 【详解】因为1a =,2b =,所以222222252a b a ba b a b a b ++-++-≤=+=,当且仅当a b a b +=-,即a b ⊥时取等号, 故选:C 【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于中档题.3.C解析:C 【分析】由题意,可设DM k DB =,结合条件整理可得11(1)22AM AC DM k AC k AB =+=-+,得到关于k 与t 的方程组,解出t 即可. 【详解】 如图,因为AD DC =,所以12AD AC = 则12AM AD DM AC DM =+=+,因为M在BD上,不妨设1()()2 DM kDB k AB AD k AB AC==-=-,则1111()(1)2222AM AC DM AC k AB AC k AC k AB=+=+-=-+,因为37AM AB t AC=+,所以37{1(1)2kk t=-=,解得27t=,故选:C【点睛】本题主要考查了平面向量的线性运算的应用及平面向量基本定理的应用,意在考查学生对这些知识的理解掌握水平.4.C解析:C【分析】在直线AB上取一点D,根据向量减法运算可得到DC CA≥,由垂线段最短可确定结论.【详解】在直线AB上取一点D,使得mBA BD=,则BC mBA BC BD DC-=-=,DC CA∴≥.对于任意m R∈,都有不等式成立,由垂线段最短可知:AC AD⊥,即AC AB⊥,ABC∴为直角三角形.故选:C.【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.5.B解析:B【分析】求出2a b-)3,2=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-,得2a b -)2=,若(2)c a b -⊥,则(2)?0a b c -=,0,2k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.6.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a b a b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.7.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+, 所以13a b ⋅=,则()2263a b a b +=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a ba b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.8.D解析:D 【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF . 【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D. 【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.9.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.10.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.11.A解析:A 【分析】作2OA OA '=,7OB OB '=,3OC OC '=,由已知可得O 是'''A B C 的重心,由重心性质可得所求面积比. 【详解】作2OA OA '=,7OB OB '=,3OC OC '=,如图,∵2730OA OB OC ++=,∴O 是'''A B C 的重心,则''''''OA B OB C OC A S S S ==△△△,设''''''OA B OB C OC A S S S t ===△△△,设,,OAB OAC y OBC S x S S z ===△△△, ∵2OA OA '=,7OB OB '=,3OC OC '=,∴''1''sin ''2141sin 2OAB OABOA OB A OB S S OA OB AOB ⋅∠==⋅∠△△,即114x t =,同理16y t =,121z t =, 11161462121ABC S x y z t t t t =++=++=△, ∴6216121ABC OBCtS S t ==△△. 故选:A .【点睛】本题考查三角形面积的计算,考查向量的加法与数乘法则,体现了向量在解决平面图形问题中的优越性.12.B解析:B 【分析】利用向量a与b 的夹角是23π,且a ab=+,得出a b a b==+,进而将22a tbb+化成只含有t为自变量的二次函数形态,然后利用二次函数的特性来求出最值.【详解】对于a,b和a b+的关系,根据平行四边形法则,如图a BA CD==,b BC=,a b BD+=,23ABCπ∠=,3DCBπ∴∠=,a a b=+,CD BD BC∴==,a b a b∴==+,2222222==222a tba tb a tbb bb+++,a b=,22222222244cos223=224a t ab t ba tba tbb b bπ++++=,222222222244cos42312444a t ab t b a t a a t a t tb aπ++-+==-+当且仅当1t=时,22a tbb+的最小值为3故选:B.【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tbb+化成只含有t为自变量的二次函数形态,进而求最值.二、填空题13.【分析】由条件有两边平方可得当时当时可得答案【详解】解:因为所以所以两边平方得化简得设向量的夹角为则当时当时所以集合中所有元素的绝对值之和为因为所以所以所以所以的取值范围为【点睛】关键点点睛:此题考 解析:[3,4)【分析】由条件有|2||||2|||4a xc xc a xc x ++=++=,两边平方可得3xa c x ⋅=-,当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,可得答案【详解】解:因为||||4a b a b ++-=,b a xc =+,||||1a c == 所以|2||||2|||4a xc xc a xc x ++=++=, 所以|2|4||a xc x +=-,两边平方得,2244168xa c x x x +⋅+=-+, 化简得,3xa c x ⋅=-,设向量,a c 的夹角为θ,(0,)θπ∈,则cos 32x x θ=-, 当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,所以集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--, 因为(0,)θπ∈,所以20cos 1θ≤<, 所以234cos 4θ<-≤,所以212344cos θ≤<-, 所以(,)S a c 的取值范围为[3,4)【点睛】关键点点睛:此题考查向量数量积的性质的运用,解题的关键是由已知条件得到3xa c x ⋅=-,然后设出向量,a c 的夹角为θ,则当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,从而可得集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--,再利用三角函数的有界性可求得结果,考查数学转化思想14.13【分析】由条件可得可得由可得出答案【详解】又故答案为:13【点睛】本题主要考查了平面向量线性运算和数量积的运算性质的应用属于中档题解析:13 【分析】由条件可得0AB AC ⋅=,182AP AB AC =+,可得217AP =,由()()PB PC PA AB PA AC ⋅=+⋅+,可得出答案.【详解】AB AC ⊥,2AB =,12AC =,4AB AC AP AB AC =+, 0AB AC ∴⋅=,182AP AB AC =+, 2222118641724AP AB AC AB AC ⎛⎫=+=+= ⎪⎝⎭,PB PA AB =+,PC PA AC =+,()()2PB PC PA AB PA AC PA PA AC PA AB ∴⋅=+⋅+=+⋅+⋅又42PA AC AC ⋅=-=-,2PA AB AB ⋅=-=-172213PB PC ∴⋅=--=.故答案为:13. 【点睛】本题主要考查了平面向量线性运算和数量积的运算性质的应用,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①=,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()()10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()()()1,00,3,3OC mOA nOB m n m n =+=+=,得()31,=,322m n λλ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.【分析】作向量根据已知条件可得出与的夹角为四点共圆再结合正余弦定理可得出结果【详解】解:如下图作向量与的夹角为即又与的夹角为即与夹角为四点共圆当为直径时最大在中由余弦定理得:的外接圆的直径为四点共圆 解析:2【分析】作向量OA a =,OB b =,OC c =,根据已知条件可得出a 与b 的夹角为120︒,A ,O ,B ,C 四点共圆,再结合正余弦定理可得出结果. 【详解】解:如下图,作向量OA a =,OB b =,OC c =,∴CA a c =-,CB b c =-,1a b ==,1cos ,2a b a b a b ⋅=⋅⋅=-,∴a 与b 的夹角为120︒,即120AOB ∠=︒. ∴120AOB ∠=︒.又a c -与bc -的夹角为60︒,即CA 与CB 夹角为60︒,∴A ,O ,B ,C 四点共圆. ∴当OC 为直径时c 最大,在AOB 中,由余弦定理得:2222cos1203AB OA OB OA OB =+-⋅︒=, ∴3AB =.∴AOB 的外接圆的直径为2sin120AB=︒.∴A ,O ,B ,C 四点共圆的圆的直径为2. ∴c 的最大值为2.故答案为:2. 【点睛】本题主要考查向量在几何图形中的应用,考查正余弦定理,考查数形结合的能力,分析问题能力,属于中档题.17.6【分析】根据三角形重心的性质转化为以及再求数量积【详解】如图点是的中点为的重心所以故答案为:6【点睛】本题考查向量数量积重心重点考查转化与化归思想计算能力属于基础题型解析:6 【分析】根据三角形重心的性质转化为()13AG AB AC =+,以及BC AC AB =-,再求数量积. 【详解】如图,点D 是BC 的中点,G 为ABC 的重心,∴()()22113323AG AD AB AC AB AC ==⨯+=+,BC AC AB =-,所以()()()221133AG BC AB AC AC AB AC AB ⋅=+⋅-=- ()126863=-=故答案为:6 【点睛】本题考查向量数量积,重心,重点考查转化与化归思想,计算能力,属于基础题型.18.【分析】建立平面直角坐标系设出向量的坐标得出向量的终点的轨迹方程再运用点与圆的位置关系可以得到的最大值【详解】由已知建立平面直角坐标系设又所以所以点在以为圆心以为半径的圆上所以的最大值为所以的最大值 解析:cossin22θθ+【分析】建立平面直角坐标系,设出向量a b c ,,的坐标,得出向量c 的终点C 的轨迹方程,再运用点与圆的位置关系可以得到||c 的最大值. 【详解】由已知建立平面直角坐标系,设()()()10cos ,sin ,,OA a OB b OC c x y θθ======,,,又()()0a c b c -⋅-=,所以()22+1+cos sin +cos 0x x y y θθθ-⋅-⋅=,所以点C 在以1+cos sin ,22P θθ⎛⎫⎪⎝⎭为圆心,以sin 2R θ=为半径的圆上, 所以c 的最大值为221+cos sin +cos +sin 22222OP R θθθθθ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以c 的最大值为cos sin22θθ+,故答案为:cos sin22θθ+.【点睛】本题考查求向量的模的最值,建立平面直角坐标系,设出向量坐标,得出向量的终点的轨迹方程是解决本题的关键,属于中档题.19.【分析】如图设先求出再根据得到再求的值得解【详解】如图四点共圆为圆的直径设所以由相交弦定理得在直角△中由勾股定理得在△中由余弦定理得因为所以又所以所以故答案为:【点睛】本题主要考查平面向量的数量积的 解析:3-【分析】如图,设12OA OC BC t ===,先求出,,OD AD CD ,再根据2AD AB CD CB ⋅-⋅=得到5t =,再求AC BD ⋅的值得解. 【详解】如图,,,,A B C D 四点共圆,AB 为圆的直径.设12OA OC BC t ===,所以225AB t OB t ==,由相交弦定理得5OD =,在直角△AOD 中,由勾股定理得5AD =, 在△COD 中,由余弦定理得225tCD =. 因为2AD AB CD CB ⋅-⋅=, 2222cos 2cos(180)255t t DAB t DAB ∠--∠=, 又cos 10AD DAB AB ∠==,所以5t =.所以212125=(2)(5)cos(180)35545AC BD t t t α⋅+-=-=-=-.故答案为:3- 【点睛】本题主要考查平面向量的数量积的计算,考查平面几何圆的知识,意在考查学生对这些知识的理解掌握水平.20.或【分析】由向量的坐标运算求出并求出它的模用除以它的模得一向量再加上它的相反向量可得结论【详解】由题意∴又∴或故答案为:或【点睛】易错点睛:本题考查求单位向量一般与平行的单位向量有两个它们是相反向量解析:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 【分析】由向量的坐标运算求出2a b -,并求出它的模,用2a b -除以它的模,得一向量,再加上它的相反向量可得结论. 【详解】由题意2(1,3)(4,1)(3,4)a b -=--=-,∴22(3)5a b -=-=,又234,552a ba b -⎛⎫=- ⎪⎝⎭-, ∴c =34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 【点睛】易错点睛:本题考查求单位向量,一般与a 平行的单位向量有两个,它们是相反向量:a a±.只写出一个向量a a是错误的.三、解答题21.(1)116,,225⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭;(2)72S =.【分析】(1)由题意,求得,2ma b a b +-的坐标,令()()20ma b a b +⋅-<,解得65m <,再由当12m =-时,得到2a b -与ma b +方向相反,求得12m ≠-,即可求解; (2)设AOB θ∠=,OAB 面积为S ,则1sin 2S a b θ=⋅,结合向量的夹角公式和向量的坐标运算,即可求解. 【详解】(1)由题意,向量()3,2a =-,()2,1b =,可得()32,21ma b m m +=+-+,()21,4a b -=--, 令()()20ma b a b +⋅-<,即32840m m --+-<,解得65m <,当12m =-时,12ma b a b +=-+, 此时2a b -与ma b +方向相反,夹角为π,不合题意,∴12m ≠-, 综上可得,实数m 的取值范围为116,,225⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. (2)设AOB θ∠=,OAB 面积为S ,则1sin 2S a b θ=⋅, 因为222sin 1cos 1a ba b θθ⎛⎫⋅⎪=-=- ⎪⋅⎝⎭, 又由()3,2a =-,()2,1b =,可得()22222224sin 651649S a b a b a b θ=⋅=-⋅=-=,解得72S =, 即OAB 的面积为72OABS =. 【点睛】本题主要考查了向量的角公式,向量的数量积的坐标运算的综合应用,其中解答中熟记向量的基本概念,以及向量的数量积和夹角公式的坐标运算是解答的关键,着重考查推理与运算能力.22.(1)1,0,0;(2)证明见解析;(3)当11220a b a b ≠时,有唯一解,11221122c b c b x a b a b =,11221122a c a c y ab a b =. 【分析】(1)利用行列式的定义可以直接求出行列式的值.(2)若向量(),p a b =与向量(),q c d =共线,由0q ≠和0q =时,分别推导出0a b c d=;反之,若0a b c d=,即0ad bc -=,当c ,d 不全为0时,不妨设0c ≠,则ad b c =,,ab p a c ⎛⎫= ⎪⎝⎭,推导出a p q c =⋅,//p q ,当0c 且0d =时,0q =,(),p a b =与0q =共线,由此能证明向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=.(3)求出()12211221a b a b x c b c b -=-,()12211221a b a b x a c a c -=-,由此能求出当11220a b a b ≠时,关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解,并能求出解. 【详解】 解:(1)解:①10101=②131623026=⨯-⨯=; ③()()2522551001025-=-⨯--⨯=-.(2)证明:若向量(),p a b =与向量(),q c d =共线,则: 当0q ≠时,有0ad bc -=,即0a b c d=,当0q =时,有0c d ==,即0a b ad bc c d=-=,∴必要性得证. 反之,若0a b c d=,即0ad bc -=,当c ,d 不全为0时,即0q ≠时, 不妨设0c ≠,则ad b c =,∴,ab p a c ⎛⎫= ⎪⎝⎭,∵(),q c d =,∴ap q c=⋅,∴//p q ,∴(),p a b =与(),q c d =共线, 当0c且0d =时,0q =,∴(),p a b =与0q =共线,充分性得证.综上,向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=.(3)用2b 和1b 分别乘上面两个方程的两端,然后两个方程相减,消去y 得:()12211221a b a b x c b c b -=-,①同理,消去x ,得:()12211221a b a b x a c a c -=-,②∴当12210a b a b -≠时,即11220a b a b ≠时,由①②得:1122121*********c b c b x a b a b a b c b c b a b -==-,1122122111122122a c a c a c a c y a b a b a b a b -==-, ∴当11220a b a b ≠时,关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解, 且11221122c b c b x a b a b =,11221122a c a c y a b a b =. 【点睛】此题考查行列式求值,考查向量共线的充要条件的证明,考查二元一次方程有解的条件及解的求法,考查运算求解能力,属于中档题23.(1)12;(2)4π. 【分析】(1)求出向量2a b -与a b +的坐标,然后由模的坐标运算列出方程可求得x ; (2)求出向量2a b -与a b +的坐标,由向量夹角的坐标运算计算.【详解】(1)因为()1,2a =,(),1b x =,所以()22,3a b x -=-,()1,3a b x +=+.因为|2|||a b a b -=+,= 解得12x =. (2)当2x =时,()20,3a b -=,()3,3a b +=,所以()()203339a b a b -⋅+=⨯+⨯=, 23a b -=,32a b +=.设2a b -与a b +的夹角为θ. 则(2)()cos 2|2|||332a b a b a b a b θ-⋅+===-⋅+⋅. 又[]0,θπ∈,所以4πθ=,即2a b -与a b +的夹角为4π.本题考查向量模的坐标运算,考查向量夹角的坐标运算,掌握向量的坐标运算是解题基础.24.(1)证明见解析;(2)4.【分析】(1)由1sin 2OAB S OA OB θ=⋅⋅△,再根据'OB OB =,sin cos θα=,转化OAB S =△1'2OA OB =⋅,利用平面向量的数量积运算结合行列式证明. (2)由(1)的结论,由MNQ OMN ONQ OMQ S S S S =+-△△△△求解.【详解】 (1)如图所示.∵1sin 2OAB S OA OB θ=⋅⋅△, 又因为'OB OB =,sin cos θα=, ∴1'cos 2OAB S OA OB α=⋅⋅△ 1'2OA OB =⋅ ()()11221,,2x y y x =⋅- ()121212x y y x =+- 122112x y x y =-, 又∵11122122x y x y x y x y =-, ∴112212OAB x y S x y =△. (2)∵MNQ OMN ONQ OMQ S S S S =+-△△△△∴213421111341616222MNQ S =+-△ 111(2431)(3614)(2611)222=⨯-⨯+⨯-⨯-⨯-⨯ 511722=+- 4=本题主要考查平面向量的数量积运算,行列式以及面积公式的应用,还考查了运算求解的能力,属于中档题.25.(Ⅰ)2AD =;(Ⅱ)0.【分析】(Ⅰ)设AB a =,AD b =,利用平面向量加法的平行四边形法则可得AC a b =+,由23AC =b 的方程,即可解得AD b =;(Ⅱ)计算得出0AC BD ⋅=,可得出AC BD ⊥,进而可得出结果.【详解】(Ⅰ)设AB a =,AD b =,则AC a b =+,BD AD AB b a =-=-.向量AB 与AD 的夹角为3π,cos 3a b a b b π∴⋅=⋅=. ()22222242AC a b a b a a b b b b ∴=+=+=+⋅+=++= 整理得2280b b +-=,0b ≥,解得2b =,即2AD =;(Ⅱ)()()220AC BD a b b a b a ⋅=+⋅-=-=,则AC BD ⊥,因此,AC 和BD 夹角的余弦值为0.【点睛】本题考查利用平面向量的数量积求向量的模,同时也考查了平面向量夹角余弦值的计算,考查计算能力,属于中等题.26.(1)2k =-;(2)2k ≠-.【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果.【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=,又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=,即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量,所以121k -⋅≠⋅,即2k ≠-,所以实数k 的取值范围是2k ≠-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。
高一数学必修4第二章平面向量测试题(含答案.doc
一•选择题(5分X 12=60分):已知假〃均为单位向量,它们的夹角为60。
,那么W+3勿二( 1. 以下说法错谋的是() A.零向量与任一非零向量平行 C.平行向量方向相同 B.零向量与单位向量的模不相等 D.平行向量一定是共线向量2. 卜•列四式不能化简为AD 的是(A. (AB+CD) +BC ;B. (AD+MB) + (BC+CM);C. MB+AD-BM ;D. OC —OA+CD3. 已知d 二(3, 4) , b= (5, ci 与b 则夹角的余弦为A. « 65B. V65D. V13 4.5.6.A. V7 C. D.--- 》―»己知ABCDEF是正六边形,且AB = a ,T T T T(A) y(6/- b) (B) *(b- a) (C)-- > T -- >AE = b ,则BC =T T T Ta +yb (D) *(d+ b)设d, b 为不共线向量,AB =a+2b, BC=—4a—b, CD =—5a — 3b ,则卜冽关系式中正确的是 ((A) AP = BC (B) AO =2BC (C) AD =-BC (D) AP =-2BC7.设勺与勺是不共线的非零向量,月"勺+02与勺+展2共线,则k的值是( )(A) 1 (B) -1 (C) ±1 (D)任意不为零的实数8.在四边形ABCD中,石=炭,且忌・亦=0,则山边形ABCD是()(A)矩形(B)菱形(C)直角梯形(D)等腰梯形9.已知M (-2, 7)、N (10, -2),点P是线段MN上的点,且PN =~2PM f则P点的坐标为( )(A) (-14, 16) (B) (22, -11) (C) (6, 1) (D) (2, 4)T10.已知d = (1, 2), T T T T Tb = (—2, 3), .rikd+b 与a—kb 垂直,贝ij k=((A) -1±V2 (B) V2±l (C) V2±3 (D) 3±V211、若平面向E5 = (l,x)和5=(2X +3,—JT)互相平行,其中XG R•则a-b =( )A. 一2或0;B. 2厉;C. 2 或2^5 ;D. 2 或10.12、下面给出的关系式中正确的个数是()① 0-a=0®a-b=h-a@a2 =\af @(a-h)c = a(ha <a-h(A) 0 (B) 1 (C) 2 (D) 3二填空题(5分X5=25分):13、若AB = (3,4), A点的坐标为(一2, - 1 ),则B点的坐标为____________________ .14、已知a = (3,-4), b = (2,3),则2la I -3a b = ________________ .15、已知向量0| = 3力=(1,2),且万丄5,则万的坐标是 _______________________ 。
新课标数学必修4第2章平面向量单元测试题(含答案)
新课标数学必修4第2章平面向量单元测试题(1)第I 卷(选择题 共60分)一、选择题:本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、化简 AC -BD +CD —AB 得………………………………………………( ) A .AB B . C .BC D .02、下列命题正确的是………………………………………………………………( )A .单位向量都相等B .若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向量C .||||b a b a -=+,则0a b =D .若0a 与0b 是单位向量,则0a 0b 1=3、下列命题中错误的是………………………………………………………………( )A .对于任意向量a ,b ,有|a +b |≤|a |+|b |B .若 a b =0,则 a =0或 b =0C .对于任意向量a ,b ,有||a b ≤||||a bD .若a ,b 共线,则 a b = ±|a ||b |4、按向量→a 将点)3,2(-平移到点)2,1(-,则按向量→a 将点)3,2(-平移到……( )A.)4,3(-B.)2,1(-C.)3,4(-D.)1,2(-5、把542++=x x y 的图像按向量经过一次平移后得到2x y =的图像,则为( )A. )1,2(B. )1,2(-C. )1,2(--D. (2,1-)6、已知12(4,7),(1,0),P P --且点P 在线段21P P 的延长线上,且12||2||PP PP =,则点P的坐标………………………………………………………………………………( ) A.)11,2(- B.)1,34(C.)3,32( D.)7,2(- 7、已知△ABC 中,A=45°,a=2,b=2,那么∠B 为………………………………( )A .30°B .60°C .30°或150°D .60°或120°8、在△ABC 中,c =C 为……………………………………( )A .4π B .3π C .23π D .3π或23π9、若三点A(2,3),B(3,a),C(4,b)共线,则有……………………………………( )A .a=3,b=-5B .a-b+1=0C .2a-b=3D .a-2b=0 10、||1,||2a b ==,且()0a b a +=,则a 、b 的夹角为…………………………( )A .60°B .90°C .120°D .150°11、△ABC 中,||=5,||=8,²=20,则||为……………………( )A. 6B. 7C. 8D. 912、设πθ20<≤,已知两个向量()θθsin ,cos 1=,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是…………………………………………………………( ) A.2B.3C.23D.32第Ⅱ卷(共90分)二、填空题:本大题共4小题;每小题4分,共16分.13、已知||=3,||=2,与的夹角为600,则|-|= 14、已知(3,4),(2,3)a b =-=,则2||3a a b -=15、已知向量→a =(1,2),→b =(-2,3),→c =(4,1),用→a 和→b 表示→c ,则→c =__________16、在△ABC 中,若B=300,AB=23,AC=2,则△ABC 的面积S 是 ;三、解答题:本大题共6小题;共74分.17、(8分)已知ABCD 的顶点A (0,-9),B (2,6), C (4,5),求第四个顶点D 的坐标.18、(14分)如图,平行四边形ABCD 中,E ,F 分别是BC ,DC 的中点,G 为DE 、BF 交点。
高中数学必修四第二章《平面向量》单元测试题(含答案)
高中数学必修四第二章单元测试题《平面向量》(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-2.已知向量31,22BA ⎛⎫=⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A. π6 B. π4 C. π3 D. 2π33.已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( )A. 1-B. 0C. 1D. 24.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或 5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( )A. 4B. 4-C. 2D. 2-7.已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 37 D. 48.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-9.已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3-10.已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( ) A. 322 B. 2 C. 322- D. 3152- 11.在矩形ABCD 中, 3AB =, 3BC =, 2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 12.已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( )A. 3-B. 6-C. 2-D. 83-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________.14.已知单位向量a , b 满足()1•232a ab -=,则向量a 与b 的夹角为__________. 15.在平行四边形ABCD 中, AC 与BD 交于点O , E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______(用a , b 表示).16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +)(1)求证: AB BC ⊥;(2) //AD BC ,求实数m 的值.18.(本小题12分)已知向量()1,2a =,()3,4b =-.(1)求a b +与a b -的夹角;(2)若()a ab λ⊥+,求实数λ的值.19.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.21.(本小题12分)已知向量a 与b 的夹角为120︒, 2,3a b ==, 32,2m a b n a kb =-=+. (I )若m n ⊥,求实数k 的值; (II )是否存在实数k ,使得//m n ?说明理由.22.(本小题12分)已知点(1,0),(0,1)A B -,点(,)P x y 为直线1y x =-上的一个动点.(1)求证:APB ∠恒为锐角;(2)若四边形ABPQ 为菱形,求BQ AQ ⋅的值.高中数学必修四第二章单元测试题《平面向量》参考答案(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭. 故选:C .2.【2017届北京房山高三上期末】已知向量31,22BA ⎛⎫=⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( )A. π6B. π4C. π3D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C.4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C.D. 2或 【答案】C 【解析】∵向量,且 ∴, ∴.选C. 5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( )A. 4B. 4-C. 2D. 2-【答案】A【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABAC λ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( ) A. 2 B. 23 C. 7 D. 4 【答案】C 8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭. 故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为A. 1B. 1-C. 3D. 3-【答案】D【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D. 10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A. 322B. 2C. 322-D. 3152-【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CDAB AB CD AB AB CD ⋅=⋅==故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =,3BC =, 2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833 C. 4- D. 4【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( )A. 3-B. 6-C. 2-D. 83-【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-(222366x y ⎡⎤=+--≥-⎢⎥⎣⎦,∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________.【答案】12-【解析】由题意得()11:2:12λλ=-∴=- .14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a ab -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______(用a ,b 表示).【答案】2133a b + 【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF=AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥; (2) //AD BC ,求实数m 的值. 【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以()()2,64,2202cos ,240204020a b a b -⋅--+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解得:1λ=-.19.(本小题12分)已知是夹角为的两个单位向量,,.(1)求; (2)求与的夹角. 【答案】(1);(2)与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。
(好题)高中数学必修四第二章《平面向量》检测卷(答案解析)
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17113.已知1a =,2b =,则a b a b ++-的最大值等于( ) A .4B .37+C .25D .54.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( ) A .2B .1C .2D .225.如图,在梯形ABCD 中,//AB CD ,6AB =,3AD CD ==,E 是CD 的中点,14DF DA =,若12AE BF ⋅=-,则梯形ABCD 的高为( )A .1B .6C .5D .26.如图,在平行四边形ABCD 中,点E F 、满足2,2BE EC CF FD ==,EF 与AC 交于点G ,设AG GC λ=,则λ=( )A .97B .74C .72D .927.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18-B .116-C .316-D .08.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( ) A .42,0 B .4,42C .16,0D .4,010.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-11.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭12.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定二、填空题13.如图,在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =,若3AB AC AD EC ⋅=⋅,则ABAC的值为___________.14.如图,已知ABC 为边长为2的等边三角形,动点P 在以BC 为直径的半圆上,若AP AB AC λμ=+,则2λμ+的最小值为_______.15.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 16.已知0a b c ++=,3a =,4b =,5c =,则a b b c c a ⋅+⋅+⋅=______; 17.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为________. 18.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.19.已知a →,b →为单位向量,2c a b →→→=-,且,3a b π→→<>=,则,a c →→〈〉=________.20.已知向量(1,3)a =,1(2,)2b =-,若单位向量c 与2a b -平行,则c =___________.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知()3,0a =,(1,3)b =. (Ⅰ)求a b ⋅和b 的值;(Ⅱ)当()k k ∈R 为何值时,向量a 与k +a b 互相垂直?23.已知平面直角坐标系中,点 O 为原点,()()3,1,1,2A B - . (I)求AB 的坐标及AB ;(Ⅱ)设 e 为单位向量,且 e OB ⊥,求e 的坐标 24.已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积.25.(1)已知向量()1,3a =,(),2b m =,()3,4c =,且()3a b c -⊥,求实数m 的值;(2)已知(3,2)a =,(2,1)b =-,若a b λ+与a b λ+平行,求实数λ的值 26.如图,在梯形ABCD 中,E 为DC 的中点,//,,2AD BC BAD π∠=,3BDA BC BD π∠==.(1)求AE BD ⋅;(2)求AC 与BD 夹角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛⎝⎭两点间的距离,考查了运算求解能力.2.D解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可. 【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222m OD AB mAB nAC AB nAC -=--=-, 同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=, 所以129502nm -⨯-=,联立方程组124502129502mn n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m -=. 故选D 【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.3.C解析:C 【分析】利用基本不等式得到222a b a b a b a b ++-++-≤,然后利用平面向量数量积运算求解. 【详解】因为1a =,2b =,所以222222252ab a ba b a b a b++-++-≤=+=,当且仅当a b a b+=-,即a b⊥时取等号,故选:C【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于中档题.4.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OPE PF=⋅-,求得OP的最大值,由此可求得PE PF⋅的最大值.【详解】如下图所示:由题可知正方形ABCD的内切圆的半径为1,设该内切圆的圆心为O,()()()()2221 PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P为ABCD的顶点时,2OP取得最大值2,所以PE PF⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.5.C解析:C【分析】以,AD AB为一组基底,表示向量,AE BF,然后利用12AE BF⋅=-,求得2cos 3BAD ∠=,然后由梯形ABCD 的高为sin AD BAD ⋅∠求解. 【详解】因为14AE AD DE AD AB =+=+,34BF AF AB AD AB =-=-, ∴22133113444416AE BF AD AB AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-=--⋅ ⎪ ⎪⎝⎭⎝⎭, 223113cos 4416AD AB AD AB BAD =--⋅∠, 31117936cos 12448BAD =⨯-⨯-∠=-, ∴2cos 3BAD ∠=,∴25sin 1cos BAD BAD ∠=-∠=, ∴梯形ABCD 的高为sin 5AD BAD ⋅∠=. 故选:C . 【点睛】本题主要考查平面向量的数量积的运算以及平面向量的基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.6.C解析:C 【分析】设H 是BC 上除E 点外的令一个三等分点,判断出G 是三角形CFH 的重心,得出,CG CO 的比例,由此得出λ的值.【详解】设H 是BC 上除E 点外的令一个三等分点,连接FH ,连接BD 交AC 于O ,则//BD FH .在三角形CFH 中,,CG FG 是两条中线的交点,故G 是三角形CFH 的重心,结合23CH CF BH DF ==可知24.5CG CO =,由于O 是AC 中点,故224.529CG AC ==⨯.所以72AGCG=,由此可知72λ=,故选C.【点睛】本小题主要考查平行线分线段成比例,考查三角形的重心,考查比例的计算,属于中档题.7.C解析:C 【分析】建立平面直角坐标系,()0,P t ,3t ≤,则 22333()16⋅=-=--AP CP t t t ,进而可求最小值. 【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,3(0,)2C ,设()0,P t ,其中32t ≤1(,)2AP t =-,3(0,)2CP t ==,22333()2416⋅=-=--AP CP t t t ,当34t =时取最小值为316-,所以AP CP ⋅的最小值为316-.故选:C 【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.8.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯= 故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D 【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值. 【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ2sinθ+1),所以|2|a b -2=(2cosθ2+(2sinθ+1)2=8﹣cosθ+4sinθ=8﹣8sin (3πθ-),所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0; 故选:D . 【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.10.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭, ∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.11.D解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-, 所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭. 故选:D 【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.12.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.二、填空题13.【分析】将作为平面向量的一组基底再根据平面向量基本定理用表示出再由即可得出结论【详解】因为在中D 是的中点E 在边上且所以又所以即所以故答案为:【分析】将AB AC 、作为平面向量的一组基底,再根据平面向量基本定理用AB AC 、表示出AD EC ⋅,再由3AB AC AD EC ⋅=⋅即可得出结论.【详解】因为在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =, 所以111()()()223AD EC AB AC AC AE AB AC AC AB ⎛⎫⋅=+⋅-=+⋅-= ⎪⎝⎭22111263AC AB AB AC -+⋅, 又3AB AC AD EC ⋅=⋅,所以2211026AC AB -=,即||3AB AC =, 所以=3ABAC. 故答案为:314.1【分析】如图建系设P 点坐标则可得的坐标根据题意可得的表达式代入所求根据的范围利用三角函数求最值即可得答案【详解】取BC 中点O 以O 为原点OCOA 方向为x 轴y 轴正方向建系如图所示由题意得:所以如图以B解析:1 【分析】如图建系,设P 点坐标(cos ,sin )θθ,则可得,,AP AB AC 的坐标,根据题意,可得,λμ的表达式,代入所求,根据θ的范围,利用三角函数求最值,即可得答案. 【详解】取BC 中点O ,以O 为原点,OC ,OA 方向为x 轴y 轴正方向建系,如图所示由题意得:2sin 603OA =︒=3),(1,0),(1,0)A B C -, 如图以BC 为直径的半圆方程为:221(0)x y y +=≤, 设(cos ,sin )P θθ,因为sin 0θ≤,所以[,2]θππ∈,则(cos ,sin 3)AP θθ=-,(1,3),(1,3)AB AC =--=-,因为AP AB AC λμ=+,所以cos sin 333θλμθλμ=-+⎧⎪⎨-=--⎪⎩,整理可得113cos sin 22131sin cos 22μθθλθθ⎧=+-⎪⎪⎨⎪=--⎪⎩,所以131113322(sin cos )cos sin sin()222226πλμθθθθθ+=--++-=-+, 因为[,2]θππ∈,所以713[,]666πππθ+∈, 当1366ππθ+=时,sin()6πθ+取最大值12,所以2λμ+的最小值为31122-=, 故答案为:1 【点睛】解题的关键是在适当位置建系,进而可得点的坐标及向量坐标,利用向量的坐标运算,即可求得2λμ+的表达式,再利用三角函数图像与性质求解,综合性较强,考查分析理解,计算求值的能力,属中档题.15.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--,因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.16.【分析】由已知得再两边平方求得代入可求得答案【详解】因为所以又因为所以即又所以所以所以故答案为:【点睛】本题考查向量的线性运算向量的数量积以及向量的模的计算属于中档题 解析:25-【分析】由已知得()c a b =-+,再两边平方22+2+25a a b b ⋅=,求得0a b ⋅=,代入可求得答案. 【详解】因为0a b c ++=,所以()c a b =-+,又因为5c =, 所以()225a b+=,即22+2+25a a b b ⋅=,又3a =,4b =,所以9+2+1625a b ⋅=,所以0a b ⋅=,所以()()20+25a b b c c a a b c b a c c c ⋅+⋅+⋅=⋅+⋅+=⋅-=-=-, 故答案为:25-. 【点睛】本题考查向量的线性运算,向量的数量积,以及向量的模的计算,属于中档题.17.【分析】本题先求再根据化简整理得最后求与的夹角为【详解】解:∵∴∵∴整理得:∴与的夹角为:故答案为:【点睛】本题考查运用数量积的定义与运算求向量的夹角是基础题 解析:3π【分析】本题先求29a =,24b =,6cos ,a b a b ⋅=,再根据()()2318a b a b +⋅-=-化简整理得1cos ,2a b =,最后求a 与b 的夹角为3π.【详解】解:∵ 3a =,2b =,∴ 229a a ==,224b b==,cos ,6cos ,a b a b a b a b ⋅=⋅⋅<>=<>,∵ ()()2318a b a b +⋅-=-,∴ ()()2223696cos ,6418a b a b aa b b a b +⋅-=-⋅-=-<>-⨯=-整理得:1cos ,2a b <>=, ∴a 与b 的夹角为:3π. 故答案为:3π 【点睛】本题考查运用数量积的定义与运算求向量的夹角,是基础题.18.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC 相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果. 【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==, 2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.19.【分析】根据向量的夹角公式及数量积的运算计算即可求解【详解】因为又所以故答案为:【点睛】本题主要考查了向量数量积的定义运算法则性质向量的夹角公式属于中档题解析:6π【分析】根据向量的夹角公式及数量积的运算计算即可求解.【详解】因为22cos(cos,2|||||2)2|aa c aa caba bcπ→→→→→→→→→→→→→→-⋅〈〉==--===⋅,又,0a cπ→→〈≤〉≤,所以,6a cπ→→〈〉=,故答案为:6π【点睛】本题主要考查了向量数量积的定义,运算法则,性质,向量的夹角公式,属于中档题. 20.或【分析】由向量的坐标运算求出并求出它的模用除以它的模得一向量再加上它的相反向量可得结论【详解】由题意∴又∴或故答案为:或【点睛】易错点睛:本题考查求单位向量一般与平行的单位向量有两个它们是相反向量解析:34,55⎛⎫-⎪⎝⎭或34,55⎛⎫-⎪⎝⎭.【分析】由向量的坐标运算求出2a b-,并求出它的模,用2a b-除以它的模,得一向量,再加上它的相反向量可得结论.【详解】由题意2(1,3)(4,1)(3,4)a b-=--=-,∴22(3)5a b-=-=,又234,552a ba b-⎛⎫=- ⎪⎝⎭-,∴c=34,55⎛⎫-⎪⎝⎭或34,55⎛⎫-⎪⎝⎭.故答案为:34,55⎛⎫-⎪⎝⎭或34,55⎛⎫-⎪⎝⎭.【点睛】易错点睛:本题考查求单位向量,一般与a平行的单位向量有两个,它们是相反向量:a a±.只写出一个向量a a是错误的.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(Ⅰ)3⋅=a b ,b =2;(Ⅱ)3k =-. 【分析】(Ⅰ)根据数量积与模的坐标表示计算; (Ⅱ)由向量垂直的坐标表示求解. 【详解】(Ⅰ)由题意3103a b ⋅=⨯+=;21(2b =+=.(Ⅱ)(3,3)a kb k k +=+, 因为向量a 与k +a b 互相垂直,所以()3(3)0a a kb k ⋅+=+=,解得3k =-. 【点睛】本题考查向量数量积与模的坐标表示,考查向量垂直的坐标表示,属于基础题.23.(1)()4,1=-AB,17;=AB (2)25,55⎛=⎝⎭e ,或25.55⎛⎫=-- ⎪ ⎪⎝⎭e【详解】试题分析:(I )利用向量的坐标运算直接求AB 的坐标及AB ; (II )利用向量的垂直,数量积为0,结合单位向量求解即可. 试题(I )()()AB 13,214,1=---=-,(AB =-=(Ⅱ)设单位向量(),e x y =, 所以221x y +=,即221x y += 又(),1,2⊥=-e OB OB , 所以20x y -+=即2x y =由2221x y x y =⎧⎨+=⎩,解得55x y ⎧=⎪⎪⎨⎪=⎪⎩或者55x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 所以25,⎛= ⎝⎭e ,或25.⎛=-⎝⎭e 24.(1)23π;(23) 【分析】(1)将已知条件中的式子展开,利用公式求得6a b ⋅=-,根据向量夹角公式求得1cos 2θ=-,结合角的范围,求得结果;(2)利用向量的模的平方和向量的平方是相等的,从而求得结果; (3)根据向量所成角,求得三角形的内角,利用面积公式求得结果. 【详解】(1)因为(23)(2)61a b a b -⋅+=,所以2244361aa b b-⋅-=.又4,3a b ==, 所以6442761a b -⋅-=, 所以6a b ⋅=-, 所以61cos 432a ba b θ⋅-===-⨯. 又0≤θ≤π,所以23πθ=. (2)2222()2a b a b a a b b +=+=+⋅+=42+2×(-6)+32=13,所以13a b +=; (3)因为AB 与BC 的夹角23πθ=, 所以∠ABC =233πππ-=. 又4,3AB a BC b ====,所以S △ABC =1432⨯⨯= 【点睛】该题考查的是有关向量与解三角形的综合题,涉及到的知识点有向量数量积,向量夹角公式,向量的平方和向量模的平方是相等的,三角形面积公式,属于简单题目. 25.(1)1m =-;(2)1λ=±. 【分析】(1)先求()313,3a b m -=--,再根据向量垂直的坐标运算即可求得1m =-; (2)先计算()32,21a b λλλ+=+-,()23,2a b λλλ+=+-+,再根据向量共线的坐标运算求解即可得1λ=±. 【详解】解:(1)根据题意有:()()()31,33,213,3a b m m -=-=--,∵ ()3a b c -⊥,∴ ()()3313120a b c m -⋅=⨯--=,解得1m =-,所以实数m 的值为:1m =-.(2)根据题意:()()()3,22,132,21a b λλλλλ+=+-=+-,()()()3,22,23,2a b λλλλλ+=+-=+-+,∵ a b λ+与a b λ+平行,∴ ()()()()32223210λλλλ+-+-+-=,解得:1λ=±.【点睛】本题考查向量的坐标运算,向量垂直与平行的坐标表示,考查运算能力,是基础题.26.(1)0;(2) 【分析】(1)由BCD △为等边三角形得出2BC AD =,由向量的加法和减法运算得出13,22AE AB AD BD AD AB =+=-,再由向量的数量积公式得出AE BD ⋅的值;(2)设AD a =,则3,2,AB BC BD a AC ====,由数量积公式得出AC BD ⋅,进而得出AC 与BD 夹角的余弦值.【详解】解:(1)因为//AD BC ,,,23BAD BDA BC BD ππ∠=∠==所以BCD △为等边三角形,23BC AB AD == 又E 为DC 的中点所以1113()(),2222AE AC AD AB BC AD AB AD BD AD AB =+=++=+=- 则221313()02222AE BD AB AD AD AB AB AB AD AD ⎛⎫⋅=+⋅-=--⋅+= ⎪⎝⎭(2)设AD a =,则3,2,7AB a BC BD a AC a ==== 222(2)()2AC BD AB AD AD AB AB AD AB AD a ⋅=+⋅-=--⋅+=-设AC 与BD 的夹角为θ,则2cos 2AC BDAC BD θ⋅=== 【点睛】本题主要考查了利用定义求向量的数量积以及夹角,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修4《第二章平面向量》单元测试卷(答案)必修4《第二章平面向量》单元测试卷(答案)20 单元测试卷时间:90分钟满分150分班级________ 姓名________ 分数________一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A(1,2),B(3,4),C(-2,2),D(-3,5),则向量→(AB)在向量→(CD)上的投影为( )A.5(10)B.5(10)C.5(10)D.5(10)答案:B解析:→(AB)=(2,2),→(CD)=(-1,3),|→(CD)|=,→(AB)·→(CD)=-2+6=4,向量→(AB)在向量→(CD)上的投影为|(CD)=10(4)=5(10),故选B.2.已知向量a=(2,1),a·b=10,|a+b|=5,则|b|=( )A.5 B.25C. D.答案:A解析:因为|a+b|=5,所以a2+2a·b+b2=50,即5+2×10+b2=50,所以|b|=5.3.已知向量a=(1,1),b=(1,-1),c=(-1,-2),则c=( )A.-2(1)a-2(3)b B.-2(1)a+2(3)bC.2(3)a-2(1)b D.-2(3)a+2(1)b答案:D4.若非零向量a,b满足|a-b|=|b|,则( )A.|2b|>|a-2b| B.|2b|<|a-2b|C.|2a|>|2a-b| D.|2a|<|2a-b|答案:A5.已知平面上不共线的四点O、A、B、C.若→(OA)-4→(OB)+3→(OC)=0,则|(CB)=( )A.3(1)B.2(1)C.2 D.3答案:D解析:∵→(OA)-4→(OB)+3→(OC)=0,∴(→(OA)-→(OB))-3→(OB)+3→(OC)=0,即→(OA)-→(OB)=3(→(OB)-→(OC)),∴→(BA)=3→(CB),∴|(CB)=3.6.在△ABC中,若|→(AB)|=1,|→(AC)|=,|→(AB)+→(AC)|=|→(BC)|,则|(BC)=( )A.-2(3) B.-2(1)C.2(1)D.2(3)答案:B解析:由向量的平行四边形法则,知当|→(AB)+→(AC)|=|→(BC)|时,∠A=90°.又|→(AB)|=1,|→(AC)|=,故∠B=60°,∠C=30°,|→(BC)|=2,所以|(BC)=|(BC)=-2(1).7.已知a=(3,4),b=(-1,2m),c=(m,-4),满足c⊥(a+b),则m=( )A.-3(8) B.3(8)C.3(4) D.-3(4)答案:A解析:a+b=(2,4+2m),c⊥(a+b)⇒c·(a+b)=(m,-4)·(2,4+2m)=2m-4(4+2m)=0,解得m=-3(8).8.已知平面向量a=(1,),|a-b|=1,则|b|的取值范围是( )A.[0,1] B.[1,3]C.[2,4] D.[3,4]答案:B解析:由于=1,所以向量b对应的点在以(1,)为圆心,1为半径的圆上,由于圆心到原点的距离为2,所以的取值范围是[1,3].9.已知向量→(OA)=(2,2),→(OB)=(4,1),在x轴上的一点P使→(AP)·→(BP)取得最小值,则点P的坐标为( )A.(3,0) B.(-3,0)C.(2,0) D.(4,0)答案:A解析:设P(x,0),则→(AP)=(x-2,-2),→(BP)=(x-4,-1),∴→(AP)·→(BP)=(x-2)(x-4)+(-2)×(-1)=x2-6x+10=(x-3)2+1,∴当x=3时,→(AP)·→(BP)取得最小值,此时P(3,0).10.已知O是三角形ABC所在平面内一点,且满足→(BA)·→(OA)+|→(BC)|2=→(AB)·→(OB)+|→(AC)|2,则O点( )A.在过点C且垂直于AB的直线上B.在∠C平分线所在的直线上C.在AB边中线所在的直线上D.是△ABC的外心答案:A解析:由题意有→(AB)·→(OB)+→(AB)·→(OA)+→(CA)2-→(CB)2=0.即→(AB)·→(OB)+→(AB)·→(OA)+(→(CA)-→(CB))·(→(CA)+→(CB))=→(AB)·(→(OA)+→(OB)-→(CO)-→(OA)-→(CO)-→(OB))=-2→(AB)·→(OC)=0,所以→(OC)⊥→(AB).二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11.若向量→(OA)=(1,-3),|→(OB)|=|→(OA)|,→(OA)·→(OB)=0,则|→(AB)|=________.答案:2解析:因为|→(AB)|2=|→(OB)-→(OA)|2=|→(OB)|2+|→(OA)|2-2→(OA)·→(OB)=10+10-0=20,所以|→(AB)|==2.12.已知向量a,b满足|a|=1,|b|=,a+b=(,1),则向量a+b与向量a-b 的夹角是________.答案:3(2π)解析:因为|a-b|2+|a+b|2=2|a|2+2|b|2,所以|a-b|2=2|a|2+2|b|2-|a+b|2=2+6-4=4,故|a-b|=2,因为cos〈a-b,a+b〉=|a-b|·|a+b|((a-b)·(a +b))=4(1-3)=-2(1),故所求夹角是3(2π).13.已知在△ABC中,向量→(AB)与→(BC)的夹角为6(5π),|→(AC)|=2,则|→(AB)|的取值范围是________.答案:(0,4]解析:∵|→(AC)|=|→(AB)+→(BC)|=6(5π),∴|→(AB)|2+|→(BC)|2-|→(AB)||→(BC)|=4,把|→(BC)|看作未知量,得到一个一元二次方程|→(BC)|2-|→(AB)||→(BC)|+(|AB|2-4)=0,这个方程的判别式Δ=(-|→(AB)|)2-4(|→(AB)|2-4)=16-|→(AB)|2≥0,∴-4≤|→(AB)|≤4,根据实际意义,知0 |→(AB)|≤4.14.已经△ABC为等边三角形,AB=2,设点P,Q满足→(AP)=λ→(AB),→(AQ)=(1-λ)→(AC),λ∈R,若→(BQ)·→(CP)=-2(3),则λ=__________.答案:2(1)解析:→(AB)·→(AC)=→(AB)·→(AC)cos3(π)=2,→(BQ)=→(AQ)-→(AB)=(1-λ)→(AC)-→(AB),同理→(CP)=λ→(AB)-→(AC),则→(BQ)·→(CP)=(1-λ)λ→(AC)·→(AB)-(1-λ)→(AC)2-λ→(AB)2+→(AB)·→(AC)=2λ(1-λ)-4(1-λ)-4λ+2=-2λ2+2λ-2=-2(3),解得λ=2(1).15.如图,在正方形ABCD中,已知AB=2,M为BC的中点,若N为正方形内(含边界)任意一点,则→(AM)·→(AN)的最大值为__________.答案:6解析:以AB,AD所在的直线为坐标轴建立坐标系,则M(2,1),A(0,0),设N(x,y),则0≤x≤2,0≤y≤2,因此→(AM)·→(AN)=2x+y,因此,当x=2,y=2时,有最大值6.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)已知A、B、C三点的坐标分别为(-2,1)、(2,-1)、(0,1),且→(CP)=3→(CA),→(CQ)=2→(CB),求点P、Q和向量→(PQ)的坐标.解:因为A、B、C三点的坐标分别为(-2,1)、(2,-1)、(0,1),所以→(CA)=(-2,0),→(CB)=(2,-2),所以→(CP)=3→(CA)=(-6,0),→(CQ)=2→(CB)=(4,-4),设P(x,y),则有→(CP)=(x,y-1),所以y-1=0,(x=-6,)解得y=1,(x =-6,)即P点的坐标为(-6,1),同理可得Q(4,-3),因此向量→(PQ)=(10,-4).17.(12分)已知|a|=4,|b|=8,a与b的夹角是120°.(1)求a·b及|a+b|的值;(2)当k为何值时,(a+2b)⊥(ka-b)?解:(1)a·b=|a||b|cos120°=-16,|a+b|=(2)由题意,知(a+2b)·(ka-b)=ka2+(2k-1)a·b-2b2=0,即16k-16(2k-1)-2×64=0,解得k=-7.18.(12分)如图,在△OAB中,P为线段AB上一点,且→(OP)=x→(OA)+y→(OB).(1)若→(AP)=→(PB),求x,y的值;(2)若→(AP)=3→(PB),|→(OA)|=4,|→(OB)|=2,且→(OA)与→(OB)的夹角为60°,求→(OP)·→(AB)的值.解析:(1)若→(AP)=→(PB),则→(OP)=2(1)→(OA)+2(1)→(OB),故x=y=2(1).(2)若→(AP)=3→(PB),则→(OP)=4(1)→(OA)+4(3)→(OB),→(OP)·→(AB)=→(OB)·(→(OB)-→(OA))=-4(1)→(OA)2-2(1)→(OA)·→(OB)+4(3)→(OB)2=-4(1)×42-2(1)×4×2×cos60°+4(3)×22=-3.19.(12分)△ABC内接于以O为圆心,1为半径的圆,且3→(OA)+4→(OB)+5→(OC)=0.(1)求数量积→(OA)·→(OB),→(OB)·→(OC),→(OC)·→(OA);(2)求△ABC的面积.解析:(1)∵3→(OA)+4→(OB)+5→(OC)=0.∴3→(OA)+4→(OB)=0-5→(OC),即(3→(OA)+4→(OB))2=(0-5→(OC))2.可得9→(OA)2+24→(OA)·→(OB)+16→(OB)2=25→(OC)2.又∵|OA|=|OB|=|OC|=1.∴→(OA)2=→(OB)2=→(OC)2=1,∴→(OA)·→(OB)=0.(2)S△ABC=S△OAB+S△OBC+S△OAC=2(1)|→(OA)|·|→(OB)|·sin∠AOB+2(1)|→(OB)|·|→(OC)|sin∠BOC+2(1)|→(OC)|·|→(OA)|·sin∠AOC.又|OA|=|OB|=|OC|=1.∴S△ABC=2(1)(sin∠AOB+sin∠BOC+sin∠AOC).由(1)→(OA)·→(OB)=|→(OA)|·|→(OB)|·cos∠AOB=cos∠AOB=0,得sin∠AOB =1.→(OB)·→(OC)=|→(OB)|·|→(OC)|·cos∠BOC=cos∠BOC=-5(4),∴sin∠BOC=5(3),同理sin∠AOC=5(4).∴S△ABC=5(6).20.(13分)以某市人民广场的中心为原点建立平面直角坐标系,x轴的正方向指向东,y轴的正方向指向北.一个单位长度表示实际路程100 m,一人步行从广场入口处A(2,0)出发,始终沿一个方向匀速前进,6 min时路过少年宫C,10 min后到达科技馆B(-3,5).(1)求此人的位移(说明此人行走的距离和方向)及此人行走的速度v(用坐标表示);(2)求少年宫C点相对于广场中心所在的位置.(参考数据:tan18°26′=3(1)).解析:(1)依题意知→(AB)=(-3,5)-(2,0)=(-5,5),|→(AB)|==5,∠xAB=135°.∴此人沿北偏西45°方向走了500 m.∵当t=6(1) h时,此人所走的实际距离s=|→(AB)|×100=500(m),∴|v|=t(s)=3000 m/h∴vx=|v|cos135°=-3000(m/h),vy=|v|sin135°=3000(m/h),又一个单位长度表示实际路程100 m,∴v=(-30,30).(2)∵→(AC)=10(6)→(AB)=5(3)→(AB),→(OC)=→(OA)+→(AC)=(2,0)+5(3)(-5,5)=(-1,3),∴|→(OC)|=,又tan∠COy=3(1),∴∠COy=18°26′.即少年宫C位于距离广场中心100 m,且在北偏西18°26′处.21.(14分)在平面直角坐标系中,已知三点A(4,0),B(t,2),C(6,t),t∈R,O 为坐标原点.(1)若△ABC是直角三角形,求t的值;(2)若四边形ABCD是平行四边形,求|→(OD)|的最小值.解析:(1)由题意得→(AB)=(t-4,2),→(AC)=(2,t),→(BC)=(6-t,t-2),若∠A=90°,则→(AB)·→(AC)=0,即2(t-4)+2t=0,∴t=2;若∠B=90°,则→(AB)·→(BC)=0,即(t-4)(6-t)+2(t-2)=0,∴t=6±2;若∠C=90°,则→(AC)·→(BC)=0,即2(6-t)+t(t-2)=0,无解,∴满足条件的t的值为2或6±2.(2)若四边形ABCD是平行四边形,则→(AD)=→(BC),设点D的坐标为(x,y),即(x-4,y)=(6-t,t-2),∴y=t-2(x=10-t),即D(10-t,t-2),∴当t=6时,|→(OD)|取得最小值4.备注:以下内容仅显示部分,需完整版请下载!。