数学专题突破:立体几何

合集下载

2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

专题五 第1讲1.(教材回归)一个几何体的三视图如图所示,则该几何体的表面积为( D )A .3πB .4πC .2π+4D .3π+4解析 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S =2×12×π×12+π×1×2+2×2=3π+4.故选D.2.(2017·山东烟台模拟)一个几何体的三视图如图所示,其中俯视图是一个正三角形及其内切圆,则该几何体的体积为( A )A .163-16π3B.163-16π3C .83-8π3D.83-8π3解析 由三视图可知,几何体为一个棱长为4的正三棱柱去掉了一个内切圆柱.V三棱柱=⎝⎛⎭⎫12×4×4×sin 60°×4=16 3.在俯视图中,设内切圆半径为r ,则内切圆圆心与各顶点连接分三角形为3个全等的小三角形,由三角形面积可得12×4×4×sin 60°=3×⎝⎛⎭⎫12×4×r ,解得r =233.故V 圆柱=πr 2h =π×⎝⎛⎭⎫2332×4=16π3.∴几何体的体积V =V 三棱柱-V 圆柱=163-16π3.故选A.3.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( D )A.18 B.17 C.16 D.15解析 如图,由已知条件可知,截去部分是以△ABC 为底面且三条侧棱两两垂直的正三棱锥D -ABC .设正方体的棱长为a ,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.4.(考点聚焦)一个四面体的三视图如图所示,则该四面体的表面积是( B )A .1+ 3B .2+3C .1+2 2D .2 2解析 四面体的直观图如图所示.侧面SAC ⊥底面ABC ,且△SAC 与△ABC 均为腰长是2的等腰直角三角形,SA =SC =AB =BC =2,AC =2.设AC 的中点为O ,连结SO ,BO ,则SO ⊥AC ,∴SO ⊥平面ABC ,∴SO ⊥BO .又OS =OB =1,∴SB =2,故△SAB 与△SBC 均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×34×(2)2=2+ 3.5.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( D )A.32π3 B .4π C .2πD.4π3解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =⎝⎛⎭⎫222+⎝⎛⎭⎫222=1,球的体积V =4π3r 3=4π3.故选D.6.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π3,那么这个三棱柱的体积是( D )A .963B .163C .24 3D .48 3解析 如图,设球的半径为R ,由43πR 3=32π3,得R =2. 所以正三棱柱的高h =4. 设其底面边长为a , 则13·32a =2,所以a =43, 所以V =34×(43)2×4=48 3.故选D. 7.(书中淘金)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,BD ,DE ,DF ,则几何体EFC 1DBC 的体积为( A )A .66B .68C .70D .72解析 如图,连接DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC 1DBC 的体积为66.8.(2017·湖北八校联考)如图,网格纸上小正方形的边长为1,粗线画的是某多面体的三视图,则该多面体的外接球的表面积为__41π__.解析 由三视图可知该几何体是如图所示的三棱锥A -BCD ,将该三棱锥放在棱长为4的正方体中,E 是棱的中点,所以三棱锥A -BCD 和三棱柱EFD -ABC 的外接球相同.设外接球的球心为O ,半径为R ,△ABC 的外接圆的圆心是M ,则OM =2.在△ABC 中,AB =AC =25,由余弦定理得cos ∠CAB =AC 2+AB 2-BC 22AC ·AB =20+20-162×25×25=35,所以sin ∠CAB =45,由正弦定理得2CM =BC sin ∠CAB =5,则CM =52.所以R =OC =OM 2+CM 2=412,则外接球的表面积为S =4πR 2=41π.9.一个几何体的三视图如图所示(单位:m),则该几何体的体积为 83π m 3.解析 由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1,圆锥的高均为1,圆柱的高为2.因此该几何体的体积为V =2×13π×12×1+π×12×2=83π (m 3).10.(数学文化)我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理叙述道:“夫叠基成立积,缘幂势既同,则积不容异:”意思是:夹在两个平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积相等,其最著名之处是解决了“牟合方盖”中的体积问题,其核心过程为:如图中正方体ABCD -A 1B 1C 1D 1,求图中四分之一的圆柱体BB 1C 1-AA 1D 1和四分之一圆柱体AA 1B 1-DD 1C 1公共部分的体积V ,若图中正方体的棱长为2,则V =163.(在高度h 处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S 1,截得正方体所得面积为S 2,截得四棱锥C 1-ABCD 所得面积S 3,S 1=R 2-h 2,S 2=R 2,S 3=h 2,S 2-S 1=S 3)解析 由题意可知,用平行于底面的平面截得的面积满足S 2-S 1=S 3,其中S 1表示两个圆柱的公共部分的截面面积,S 2表示截得正方体的截面面积,S 3表示截得锥体的截面面积.由祖暅原理可知:正方体体积减去两个圆柱的公共部分体积等于锥体体积,即23-V =13×22×2,即V =23-13×22×2=163.。

讲透重点难点高中数学立体几何

讲透重点难点高中数学立体几何

讲透重点难点高中数学立体几何高中数学立体几何的重点和难点主要集中在以下几个方面:1.空间想象力:立体几何要求学生对三维空间有清晰的认识和想象力。

这包括理解点、线、面的位置关系,以及通过平面图形想象出立体图形。

2.截面与投影:理解并掌握各种几何体(如柱体、锥体、球体等)的截面和投影是立体几何的关键。

学生需要了解如何通过平面去截取几何体得到不同的截面图形,以及如何将三维图形投影到二维平面上。

3.空间距离与角度:计算空间中的距离和角度是立体几何的另一个重要内容。

学生需要掌握空间中两点间的距离公式,以及线面角、二面角等角度的计算方法。

4.空间向量:空间向量是解决立体几何问题的重要工具。

学生需要理解空间向量的概念,掌握空间向量的基本运算(如加法、减法、数乘、点积、叉积等),并能够应用空间向量解决各种立体几何问题。

5.几何体的表面积与体积:计算几何体的表面积和体积是立体几何的常见题型。

学生需要掌握各种几何体(如柱体、锥体、球体等)的表面积和体积公式,并能够灵活应用这些公式解决问题。

为了突破这些难点,学生可以采取以下策略:1.多做练习:通过大量的练习,加深对立体几何概念和方法的理解,提高解题能力。

2.归纳总结:及时归纳总结所学的知识点和方法,形成自己的知识体系,便于记忆和应用。

3.借助工具:利用图形计算器或计算机软件等工具,辅助进行空间想象和计算,提高解题效率。

4.寻求帮助:遇到难题时,及时向老师或同学请教,共同探讨解决问题的方法。

总之,高中数学立体几何需要学生具备扎实的基础知识和良好的空间想象力,通过不断的练习和总结,逐步掌握解题技巧和方法。

高考数学突破点:立 体 几 何

高考数学突破点:立 体 几 何

第八章⎪⎪⎪立 体 几 何 第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图基础联通 抓主干知识的“源”与“流” 1.空间几何体的结构特征 (1)多面体的结构特征 多面体 结构特征棱柱 有两个面平行,其余各面都是四边形且每相邻两个面的交线都平行且相等棱锥 有一个面是多边形,而其余各面都是有一个公共顶点的三角形 棱台棱锥被平行于底面的平面所截,截面和底面之间的部分叫做棱台几何体 旋转图形 旋转轴圆柱 矩形 矩形任一边所在的直线 圆锥 直角三角形 一条直角边所在的直线圆台 直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点的连线球半圆或圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析](1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案](1)C(2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()[解析](1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案](1)B(2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A能力练通抓应用体验的“得”与“失”1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积基础联通 抓主干知识的“源”与“流” 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式名称 几何体表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底V =Sh 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3考点贯通 抓高考命题的“形”与“神”空间几何体的表面积[例1] (1)(2017·安徽江南十校联考)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+3.[答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P -ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16. (2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通 抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.故选C.2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝⎛⎭⎫4-222=5,所以该正四棱台的表面积S =(2+4)×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通 抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26, 则S 1S 2=3a 2π6a 2=63π. [答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.(2)如图所示,设球半径为R ,底面中心为O ′且球心为O , ∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通 抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′-BCD 的顶点在同一个球面上,则该球的表面积为( )A .3π B.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝⎛⎭⎫233R 2=π2.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18 B.17C.16D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D. 4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V=14×13π·r 2·5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027.8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:选A根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26 B.36 C.23 D.22解析:选A由于三棱锥S-ABC与三棱锥O-ABC底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍.在三棱锥O-ABC中,其棱长都是1,如图所示,S△ABC=34×AB2=34,高OD=12-⎝⎛⎭⎫332=63,所以V S-ABC=2V O-ABC=2×13×34×63=26.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图②,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π 解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π. 5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r =(22)2+(22)2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC ⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S△PAD=12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P -ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即三棱锥P -MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点, ∴S △MBC =12×3×3=92,∴V M -PBC =V P -MBC =13×92×1=32. 答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由三视图可得该几何体是组合体,上面是底面圆的半径为2 m 、高为2 m 的圆。

高中教案:高考数学难点突破八立体几何中的翻折问题

高中教案:高考数学难点突破八立体几何中的翻折问题

高考数学难点突破八----立体几何中的翻折问题一、知识储备翻折问题就是把平面图形经过折叠变成一个空间图形,实际上,折叠问题就是轴对称的问题,折痕就是对称轴,重合的即是全等图形,解决折叠问题时,要把运动着的空间图形不断地与原平面图形进行对照,看清楚其中哪些量在变化,哪些量没有变化,从而寻找出解决问题的方法,达到空间问题与平面问题相互转化的目的。

核心是抓牢折痕就是翻折前与翻折后平面图形的公共底边,折痕与公共底边上两高所在平面垂直。

二、应用举例例1.如图,在矩形ABCD 中,M 在线段AB 上,且1AM AD ==,3AB =,将ADM ∆沿DM 翻折.在翻折过程中,记二面角A BC D --的平面角为θ,则tan θ的最大值为(C )ABCD例2.在矩形ABCD 中,4,3AB AD ==,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE '∆,使得点A '在平面 BCDE 上的射影在四边形BCDE 内(不含边界),设二面角 A BE C '--的大小为θ,直线,A B A C ''与平面BCDE 所成的角分 别为αβ,,则( D ) A.βαθ<< B.βθα<< C.αθβ<< D.αβθ<<例3.如图,矩形ABCD 中心为, O BC AB >,现将DAC 沿着对角线AC 翻折成EAC ,记BOE a ∠=,二面角B AC E --的平面角为β,直线DE 和BC 所成角为γ,则( D )A. ,2a ββγ>>B. ,2a ββγ><C. ,2a ββγ<>D. ,2a ββγ<<例4.如图,在ABC △中,1AB =,22BC =,4B π=,将ABC △绕边AB 翻转至ABP △,使面ABP ⊥面ABC ,D 是BC 中点,设Q 是线段PA 上的动点,则当PC 与DQ 所成角取得最小值时,线段AQ 的长度为( B ) A .52B .255C .355D .253例5.已知在矩形ABCD 中,2AD AB =,沿直线BD 将ABD ∆ 折成'A BD ∆,使得点'A 在平面BCD 上的射影在BCD ∆内(不含边界),设二面角'A BD C --的大小为θ,直线','A D A C 与平面BCD 所成的角分别为,αβ,则( )A. αθβ<<B. βθα<<C. βαθ<<D. αβθ<< 【答案】DQ DPCBA【解析】分析:由题意画出图形,由两种特殊位置得到点A′在平面BCD上的射影的情况,由线段的长度关系可得三个角的正弦的大小,则答案可求.详解:如图,∵四边形ABCD为矩形,∴BA′⊥A′D,当A′点在底面上的射影O落在BC上时,有平面A′BC⊥底面BCD,又DC⊥BC,可得DC⊥平面A′BC,则DC⊥BA′,∴BA′⊥平面A′DC,在Rt△BA′C中,设BA′=1,则,∴A′C=1,说明O为当A′点在底面上的射影E落在BD上时,可知A′E⊥BD,设BA′=1,则A D'=,要使点A′在平面BCD上的射影F在△BCD内(不含边界),则点A′的射影F落在线段OE上(不含端点).可知∠A′EF为二面角A′﹣BD﹣C的平面角θ,直线A′D与平面BCD所成的角为∠A′DF=α,直线A′C与平面BCD所成的角为∠A′CF=β,<,而A′C的最小值为1,可求得DF>CF,∴A′C<A′D,且A′E=13∴sin∠A′DF<sin∠A′CF<sin∠A′EO,则α<β<θ.故答案为:D点睛:本题主要考查二面角的平面角和直线与平面所成的角,考查正弦函数的单调性,意在考查学生对这些基础知识的掌握能力和空间想象能力分析推理能力.例6、(嘉兴市2020年1月期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .22π分析:设 AC ,FC 的中点为 M , N ,CP 的中点G 的轨迹是以 MN 为直径的半圆.例7、(宁波市2020年1月期终)已知平面四边形ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD △沿对角线BD 翻折得到三棱锥A BCD '-,在此过程中,二面角A BC D '--、A CDB '--的大小分别为α,β,直线A B '与平面BCD 所成角为γ,直线A D '与平面BCD 所成角为δ,则( )A .γδβ<<B .γαβ<<C .αδβ<<D .γαδ<<例8、(柯桥一中2020年1月期终)已知在矩形ABCD 中,2AB =,4AD =,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示, 沿EF 将四边形AEFB 翻折成A EFB '',则在翻折过程中,二面角B CD E '--的大小为θ,则tan θ的最大值为( C ) A.5B.5C.4例9、(名校合作体2020年3月)已知C 为ABD Rt ∆斜边BD 上一点,且ACD ∆为等边三角形,现将ABC ∆沿AC 翻折至C B A '∆,若在三棱锥ACD B -'中,直线B C '和直线B A '与平面ACD 所成角分别为βα,,则( )A. βα<<0B.βαβ2≤<C.βαβ32≤≤例10、(2020年1月嘉兴期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .分析:取DE 中点O ,连CO PO ,,则点G 的轨迹是以CO 的中点为圆心,2221=PO 为半径的半圆,轨迹长为22ππ=r例11、(2020年4月温州模拟)如图,在ABC ∆中,点M 是边BC 的中点,将ABN ∆沿着AM 翻折成M B A '∆,且点B '不在平面AMC 内,点P 是线段C B '上一点,若二面角B AM P '--与二面角C AM P --的平面角相等,则直线AP 经过C B A '∆的( A ) A. 重心 B. 垂心 C. 内心 D.外心G PFD B A例12、(2020年嘉兴一模)将边长为1的正方形ABCD 沿对角线BD 翻折,使得二面角A BD C --的平面角的大小为π3,若点E ,F 分别是线段AC 和BD 上的动点,则BE CF 的取值范围为 ( )A .[1,0]-B .1[1,]4-C .1[,0]2-D . 11[,]24-例13、(2020年5月暨阳联考)如图:ABC ∆中,︒=∠⊥90,ACB BC AB ,D 为AC 的中点,ABD ∆沿BD 边翻折过程中,直线AB 与BC 直线所成的最大角,最小角分别记为11βα,,直线AD 与直线BC 所成的最大角,最小角分别记为22βα,,则有( D )A. ββαα≤<121,B. 2121ββαα><,C. 2121ββαα≤≥,D.2121ββαα>≥,分析一:翻折到180时,,AB BC 所成角最小,可知130β=,,AD BC 所成角最小,20β=,翻折0时,,AB BC 所成角最大,可知190α=,翻折过程中,可知AD 的投影可与BC 垂直,所以,AD BC 所成最大角290α=,所以 1190,30αβ︒︒==,2290,0αβ︒︒==分析二:对角线向量定理例14、(2020年4月台州二模)如下图①,在直角梯形ABCD 中,90=∠=∠=∠DAB CDB ABC , 30=∠BCD ,4=BC ,点E 在线段CD 上运动,如下图②,沿BE 将BEC ∆折至C BE '∆,使得平面⊥'C BE 平面ABED ,则C A '的最小值为 .⇒例15、(2020年嘉兴市基础知识测试)如图,矩形ABCD 中,2,1==BC AB ,点E 为AD 中点,将ABE ∆沿BE 折起,在翻折过程中,记二面角B DC A --的平面角大小为α,则当α最大时,=αtan ( ) A. 22 B. 32 C. 31 D.21例16、(2020学年温州中学高二上期中)等边三角形ABC 边长为4,N M ,为AC AB ,的中点,沿MN 将AMN ∆折起,当直线AB 与平面BCMN 所成的角最大时,线段AB 的长度为( )A.6B. 22C. 10D.32例17、(2020学年杭外高二上期中)如图,在菱形ABCD 中,︒=∠60BAD ,线段AD ,BD 的中点分别为E ,F ,现将ABD ∆沿对角线BD 翻折,则异面直线BE 与CF 所成的角的取值范围是( )A.),(36ππ B.⎥⎦⎤26ππ,( C. ⎥⎦⎤ ⎝⎛2,3ππ, D.⎪⎭⎫⎝⎛323ππ,例18、(2020学年杭四中高二上期中)如图,矩形ABCD 中,AD AB 2=,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成DE A 1∆,若M 为线段C A 1的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项).(1)BM 是定值;(2)点M 在某个球面上运动;(3)存在某个位置,使C A DE 1⊥;(4)存在某个位置,使//MB 平面DE A 1.例19、(2020学年杭师大附中高二上期中)如图,在矩形ABCD 中,6=AB ,4=BC ,E 为DC 边的中点,沿AE 将ADE ∆折起至E D A '∆,设二面角B AE D --'为α,直线D A '与平面ABCE 所成角为β,若︒︒<<9060α,则在翻折过程中( )A. 存在某个位置,使得βα<B. 存在某个位置,使得︒<+90βαB. ︒>45β D.︒︒<<4530β例20、(2020学年台州市高二上期终)如图,在ABC ∆,1=AC ,3=BC ,2π=C ,点D 是边AB (端点除外)上的一动点,若将ACD ∆沿直线CD 翻折,能使点A 在平面BCD内的射影A '落在BCD ∆的内部(不包括边界)且37='C A ,设t AD =,则t 的取值范围是 .例21、(2020学年杭州七县市高二上期末)如图,正方形ABCD 的边长为4,点F E ,分别是BC AB ,的中点,将DAE ∆,EBF ∆,FCD ∆分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体DEF A -'的四个顶点都在同一个球面上,则以DEF ∆为底面的三棱锥DEF G -的高h 的最大值是( ) 326+ B. 346+ C.3462- D.3262-例22、(2020学年慈溪市高二上期终)如图,三棱锥BCD A -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥BCD A -绕棱CD 旋转,设直线BE 与平面α所成角为θ,则θcos 的取值范围为( )A.⎥⎦⎤⎢⎣⎡163,B. ⎥⎦⎤⎢⎣⎡1,65 C.⎥⎦⎤⎢⎣⎡6110, D.⎥⎦⎤⎢⎣⎡6330,例23、(2021年2月“日知”新高考命题研究联盟高三期终)如图所示,正方形ABCD ,ADEF ,AFGH 平铺在水平面上,先将矩形EDHG 沿AD 折起,使二面角BAD E --'为︒30,再将正方形H G F A ''沿F A '折起,使二面角D F A H -'-'为︒30,则平面H G F A '''与平面ABCD 所成的锐二面角的正切值是( ) A.42 B.37 C.43 D.26例24、(2021年2月丽水中学合作校高三联考卷)如图,在ABC ∆中,MC BM 21=,1==AC AB ,32=BM ,点D 在线段BM 上运动,沿AD 将ADB ∆折到B AD '∆,使得二面角C AD B --'的度数为︒60,若点B '在平面ABC 内的射影为O ,则OC 的最小值为 .例25、(2021年4月杭州二模第10题)如图,在长方体ABCD 中,215=AB ,1=AD ,点E 在线段AB (端点除外)上,现将ADE ∆沿DE 折起为DE A '∆,设α=∠ADE ,二面角C DE A --'的大小为β,若2πβα=+,则四棱锥BCDE A -'体积的最大值为( )A.41 B.32 C. 121-15 D. 81-5例26、(2020学年之江教育联盟高二下开学考)如图,已知椭圆的长轴端点为21,A A ,短轴端点为21,B B ,焦点为21,F F ,长半轴为2,短半轴为3,将左边半个椭圆沿短轴进行翻折,则在翻折过程中,以下说法错误的是( )A. 12F B 与短轴21B B 所成角为6π B. 12F B 与直线22F A 所成角的取值范围为⎥⎦⎤⎢⎣⎡23ππ,C. 12F A 与平面212B B A 所成角的最大值为6πD. 存在某个位置,使得12F B 与21F B 垂直例27、(2021年5月义务高三适应性考试第10题)如图,在等边三角形ABC 中,点ED 、分别是线段AC AB ,上异于端点的动点,且CE BD =,现将三角形ADE 沿直线DE 折起,使平面⊥ADE 平面BCED ,D 从B 滑动到A 的过程中(D 与A B ,均不重合),则下列选项中错误的是( )A. ADB ∠的大小不会发生变化B. 二面角C BD A --的平面角的大小不会发生变化C.BD 与平面ABC 所成的角变大D.AB 与DE 所成的角先变小后变大例28、(2020年4月嘉兴二模第9题)如图,矩形ABCD 中,已知2=AB ,4=BC ,E 为AD 的中点,将ABE ∆沿着BE 向上翻折至BE A '∆,记锐二面角C BE A --'的平面角为α,B A '与平面BCDE 所成的角为β,则下列结论不可能成立的是( )A. βαsin 2sin =B.βαcos cos 2=C.βα2<D. 4πβα>-例29、(2020学年温州十校联盟高二下期终)如图,在等腰三角形ABC 中,2=BC ,︒=∠90C ,D ,E 分别是线段AB ,AC 上异于端点的动点,且BC DE //,先将ADE ∆沿直线DE 折起至DE A ',使平面⊥'DE A 平面BCED ,当D 从B 滑动到A 的过程中,下列选项错误的是( )A. DE A '∠的大小不会发生变化B. 二面角C BD A --'的平面角的大小不会发生变化C. 三棱锥EBC A -'的体积先变大在变小D. B A '与DE 所成的角先变大再变小例30、(2020学年浙南名校联盟高二下期终第17题)如图,在矩形ABCD 中,a AB =,a BC 2=,点E 为AD 的中点,将ABE ∆沿BE 翻折到BE A '∆的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角B DC A --'的平面角为α,则当α最大时,αcos 的值为 .。

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

2022高三高考数学知识点第7章 高考专题突破4 高考中的立体几何问题

2022高三高考数学知识点第7章 高考专题突破4 高考中的立体几何问题

跟踪训练3 (2020·宜昌一中模拟)如图,在四棱锥 P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC, AD=DC=AP=2,AB=1,点E为棱PC的中点. (1)证明:BE⊥PD;
解 依题意,以点A为原点,以AB,AD,AP为x轴、y轴、z轴建立空间 直角坐标系如图, 可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2). 由E为棱PC的中点,得E(1,1,1). 证明 向量B→E=(0,1,1),P→D=(0,2,-2), 故B→E·P→D=0,所以B→E⊥P→D,所以 BE⊥PD.
设直线AM与平面PBC所成的角为θ,

sin
θ=|cos〈m,A→M〉|=
→ |m·AM|


|m|·|AM|
23×1+12×0+

7 4
23×1=
42 7.
∴直线 AM 与平面 PBC 所成角的正弦值为
42 7.
命题点3 二面角
例3 (2020·全国Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为
设平面QCD的一个法向量为n=(x,y,z),
[5分] [6分]
则DD→→CQ··nn==00,, 即ym=x+0,z=0,
令x=1,则z=-m, 所以平面QCD的一个法向量为n=(1,0,-m),
则 cos〈n,P→B〉=|nn|·|PP→→BB|=
1+0+m 3· m2+1.
[9分] [10分]
当且仅当m=1时取等号,
所以直线PB与平面QCD所成角的正弦值的最大值为
6 3
.
[12分]
答题模板
第一步:根据线面位置关系的相关定理,证明线面垂直. 第二步:建立空间直角坐标系,确定点的坐标. 第三步:求直线的方向向量和平面的法向量. 第四步:计算向量夹角(或函数值),借助基本不等式确定最值. 第五步:反思解题思路,检查易错点.

2022年高考考点完全题数学(文)专题突破练习题 专题突破练5 立体几何的综合问题 Word版含答案

2022年高考考点完全题数学(文)专题突破练习题 专题突破练5 立体几何的综合问题 Word版含答案

专题突破练(5) 立体几何的综合问题 一、选择题1.已知直线a ⊂平面α,直线b ⊂平面β,则“a ∥b ”是“α∥β ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 D解析 “a ∥b ”不能得出“α∥β”,反之由“α∥β”也得不出“a ∥b ”.故选D.2.如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,A 1A =AB =2,BC =1,AC =5, 若规定正视方向垂直平面ACC 1A 1,则此三棱柱的侧视图的面积为( )A.455B .2 5C .4D .2答案 A解析 在△ABC 中,AC 2=AB 2+BC 2=5,∴AB ⊥BC .作BD ⊥AC 于D ,则BD 为侧视图的宽,且BD =2×15=255,∴侧视图的面积为S =2×255=455.3.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6答案 C解析 如图,既与AB 共面也与CC 1共面的棱有CD 、BC 、BB 1、AA 1、C 1D 1,共5条.4.在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将四边形ABCD 沿对角线BD 折成四周体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( )A .A ′C ⊥BDB .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30° D .四周体A ′BCD 的体积为13答案 B解析 ∵AB =AD =1,BD =2,∴AB ⊥AD . ∴A ′B ⊥A ′D .∵平面A ′BD ⊥平面BCD ,CD ⊥BD , ∴CD ⊥平面A ′BD ,∴CD ⊥A ′B ,∴A ′B ⊥平面A ′CD , ∴A ′B ⊥A ′C ,即∠BA ′C =90°.5. 如图,在三棱锥P -ABC 中,不能证明AP ⊥BC 的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC答案 B解析由AP⊥PB,AP⊥PC可推出AP⊥平面PBC,∴AP⊥BC,故排解A;由平面BPC⊥平面APC,BC⊥PC 可推出BC⊥平面APC,∴AP⊥BC,故排解C;由AP⊥平面PBC可推出AP⊥BC,故排解D,选B.6.如图所示,已知在多面体ABC-DEFG中,AB,AC,AD两两垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为( )A.2 B.4C.6 D.8答案 B解析如图所示,将多面体补成棱长为2的正方体,那么明显所求的多面体的体积即为该正方体体积的一半,于是所求几何体的体积为V =12×23=4.7.设A,B,C,D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD 的最大值是( )A.6 B.7C.8 D.9答案 C解析由题意知42=AB2+AC2+AD2,S△ABC+S△ACD+S△ABD=12(AB·AC+AC·AD+AD·AB)≤12⎣⎢⎡12AB2+AC2+12AC2+AD2+⎦⎥⎤12AD2+AB2=12(AB2+AC2+AD2)=8.8.已知圆锥的底面半径为R,高为3R,在它的全部内接圆柱中,表面积的最大值是( )A.22πR2 B.94πR2C.83πR2 D.52πR2答案 B解析如图所示,为组合体的轴截面,记BO1的长度为x,由相像三角形的比例关系,得PO13R=xR,则PO1=3x,圆柱的高为3R-3x,所以圆柱的表面积为S=2πx2+2πx·(3R-3x)=-4πx2+6πRx,则当x=34R 时,S取最大值,S max=94πR2.9.在正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N 分别为AB,BC边的中点,点Q为平面ABCD内一点,线段D1Q与OP相互平分,则满足MQ→=λMN→的实数λ的值有( )A .0个B .1个C .2个D .3个 答案 C解析 本题可以转化为在MN 上找点Q 使OQ 綊PD 1,可知只有Q 点与M ,N 重合时满足条件,所以选C. 10.四棱锥M -ABCD 的底面ABCD 是边长为6的正方形,若|MA |+|MB |=10,则三棱锥A -BCM 的体积的最大值是( )A .16B .20C .24D .28答案 C解析 ∵三棱锥A -BCM 体积=三棱锥M -ABC 的体积,又正方形ABCD 的边长为6,S △ABC =12×6×6=18,又空间一动点M 满足|MA |+|MB |=10,M 点的轨迹是椭球,当|MA |=|MB |时,M 点到AB 距离最大,h =52-32=4,∴三棱锥M -ABC 的体积的最大值为V =13S △ABC h =13×18×4=24,∴三棱锥A -BCM 体积的最大值为24,故答案为C.11.在一个棱长为4的正方体内,最多能放入的直径为1的球的个数( ) A .64 B .66 C .68 D .70答案 B解析 依据球体的特点,最多应当是放5层,第一层能放16个;第2层放在每4个小球中间的空隙,共放9个;第3层连续往空隙放,可放16个;第4层同第2层放9个;第5层同第1、3层能放16个,所以最多可以放入小球的个数:16+9+16+9+16=66(个),故答案为B.12.如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为1,E ,F 分别是棱AA ′,CC ′的中点,过直线E ,F 的平面分别与棱BB ′、DD ′交于M ,N ,设BM =x ,x ∈,给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x =12时,四边形MENF 的面积最小;③四边形MENF 周长L =f (x ),x ∈是单调函数; ④四棱锥C ′-MENF 的体积V =h (x )为常函数.以上命题中假命题的序号为( ) A .①④ B .② C .③ D .③④答案 C解析 ①连接BD ,B ′D ′,则由正方体的性质可知EF ⊥平面BDD ′B ′,所以平面MENF ⊥平面BDD ′B ′,所以①正确.②连接MN ,由于EF ⊥平面BDD ′B ′,所以EF ⊥MN ,四边形MENF 的对角线EF 是固定的,所以要使面积最小,则只需MN 的长度最小即可,此时当M 为棱的中点时,即x =12时,此时MN 长度最小,对应四边形MENF 的面积最小,所以②正确.③由于EF ⊥MN ,所以四边形MENF 是菱形.当x ∈⎣⎢⎡⎦⎥⎤0,12时,EM 的长度由大变小,当x ∈⎣⎢⎡⎦⎥⎤12,1时,EM 的长度由小变大,所以函数L =f (x )不单调,所以③错误.④连接C ′E ,C ′M ,C ′N ,则四棱锥分割为两个小三棱锥,它们以C ′EF 为底,以M ,N 分别为顶点的两个小棱锥.由于三角形C′EF的面积是常数.M,N到平面C′EF的距离是常数,所以四棱锥C′-MENF的体积V=h(x)为常函数,所以④正确.所以四个命题中③假命题,选C.二、填空题13.如图,在正方体ABCD-A1B1C1D1中,P为棱DC的中点,则D1P与BC1所在直线所成角的余弦值等于________.答案10 5解析连接AD1,AP,则∠AD1P就是所求的角.设AB=2,则AP=D1P=5,AD1=22,∴cos∠AD1P=10 5.14.如图,已知球O的面上有四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.答案6π解析如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以|CD|=22+22+22=2R,所以R=62,故球O的体积V=4πR33=6π.15. 如图,有一圆柱开口容器(下表面封闭),其轴截面是边长为2的正方形,P是BC的中点,现有一只蚂蚁位于外壁A处,内壁P处有一粒米,则这只蚂蚁取得米粒的所经过的最短路程是________.答案π2+9解析由于圆柱的侧面开放图为矩形(如图所示),则这只蚂蚁取得米粒所经过的最短路程应为AQ+PQ,设点E与点A关于直线CD对称,由于两点之间线段最短,所以Q为PE与CD的交点时有最小值,即最小值为EP=π2+9.16.棱长为a的正方体ABCD-A1B1C1D1中,若与D1B平行的平面截正方体所得的截面面积为S,则S的取值范围是________.答案⎝⎛⎭⎪⎫0,6a22解析 如图,过D 1B 的平面为BMD 1N ,其中M ,N 分别是AA 1,CC 1的中点,由于BD 1=3a ,MN =AC =2a ,AC ⊥BD 1,即MN ⊥D 1B ,所以过D 1B 与M ,N 的截面的面积为S =12AC ·BD =62a 2,因此S 的取值范围是⎝⎛⎭⎪⎫0,6a 22.三、解答题17.在边长为4的菱形ABCD 中,∠DCB =60°,点E ,F 分别是边CD 和CB 的中点,AC 交BD 于点H ,AC 交EF 于点O ,沿EF 将△CEF 翻折到△PEF 的位置,使平面PEF ⊥平面ABD ,得到如图所示的五棱锥P -ABFED .(1)求证:BD ⊥PA ;(2)求点D 到平面PBF 的距离.解 (1)证明:由于四边形ABCD 为菱形,所以AC ⊥BD . 由于EF 为△BCD 的中位线,所以EF ∥BD , 故AC ⊥EF ,即翻折后PO ⊥EF .由于平面PEF ⊥平面ABD ,平面PEF ∩平面ABD =EF ,PO ⊂平面PEF ,所以PO ⊥平面ABD . 由于BD ⊂平面ABD ,所以PO ⊥BD .又AO ⊥BD ,AO ∩PO =O ,AO ⊂平面APO ,PO ⊂平面APO ,所以BD ⊥平面APO . 由于AP ⊂平面APO ,所以BD ⊥PA .(2)连接PC ,由于四边形ABCD 为菱形,且∠DCB =60°,故∠ADC =120°,AD =4,AC =43,BD =4, S △BDF =12S △BDC =12×12×4×23=23,OP =14AC = 3.由于PF =BF =FC ,故△BPC 为直角三角形,∠BPC =90°,PC =OC 2+OP 2=6,PB =BC 2-PC 2=10,S △PBF =12S △BPC =12×12PB ·PC =152. 由于V D -PBF =V P -BDF ,所以13h D ·S △PBF =13OP ·S △BDF ,所以h D =OP ·S △BDF S △PBF =3×23152=4155. 故点D 到平面PBF 的距离为4155.18.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,点E 是棱PC 的中点,平面ABE 与棱PD 交于点F .(1)求证:AB ∥EF ;(2)若PA =AD ,且平面PAD ⊥平面ABCD ,试证明:AF ⊥平面PCD ;(3)在(2)的条件下,线段PB 上是否存在点M ,使得EM ⊥平面PCD ?(直接给出结论,不需要说明理由) 解 (1)证明:由于底面ABCD 是正方形,所以AB ∥CD . 又由于AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ∥平面PCD .又由于A ,B ,E ,F 四点共面,且平面ABEF ∩平面PCD =EF ,所以AB ∥EF . (2)证明:在正方形ABCD 中,CD ⊥AD .又由于平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD ,所以CD ⊥平面PAD . 又由于AF ⊂平面PAD ,所以CD ⊥AF .由(1)知AB ∥EF ,又由于AB ∥CD ,所以CD ∥EF . 由点E 是棱PC 的中点,可知点F 是棱PD 的中点.在△PAD 中,由于PA =AD ,所以AF ⊥PD ,又由于PD ∩CD =D ,所以AF ⊥平面PCD . (3)不存在.19.一个多面体的直观图和三视图如下:(其中M ,N 分别是AF ,BC 中点) (1)求证:MN ∥平面CDEF ; (2)求多面体A -CDEF 的体积.解 (1)证明:由三视图知该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2,DE =CF =22,∠CBF =90°.取BF 中点G ,连接MG ,NG ,由于M ,N 分别是AF ,BC 中点,则NG ∥CF ,∵MG ∥AB ,又∵AB ∥EF ,∴MG ∥EF ,∴面MNG ∥面CDEF ,∴MN ∥面CDEF .(2)作AH ⊥DE 于H ,由于三棱柱ADE -BCF 为直三棱柱,∴AH ⊥面DCEF ,且AH =2, ∴V A -CDEF =13S CDEF ·AH =13×2×22×2=83.20. 如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,AB ∥DC ,AB ⊥AD ,AB =3,CD =2,PD =AD =5,E 是PD 上一点.(1)若PB ∥平面ACE ,求PE ED的值;(2)若E 是PD 中点,过点E 作平面α∥平面PBC ,平面α与棱PA 交于F ,求三棱锥P -CEF 的体积. 解 (1)连接BD 交AC 于O ,在△PBD 中,过O 作OE ∥BP 交PD 于E ,∵OE ⊂平面ACE ,PB ⊄平面ACE , ∴PB ∥平面ACE ,∵AB =3,CD =2,∴AB CD =BO DO =PE ED =32.(2)过E 作EM ∥PC 交CD 于M ,过M 作MN ∥BC 交AB 于N , 则平面EMN 即为平面α,则平面α与平面PAB 的交线与PB 平行,即过N 作NF ∥PB 交PA 于F , ∵E 是PD 的中点,CD =2,∴CM =1,则BN =CM =1, 又AB =3,∴AN NB =2,则FA FP=2,∵PD =AD =5,∴F 到平面PCE 的距离为53,则V P -CEF =V F -PCE =2518.。

立体几何大题重难点突破(1)

立体几何大题重难点突破(1)

2 在线段 PC 上是否存在点 M , 使得平面 ABM 与平面 PBD 所
成的锐二面角为
π 3
?
若存在,求
CM CP
的值;若不存在,请说明理由.
答案:CCMP
=
2 3
P
A D
B C
重庆邓丁瑞数学
八、已知一个二面角大小
例 13:2018 全国 ΙΙ 如图,在三棱锥 P - ABC 中,AB = BC =
D
P
C
E
O
A
B
重庆邓丁瑞数学 例 6:如图,四边形 ABCD 为菱形,∠ABC = 120°,E,F 是平面 ABCD 内同一侧的两点,BE ⏊ 平面 ABCD,DF ⏊ 平面 ABCD, DF ⏊ 平面 ABCD,BE = 2DF,AE ⏊ EC. 证明:平面 AFC ⏊ 平面 AEC.
E
F
A B
2

AB =
2,AD
=
1,AA1
=
3,
求二面角
A
-
EF
-
A1
的正弦值.
答案:742
C
B
D
A
F
E
C1
B1
D1
A1
重庆邓丁瑞数学
例 4:在直三棱柱 ABC - A1B1C1 中,点 D 为 BB1 的中点,点 E 为 A1C1 的中点,点 F 为 B1C1 的三等分点 靠近 B1 . 证明:A,D,E,F 四点共面.
=
2 2
P
D
C
A
B
重庆邓丁瑞数学
九、体积问题

15:斜三棱柱 ABC
-
A1B1C1
中,底面

专题08 立体几何-理科数学学科素养与能力突破

专题08 立体几何-理科数学学科素养与能力突破

专题8 立体几何.已知四面体P ABC-的四个顶点都在球O的球面上,若PB⊥平面ABC,AB ACAC=,⊥,且1==,则球O的表面积为()PA PB2【思路分析】只有当P移动到正方体中心O时,.已知各顶点都在一个球面上的正四棱柱高为,则这个球的表面积是(B.20πD.32π且弧AA ′的长度L 就是圆锥底面圆的周长,=2π,所以o 3602πL ASM l ∠=⨯=由题意知绳子的最小值为展开图中的空间四边形P –ABC 中,PA 、PB 、PC 两两相互垂直,=45°,∠PBC =60°,M 为AB 的中点.BC 与平面PAB 所成的角; )求证:AB ⊥平面PM C .【思路分析】(1)设BD=x,先利用线面垂直的定理证明AD即为三棱锥A–BCD的高,再将锥的体积表示为x的函数,最后利用导数求的最大值即可;)2x1.【答案】C2.【答案】2或14 【解析】如图所示:设球的大圆为圆O ,C ,D 为两截面的圆心,AB 为经过C 、O 、D 的直径且半径分别为6和8,当两截面在球心同侧时,如图(1)所示:则,862CD OC OD =-==-=.当两截面在球心的异侧时,如图(2)所示:则8614CD OC OD =+=+=+=. 故两截面间的距离为2或14. 3.【答案】16或2724.【解析】将其中含有一点的面展开,与含另一点的面在同一平面内即可,主要可以分为三种情形:(1)将右侧面展开与下底面在同一平面内,可得其路程为:S 1.(2)将前表面展开与上表面在同一平面内,可得其路程为:S 2(3)将前表面展开与右侧面在同一平面内,可得其路程为:3S =; 然后比较123S S S 、、的大小,即可得到最短路程.5【解析】如图球的截面图就是正四面体中的△ABD ,已知正四面体棱长为2,所以AD ,AC =1,所以CD .6.【答案】C【解析】∵PB ⊥平面ABC ,AB ⊥AC ,且AC =1,PB =AB =2,∴构造长方体,则长方体的外接球和四面体的外接球是相同的,则长方体的体对角线等于球的直径2R ,则2R 3==,∴R =32,则球O 的表面积为4πR 2=423()2π⨯=9π,故选C . 7.【答案】16【解析】将三棱锥A ﹣DED 1选择△ADD 1为底面,E 为顶点,则V A ﹣DED 1=V E ﹣ADD 1,其中S △ADD 1=12S A 1D 1DA =12,E 到底面ADD 1的距离等于棱长1,故1111326V =⨯⨯=.(2)取PB 中点N ,连结MN ,CN ,9.【答案】C【解析】由V =Sh ,得S =4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以球的半径为R =1222+22+42=6.所以球的表面积为S =4πR 2=24π.故选C .10.【答案】D【解析】由于两个正四棱锥相同,所以所求几何体的中心在正四棱锥底面正方形ABCD 中心,由对称性知正四棱锥的高为正方体棱长的一半,影响几何体体积的只能是正四棱锥底面正方形ABCD 的面积,问题转化为边长为1的正方形的内接正方形有多少种,所以选D . 11.【解析】连接AF 延长交BC 于M ,连接B 1M .∵AD ∥BC ,∴△AFD ∽△MF B .∴BF DF FM AF =,又∵BD =B 1A ,B 1E =BF .∴DF =AE . ∴EB AEFM AF 1=,∴EF ∥B 1M ,B 1M ⊂平面BB 1C 1C .∴EF ∥平面BB 1C 1C . 12.【解析】∵PA ⊥PB ,∴∠APB =90°13.【答案】B【解析】如图所示,设内接圆柱的半径为r (0<r <R ),高为h ,则有3h R rR R-=,得h =3(R –r ),所以22=2π2π2π6π()S r rh r r R r +=+-圆柱表222233994π()4π()ππ2444r Rr r R R R =--=--+≤.所以表面积最大为29π4R .故选B .14.【答案】B【解析】设圆锥底面半径为r ,1284r π⨯=,∴16r =π,2113205439V r π=⨯⨯⨯⨯=.设米堆共有x 斛,则3201.629x=,解得22x≈斛).15.【答案】A【解析】由三视图可知,工件为圆锥,底面半径1r=,2h=,1V=.作圆锥内接正方体的轴截面.设正方体边长为a,=.解得a=所以32V a==所以利用率为2189VV=π.16.【答案】13π。

高考数学压轴题突破训练——立体几何(含详解)

高考数学压轴题突破训练——立体几何(含详解)

高考数学压轴题突破训练——立体几何1. 1. 如图,平面如图,平面VAD VAD⊥平面⊥平面ABCD ABCD,△,△,△VAD VAD 是等边三角形,是等边三角形,ABCD ABCD 是矩形,是矩形,AB AB AB∶∶AD AD==2∶1,F 是AB 的中点.的中点.(1)求VC 与平面ABCD 所成的角;所成的角; (2)求二面角V-FC-B 的度数;的度数;(3)当V 到平面ABCD 的距离是3时,求B 到平面VFC 的距离.的距离.2.2.如图正方体如图正方体ABCD-1111D C B A 中,中,E E 、F 、G 分别是B B 1、AB AB、、BC 的中点.的中点.(1)证明:F D 1⊥EG EG;; (2)证明:F D 1⊥平面AEG AEG;; (3)求AE <cos ,>B D 1.3. 3. 在直角梯形在直角梯形P 1DCB 中,中,P P 1D//CB D//CB,,CD//P 1D 且P 1D D = = 6,BC = = 33,DC =6,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置,使二面角P -CD CD--B 成45°角,设E 、F 分别是线段AB AB、、PD 的中点.的中点. ((1)求证:)求证:AF//AF//AF//平面平面PEC PEC;; ((2)求平面PEC 和平面PAD 所1. 1. 如图,平面如图,平面VAD VAD⊥平面⊥平面ABCD ABCD,△,△,△VAD VAD 是等边三角形,ABCD 是矩形,是矩形,AB AB AB∶∶AD AD==2∶1,F 是AB 的中点.的中点.D B C F E A P (1)求VC 与平面ABCD 所成的角;所成的角; (2)求二面角V-FC-B 的度数;的度数;(3)当V 到平面ABCD 的距离是3时,求B 到平面VFC 的距离.的距离.2.2.如图正方体如图正方体ABCD-1111D C B A 中,中,E E 、F 、G 分别是B B 1、AB AB、、BC 的中点.的中点.(1)证明:F D 1⊥EG EG;; (2)证明:F D 1⊥平面AEG AEG;; (3)求AE <cos ,>B D 1.3. 3. 在直角梯形在直角梯形P 1DCB 中,中,P P 1D//CB D//CB,,CD//P 1D 且P 1D D = = 6,BC = = 33,DC =6,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置,使二面角P -CD CD--B 成45°角,设E 、F 分别是线段AB AB、、PD 的中点.的中点. ((1)求证:)求证:AF//AF//AF//平面平面PEC PEC;; ((2)求平面PEC 和平面PAD 所成的二面角的大小;所成的二面角的大小; ((3)求点D 到平面PEC 的距离.的距离. 成的二面角的大小;成的二面角的大小; ((3)求点D 到平面PEC 的距离.的距离.BC DA P 1 DBCF E A P4. 4. 如图四棱锥如图四棱锥ABCD P -中,中,^PA 底面ABCD ,4=PA 正方形的边长为2 (1)求点A 到平面PCD 的距离;的距离;(2)求直线PA 与平面PCD 所成角的大小;所成角的大小; (3)求以PCD 与PAC 为半平面的二面角的正切值。

高考数学二轮复习 核心考点特色突破 专题13 立体几何中的计算问题(含解析)-人教版高三全册数学试题

高考数学二轮复习 核心考点特色突破 专题13 立体几何中的计算问题(含解析)-人教版高三全册数学试题

专题13 立体几何中的计算问题【自主热身,归纳总结】1、若正三棱锥的底面边长为2,侧棱长为1,则此三棱锥的体积为 . 【答案】:61【解析】:设此正三棱锥的高为h ,则,所以312=h ,33=h , 故此三棱锥的体积.2、 如图,在长方体ABCDA 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则三棱锥AB 1D 1D 的体积为________cm 3.【答案】 3【解析】VAB 1D 1D =VB 1AD 1D =13S △ADD 1×A 1B 1=13×12×AD ×D 1D ×A 1B 1=13×12×3×2×3=3.3、将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27π cm 3,则该圆柱的侧面积为________cm 2. 【答案】:18π【解析】:设正方形的边长为x cm ,则圆柱的体积为πx 2·x =27π,解得x =3,所以该圆柱的侧面积为2π×3×3=18π(cm 2).4、如图,正四棱锥PABCD 的底面一边AB 的长为2 3 cm ,侧面积为8 3 cm 2,则它的体积为________cm 3.【答案】 4【解析】:如图,过点P 作PO 垂直于底面ABCD ,且垂足为O ,在平面ABCD 中,过点O 作直线AB 的垂线,垂足为E ,连结PE.由正四棱锥的性质知,PE ⊥AB ,所以S 侧=(12×23×PE )×4=83,解得PE =2,在Rt △POE 中,PO =PE 2-EO 2=22-3=1,所以正四棱锥的体积为13×(23)2×1=4.5、已知正四棱柱的底面边长为3 cm ,侧面的对角线长是35cm ,则这个正四棱柱的体积是________cm 3. 【答案】54【解析】:设该正四棱柱的侧棱长为h cm ,则(35)2=32+h 2,解得h =6(负值舍去),从而这个正四棱柱的体积是V =32×6=54(cm 3).6、若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________.【答案】 223π7、现有一正四棱柱形铁块,底面边长为高的8倍,将其熔化锻造成一个底面积不变的正四棱锥形铁件(不计材料损耗).设正四棱柱与正四棱锥的侧面积分别为1S ,2S ,则12S S 的值为 . 【答案】25【解析】设正四棱柱得高为a ,所以底面边长为8a ,根据体积相等,且高相等,所以正四棱锥的高为3a ,则正棱锥侧面的高为,所以.8、以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________. 【答案】22【解析】:如图,由题意可得圆柱的侧面积为S 1=2πrh =2πr 2.圆锥的母线l =h 2+r 2=2r ,故圆锥的侧面积为S 2=12×2πr ×l =2πr 2,所以S 2∶S 1=2∶2.9、如图,正三棱柱ABCA 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥AA 1EF 的体积是________.【答案】:23【解法1】过B 点作BE AC ⊥,垂足为E ,平面ABC ⊥平面11ACC A ,且平面ABC ⋂平面11ACC A =AC ,所以BE ⊥平面11ACC A ,又因为梯形1ACC D 的面积为=6,所以.【解法2】,而=1323⨯⨯,所以四棱锥1B ACC D -的体积为23.【关联1】、如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm (不计损耗).【答案】. 210 由题意知,熔化前后的体积相等,熔化前的体积为6×34×42×4-93×4=603,设所求正三棱柱的底面边长为x cm ,则有34x 2·6=603,解得x =210,所以所求边长为210cm .【关联2】、在棱长为2的正四面体P ABC -中,M ,N 分别为PA ,BC 的中点,点D 是线段PN 上一点,且2PD DN =,则三棱锥D MBC -的体积为 . 【答案】:29思路分析:解决空间几何体的体积计算问题常常有两个途径:一是直接利用体积公式求解,另一种是利用等体积转化的思想进行计算.解题过程:连结MB ,MC ,MN ,过点D 作MN DH ⊥于H ,因为BP BA =,M 为PA 的中点,所以BM PA ⊥,同理CM PA ⊥,又因为,所以,又因为,所以MN PA ⊥,又因为MN DH ⊥,所以PA DH //,从而,故DH 为点D 到平面MBC 的高.在MBC ∆中,MC MB =,N 为BC 的中点,则,MBC ∆的面积,在NPM ∆中,因为PM DH //,2PD DN =,所以,从而三棱锥D MBC -的体积.【关联3】、如图,在正三棱柱中,已知,点P 在棱1CC 上,则三棱锥1P ABA -的体积为 .【答案】.439 【解析】: 因为正三棱柱中,11//CC AA ,因为,,所以,因为点P 在棱1CC 上,所以点C 到平面B B AA 11的距离就是点P 到平面B B AA 11的距离.作AB CD ⊥,垂直为点D ,因为正三棱柱中,⊥1AA 面ABC ,⊂CD 面ABC ,所以1AA CD ⊥,而,,,所以.因为正三棱柱中,,所以233=CD ,1ABA ∆的面积,所以三棱锥1ABA P -的体积.例2、已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥DABC 的体积为________. 【答案】. 245【解析】:在平面DAC 内作DO ⊥AC ,垂足为点O ,因为平面DAC ⊥平面BAC ,且平面DAC ∩平面BAC =AC ,所以DO ⊥平面BAC ,因为AB =4,BC =3,所以DO =125,S △ABC =12×3×4=6,所以三棱锥DABC 的体积为V =13×6×125=245.【变式1】、.已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空 间几何体的体积V= cm 3.【答案】216+【解析】空间几何体为一正方体和一正四棱锥的组合体,显然,正方体的体 积为1,正四棱锥的底面边长为1,侧棱长为1,所以,棱锥的高为22,所以,正四棱锥的体积为26,即组合体的体积为216+【变式2】、已知△ABC 为等腰直角三角形,斜边BC 上的中线AD = 2,将△ABC 沿AD 折成60°的二面角,连结BC ,则三棱锥CABD 的体积为 .【答案】:233易错警示 由于二面角平面角的概念在必做部分考查较少形成了复习中的知识盲点在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),【关联1】、折叠成底面边长为2的正四棱锥SEFGH(如图2),则正四棱锥SEFGH 的体积为________.(图1)(图2)【答案】:. 43【解析】:连结EG ,HF ,交点为O ,正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB =12+22= 5.SO =SE 2-OE 2=5-1=2,故正四棱锥SEFGH 的体积为13×(2)2×2=43.【关联2】、已知圆锥的底面半径和高相等,侧面积为42 ,过圆锥的两条母线作截面,截面为等边三角形,则圆锥底面中心到截面的距离为【答案】233【解析】设底面半径为r ,由题意可得:母线长为2r .又侧面展开图面积为,所以2r =.又截面三角形ABD 为等边三角形,故,又,故BOD 为等角直角三角形.设圆锥底面中心到截面的距离为d ,又,所以.又,2OBDS=,2AO r ==,故.【关联3】、 如图,在圆锥VO 中,O 为底面圆心,半径OA ⊥OB ,且OA =VO =1,则O 到平面VAB 的距离为________.【答案】:33思路分析 在立体几何求点到平面的距离问题中,往往有两种途径:(1) 利用等体积法,这种方法一般不需要作出高线;(2) 利用面面垂直的性质作出高线,再进行计算.解法1 因为VO ⊥平面AOB ,OA ⊂平面AOB ,所以VO ⊥OA ,同理VO ⊥OB ,又因为OA ⊥OB ,OA =VO =OB =1,所以VA =VB =AB =2,所以S △VAB =12VA ×AB sin60°=32.设O 到平面VAB 的距离为h ,由V VAOB =V OVAB ,得13S△AOB×VO =13S △VAB ×h ,得12OA ×OB ×VO =32h ,解得h =33.解法2 取AB 中点M ,连结VM ,过点O 作OH ⊥VM 于H .因为OA =OB ,M 是AB 中点,所以OM ⊥AB ,因为VO ⊥平面AOB ,AB ⊂平面AOB ,所以VO ⊥AB ,又因为OM ⊥AB ,VO ∩OM =O ,所以AB ⊥平面VOM ,又因为AB ⊂平面VAB ,所以面VAB ⊥平面VOM ,又因为OH ⊥VM ,OH ⊂平面VOM ,平面VAB ∩平面VOM =VH ,所以OH ⊥平面VAB ,所以OH 为点O 到平面VAB 的距离,且OH =VO ×OM VM =33.例3、如图,在直三棱柱A 1B 1C 1ABC 中,AB ⊥BC ,E ,F 分别是A 1B ,AC 1的中点. (1) 求证:EF ∥平面ABC ; (2) 求证:平面AEF ⊥平面AA 1B 1B ;(3) 若A 1A =2AB =2BC =2a ,求三棱锥FABC 的体积.)【解析】 (1) 连结A 1C .因为直三棱柱A 1B 1C 1ABC 中,四边形AA 1C 1C 是矩形,所以点F 在A 1C 上,且为A 1C 的中点.在△A 1BC 中,因为E ,F 分别是A 1B ,A 1C 的中点,所以EF ∥BC .(2分) 又因为BC ⊂平面ABC ,EF ⊄平面ABC ,所以EF ∥平面ABC .(4分) (2) 因为在直三棱柱A 1B 1C 1ABC 中,B 1B ⊥平面ABC ,所以B 1B ⊥BC . 因为EF ∥BC ,AB ⊥BC ,所以AB ⊥EF ,B 1B ⊥EF .(6分) 因为B 1B ∩AB =B ,所以EF ⊥平面ABB 1A 1.(8分) 因为EF ⊂平面AEF ,所以平面AEF ⊥平面ABB 1A 1.(10分) (3) V FABC =12VA 1ABC =12×13×S △ABC ×AA 1(12分)=12×13×12a 2×2a =a36.(14分)【变式1】、如图,在五面体ABCDEF 中,已知DE ⊥平面ABCD ,//AD BC ,o 60BAD ∠=,2AB =,1DE EF ==.(1)求证://BC EF ; (2)求三棱锥B DEF -的体积.【解析】(1)因为//AD BC ,AD ⊂平面ADEF ,BC ⊄平面ADEF , 所以//BC 平面ADEF , (3分) 又BC ⊂平面BCEF ,平面BCEF平面ADEF EF =,所以//BC EF . (6分) (2)如图,在平面ABCD 内过点B 作BH AD ⊥于点H .因为DE ⊥平面ABCD ,BH ⊂平面ABCD ,所以DE BH ⊥.又AD ,DE ⊂平面ADEF ,,所以BH ⊥平面ADEF ,所以BH 是三棱锥B DEF -的高. (9分) 在直角三角形ABH 中,o 60BAD ∠=,2AB =,所以3BH =. 因为DE ⊥平面ABCD ,AD ⊂平面ABCD ,所以DE AD ⊥.又由(1)知,//BC EF ,且//AD BC ,所以//AD EF ,所以DE EF ⊥, (12分) 所以三棱锥B DEF -的体积. (14分)易错警示 在证明线线、线面、面面的位置关系时,一定要注意条件的完备性,不能少写条件.另外,在求几何体的体积时, 一定要证明某条线为高的原因,即证明它与某个平面垂直,否则将导致丢分. 【变式2】、如图,在矩形ABCD 中,AD =2,AB =4,E ,F 分别为边AB ,AD 的中点.现将△ADE 沿DE 折起,得四棱锥ABCDE. (1)求证:EF ∥平面ABC ;(2)若平面ADE ⊥平面BCDE ,求四面体FDCE 的体积.【解析】 (1) 证法1 如图1,取线段AC 的中点M ,连结MF ,MB. 因为F ,M 为AD ,AC 的中点, 所以MF ∥CD ,且MF =12CD.图1在折叠前,四边形ABCD 为矩形,E 为AB 的中点,所以BE ∥CD ,且BE =12CD.所以MF ∥BE ,且MF =BE.所以四边形BEFM 为平行四边形,故EF ∥BM. 又EF ⊄平面ABC ,BM ⊂平面ABC , 所以EF ∥平面ABC.证法2 如图2,延长DE 交CB 的延长线于点N ,连结AN.在折叠前,四边形ABCD 为矩形,E 为AB 的中点,所以BE ∥CD ,且BE =12CD.图2所以∠NBE =∠NCD ,∠NEB =∠NDC. 所以△NEB ∽△NDC.所以NE ND =BE CD =12,即E 为DN 的中点.又F 为AD 的中点,所以EF ∥NA. 又EF ⊄平面ABC ,NA ⊂平面ABC , 所以EF ∥平面ABC.证法3 如图3,取CD 的中点O ,连结OE ,OF.图3(2) 解法1 在折叠前,四边形ABCD 为矩形,AD =2,AB =4,E 为AB 的中点,所以△ADE ,△CBE 都是等腰直角三角形,且AD =AE =EB =BC =2. 所以∠DEA =∠CEB =45°,且DE =EC =2 2.又∠DEA +∠DEC +∠CEB =180°,所以∠DEC =90°,即DE ⊥CE.又平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,CE ⊂平面BCDE ,所以CE ⊥平面ADE ,即CE 为三棱锥CEFD 的高.因为F 为AD 的中点,所以 S △EFD =12×12×AD×AE=14×2×2=1.所以四面体FDCE 的体积V =13×S △EFD ×CE=13×1×22=223. 解法2 如图4,过F 作FH ⊥DE ,H 为垂足.图4因为平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,FH ⊂平面ADE ,所以FH ⊥平面BCDE ,即FH 为三棱锥FECD 的高.在折叠前,四边形ABCD 为矩形,且AD =2,AB =4,E 为AB 的中点,所以△ADE 是等腰直角三角形. 又F 为AD 的中点,所以DF =1. 所以FH =DF·sin45°=22. 又S △EDC =12×CD×BC=12×4×2=4,所以四面体FDCE 的体积V =13×S △EDC ×FH=13×4×22=223. 解法3 如图5,过A 作AG ⊥DE ,G 为垂足.图5因为平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,AG ⊂平面ADE ,所以AG ⊥平面BCDE ,即AG 为三棱锥AECD 的高.在折叠前,四边形ABCD 为矩形,且AD =2,AB =4,E 为AB 的中点, 所以△ADE 是等腰直角三角形. 所以AG =AD·sin45°= 2. 又S △EDC =12×DC×BC=12×4×2=4,所以三棱锥AECD 的体积V AECD =13×S △EDC ×AG=13×4×2=423.因为F 为AD 的中点,所以S △EFD =12S △EAD .所以V CEFD =12V CEAD =12V AECD =223.即四面体FDCE 的体积为223.【关联】、如图,直四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是菱形,∠ADC =120°,AA 1=AB =1,点O 1,O 分别是上、下底面菱形的对角线的交点.(1)求证:A 1O ∥平面CB 1D 1; (2)求点O 到平面CB 1D 1的距离.【解析】 (1) 因为AA 1∥C C 1且AA 1=C C 1,所以四边形A 1ACC 1是平行四边形,所以AC∥A1C1且AC=A1C1.因为O1,O分别是A1C1,AC的中点,故O C∥A1O1且O C=A1O1. 所以四边形A1O1C O为平行四边形,所以A1O∥O1C.又A1O⊄平面CB1D1,O1C⊂平面CB1D1,所以A1O∥平面CB1D1.(2)解法1 等体积法.设点O到平面CB1D1的距离为h.因为D1D⊥平面ABCD,所以D1D⊥C O.因为AC,BD为菱形ABCD的对角线,所以C O⊥BD.因为D1D∩BD=D,所以C O⊥平面BB1D1D.在菱形ABCD中,BC=1,∠BCD=60°,C O=3 2.解法2 作垂线.因为AA 1⊥平面A 1B 1C 1D 1,所以AA 1⊥B 1D 1.因为A 1C 1,B 1D 1为菱形A 1B 1C 1D 1的对角线,所以B 1D 1⊥A 1C 1. 因为AA 1∩A 1C 1=A 1,所以B 1D 1⊥平面AA 1C 1C. 因为B 1D 1⊂平面CB 1D 1,所以平面CB 1D 1⊥平面AA 1C 1C.在平面AA 1C 1C 内,作OH ⊥C O 1,H 为垂足,而平面CB 1D 1∩平面AA 1C 1C =CO 1, 所以OH ⊥平面CB 1D 1,即线段OH 的长为点O 到平面CB 1D 1的距离. 在矩形AA 1C 1C 中,∠O CH =∠C O 1C 1,sin ∠CO 1C 1=C C 1C O 1=172=27,sin ∠OCH =OH O C =OH 32=2OH 3,所以27=2OH 3,故OH =217.因此,点O 到平面CB 1D 1的距离为217.。

专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)

专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)(原卷版)

专题04立体几何题型简介立体几何一般作为全国卷第20题21题.重点题型主要是1体积问题及表面积问题2线面距离及线面角问题3二面角问题4空间几何综合问题典例在线题型一:体积及表面积问题1.在如图所示的多面体ABCDE 中,⊥AE 平面ABC ,AE CD ∥,22AE CD ==,3CA CB ==,25AB =(1)证明:平面ABE ⊥平面BDE ;(2)求多面体ABCDE 的体积.变式训练1.如图①,在平面四边形ABCD 中,2AB AD ==,2BC CD ==60BAD ∠= .将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB '的中点,E 是棱AB 上的点,且C E '与平面ABD 所成角的正233(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.题型二:线面距离及线面角问题1如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.变式训练1如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=,F 为PA 的中点,2PD =112AB AD CD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求平面ABCD 与平面BCP 的夹角的大小;(3)求点F 到平面BCP 的距离.题型三:二面角问题1如图,四棱锥P -ABCD 中,已知AD BC ∥,BC =2AD ,AD =DC ,∠BCD =60°,CD ⊥PD ,PB ⊥BD.(1)证明:PB ⊥AB ;(2)设E 是PC 的中点,直线AE 与平面ABCD 所成角等于45°,求二面角B -PC -D 的余弦值.变式训练1如图,在四棱锥S ABCD -中,底面ABCD 为梯形,AB CD ∥,2AB CD =,AD SD =,SAB △为正三角形,SC BC ⊥,CB CS =.(1)求证:平面SAB ⊥平面SBC ;(2)求二面角C SA D --的余弦值.题型四:空间几何综合问题1.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN BM ∥,2AN AB BC ===,4BM =,23CN =(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E BN M --33若存在,求出的CEEM值;若不存在,请说明理由.变式训练1如图,在四棱锥E -ABCD 中,平面ADE ⊥平面ABCD ,O 、M 分别为线段AD 、DE 的中点,四边形BCDO 是边长为1的正方形,AE =DE ,AE ⊥DE.(1)求证:CM //平面ABE ;(2)求直线CM 与BD 所成角的余弦值;(3)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.模拟尝试1.(2023·山东·潍坊一中校联考模拟预测)如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD .(1)证明:平面MCD ⊥平面PAB ;(2)若//AD BC ,2AD BC =,2CD AB =,求平面MCD 与平面PBC 夹角的余弦值.2.(2023·山东·日照一中校考模拟预测)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AAAB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.3.(2023·吉林·长春十一高校联考模拟预测)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为线段AB 的中点,4CB =,43AB =118AC =,三棱锥1A A DC -的体积为8.(1)证明:1A D ⊥平面11B C D ;(2)求平面1ACD 与平面1A BC 夹角的余弦值.4.(2022·江苏南京·南京师大附中校考模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ADC ∠=︒,PAD 为等边三角形,O 为线段AD 的中点,且平面PAD ⊥平面ABCD ,M 是线段PC 上的点.(1)求证:OM BC ⊥;(2)若直线AM 与平面PAB 的夹角的正弦值为1010,求四棱锥M ABCD -的体积.5.(2023·河北衡水·衡水市第二中学校考模拟预测)如图,直四棱柱1111ABCD A B C D -中,16AA =E 是1AA 的中点,底面ABCD 是平行四边形,若1A C ⊥平面1BDC.(1)若1AB AA =,证明:底面ABCD 是正方形(2)若60BAD ∠=︒,求二面角1B BE D --的余弦值6.(2022·河北衡水·河北衡水中学校考模拟预测)直四棱柱1111ABCD A B C D -被平面α所截,所得的一部分如图所示,EF DC =.(1)证明://ED 平面ACF ;(2)若1242DC AD A E ===,3ADC π∠=,平面EFCD 与平面ABCD 所成角的正切值433,求点E 到平面ACF 的距离.真题再练1.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.2.(2021·全国·统考高考真题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?3.(2021·全国·统考高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.5.(2022·全国·统考高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).6.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C--的正弦值.7.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.8.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.9.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.。

专题04 立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)解析版1

专题04  立体几何-【李金柱梳理】冲刺2023年高考数学大题突破+限时集训(新高考专用)解析版1

专题04立体几何题型简介立体几何一般作为全国卷第20题21题.重点题型主要是1体积问题及表面积问题2线面距离及线面角问题3二面角问题4空间几何综合问题典例在线题型一:体积及表面积问题1.在如图所示的多面体ABCDE 中,⊥AE 平面ABC ,AE CD ∥,22AE CD ==,3CA CB ==,25AB =.(1)证明:平面ABE ⊥平面BDE ;(2)求多面体ABCDE 的体积.【答案】(1)证明见解析(2)25解(1)证明:设AB ,BE 的中点分别为F ,G ,连接CF ,FG ,DG ,则FG AE ∥,且12FG AE =,又CD AE ∥,且12CD AE =,所以FG CD ∥,且FG CD =,所以四边形CFGD 为平行四边形,所以∥CF DG .因为⊥AE 平面ABC ,CF ⊂平面ABC ,所以AE CF ⊥,所以AE DG ⊥,因为CA CB =,F 为AB 的中点,所以CF AB ⊥,所以DG AB ⊥,又AB ,AE ⊂平面ABE ,且AB AE A = ,所以DG ⊥平面ABE ,又DG ⊂平面BDE ,所以平面ABE ⊥平面BDE .(2)由(1)得CF AB ⊥,CF AE ⊥,且AB ,AE ⊂平面ABE ,AB AE A = ,所以CF ⊥平面ABE ,又因为3CA CB ==,25AB =,F 为AB 的中点,所以2CF =.因为CD AE ∥,AE ⊂平面ABE ,CD ⊄平面ABE ,所以CD ∥平面ABE ,所以点D 到平面ABE 的距离等于点C 到平面ABE 的距离CF .因为⊥AE 平面ABC ,AC ,BC ⊂平面ABC ,所以AE AC ⊥,AE BC ⊥,又CD AE ∥,所以CD AC ⊥,CD BC ⊥,又AC ,BC ⊂平面ABC ,且AC BC C = ,所以CD ⊥平面ABC ,连接AD ,多面体ABCDE 的体积V 等于三棱锥D ABC -的体积与三棱锥D ABE -的体积之和,而11252521323D ABC V -=⨯⨯⨯⨯=,11452522323D ABE V -=⨯⨯⨯⨯=,所以多面体ABCDE 的体积25452533V =+=.变式训练1.如图①,在平面四边形ABCD 中,2AB AD ==,2BC CD ==,60BAD ∠=.将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB'的中点,E 是棱AB 上的点,且C E '与平面ABD 所成角的正切值为3.(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.【答案】(1)证明见解析解(1),,P G F 分别为,,AC AD AB '的中点,//PG C D '∴,//PF BC ',,PG PF ⊄ 平面C DB ',,C D BC ''⊂平面C DB ',//PG ∴平面C DB ',//PF 平面C DB ',又PG PF P ⋂=,,PG PF ⊂平面PGF ,∴平面//PGF 平面C DB '.(2)取BD 的中点M ,连接,C M EM ',2AB AD == ,60BAD ∠= ,ABD ∴ 为等边三角形,2BD ∴=,又BC C D ''==222BC C D BD ''∴+=,C DB '∴ 为等腰直角三角形,112C M BD '∴==,C M BD '⊥; 二面角A BD C '--是直二面角,即平面C DB '⊥平面ABD ,平面C DB '⋂平面ABD BD =,C M '⊂平面C DB ',C M '∴⊥平面ABD ,C EM '∴∠即为C E '与平面ABD所成角,1tan 3C M C EM EM EM ''∴∠===,解得:2EM =;在EMB △中,由余弦定理得:2222cos60EM BM BE BM BE =+-⋅ ,即2314BE BE =+-,解得:12BE =,E ∴为线段AB 上靠近点B 的四等分点,111442ABD AGF BDE ABD ABD ABD ABDGFED S S S S S S S S ∴=--=--=四边形211222=⨯⨯⨯111113232P GFED GFED V S C M -'∴=⨯⨯=⨯=四棱锥四边形题型二:线面距离及线面角问题.如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.【答案】(1)DE ∥平面ABC ,证明见解析;(2)155【详解】(1)DE ∥平面ABC ,理由如下:分别取,AC BC 的中点,O P ,连接,,DO EP OP ,因为AD CD =,所以DO AC ⊥,又平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,DO ⊂平面ACD ,所以DO ⊥平面ABC ,同理EP ⊥平面ABC ,所以EP DO ∥,又因为,ACD BCE 是全等的正三角形,所以EP DO =,所以四边形DOPE 是平行四边形,所以DE OP ∥,因为ED ⊄平面ABC ,OP ⊂平面ABC ,所以ED ∥平面ABC ;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系O xyz -,令2AC =.则()()())13130,0,0,0,1,0,0,1,0,3,0,0,0,,,0,,2222O A C DH P ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,13,3,,22DE OP E ⎫=∴-⎪⎪⎭所以()33130,2,0,3,,3,2222AC AE DH ⎛=-=-= ⎭⎝⎭ ,设平面ACE 的法向量为(),,m x y z =,所以·0·0m AC m AE ⎧=⎪⎨=⎪⎩ ,所以20333022y y z -=⎧⎪⎨-+=⎪⎩则0y =,取2z =,1x ∴=-,则()1,0,2m =-,所以2315cos ,525DH m DH m DH m ===,设直线DH 与平面ACE 所成的角为θ,则15sin cos ,5DH m θ==.变式训练1如图,PD 垂直于梯形ABCD 所在平面,90ADC BAD ∠=∠=,F 为PA 的中点,2PD =112AB ADCD ===,四边形PDCE 为矩形.(1)求证://AC 平面DEF ;(2)求平面ABCD 与平面BCP 的夹角的大小;(3)求点F 到平面BCP 的距离.【答案】(1)证明见解析(2)45 (3)14【详解】(1)设CP DE G = ,连接FG,四边形PDCE 为矩形,G ∴为PC 中点,又F 为PA 中点,//AC FG ∴,又FG ⊂平面DEF ,AC ⊄平面DEF ,//AC ∴平面DEF .(2)以D 为坐标原点,,,DA DC DP正方向为,,x y z 轴,可建立如图所示空间直角坐标系,则()1,1,0B ,()0,2,0C,(P ,()1,1,0BC ∴=-,(0,CP =-,设平面BCP 的法向量(),,n x y z =,020BC n x y CP n y ⎧⋅=-+=⎪∴⎨⋅=-+=⎪⎩,令1y =,解得:1x =,z =,(n ∴=;z 轴⊥平面ABCD ,∴平面ABCD 的一个法向量()0,0,1m =,cos ,2m n m n m n⋅∴<>==⋅ ,则平面ABCD 与平面BCP的夹角为45 .(3)由(2)知:1,0,22F ⎛ ⎝⎭,(P,1,0,22PF ⎛⎫∴= ⎪ ⎪⎝⎭,由平面BCP的法向量(n =,∴点F 到平面BCP 的距离11224PF nd n⋅=== .题型三:二面角问题1如图,四棱锥P -ABCD 中,已知AD BC ∥,BC =2AD ,AD =DC ,∠BCD =60°,CD ⊥PD ,PB ⊥BD .(1)证明:PB ⊥AB ;(2)设E 是PC 的中点,直线AE 与平面ABCD 所成角等于【答案】(1)证明见解析(2)77解(1)连结BD ,在BDC 中,因为BC=2DC ,∠BCD=60°,由余弦定理()22222cos603BD DC DC DC DC +-⋅⋅︒.因为222BD CD BC +=,所以CD ⊥BD ,又CD ⊥PD ,BD PD D = ,,BD PD ⊂平面PDB ,所以CD ⊥平面PDB ,由于PB ⊂平面PDB ,所以CD ⊥PB .因为PB ⊥BD ,CD BD D =I ,,CD BD ⊂平面ABCD ,所以PB ⊥平面ABCD ,由于AB ⊂平面ABCD ,因此PB ⊥AB .(2)解法1:以B 为坐标原点,BC的方向为x 轴正方向,||DC为单位长度,建立如图所示的空间直角坐标系A-xyz ,由(1)可知y 轴在平面ABCD 内.则(0,0,0)B ,1322A ⎛⎫⎪ ⎪⎝⎭,(2,0,0)C ,3322D ⎛⎫ ⎪⎝⎭,13,22DC ⎛⎫= ⎪⎝⎭ .设(0,0,)(0)P t t >,则(2,0,)PC t =- ,1,0,2t E ⎛⎫ ⎪⎝⎭,13,222t AE ⎛⎫= ⎪⎝⎭ .因为平面ABCD 的法向量为(0,0,1)m =,所以2cos ,||||4AE m AE m AE m t 〈〉==⋅+⋅由AE 与平面ABCD 所成角等于45°,2sin 454t =+,解得t=2.设平面DPC 的法向量1(,,)n x y z =,则110,0.n PC n DC ⎧⋅=⎪⎨⋅=⎪⎩即220,130.22x z x -=⎧⎪⎨=⎪⎩所以可取1(3,1,3)n =.因为平面BPC 的法向量为2(0,1,0)n = ,于是1212127cos ,7n n n n n n 〈〉=⋅=.因为二面角B-PC-D 是锐二面角,所以其余弦值为77.解法2:取BC 中点为F ,连结EF ,AF ,则EF PB ∥,且AF=DC .由(1)可知EF ⊥平面ABCD ,∠EAF 是AE 与平面ABCD 所成角,所以∠EAF=45°,所以EF=AF=DC ,于是PB=2EF=2DC .以B 为坐标原点,BC的方向为x 轴正方向,||DC 为单位长度,建立如图所示的空间直角坐标系A-xyz ,由(1)可知y 轴在平面ABCD 内.则(0,0,0)B ,(2,0,0)C ,332D ⎛⎫ ⎪⎝⎭,(0,0,2)P ,(2,0,2)PC =-,13,22DC ⎛⎫= ⎪⎝⎭ .设平面DPC 的法向量(,,)m x y z =,则0,0.m PC m DC ⎧⋅=⎪⎨⋅=⎪⎩即可得220,130.22x z x y -=⎧⎪⎨-=⎪⎩所以可取(3,1,3)m = .因为平面BPC 的法向量(0,1,0)n = ,于是7cos ,7||||m n m n m n ⋅〈〉==⋅.因为二面角B-PC-D 是锐二面角,所以其余弦值为77.解法3:取BC 中点为F ,连结EF ,AF ,则//EF PB ,且AF=DC .由(1)可知EF ⊥平面ABCD ,∠EAF 是AE 与平面ABCD 所成角,故∠EAF=45°,因此EF=AF=DC ,于是PB=2EF=2DC=BC ,可得22PC DC =.连结BE ,则BE ⊥PC .过E 在平面PDC 内作EG ⊥PC ,交PD 于点G ,则∠BEG 是二面角B-PC-D 的平面角.因为PB ⊥BC ,所以2BE DC ,7PD DC =.因为CD ⊥PD ,由PEG PDC △∽△可得147EG =.由PC ⊥平面BEG ,BG ⊂平面BEG ,所以PC ⊥BG ,而CD ⊥BG ,,,PC CD C PC CD ⋂=⊂平面PDC ,故BG ⊥平面PDC ,由于GE Ì平面PDC ,所以BG ⊥GE ,所以由余弦定理得7cos 7GE BEG BE ∠==.因此二面角B PCD --的余弦值为77.变式训练1如图,在四棱锥S ABCD -中,底面ABCD 为梯形,AB CD ∥,2AB CD =,AD SD =,SAB △为正三角形,SC BC ⊥,CB CS =.(1)求证:平面SAB ⊥平面SBC ;(2)求二面角C SA D --的余弦值.【答案】(1)证明见解析(2)277解(1)分别取BS ,AS 的中点O ,E ,连接OE ,OC ,ED ,则//OE AB 且12OE AB =.因为//AB CD ,2AB CD =,所以//,OE CD OE CD =,所以四边形OCDE 为平行四边形,则//CO DE .因为AD SD =,故DE SA ⊥,故CO SA ⊥.因为CB CS =,故CO SB ⊥.因为SA SB S =I ,SA ,SB ⊂平面SAB ,所以CO ⊥平面SAB.因为CO ⊂平面SBC ,所以平面SAB ⊥平面SBC.(2)连接AO ,因为△SAB 为正三角形,所以AO SB ⊥,因为平面SAB ⊥平面SBC ,平面SAB 平面SBC SB =,AO ⊂面SAB ,所以AO ⊥平面SBC ,OC 、OS 在面SBC 内,又CO SB ⊥,故OA ,OS ,OC 两两垂直,故以O 为坐标原点,OC ,OS ,OA 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示.设2BC SC ==,则22AB SB ==,6OA =,2OC =,所以()0,0,6A ,()2,0,0C,()0,2,0S ,262,,22D ⎛⎫ ⎪ ⎪⎝⎭,(难点:点D 的坐标不易直接看出,可先求出点E 的坐标,利用CO DE =求解点D 的坐标)所以()0,2,6AS =- ,262,,22SD ⎛⎫=- ⎪ ⎪⎝⎭ ,()2,2,0CS =-.设面SAD 的法向量为()111,,m x y z =,由11111260262022m AS y z m SD x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令11z =,得()0,3,1m =.设面SAC 的法向量为()222,,x n y z =,则2222260220n AS y z n CS x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,令23y =,得()3,3,1n = .则427cos ,727m n m n m n ⋅===⨯⋅,显然二面角C SAD --为锐二面角,所以二面角C SA D --的余弦值为277.题型四:空间几何综合问题1.如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN BM ∥,2AN AB BC ===,4BM =,CN =(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E BN M --的余弦值为3.若存在,求出的CE EM 值;若不存在,请说明理由.【答案】(1)见解析(2)存在,12CE EM =【详解】(1)证明:正方形ABCD 中,BC AB ⊥,平面ABCD ⊥平面ABMN ,平面ABCD ⋂平面ABMN AB =,BC ⊂平面ABCD ,BC ∴⊥平面ABMN ,又BM ⊂平面ABMN ,BC ∴⊥BM ,且BC BN ⊥,又2,BC ==BN ∴=2AB AN == ,222BN AB AN ∴=+,AN AB ∴⊥,又//AN BM ,BM AB ∴⊥,又,,BC BA B BA BC =⊂ 平面ABCD ,∴BM ⊥平面ABCD ;(2)解:如图,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系,则()()()0,0,0,2,0,0,0,0,2B A C ,()()()2,0,2,2,2,0,0,4,0D N M ,设点(),,E a b c ,()01CE CM λλ=<<,()(),,20,4,2a b c λ∴-=-,()04,0,4,2222a b E c λλλλ=⎧⎪∴=∴-⎨⎪=-⎩,()()2,2,0,0,4,22BN BE λλ∴==-,设平面BEN 的法向量为(),,m x y z = ,()2204220BN m x y BE m y z λλ⎧⋅=+=⎪∴⎨⋅=+-=⎪⎩,令221,1,,1,1,11x y z m λλλλ⎛⎫=∴=-=∴=- ⎪--⎝⎭ ,显然,平面BMN 的法向量为()0,0,2BC =,cos ,3BC m BC m BC m⋅∴==,==,即=即23210λλ+-=,解得13λ=或1-(舍),所以存在一点E,且12CE EM =.变式训练1如图,在四棱锥E -ABCD 中,平面ADE ⊥平面ABCD ,O 、M 分别为线段AD 、DE 的中点,四边形BCDO 是边长为1的正方形,AE =DE ,AE ⊥DE.(1)求证:CM //平面ABE ;(2)求直线CM 与BD 所成角的余弦值;(3)点N 在直线AD 上,若平面BMN ⊥平面ABE ,求线段AN 的长.【答案】(1)证明见解析(2)6(3)53【详解】(1)证明:取AE 的中点P ,连接BP 、MP ,如图所示.∵M 、P 分别为ED 、AE 的中点,∴PM //AD ,且PM=12AD.又四边形BCDO 是边长为1的正方形,∴BC //OD ,且BC=OD ,又O 为AD 的中点,∴BC //AD ,且BC=12AD ,即PM //BC ,且PM=BC ,∴四边形BCMP 为平行四边形,∴CM //PB ,又CM ⊄平面ABE ,PB ⊂平面ABE ,∴CM //平面ABE.(2)(2)连接EO ,∵AE=DE ,O 为AD 中点,∴EO ⊥AD.∵EO ⊂平面ADE ,且平面ADE ⊥平面ABCD ,平面ADE∩平面ABCD=AD ,∴EO ⊥平面ABCD.又OB ⊂平面ABCD ,OD ⊂平面ABCD ,∴EO ⊥OB ,EO ⊥OD ,以O 为原点,OB 、OD 、OE 所在直线分别为x 轴,y 轴,z轴建立空间直角坐标系,如图所示,则(0A ,1-,0),C (1,1,0),B (1,0,0),D (0,1,0),(0E ,0,1),M 11(0,,22∴11(1,,),22CM BD=-- =(-1,1,0).设直线CM 与BD 所成角为θ,则cosθ=1||2||||CM BD CM BD ⋅=,∴直线CM 与BD所成角的余弦值为6.(3)设ON →=λOD →,则N (0,λ,0),∴NB →=(1,-λ,0),11(1,,)22MB =-- ,设平面BMN 的法向量为n →=(a ,b ,c),则0,0,n MB n NB ⎧⋅=⎨⋅=⎩ 即220220a b c a b λ⎧--=⎪⎨⎪-=⎩,令a=λ,则b=1,c=2λ-1,∴n →=(λ,1,2λ-1),设面ABE 的法向量为(,,)m x y z =,(1,1,0),(0,1,1)AB AE ==由00AB m x y AE m y z ⎧⋅=+=⎨⋅=+=⎩,可取(1,1,1)m =- .∵平面BMN ⊥平面ABE ,∴0m n →→⋅=,即λ-1+2λ-1=0,解得λ=23,53AN ∴=.模拟尝试一、解答题1.(2023·山东·潍坊一中校联考模拟预测)如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD.(1)证明:平面MCD ⊥平面PAB ;(2)若//AD BC ,2AD BC =,2CD AB =,求平面MCD 与平面PBC 夹角的余弦值.【答案】(1)证明见解析;.【详解】(1)设AD 的中点为E ,连接PE ,因为PAD 为等边三角形,所以PE AD ⊥,又因为平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,且PE ⊂平面PAD ,所以PE ⊥平面ABCD ,因为AB ⊂平面ABCD ,所以PE AB ⊥,又PD AB ⊥,,PD PE P PD PE =⊂ ,平面PAD ,所以AB ⊥平面PAD ,又因为MD ⊂平面PAD ,所以AB MD ⊥,因为在等边三角形PAD 中,M 为PA 的中点,所以MD AP ⊥,因为AB AP A =I ,,AB AP ⊂平面PAB ,所以MD ⊥平面PAB ,因为MD ⊂平面MCD ,所以平面MCD ⊥平面PAB ;(2)连接CE ,由(1)知,AB ⊥平面PAD ,因为AD ⊂平面PAD ,所以AB AD ⊥,因为//AD BC ,2AD BC =,2CD AB =,所以四边形ABCE 为矩形,即CE AD ⊥,BC AE DE ==,22CD AB CE ==,所以30∠=︒CDE ,设BC a =,2AD a =,tan 60PE AE =⋅︒,tan 303AB CE DE ==⋅︒=,以E 为原点,分别以EC 、ED 、EP 所在直线为x 、y 、z轴建立空间直角坐标系,所以()0,,0A a -,()P,C ⎫⎪⎪⎝⎭,,0B a ⎫-⎪⎪⎝⎭,()0,,0D a,0,2a M ⎛- ⎝⎭,所以,,322a MC ⎛⎫=- ⎪ ⎪⎝⎭,30,,22a MD ⎛⎫=- ⎪ ⎪⎝⎭,,,3PB a ⎛⎫=- ⎪ ⎪⎝⎭,,0,3PC ⎛⎫= ⎪ ⎪⎝⎭,设平面MCD 和平面PBC 的法向量分别为()1111,,n x y z =,()2222,,n x y z =,则111111102302a n MC y a n MD y ⎧⋅=+-=⎪⎪⎨⎪⋅=-=⎪⎩,222222200n PB ay n PC ⎧⋅=--=⎪⎪⎨⎪⋅=-=⎪⎩,即1111x z ⎧=⎪⎨=⎪⎩,22203y x z =⎧⎨=⎩,取11y =,21z =,则1n = ,()23,0,1n =,所以121212cos ,35n n n n n n ⋅==⋅,所以平面MCD 与平面PBC.2.(2023·山东·日照一中校考模拟预测)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】【详解】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则1111111111433333A A BC A A ABC A ABC A B BC C C B V S h h V S A A V ---=⋅===⋅== ,解得h =所以点A 到平面1A BC;(2)取1A B 的中点E,连接AE,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =,且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得2AE =,所以12AA AB ==,12A B =以2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c =,则20n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-r,则1cos ,222m n m n m n ⋅==⨯⋅,所以二面角A BD C --213122⎛⎫-= ⎪⎝⎭3.(2023·吉林·长春十一高校联考模拟预测)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为线段AB 的中点,4CB =,43AB =118AC =,三棱锥1A A DC -的体积为8.(1)证明:1A D ⊥平面11B C D ;(2)求平面1ACD 与平面1A BC 夹角的余弦值.【答案】(1)见解析65555【详解】(1)证明:因为1AA ⊥平面ABC ,CB ⊂平面ABC ,所以1AA BC ⊥,在三棱柱111ABC A B C -中,四边形11AAC C 为平行四边形,则118AC AC ==,因为43AB =4CB =,所以222AB CB AC +=,所以CB AB ⊥,又因为1AB AA A ⋂=,1AA ⊂平面11ABB A ,AB ⊂平面11ABB A ,所以CB ⊥平面11ABB A ,因为11//CB C B ,所以11C B ⊥平面11ABB A ,又1A D ⊂平面11ABB A ,所以111C B A D ⊥.1832ABC S AB BC =⋅=△,D 为AB 的中点,则132ACD ABC S S ==△△因为1AA ⊥平面ABC ,1111113833A A CD A ACD ACD V V S AA AA --==⋅=⨯= ,所以123AA =11A DB △中,1126A D B D ==1143A B =2221111A D B D A B +=,所以11A D B D ⊥,1111C B BD B ⋂=,111,C B B D ⊂平面11B C D ,所以1A D ⊥平面11B C D ;(2)因为1BB ⊥平面ABC ,BC AB ⊥,以点B 为坐标原点,BA 、1BB 、BC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,4C 、()3,0,0D 、()143,3,0A 、()10,23,0B ,设平面1DAC 的法向量为()111,,m x y z =,()123,3,0DA = ,()23,0,4DC =-,则11111330340m DA x y m DC x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩ ,取12x =,可得(2,3m =-,设平面1A CB 的法向量为()222,,x n y z =,()13,3,0BA = ,()0,0,4BC =,则1222433040n BA x y n BC z ⎧⋅=+=⎪⎨⋅==⎪⎩ ,取21x =,可得()1,2,0n =- ,所以,6655cos ,55115m n m n m n ⋅===⋅⨯,所以平面1DAC 与平面1ACB 夹角的余弦值为65555.4.(2022·江苏南京·南京师大附中校考模拟预测)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ADC ∠=︒,PAD 为等边三角形,O 为线段AD 的中点,且平面PAD ⊥平面ABCD ,M 是线段PC 上的点.(1)求证:OM BC ⊥;(2)若直线AM 与平面PAB 的夹角的正弦值为1010,求四棱锥M ABCD -的体积.【答案】(1)证明见解析;(2)43【详解】(1)因为PAD 为等边三角形,O 为线段AD 的中点,所以PO AD ⊥;因为平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD ;又BC ⊂平面ABCD ,所以PO BC ⊥;在OCD 中,1,2,60OD CD ADC ==∠=︒,由余弦定理可得OC =因为222OC OD CD +=,所以CO AD ⊥;因为//AD BC ,所以CO BC ⊥,所以BC ⊥平面POC ;因为OM ⊂平面POC ,所以OM BC ⊥.(2)由(1)得,,OP OC OD 两两垂直,以O 为坐标原点,建系如图,则()())0,1,0,0,0,,2,0,A P BC -;)(1,0,,0,1,AB PC AP =-=-=;设PM PC λ=,则)AM AP PM =+= ;设平面PAB 的一个法向量为(),,n x y z =,则00n AB n AP ⎧⋅=⎨⋅=⎩,0y y -==⎪⎩,令y =则()1n =- .因为直线AM 与平面PAB所以n AM n AM ⋅==,解得13λ=或23λ=-(舍),即有13PM PC =,M 是靠近P 的三等分点,所以四棱锥M ABCD -的高等于OP 的23.四棱锥M ABCD -的体积为114222sin 603233V ︒=⨯⨯⨯⨯⨯⨯=.5.(2023·河北衡水·衡水市第二中学校考模拟预测)如图,直四棱柱1111ABCD A B C D -中,1AA =,E 是1AA 的中点,底面ABCD 是平行四边形,若1A C ⊥平面1BDC.(1)若1AB AA =,证明:底面ABCD 是正方形(2)若60BAD ∠=︒,求二面角1B BE D --的余弦值【答案】(1)证明见解析;(2)【详解】(1)如图,连接1,AC CD ,1A C ⊥平面1BDC ,BD ⊂平面1BDC ,1C D ⊂平面1BDC ,则1AC BD ⊥,11AC C D ⊥,直棱柱中1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1AA BD ⊥,111AA A C A = ,11,AA A C ⊂平面1ACA ,则BD ⊥平面1ACA ,又AC ⊂平面1ACA ,所以BD AC ⊥,所以平行四边形ABCD 是菱形,1AA AB =,则直棱柱的侧面11ABB A 是正方形,因此侧面11CDD C 也是正方形,所以11CD C D ⊥,11A C CD C = ,11,AC CD ⊂平面11ACD ,所以1C D ⊥平面11ACD ,又11A D ⊂平面11ACD ,所以111C D A D ⊥,直棱柱中易知111DD A D ⊥,而111DD CD D = ,11,DD CD ⊂平面11CC D D ,所以11A D ⊥平面11CC D D ,11C D ⊂平面11CC D D ,所以1111A D C D ⊥,因此底面1111D C B A 是矩形,即四边形ABCD是矩形,所以四边形ABCD 是正方形;(2)由(1)知底面ABCD 是菱形,因此AC BD ⊥,设AC BD O ⋂=,分别以,OA OB 为,x y 轴,过O 与1AA 平行的直线为z 轴建立空间直角坐标系,如图,设2AB a =,则3OA a =,OB a =,1(36)A a ,(3,0,0)C a -,(0,,0)B a ,1(36)C a -,1(23,0,6)AC a =-- ,1(3,6)BC a a =-- ,由(1)知211660AC BC a ⋅=-= ,1a =(负值舍去),6(3,0,2E ,(0,1,0)B ,(0,1,0)D -,16)B ,6(3,)2BE =- ,(0,2,0)DB = ,16)BB = ,设平面1B BE 的一个法向量是111(,,)m x y z =,则11111606302m BB m BE y z ⎧⋅=⎪⎨⋅=-=⎪⎩,取11x =得3,0)m = ,设平面BED 的一个法向量是222(,,)n x y z =,则2222630220n BE x y n DB y ⎧⋅=-+=⎪⎨⎪⋅==⎩,取21x =,得(1,0,2)n = ,3cos ,623m n m n m n ⋅==⨯,所以二面角1B BE D--的余弦值为366.(2022·河北衡水·河北衡水中学校考模拟预测)直四棱柱1111ABCD A B C D -被平面α所截,所得的一部分如图所示,EF DC =.(1)证明://ED 平面ACF ;(2)若1242DC AD A E ===,3ADC π∠=,平面EFCD与平面ABCD 433,求点E 到平面ACF 的距离.【答案】(1)详见解析;(2255.【详解】(1)依题:平面α与两平行平面ABCD ,1111D C B A 的交线分别为EF ,DC ,故有//EF DC ,又EF DC =,故有平行四边形EFCD ,∴//ED FC ,ED ⊄面ACF ,FC ⊂面ACF ,∴//ED 平面ACF .(2)ADC △中,由余弦定理可得3AC =得AC AD ⊥,又1AA ⊥平面ABCD ,故而1AA ,AC ,AD 两两垂直,如图建系.【法一求EH 】取AD 中点H ,由1//AH A E ,1AH A E =得平行四边形1A AHE ,∴1//AA HE ,HE ⊥平面ACD ,作HI DC ⊥,(连EI ),又HE CD ⊥,∴CD ⊥平面EHI ,得CD EI ⊥,又HI DC ⊥,∴EIH ∠为所求二面角的平面角.易求3HI =4tan 33EH EIH HI ∠==,1EH =.【法二求EH 】面ABCD 的法向量显然为()0,0,1n =,设面EFCD 的法向量为(),,k x y z = ,1,0,2E h ⎛⎫⎪⎝⎭,00k DC k DE ⎧⋅=⎨⋅=⎩,令3x =33,1,2k h ⎫=⎪⎪⎭,依题:3119n k h n k⋅=⇒= .由//ED 平面ACF ,点E 到平面ACF 的距离转化为D 到平面ACF 的距离d ,()1,0,0D ,()3,0C ,13,12DC EF F ⎛⎫=⇒- ⎪⎝⎭ ,设平面ACF 的法向量为(),,m x y z = ,00m AC m m AF ⎧⋅=⇒⎨⋅=⎩可为()2,0,1,255m AD d m⋅== .真题再练1.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】(12(2)7014【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+= ,解得22a =22BC a ==[方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥.又因为PB AM ⊥,PB PD P = ,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB .所以 ∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以BC =[方法三]:几何法+三角形面积法如图,联结BD 交AM 于点N.由[方法二]知⊥AM DB .在矩形ABCD 中,有 ∽DAN BMN ,所以2==AN DAMN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,=DB,=AM 由1122=⋅=⋅ DAB S DA AB DB AN,得=t 212t =,所以2==BC t (2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则,1,02AM ⎛⎫=- ⎪ ⎪⎝⎭,()AP = ,由1111020m AM x y mAP z ⎧⋅=+=⎪⎨⎪⋅=+=⎩,取1x =)m =,设平面PBM 的法向量为()222,,n x y z =,,0,02BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =- ,由222200n BM n BP y z ⎧⋅==⎪⎨⎪⋅=-+=⎩,取21y =,可得()0,1,1n =,cos ,14m n m n m n ⋅==⋅,所以,sin ,m n = 因此,二面角A PM B --14.[方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M ,故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 是边长为2的正方形,联结1D H ,HM .111111111,2D HM D HM D A H HBM MCD A BCD S D M HG S S S S S =⋅=--- 正方形,由等积法解得31010=HG .在Rt AHG 中,2310,210==AH HG ,由勾股定理求得355=AG .所以,70sin 14AH AGH AG ∠==,即二面角A PM B --的正弦值为7014.2.(2021·全国·统考高考真题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B AC ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=52520255-⨯⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z = ,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅ 222214a a =⨯-+22214a a =-+当12a =时,2224a a -+取最小值为272,此时cos θ=.所以()minsin θ=,此时112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT=,即11B H =1B H =所以DH ===则11sin B D DHB DH∠===所以,当12t =时,()1min sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF 过D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=sin DFE ∠=1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==sin θ当12t =,即112B D =,面11BBC C 与面DFE所成的二面角的正弦值最小,最小值为3.(2021·全国·统考高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,ABAD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析;(2)6.(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz-,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,0)3322EB m BC =--= ,设(),,n x y z =r为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩ 可求得平面EBC 的一个法向量为2(3,1,)n m=--.又平面BCD 的一个法向量为()0,0,OA m =,所以222cos ,244n OA m m -=⋅+,解得1m =.又点C 到平面ABD 321133213226A BCD C ABD V V --==⨯⨯⨯=所以三棱锥A BCD -36.[方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以3BC =.因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯ .[方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos 2βα=.①使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.②将①②两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -的体积为6.4.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的437【详解】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥;在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥;又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED ,所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,3BE =因为AD CD ⊥,所以112DE AC ==,在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,3,0,0,0,1A B D ,所以()()1,0,1,3,0AD AB =-=-,设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y =()n = ,又因为()31,0,0,,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以34CF ⎛⎫= ⎪ ⎪⎝⎭ ,所以cos ,7n CF n CF n CF⋅==,设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== 所以CF 与平面ABD所成的角的正弦值为7.5.(2022·全国·统考高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;【详解】(1)如图所示:分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .(2)[方法一]:分割法一如图所示:分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍.因为MN NL LK KM ====,8sin 60EM == 点B 到平面MNFE 的距离即为点B 到直线MN 的距离d,d =(21343V =⨯+⨯⨯==.[方法二]:分割法二如图所示:连接AC,BD,交于O ,连接OE,OF,OG,OH.则该几何体的体积等于四棱锥O-EFGH 的体积加上三棱锥A-OEH 的4倍,再加上三棱锥E-OAB 的四倍.容易求得,OE=OF=OG=OH=8,取EH 的中点P ,连接AP,OP.则EH 垂直平面APO.由图可知,三角形APO,四棱锥O-EFGH 与三棱锥E-OAB 的高均为EM 的长.所以该几何体的体积(21111144444433232V =⋅+⋅⋅⋅⋅6.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】2.【详解】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111111143333A A BC A A ABC A ABC A B BC C C B V S h V S A A V ---=⋅===⋅==,解得h =所以点A 到平面1A BC;(2)取1A B 的中点E,连接AE,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =,且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =以2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c = ,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-r,则1cos ,2m n m n m n ⋅==⋅,所以二面角A BD C --2=.7.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.【答案】(1)证明见解析(2)1113【详解】(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥-P ABC 的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立空间直角坐标系,因为3PO =,5AP =,所以224OA AP PO =-=,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD ,43AB =所以12AC =,所以()23,2,0O ,()43,0,0B ,()23,2,3P ,()0,12,0C ,所以333,1,2E ⎛⎫ ⎪⎝⎭,则333,1,2AE ⎛⎫= ⎪⎝⎭ ,()3,0,0AB =,()0,12,0AC = ,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则=3y -,0x =,所以()0,3,2n =-;设平面AEC 的法向量为(),,m a b c =,则33302120m AE a b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a 6c =-,0b =,所以)6m =-;所以cos ,n m n m n m⋅==设二面角C AE B --的大小为θ,则cos cos ,=n m θ=所以11sin 13θ==,即二面角C AE B --的正弦值为1113.8.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【详解】(1)取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形,而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B ,而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B ,而,,NK MK K NK MK =⊂ 平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B ,(2)因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A ,平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A ,因为//NK BC ,故NK ⊥平面11ABB A ,因为AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N = ,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩ ,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =--,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯ .若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面MKN ,故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =,而12B B MK ==,MB MN =,故1BB M MKN ≅ ,所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM === ,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =--,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯.9.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,。

高中数学立体几何突破合集(大题突破 内外接球突破)

高中数学立体几何突破合集(大题突破 内外接球突破)

球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题。

1.1球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径2球与锥体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长关系。

2.2球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱柱补形成正方体或者长方体。

常见两种形式:一是三棱锥的三条棱互相垂直且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心。

2.3球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径.这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.2.4 球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法、等进行求解。

高考数学专题立体几何初步《直观图的斜二测画法》突破解析

高考数学专题立体几何初步《直观图的斜二测画法》突破解析

13.1.3 直观图的斜二测画法必备知识基础练1.长方形的直观图可能为下图中的哪一个( )A.①②B.①②③C.②⑤D.③④⑤,长方形的直观图应为平行四边形,且锐角为45°,故②⑤正确.2.如图,△A'B'C'是△ABC的直观图,其中A'B'=A'C',则△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形A'B'∥x'轴,A'C'∥y'轴,∴AB⊥AC.又AC=2A'C'=2AB,∴△ABC是直角三角形,不是等腰三角形.3.如图所示,△A'B'C'是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是( )A.ABB.ADC.BCD.ACABC是直角三角形,且∠ABC=90°,则AC>AB,AC>AD,AC>BC,故AC是最长的线段.4.如果一个水平放置的图形的斜二测直观图是一个底角为45°,上底为1,腰为2的等腰梯形,那么原平面图形的面积是( )B.22C.42D.82A.22题意,四边形ABCD 是一个底角为45°,上底为1,腰为2的等腰梯形.过C ,D 分别做CF ⊥AB ,DE ⊥AB ,则△ADE 和△BCF 为斜边长为2的等腰直角三角形.∴AE=DE=BF=1,又EF=CD=1,∴梯形ABCD 的面积S'=12×(1+3)×1=2.∵在用斜二测画法画直观图时,直观图的面积S'与原图的面积S 之比为24,∴S=42×2=42.5.在斜二测画法中,位于平面直角坐标系中的点M (4,4)在直观图中的对应点是M',则点M'的坐标为 .“横不变,纵折半”可得点M'的坐标为(4,2).6.在如图所示的直观图中,四边形O'A'B'C'为菱形且边长为2 cm,则在坐标系xOy 中原四边形OABC 为 (填形状),面积为 cm 2. 8,可得四边形OABC 为矩形,其中OA=2 cm,OC=4 cm,所以四边形OABC 的面积为S=2×4=8(cm 2).7.如图所示,△A'B'C'是水平放置的平面图形的斜二测直观图,将其还原成平面图形.画出直角坐标系xOy ,在x 轴的正方向上取OA=O'A',即CA=C'A';(2)过B'作B'D'∥y'轴,交x'轴于点D',在OA 上取OD=O'D',过D 作DB ∥y 轴,且使DB=2D'B';(3)连接AB ,BC ,得△ABC.则△ABC 即为△A'B'C'对应的平面图形,如图所示.8.一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3 cm,高(两底面圆心连线的长度)为4 cm,圆锥的高(顶点与底面圆心连线的长度)为3 cm,画出此几何体的直观图.画轴.如图①所示,画x轴、z轴,使∠xOz=90°.(2)画圆柱的下底面.在x轴上取A,B两点,使AB=3 cm,且OA=OB,选择椭圆模板中适当的椭圆且过A,B两点,使它为圆柱的下底面.(3)在Oz上截取OO'=4 cm,过点O'作平行于Ox轴的O'x'轴,类似圆柱下底面的画法画出圆柱的上底面.(4)画圆锥的顶点.在Oz上截取点P,使PO'=3 cm.(5)成图.连接A'A,B'B,PA',PB',整理(去掉辅助线,将被遮挡部分改成虚线)得到此几何体的直观图,如图②所示.关键能力提升练9.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m.如果按1∶500的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为( )A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,1.6 cmC.4 cm,0.5 cm,2 cm,0.8 cmD.4 cm,0.5 cm,1 cm,0.8 cm,长方体的长、宽、高和棱锥的高应分别为4 cm,1 cm,2 cm和1.6 cm,再结合直观图,图形的尺寸应为4 cm,0.5 cm,2 cm,1.6 cm.10.如图,△A'O'B'表示水平放置的△AOB的直观图,B'在x'轴上,A'O'和x'轴垂直,且A'O'=2,则△AOB的边OB上的高为( )A.2B.4C.22D.42OB 长度不变,且S 原=22S 直观,得12·OB ·h=22×12×2O'B'.∵OB=O'B',∴h=42.11.用斜二测画法画出的某平面图形的直观图如图所示,边AB 平行于y'轴,边BC ,AD 平行于x'轴.已知四边形ABCD 的面积为22 cm 2,则原平面图形A'B'C'D'的面积为( )A.4 cm 2 B.42 cm 2C.8 cm 2 D.82 cm 2,∠BAD=45°,则原平面图形A'B'C'D'为直角梯形,上、下底边分别为B'C',A'D',且长度分别与BC ,AD 相等,高为A'B',且长度为梯形ABCD 高的22倍,所以原平面图形的面积为8 cm 2.12.(多选)用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法正确的是( )A.原来相交的仍相交 B.原来垂直的仍垂直C.原来平行的仍平行 D.原来共点的仍共点13.(多选)已知一个正方形的直观图是一个平行四边形,其中有一个边长为4,则此正方形的面积为( )A.16B.64C.32D.484的一边在原图形中可能等于4,也可能等于8,所以正方形的面积为16或64.14.(多选)如图所示,用斜二测画法作水平放置的△ABC 的直观图,得△A 1B 1C 1,其中A 1B 1=B 1C 1,A 1D 1是B 1C 1边上的中线,则由图形可知下列结论中正确的是( )A.AB=BC=ACB.AD ⊥BCC.AB ⊥BCD.AC>AD>AB>BC直观图知△ABC 为直角三角形,AB ⊥BC ,AB=2A 1B 1,BC=B 1C 1,D 为BC 的中点,如图所示,又A 1B 1=B 1C 1,则AB=2BC ,故AB 错误,CD 正确.15.一个水平放置的△ABC 用斜二测画法画出的直观图是如图所示的边长为1的正三角形A'B'C',则在真实图形中AB 边上的高是 ,△ABC 的面积是 ,直观图和真实图形的面积的比值是 . 62 24A'B'C'放入锐角为45°的坐标系x'O'y'内,如图①所示,过C'作C'D'⊥A'B',垂足为D',将其还原为真实图形,得到图②的△ABC ,其中OA=O'A',AB=A'B',OC=2O'C'.在△OC'D'中,O'C'=C 'D'sin45°=62,∴真实图形中,OC=6,即△ABC 的高等于6,由此可得三角形ABC 的面积S=12×1×6=62.∵直观图中正三角形A'B'C'的面积为34,∴直观图和真实图形的面积的比值等于3462=24.16.有一块多边形菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC ⊥BC ,则这块菜地的面积为 .+22,过点A 作AE ⊥BC ,垂足为E ,则在Rt △ABE 中,AB=1,∠ABE=45°,BE=22,而四边形AECD 为矩形,AD=1,则EC=AD=1,故BC=BE+EC=22+1.由此可还原原图形如图所示.在原图形中,A'D'=1,A'B'=2,B'C'=22+1,且A'D'∥B'C',A'B'⊥B'C',故这块菜地的面积为S=12(A'D'+B'C')·A'B'=12×2=2+22.17.按如图的建系方法,画水平放置的正五边形ABCDE 的直观图.在图①中作AG ⊥x 轴于点G ,作DH ⊥x 轴于点H.(2)在图②中画相应的x'轴与y'轴,两轴相交于点O',使∠x'O'y'=45°.(3)在图②中的x'轴上取O'B'=OB ,O'G'=OG ,O'C'=OC ,O'H'=OH ,在y'轴上取O'E'=12OE ,分别过G'和H'作y'轴的平行线,并在相应的平行线上取G'A'=12GA ,H'D'=12HD.(4)连接A'B',A'E',E'D',D'C',并擦去辅助线G'A',H'D',x'轴与y'轴,便得到水平放置的正五边形ABCDE的直观图A'B'C'D'E'(如图③).18.在水平放置的平面α内有一个边长为1的正方形A'B'C'D'.如图,其中的对角线A'C'在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.设正方形A'B'C'D'是四边形ABCD的直观图,则四边形ABCD是平行四边形,且AD=2,对角线×2×2=22.AC=2,原图如下所示:其面积S=2×1219.泉州的一些老建筑是中西建筑文化的融合,它们注重闽南式大屋顶与西式建筑的巧妙结合,具有独特的建筑风格与空间特征.为延续该市的建筑风格,在旧城改造中,计划对部分建筑物屋顶进行“平改坡”,并体现“红砖青石”的闽南传统建筑风格.现欲设计一个闽南式大屋,该大屋可近似地看作一个直四棱柱和一个三棱柱的空间图形,请画出其直观图(尺寸自定).先画出直四棱柱的直观图A'B'C'D'-ABCD,如图①所示;(2)以直四棱柱的上底面ABCD为三棱柱的侧面画出三棱柱的直观图ADE-BCF,直观图如图②所示.学科素养创新练20.已知水平放置的△ABC 是正三角形,其直观图的面积为64a 2,求△ABC 的周长.△ABC 的平面图与直观图如图所示,则△ABC 是△A'B'C'的平面图形.设△ABC 的边长为x ,由斜二测画法,知A'B'=AB=x ,O'C'=12OC=34x.作C'D'⊥A'B',垂足为点D'.∵∠C'O'D'=45°,∴C'D'=22O'C'=22×34x=68x ,∴S △A'B'C'=12A'B'·C'D'=12x ·68x=616x 2.∴616x 2=64a 2,∴x=2a ,∴△ABC 周长为3×2a=6a.21.画出一个上、下底面边长分别为1 cm,2 cm,高为2 cm 的正三棱台的直观图.画轴.如图①,画x 轴、y 轴、z 轴相交于点O ,使∠xOy=45°,∠xOz=90°.(2)画下底面.以O 为中点,在x 轴上取线段AB ,使AB=2 cm,在y 轴上取线段OC ,使OC=32cm .连接BC ,CA ,则△ABC 就是正三棱台的下底面的直观图.(3)画上底面.在Oz 轴上取O',使OO'=2 cm,过点O'作平行于轴Ox 的轴O'x',平行于轴Oy 的轴O'y',类似下底面的作法作出上底面的直观图△A'B'C'.(4)成图.连接AA',BB',CC',并加以整理(去掉辅助线,将被遮住的部分画成虚线),得到正三棱台的直观图(如图②所示).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第二轮复习专题——立体几何专题复习1、如图,已知面ABC ⊥面BCD ,AB ⊥BC ,BC ⊥CD ,且AB=BC=CD ,设AD 与面AB C 所成角为α,AB与面ACD 所成角为β,则α与β的大小关系为 (A )α<β (B )α=β (C )α>β (D )无法确定2、下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面...的一个图是 PP PPQ Q QQRRR R SSS SPPPPQQQQ RRRR SS SSPPPPQQQQ R RRR SSS S PPPPQQQQRRRR SSS S(A ) (B ) (C ) (D )3、在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且PQ =2a,则三棱锥P -BDQ 的体积为(A )3363a (B )3183a (C )3243a (D )无法确定 4、已知球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,则此球的体积为(A )33312cm π (B )33316cm π (C )3316cm π (D )3332cm π5、如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为(A ) 61cm (B )157cm (C )1021cm (D )1037cm6、设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列四个命题:① 若b a ⊥,α⊥a ,α⊄b ,则α//b ;②若α//a , βα⊥,则β⊥a ; ③若β⊥a ,βα⊥,则α//a 或α⊂a ;④若b a ⊥,α⊥a ,β⊥b ,则βα⊥ 其中准确命题的个数为 ( )A .0B .1C .2D .37、正三棱锥ABC S —的侧棱长和底面边长相等,如果E 、F 分别为SC ,AB 的中点,那么异面直线EF 与SA 所成角为 ( ) A .090 B .060 C .045 D .030 8.右图是正方体的平面展开图,在这个正方体中: ①BM 与DE 平行; ②CN 与BE 是异面直线; ③CN 与BM 成60°角 ④DM 与BN 垂直以上四个命题中,准确的是 ( )A .①②③B .②④C .②③④D .③④9.将棱长为1的正方体木块切削成一个体积最大的球,则该球的体积为( )A .π23 B .π32 C .6π D .34π 10.正方体ABCD -A 1B 1C 1D 1中,E 是BC 的中点,则A 1C 与DE 所成的角的余弦为( )A .1515B . 1510 C . 630 D . 1010 11.有3个命题(1)底面是正三角形,其余各个面都是等腰三角形的棱锥是三棱锥; (2)各个侧面都是等腰三角形的四棱锥是正四棱锥;(3)底面是正三角形,相邻两侧面所成的二面角都相等的三棱锥是正三棱锥。

其中假命题的个数是 ( ) A .0B .1C .2D .312、一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底边均为1的等腰梯形,则这个平面图形的面积是 ( )A.2221+ B. 22+ C. 21+ D. 221+ 13、、在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,如果EF 和GH 能相交于点P ,那么(A )点P 必在直线AC 上 (B )点P 必在直线BD 上 (C )点P 必在平面ABC 内 (D )点P 必在平面上ABC 外14、设长方体的三条棱长分别为a ,b ,c ,若长方体所有棱的长度之和为24,一条对角线长度为5,体积为2,则=++cb a 111 (A )411 (B )114 (C )211 (D )112 15、若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC 组成图形可能是:( )(C ) (D )16、已知异面直线a 、b 成角,过空间一点p ,与a 、b 也都成角的直线,能够作( )A .1条B .2条C .3条D .4条 17.若a ,b ,l 是两两异面的直线,a 与b 所成的角是3π,l 与a 、l 与b 所成的角都是α, 则α的取值范围是A .[65,6ππ] B .[2,3ππ] C .[65,3ππ] D .[2,6ππ] 18、对于平面M 与平面N, 有下列条件: ①M 、N 都垂直于平面Q; ②M 、N 都平行于平面Q; ③ M 内不共线的三点到N 的距离相等; ④ l , M 内的两条直线, 且l // M, m // N; ⑤ l , m 是异面直线,且l // M, m // M; l // N, m // N, 则可判定平面M 与平面N 平行的条件的个数A .1B .2C .3D .419.如图,直三棱柱ABC -A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B-APQC 的体积为(A )2V (B )3V (C )4V (D )5VABCPQA 1B 1C 1ABCA 1B 1C 1ABCDEF20.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为(A )33a (B )43a (C )63a (D )123a21.如图,在斜三棱柱A 1B 1C 1-ABC 中,∠BAC =900,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在 (A )直线AB 上 (B )直线BC 上 (C )直线AC 上 (D )△ABC 内部 22.如图所示,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的距离为2,则该多面体的体积为 (A )29 (B )5 (C )6 (D )215 23.(天津卷6)如图,在棱长为2的正方体1111D C B A ABCD-中,AO 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的 中点。

那么异面直线OE 和1FD 所成的角的余弦值等于(A)510 (B)515 (C)54 (D)32 24.(天津卷10)如图,在长方体1111D C B A ABCD -中,3,4,61===AA AD AB ,分别过BC 、11D A 的两个平行截面将长方体分成三部分, 其体积分别记为111DFD AEA V V -=,C F C B E B V V 11113==。

若1:4:1::321=V V V ,则截面11EFD A 的面积为 (A)104 (B)38(C)134 (D)1625.北纬45圈上有甲、乙两地,它们分别在东经50与东经140,则甲、乙两地的球面距离是(地球半径为R ) A .12R πB .13R πC .14R πDR 26.(福建卷16)如图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器。

当这个正六棱柱容器的底面边长为 时,其容积最大。

27、已知∠ACB=90º,S 为平面ABC 外一点,且∠SCA=∠SCB=60º,则直线SC 和平面ABC 所成的角为 . 28、点A 是二面角α-l -β内一点,AB ⊥α于B ,AC ⊥β于C ,设AB=3,AC=2,∠BAC=60︒,则点A 到棱l 的距离是 . 29.由图(1)相关系''''PA B PAB S PA PB S PA PB ⋅=⋅,则由图(2)相关系'''P A B C P ABCV V --= 。

30.如图,在四棱锥P -ABCD 中,E 为CD 上的动点,四边形ABCD 为时,体积V P -AEB 恒为定值(写上你认为准确的一个答案即可).31.在棱长为a 的正方体ABCD —A 1B 1C 1D 1, E 、F 分别为BC 与A 1D 1的中点,(1) 求直线A 1C 与DE 所成的角;(2) 求直线AD 与平面B 1EDF 所成的角;A(2)(3)求面B 1EDF 与 面ABCD 所成的角。

在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=23,M 、N 分别为AB 、SB 的中点.(Ⅰ)证明:AC ⊥SB ;(Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面CMN 的距离.32.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F 。

(1)证明PA//平面EDB ; ABD CEFP33.如图,已知直三棱柱ABC -A 1B 1C 1,侧棱长为2,底面△ABC 中,∠B=90°,AB=1,BC=3,D 是侧棱CC 1上一点,且BD 与底面所成角为30°.(1)求点D 到AB 所在直线的距离. (2)求二面角A 1-BD -B 1的度数. 答案ADADADCDCADDAAB16、满分12分。

如图,以C 为原点建立空间直角坐标系O xyz -。

(I )解:依题意得B ()0 ,1 ,0,N ()1 ,0 ,1,∴ ()()()3011001222=-+-+-=BN(II )解:依题意得1A ()2 ,0 ,1,B ()0 ,1 ,0,C ()0 ,0 ,0,1B ()2 ,1 ,0。

∴ ()2 ,1 ,11-=BA ,()2 ,1 ,01=CB 。

⋅1BA 31=CB 。

61=BA ,51=CB ∴ <cos ⋅1BA 3010111111=⋅=>CB BA CB BA CB (III )证明:依题意得1C ()2 ,0 ,0,M⎪⎭⎫⎝⎛2 ,21 ,21,=B A 1()2 ,1 ,1--,=M C 1⎪⎭⎫⎝⎛0 ,21 ,21 , ∴ ⋅B A 1=M C 1002121=++-,∴⊥ 1B A M C 1 ——12分17、本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象水平和推理论证水平,满分12分。

方法一:(1)证明:连结AC ,AC 交BD 于O ,连结EO 。

∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴PA // EO 而⊂EO 平面EDB 且⊄PA 平面EDB , 所以,PA // 平面EDB(2)证明:∵PD ⊥底面∵PD=DC ∴PC DE ⊥同样由PD ⊥底面ABCD ,得PD ⊥BC 。

相关文档
最新文档