高三数学一轮复习 函数的奇偶性周期性
专题06 函数的奇偶性与周期性 复习资料(解析版)
小正周期.
3.函数的对称性常见的结论
a+b (1)函数 y=f(x)关于 x= 对称⇔f(a+x)=f(b-x)⇔f(x)=f(b+a-x).
2
特殊:函数 y=f(x)关于 x=a 对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x); 函数 y=f(x)关于 x=0 对称⇔f(x)=f(-x)(即为偶函数). (2)函数 y=f(x)关于点(a,b)对称⇔f(a+x)+f(a-x)=2b⇔f(2a+x)+f(-x)=2b. 特殊:函数 y=f(x)关于点(a,0)对称⇔f(a+x)+f(a-x)=0⇔f(2a+x)+f(-x)=0; 函数 y=f(x)关于(0,0)对称⇔f(x)+f(-x)=0(即为奇函数). (3)y=f(x+a)是偶函数⇔函数 y=f(x)关于直线 x=a 对称; y=f(x+a)是奇函数⇔函数 y=f(x)关于点(a,0)对称. [知识拓展]
数
f(x)就叫做奇函数
称
(2)定义域关于原点对称是函数具有奇偶性的必要不充分条件.
2.函数的周期性
(1)周期函数:对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定义域内的任何值时,都有 f(x+T)=f(x),
那么就称函数 f(x)为周期函数,称 T 为这个函数的周期.
(2)最小正周期:如果在周期函数 f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f(x)的最
综上可知:对于定义域内的任意 x,总有 f(-x)=-f(x)成立,∴函数 f(x)为奇函数.
【解法小结】 判断函数的奇偶性,其中包括两个必备条件:
(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;
(2)判断 f(x)与 f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关
高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理
2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。
第一轮复习06----函数的奇偶性与周期性
cos x (3) f x 2 ; x 1
函数奇偶性的非定理性结论
( 1)f x 为奇函数,则保留奇次 方; f x ax bx cx dx e
4 3 2
(2)f x 为偶函数,则保留偶次 方;
奇 奇 奇;偶 偶 偶; 奇 奇 偶; 奇 偶 奇; 偶 奇 奇; 偶 偶 偶;
(1)试判断函数y f x 的奇偶性; 的个数,并证明你的结 论。
(2)试求方程f x 0在闭区间- 2015 ,2015上的根
面积; (3)写出- , 内函数f x 的单调区间。
函数性质的综合应用
设函数f x 在- , 上满足f 2 x f 2 x ,
0,7上只有f 1 f 7 x f 7 x , 且在闭区间
f 3 0.
2,f x a f x a 4,f x a f a x
减消x为周期性;加消 x为对称性;
函数周期性的应用
1,已知函数f x 在R上是奇函数, 且满足f x 4 f x , 当x 0,2
2
时,f x 2 x , 求f 2015.
第一轮复习-函数的奇偶性与周 期性
上饶中学数学组 俞振
函数的奇偶性和周期性
1,奇函数、偶函数的概 念 2,判断函数奇偶性的方 法: 定义法、运算法 3,周期性 4,常用周期函数:三角 函数
常用抽象函数非定理性结论 1,f x a f x a
3,f x a f a x
函数周期性的应用
2,定义在R上的函数f x 满足 f x 6 f x , 当 3 x 1
高考数学(文通用)一轮复习课件:第二章第4讲函数的奇偶性及周期性
第二章基本初等函数、导数及其应用函数的奇偶性及周期性教材回顾▼夯实基础课本温故追根求源和课梳理1.函数的奇偶性2. 周期性(1)周期函数:对于函数j=/(x),如果存在一个非零常数T,那么就称函数y=/a )为周期函数,称F 为这个函数的周期.(2)最小正周期:如果在周期函数/(兀)的所有周期中存在一个正周期.要点整會尸1. 辨明三个易误点 (1)应用函数的周期性时,应保证自变量在给定的区间内.使得当兀取定义域内的任何值时,都有 f(x+T)=f(x)的正数,那么这个最小 正数就叫做沧)的最小(2)判断函数的奇偶性,易忽视函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (3)判断函数/(兀)是奇函数,必须对定义域内的每一个x,均有/(一兀)=一/(兀),而不能说存在丸使/(一兀0)=—/(兀0),对于偶函数的判断以此类推.2.活用周期性三个常用结论对/(*)定义域内任一自变量的值(1)®f(x+a)= —f(x)9则T=2a;i⑵若Z(x+a)=y (乂),则T=2a; (1)(3)若f(x-\-a)=—屮(比)“,则T= 2a.3.奇、偶函数的三个性质(1)在奇、偶函数的定义中,f(-x)=-f(x)^ 定义域上的恒等式.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法.(3)设心),g(x)的定义域分别是Di,6,那么在它们的公共定义域上:奇+奇=奇,奇><奇=偶,偶+偶=偶,偶X偶 =偶,奇乂偶=奇.(2015•高考福建卷)下列函数为奇函数的是(D B. y=e D. j=e x -e"x 双基自测 C ・ j=cosx1.2.已知/(x)=«x 2+Z»x 是定义在[«-1,加]上的偶函数,那 么"+方的值是(B )解析:因为f(x)=ax 2-\-bx 是定义在[«-1,加]上的偶函数, 所以a~l+2a=0,所以 a =-. 3X/(—x)=/(x),所以方=0,所以a+b=£ 3 A.D. 3 23.(2016•河北省五校联盟质量监测)设/(兀)是定义在R上的周期为3的函数,当xe[ - 2, 1)时,f(x)=4x2— 2, — 2WxW 0,X, 0<x<l,B. 1A. 0D. -1解析:因为心)是周期为3的周期函数,所以龙)=/(一扌+3)4.(必修1 P39习题1.3B组T3改编)若/(x)是偶函数且在(0,+ 8)上为增函数,则函数心)在(一8, °)上捋函数5.(必修1 P39习题X3A组T6改编)已知函数/(x)是定义在R 上的奇函数,当xMO时,gx) = x(1+x),则xVO时,/(x) = x(l—x)解析:当xVO时,则一x>0,所以/(—x) = (—x)(1—x)・又/(X)为奇函数,所以/(-x) = -/(x) = (-x)(1-x),所以/(X)=x(1—X)・國例1 (2014-高考安徽卷)若函ft/(x)(xe R)是周期为4的典例剖析护考点突破」 考点一函数的周期性名师导悟以例说法奇函数,且在[0 , 2]上的解析式为/(x)=\x (1—x) , OWxWl, 、sin Ji x, 1<X W2, 5/?)+眉)=—^因为当 1 <xW2 时,/(x)=sin Tix,所以 XS =sinZ r =_2-所以 3因为当 OWxWl 时,/(x)=x(l-x), 所以简兮X 。
2020年高考数学一轮复习(新课改)第1课时系统知识——函数的单调性与最值、奇偶性、周期性
第二节函数的性质第1课时系统知识一一函数的单调性与最值、奇偶性、周期性若函数y= f(x)在区间D上是增函数或减函数,则称函数y= f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y= f(x)的单调区间.[点拨](1)函数单调性定义中的X i , X2具有以下三个特征:一是任意性,即任意两数X i, D ”,任意”两字决不能丢;二是有大小,即X i VX2(或X1>X2);三是同属一个单调区间,三者缺一不可.⑵若函数在区间D上单调递增(或递减),则对D内任意的两个不等自变量X1, X2的值, 都有fXL二竺或fXk 4竺<。
.X1 —X2 X1—X2 /(3)函数f(X)在给定区间上的单调性,是函数在此区间上的整体性质,不一定代表在整个定义域上有此性质.[谨记常用结论](1) 函数f(X)与f(x)+ c(c为常数)具有相同的单调性.(2) k>0时,函数f(x)与kf(x)单调性相同;k<0时,函数f(x)与kf(x)单调性相反.1⑶若f(x)恒为正值或恒为负值,贝y f(x)与具有相反的单调性.⑷若f(x), g(x)都是增(减)函数,则当两者都恒大于零时,f(x) •(x)是增(减)函数;当两者都恒小于零时,f(x) g(x)是减(增)函数.(5)在公共定义域内,增+增=增,减+减=减,增—减=增,减—增=减.[小题练通]1. [人教A版教材P39B组T1]函数f(x)= x2—2x的单调递增区间是______ .答案:[1 ,+^ )2. [教材改编题]如果二次函数f(x)= x2—(a—1)x + 5在区间2, 1上是增函数,则实数a的取值范围为_________ .解析:T函数f(x) = x2—(a —1)x+ 5的对称轴为x =旦^1且在区间2,1上是增函数,a —1答案:(—R, 2]3. [教材改编题]函数f(x)= log1 (x2—4)的单调递增区间为________ .2解析:由x2—4>0得x<—2或x>2.又u = x2—4在(一a,—2)上为减函数,在(2, + a)上为增函数,y= log 1 u为减函数,2故f(x)的单调递增区间为(一a,—2).答案:(一a,—2)4. [易错题]设定义在[—1,7]上的函数y= f(x)的图象如图所示,则函数y= f(x)的增区间为________ .答案:[—1,1], [5,7]2x + k5.若函数y= 与y= log3(x—2)在(3, +a )上具有相同的单调性,贝U实数k的取值x—2范围是_________ .解析:由于y= lOg3(x—2)的定义域为(2 , + a ), 且为增函数,故函数y=空土^ = 2x —2+ 4+ k= 2 + 也在(3, + a)上也是增函数,则有4+ k v 0, x —2 x —2 x —2得k v — 4.f(X)Vf —的实数x的取值范答案:(—a, —4)6•已知函数f(x)为定义在区间[—1,1]上的增函数,则满足围为________ .—1W x W1,解析:由题设得1x<2解得—1W x<1.答案:—1,—前提设函数f(x)的定义域为1,如果存在实数M满足条件对于任意x€ I,都有f(x)W M ;存在X o€ I,使得f(X o)= M对于任意x € I,都有f(x)》M ;存在x°€ I,使得f(x^)= M结论M为最大值M为最小值1.函数的最值2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值•当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值或最小值.[点拨](1)对于单调函数,最大(小)值出现在定义域的边界处;(2) 对于非单调函数求最值,通常借助图象求解更方便;(3) 一般地,恒成立问题可以用求最值的方法来解决,而利用单调性是求最值的常用方法•注意以下关系:f(x)> a恒成立?f(x)min> a ;f(x) W a恒成立?f(x)max <乱解题时,要务必注意“=”的取舍.[小题练通]21. __________________________________________________________ [人教A版教材P31例4]函数f(x)=二二在[2,6]上的最大值是___________________________ •答案:22. [教材改编题]设函数f(x)= 2~在区间[3,4]上的最大值和最小值分别为M ,m,则晋=x—2 M 解析:易知f(x)= x—2 = 2+七,所以f(x)在区间[3,4]上单调递减,4所以M = f(3) = 2 + ---- =6,3 —2 所以m!_ 16_ 8M —6 —3.答案:3.[教材改编题喏函数f(x)=—;+ b(a>0)在;,2上的值域为••• f(X )min = f 2 = 2 , f(x)max = f(2) = 2.1—2a 十 b = 1, 即 -1+b = 2,答案:1 54.[易错题]函数y =~22 i解析:由 y = X ^ ,可得 x 2 = —-^.由 x 2>0,知—0,解得—1 w y<1,x 十 1 1 — y 1 — y故所求函数的值域为[—1,1). 答案:[—1,1) 5.函数f(x) = x ,x> 1,的最大值为x 2 + 2, x<11解析:当x > 1时,函数f(x)= -为减函数,所以f(x)在x = 1处取得最大值,为 f(1) = 1; 当x<1时,易知函数f(x) = — x 2+ 2在x = 0处取得最大值,为 f(0) = 2.故函数f(x)的最大值 为2.答案:26.已知函数 f(x)=— x 2 + 4x 十a , x € [0,1],若f(x)有最小值一2,贝V f(x)的最大值为解析:函数 f(x)=— x 2 + 4x 十 a =— (x — 2)2+ 4+ a , x € [0,1],且函数 f(x)有最小值—2. 故当x = 0时,函数f(x)有最小值,当 x = 1时,函数f(x)有最大值•当 x = 0时,f(0) = a =—2,.・. f(x)=— x 2+ 4x — 2, •当 x = 1 时,f(x)max = f(1)=—十十 4X 1 — 2 = 1.答案:1[谨记常用结论]1. 函数奇偶性的几个重要结论-1解析:•/ f(x)=-三+ b(a>0)在 1,2 是增函数,a = 1, 解得 5b = 5.⑴如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0) = 0.⑵如果函数f(x)是偶函数,那么f(x) = f(|x|).(3) 既是奇函数又是偶函数的函数只有一种类型,即f(x)= 0, x€ D,其中定义域D是关于原点对称的非空数集.(4) 奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.2. 有关对称性的结论(1) 若函数y= f(x + a)为偶函数,则函数y= f(x)关于x = a对称.若函数y= f(x+ a)为奇函数,则函数y= f(x)关于点(a,0)对称.(2) 若f(x)= f(2a—x),则函数f(x)关于x = a 对称;若f(x) + f(2a—x) = 2b,则函数f(x) 关于点(a, b)对称.[小题练通]1. ________________ [人教A版教材P39A组T6]已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)= x(1 + x),贝U f( —1) = .答案:—22. [教材改编题]设f(x)是定义在R上的奇函数,当x>0时,f(x) = x1 2 3+ 1,则f( —2)+ f(0)解析:由题意知f( —2) =—f(2) = —(22+ 1) =—5, f(0) = 0,••• f(—2) + f(0) = — 5.答案:—53. [教材改编题]已知函数f(x)为偶函数,且当x<0时,f(x)= x + 1,则当x>0时,f(x)=解析:当x>0 时,一xv0,「. f(—x)=—x + 1,又f(x)为偶函数,• f(x)=—x+ 1.答案:—x+ 14. [易错题]已知f(x) = ax2+ bx是定义在[a —1,2 a]上的偶函数,那么 a + b的值是2 1解析:T f(x)= ax2+ bx是定义在[a —1,2 a]上的偶函数,• a—1 + 2a = 0,二a=;. 31又f( —x)= f(x) ,• b= 0,二a+ b= 3.3答案:5.在函数y= xcosx, y= e x+ x2, y= lg . x2—2, y= xsin x 中,偶函数的个数是___________ 解析:y= xcos x是奇函数,y= lg x2—2和y= xsin x是偶函数,y= e x+ x2是非奇非偶函数,所以偶函数的个数是 2.答案:26.已知函数 f(x)= asin x + bln*^ +1,若 f 1 + f — 2 =6,则实数 t=________________ ,解析:令g(x)= asin x + bln 齐,则易知g(x)为奇函数,所以gg g J — 2戶0,则由 f(x)= g(x)+1,得 f 1 + f —1 = g 1 + g —1 + 2t = 2t = 6,解得 t = 3.答案:31. 周期函数对于函数y = f(x),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f(x + T) = f(x),那么就称函数 y = f(x)为周期函数,称T 为这个函数的周期.2. 最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f(x)的最小正周期.[谨记常用结论]定义式f(x + T)= f(x)对定义域内的x 是恒成立的.(1)若 f(x + a) = f(x + b),则函数 f(x)的周期为 T = |a — b|; 1 1f(x + a) = — f(x), f(x + a)=,f(x + a)=—匚何>0),则 f(x)为周期函数,且T = 2a 为它的一个周期.[小题练通]1.[教材改编题]设f(x)是定义在 R 上的周期为 2的函数,当 x € (— 1,1)时,f(x)= 「4x + 2,—1<x <0,则虑 L __________________ .x , 0< x<1, 2答案:12.[教材改编题]若f(x)是R 上周期为2的函数,且满足 f(1) = 1, f(2) = 2,贝U f(3) — f(4)解析:由 f(x)是 R 上周期为 2 的函数知,f(3) = f(1) = 1, f(4) = f(2) = 2,••• f(3) — f(4) =— 1.答案:—1=x ,贝y f(2 019) = __________(2)若在定义域内满足3.[教材改编题]已知f(x)是定义在R 上的函数,并且 1f(x + 2)= f x ,f(x)1 1解析:由已知,可得f(x + 4) = f[(x + 2) + 2]= —— =-—=f(x),故函数f(x)的周期为f (X + 2)4.A f(2 019) = f(4X 504+ 3) = f(3)= 3.答案:34. [易错题]函数f(x)的周期为4,且x€ (-2,2], f(x) = 2x- x2,则f(2 018) + f(2 019) + f(2 020)的值为________ .解析:由f(x)= 2x-x2, x€ (-2,2],知f(- 1)=- 3, f(0)= 0, f(2) = 0,又f(x)的周期为4,所以f(2 018) + f(2 019) + f(2 020) = f(2) + f( - 1)+ f(0) = 0 - 3+ 0=- 3.答案:—35. 已知f(x)是R上的奇函数,且对任意x€ R都有f(x+ 6)= f(x) + f(3)成立,则f(2 019)解析:•/ f(x)是R上的奇函数,••• f(0) = 0,又对任意x€ R都有f(x + 6) = f(x) + f(3),二当x=- 3 时,有f(3) = f( - 3) + f(3) = 0, • f( - 3) = 0 , f(3) = 0 , • f(x+ 6) = f(x),周期为6. 故f(2 019) = f(3) = 0.答案:06.偶函数y= f(x)的图象关于直线x= 2对称,f(3) = 3,则f( - 1) = __________ .解析:因为f(x)的图象关于直线x= 2对称,所以f(x) = f(4- x) , f( - x) = f(4 + x),又f(- x) = f(x),所以f(x) = f(4 + x),则f( - 1) = f(4 - 1) = f(3) = 3.答案:3。
高考一轮复习函数的奇偶性与周期性课件
常见周期函数的举例
正弦函数和余弦函数是常见的周期函 数。例如,y=sin(x)的最小正周期为 2π,y=cos(x)的最小正周期为2π。
函数y=sin(ax)和y=cos(ax)的周期为 2π/a,其中a是常数。
函数y=tan(x)也是周期函数,它的最 小正周期为π。
函数y=tan(ax)的周期为π/a,其中a 是常数。
举一反三
通过练习多种形式的题目, 提高对奇偶性和周期性问 题的应变能力。
反思提高
反思自己在解题过程中的 不足,针对性地加强薄弱 环节的训练。
THANKS.
02
与性
周期函数的定 义
周期函数的定义
如果存在一个非零常数T,对于函数f(x)的定义域内的任意x,都有f(x+T)=f(x), 则称f(x)为周期函数,T称为这个函数的周期。
周期函数的定义还可以表述为
如果存在一个非零常数T,对于函数f(x)的定义域内的任意x,当x增加T时,函数 值重复出现,即f(x+T)=f(x),则称f(x)为周期函数,T称为这个函数的周期。
高考一复函数的奇 偶性与周期性件
• 函数奇偶性的定义与性质 • 函数周期性的定义与性质 • 奇偶性与周期性的应用 • 高考真题解析 • 复习建议与策略
函数奇偶性的定
01
与性
奇函数与偶函数的定 义
奇函数
如果对于函数$f(x)$的定义域内任 意一个$x$,都有$f(-x)=-f(x)$, 则称$f(x)$为奇函数。
偶函数
如果对于函数$f(x)$的定义域内任 意一个$x$,都有$f(-x)=f(x)$, 则称$f(x)$为偶函数。
奇偶函数的性 质
01
奇函数在原点有定义, 即$f(0)=0$。
新课标2023版高考数学一轮总复习第2章函数第3节函数的奇偶性与周期性教师用书
第三节 函数的奇偶性与周期性考试要求:1.了解函数的奇偶性的概念及几何意义.2.结合三角函数,了解函数的周期性、对称性及其几何意义.一、教材概念·结论·性质重现1.函数的奇偶性的定义奇偶性偶函数奇函数条件一般地,设函数y=f(x)的定义域为I,如果∀x∈I,都有-x∈I结论f(-x)=f(x)f(-x)=-f(x)图象特点关于y轴对称关于原点对称1.函数的定义域关于原点对称是函数具有奇偶性的前提条件.2.函数图象的对称性(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(3)若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)的图象关于点(b,0)中心对称.3.函数的周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T 就叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期(若不加特别说明,T一般都是指最小正周期).4.对称性与周期的关系(1)若函数f(x)的图象关于直线x=a和直线x=b对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(2)若函数f(x)的图象关于点(a,0)和点(b,0)对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(3)若函数f(x)的图象关于点(a,0)和直线x=b对称,则函数f(x)必为周期函数,4|a -b|是它的一个周期.5.常用结论(1)如果函数f(x)是奇函数且在x=0处有定义,那么一定有f(0)=0;如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)若f(x+a)=-f(x),则T=2a(a>0).(4)若f(x+a)=,则T=2a(a>0).(5)若f(x+a)=-,则T=2a(a>0).二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若函数f(x)为奇函数,则一定有f(0)=0.( × )(2)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.( √ )(3)如果函数f(x),g(x)是定义域相同的偶函数,那么F(x)=f(x)+g(x)是偶函数.( √ )(4)若T为y=f(x)的一个周期,则nT(n∈Z)是函数f(x)的周期.( × ) 2.函数f(x)=-x的图象关于( )A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称C 解析:因为函数f(x)的定义域为(-∞,0)∪(0,+∞),f(-x)=-+x=-=-f(x),所以f(x)为奇函数.所以f(x)的图象关于坐标原点对称.3.已知f(x)满足f(x+2)=f(x).当x∈[0,1]时,f(x)=2x,则f等于( )A. B. C. D.1B 解析:由f(x+2)=f(x),知函数f(x)的周期T=2,所以f=f=2=.4.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是( )A.- B. C. D.-B 解析:因为f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,所以a-1+2a=0,所以a=. 又f(-x)=f(x),所以b=0,所以a+b=.5.(多选题)已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是( ) A.y=f(|x|)B.y=f(-x)C.y=xf(x)D.y=f(x)+xBD 解析:由奇函数的定义f(-x)=-f(x)验证.对于选项A,f(|-x|)=f(|x|),为偶函数;对于选项B,f(-(-x))=f(x)=-f(-x),为奇函数;对于选项C,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;对于选项D,f(-x)+(-x)=-[f(x)+x],为奇函数.故选BD.考点1 函数的奇偶性——基础性1.(多选题)若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则下列结论中正确的是( )A.函数f(g(x))是偶函数B.函数g(f(x))是偶函数C.函数f(x)·g(x)是奇函数D.函数f(x)+g(x)是奇函数ABC 解析:对于选项A,f(g(x))是偶函数,A正确;对于选项B,g(f(x))是偶函数,B正确;对于选项C,设h(x)=f(x)g(x),h(-x)=f(-x)g(-x)=-f(x)g(x)=-h(x)是奇函数;对于选项D,f(x)+g(x)不一定具备奇偶性.故选ABC.2.设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)=( )A.e-x-1B.e-x+1C.-e-x-1D.-e-x+1D 解析:当x<0时,-x>0.因为当x≥0时,f(x)=e x-1,所以 f(-x)=e-x-1. 又因为 f(x)为奇函数,所以 f(x)=-f(-x)=-e-x+1.3.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=( ) A.e x-e-x B.(e x+e-x)C.(e-x-e x)D.(e x-e-x)D 解析:因为f(x)+g(x)=e x,所以f(-x)+g(-x)=f(x)-g(x)=e-x,所以g(x)=(e x-e-x).4.已知函数f(x)=则该函数的奇偶性是_________.奇函数 解析:当x>0时,-x<0,所以f(-x)=x2-x=-(-x2+x)=-f(x);当x<0时,-x>0,f(-x)=-x2-x=-(x2+x)=-f(x),所以f(x)是奇函数.(1)解决这类问题要优先考虑用定义法,然后考虑用图象法.考点2 函数的周期性——综合性(1)设f(x)是周期为3的函数,当1≤x≤3时,f(x)=2x+3,则f(8)=______.当-2≤x≤0时,f(x)=________.7 2x+9 解析:因为f(x)是周期为3的函数,所以f(8)=f(2)=2×2+3=7.当-2≤x≤0时,f(x)=f(x+3)=2(x+3)+3=2x+9.(2)若定义在R上的偶函数f(x)满足f(x)>0,f(x+2)=对任意x∈R恒成立,则f(2 023)=________.1 解析:因为f(x)>0,f(x+2)=,所以f(x+4)=f[(x+2)+2]===f(x),则函数f(x)的周期为4,所以f(2 023)=f(506×4-1)=f(-1).因为函数f(x)为偶函数,所以f(2 023)=f(-1)=f(1).当x=-1时,f(-1+2)=,得f(1)=.由f(x)>0,得f(1)=1,所以f(2 023)=f(1)=1.(3)设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(x)=f(x+2);③当0≤x<1时,f(x)=2x-1.则f+f(1)+f+f(2)+f=__________.-1 解析:依题意知函数f(x)为奇函数且周期为2,则f(1)+f(-1)=0,f(-1)=f(1),即f(1)=0.所以f+f(1)+f+f(2)+f=f+0+f+f(0)+f=f-f+f(0)+f=f+f(0)=2-1+20-1=-1.1.(2021·长春质量监测)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为( ) A.6B.7C.8D.9B 解析:因为f(x)是最小正周期为2的周期函数,且0≤x<2时,f(x)=x3-x=x(x -1)(x+1),所以当0≤x<2时,f(x)=0有两个根,即x1=0,x2=1.由周期函数的性质知,当2≤x<4时,f(x)=0有两个根,即x3=2,x4=3;当4≤x≤6时,f(x)=0有三个根,即x5=4,x6=5,x7=6,故f(x)的图象在区间[0,6]上与x轴的交点个数为7.2.(多选题)(2022·长春质检)已知定义在R上的奇函数f(x)满足f(x)+f(2-x)=0,则下列结论正确的是( )A.f(x)的图象关于点(1,0)对称B.f(x+2)=f(x)C.f(3-x)=f(x-1)D.f(x-2)=f(x)ABD 解析:对于A,由f(x)+f(2-x)=0得f(x)的图象关于点(1,0)对称,选项A正确;对于B,用-x替换f(x)+f(2-x)=0中的x,得f(-x)+f(2+x)=0,所以f(x+2)=-f(-x)=f(x),选项B正确;对于C,用x-1替换f(x)+f(2-x)=0中的x,得f(3-x)=-f(x-1),选项C错误;对于D,用x-2替换f(x+2)=f(x)中的x,得f(x-2)=f(x),选项D正确.3.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.6 解析:因为f(x+4)=f(x-2),所以f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),所以f(x)是周期为6的周期函数,所以f(919)=f(153×6+1)=f(1).又f(x)是定义在R上的偶函数,所以f(1)=f(-1)=6,即f(919)=6.考点3 函数性质的综合应用——应用性考向1 函数的单调性与奇偶性综合(1)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )A.a<b<c B.c<b<aC.b<a<c D.b<c<aC 解析:易知g(x)=xf(x)在R上为偶函数.因为奇函数f(x)在R上单调递增,且f(0)=0,所以g(x)在(0,+∞)上单调递增.又3>log25.1>2>20.8,且a=g(-log25.1)=g(log25.1),所以g(3)>g(log25.1)>g(20.8),即c>a>b.(2)(2020·全国Ⅱ卷)设函数f(x)=ln|2x+1|-ln|2x-1|,则f(x)( )A.是偶函数,且在单调递增B.是奇函数,且在单调递减C.是偶函数,且在单调递增D.是奇函数,且在单调递减D 解析:f(x)=ln|2x+1|-ln|2x-1|的定义域为x≠±.又f(-x)=ln|-2x+1|-ln|-2x-1|=ln|2x-1|-ln|2x+1|=-f(x),所以f(x)为奇函数,故排除A,C.又当x∈时,f(x)=ln(-2x-1)-ln(1-2x)=ln =ln =ln.因为y=1+在上单调递减,由复合函数的单调性可得f(x)在上单调递减.考向2 函数的奇偶性与周期性结合(1)设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+4)=f(x).当x∈[0,2]时,f(x)=2x-x2,则f(2 023)=________.-1 解析:因为f(x+4)=f(x),所以函数f(x)的周期T=4. 又f(1)=1,所以f(2 023)=f(-1+4×506)=f(-1)=-f(1)=-1.(2)设f(x)是定义在实数集R上的函数,且满足f(1+x)=f(1-x),f(2+x)=-f(2-x),则f(x)是( )A.偶函数,又是周期函数B.偶函数,但不是周期函数C.奇函数,又是周期函数D.奇函数,但不是周期函数A 解析:由f(x+1)=-f(x-1),可得f(x+2)=-f(x),则f(x+4)=f(x),故函数f(x)的周期为4,则f(5)=f(1)=a2-2a-4.又因为f(x)是定义在R上的奇函数,f(-1)>1,所以f(1)<-1,所以a2-2a-4<-1,解得-1<a<3.若本例(1)中的条件不变,当x∈[2,4]时,f(x)的解析式是____________.f(x)=x2-6x+8 解析:当x∈[-2,0]时,-x∈[0,2].由已知得f(-x)=2(-x)-(-x)2=-2x-x2.又f(x)是奇函数,所以f(-x)=-f(x)=-2x-x2. 所以f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],所以f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,所以f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.故x∈[2,4]时,f(x)=x2-6x+8.函数周期性有关问题的求解方法(1)求解与函数的周期性有关的问题,应根据题目特征及周期的定义求出函数的周期.(2)根据函数的周期性,可以由函数的局部性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.考向3 函数的单调性、奇偶性与周期性结合定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[-1,0]上单调递减.设a =f(-2.8),b=f(-1.6),c=f(0.5),则a,b,c的大小关系是( )A.a>b>c B.c>a>bC.b>c>a D.a>c>bD 解析:因为偶函数f(x)满足f(x+2)=f(x),所以函数f(x)的周期为2.所以a=f(-2.8)=f(-0.8),b=f(-1.6)=f(0.4)=f(-0.4),c=f(0.5)=f(-0.5).因为-0.8<-0.5<-0.4,且函数f(x)在[-1,0]上单调递减,所以a>c>b.故选D.1.解决这类问题一定要1.已知函数f(x)的图象关于原点对称,且周期为4.若f(-2)=2,则f(2 022)=( )A.2B.0C.-2D.-4C 解析:因为函数f(x)的图象关于原点对称,且周期为4,所以f(x)为奇函数,所以f(2 022)=f(505×4+2)=f(2)=-f(-2)=-2.故选C.2.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为( )A.(-∞,-3)B.(3,+∞)C.(-∞,-1)D.(1,+∞)D 解析:因为f(x+3)=f(x),所以f(x)是定义在R上的以3为周期的函数,所以f(7)=f(7-9)=f(-2).又因为函数f(x)是偶函数,所以f(-2)=f(2),所以f(7)=f(2)>1,所以a>1,即a∈(1,+∞).故选D.3.已知奇函数f(x)的图象关于直线x=3对称,当x∈[0,3]时,f(x)=-x,则f(-16)=________.2 解析:根据题意,函数f(x)的图象关于直线x=3对称,则有f(x)=f(6-x).又函数f(x)为奇函数,则f(-x)=-f(x),所以f(x)=-f(6-x)=f(x-12).所以f(x)的最小正周期是12.故f(-16)=f(-4)=-f(4)=-f(2)=-(-2)=2.4.定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三种叙述:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数.其中正确的序号是________.①②③ 解析:由f(x)+f(x+2)=0,得f(x+2)=-f(x),则f(x+4)=-f(x+2)=f(x),即4是f(x)的一个周期,8也是f(x)的一个周期,故①正确;由f(4-x)=f(x),得f(x)的图象关于直线x=2对称,故②正确;由f(4-x)=f(x)与f(x+4)=f(x),得f(4-x)=f(-x),f(-x)=f(x),即函数f(x)为偶函数,故③正确.。
高三数学一轮复习 7.函数的奇偶性与周期性学案
【学习目标】1.了解奇函数、偶函数的定义,并能运用奇偶性的定义判断一些简单函数的奇偶性.,并熟练地利用对称性解决函数的综合问题.预习案1.奇函数、偶函数、奇偶性对于函数f(x),其定义域关于原点对称:(1)如果对于函数定义域内任意一个x,都有,那么函数f(x)就是奇函数;(2)如果对于函数定义域内任意一个x,都有,那么函数f(x)就是偶函数;(3)如果一个函数是奇函数(或偶函数),那么称这个函数在其定义域内具有奇偶性.2.证明函数奇偶性的方法步骤(1)确定函数定义域关于对称;(2)判定f(-x)=-f(x)(或f(-x)=f(x)),从而证得函数是奇(偶)函数.3.奇偶函数的性质(1)奇函数图像关于对称,偶函数图像关于对称;(2)若奇函数f(x)在x=0处有意义,则f(0)=;(3)若奇函数在关于原点对称的两个区间上分别单调,则其单调性;若偶函数在关于原点对称的两个区间上分别单调,则其单调性.(4)若函数f(x)为偶函数,则f(x)=f(|x|),反之也成立.4.一些重要类型的奇偶函数(1)函数f(x)=a x+a-x为函数,函数f(x)=a x-a-x为函数;(2)函数f(x)=a x-a-xa x+a-x=a2x-1a2x+1(a>0且a≠1)为函数;(3)函数f(x)=log a 1-x1+x为函数;(4)函数f(x)=log a(x+x2+1)为函数.5.周期函数若f(x)对于定义域中任意x均有(T为不等于0的常数),则f(x)为周期函数.6.函数的对称性若f(x)对于定义域中任意x,均有f(x)=f(2a-x),或f(a+x)=f(a-x),则函数f(x)关于对称.【预习自测】1.(课本改编题)下列函数中,所有奇函数的序号是_______.①f(x)=2x4+3x2;②f(x)=x3-2x;③f(x)=x2+1x;④f(x)=x3+1.2.下列函数为偶函数的是( )A.y=sin x B.y=x3C.y=e x D.y=ln x2+13.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.4.若函数y=f(x)(x∈R)是奇函数,则下列坐标表示的点一定在函数y=f(x)图像上的()A.(a,-f(a)) B.(-a,-f(a))C.(-a,-f(-a)) D.(a,f(-a))5.(2013·某某调研卷)设定义在R上的函数f(x)满足f(x)·f(x+2)=13,若f(1)=2,则f(99)=________.探究案题型一判断函数的奇偶性例1.判断下列函数的奇偶性,并说明理由.(1)f(x)=x2-|x|+1 x∈[-1,4];(2)f(x)=(x-1)1+x1-xx∈(-1,1);(3)f(x)=1a x-1+12(a>0,a≠1).探究1.判断下列函数的奇偶性.(1)f(x)=ln 2-x2+x;(2)g(x)=x2+|x-a|;(3)f(x)=⎩⎪⎨⎪⎧x2-2x x≥0,x2+2x x<0.题型二奇偶性的应用例2.(1)已知函数f(x)为奇函数且定义域为R,x>0时,f(x)=x+1,f(x)的解析式为.(2)f(x)是定义在(-1,1)上的奇函数,且x∈[0,1]时f(x)为增函数,则不等式f(x)+f(x-1)<0的解集为.2(3)函数f(x+1)为偶函数,则函数f(x)的图像的对称轴方程为.探究2.(1)若函数f(x)是R上的偶函数,且在[0,+∞)上是减函数,满足f(π)<f(a)的实数a的取值X围是________.(2)函数y=f(x-2)为奇函数,则函数y=f(x)的图像的对称中心为__________.题型三函数的周期性例3.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.(1)证明:函数f(x)为周期函数;(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.探究3.(1)f(x)的定义域为R的奇函数,且图像关于直线x=1对称,试判断f(x)的周期性.(2)f(x)是定义在R上的函数,对任意x∈R均满足f(x)=-1f x+1,试判断函数f(x)的周期性.例4.已知f(x)为偶函数,且f(-1-x)=f(1-x),当x∈[0,1]时,f(x)=-x+1,求x∈[5,7]时,f(x)的解析式.探究4.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 011).我的学习总结:(1)我对知识的总结.(2)我对数学思想及方法的总结。
高考数学一轮复习-2-3函数的奇偶性与周期性课件-理
•f(x)在R上是奇函数, •∴f(x)在区间[-2,2]上是增函数, •∴f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).
基础诊断
考点突破
课堂总结
考点二 函数周期性的应用 【例 2】(1)(2014·安徽卷)若函数 f(x)(x∈R)是周期为 4 的奇函
数,且在[0,2]上的解析式为 f(x)=xsin1-πxx,,1<0≤x≤x≤2,1, 则 f 249+f 461=________. (2)已知 f(x)是定义在 R 上的偶函数,且 f(x+2)=-f(x),当 2≤x≤3 时,f(x)=x,则 f(105.5)=________.
• 第3讲 函数的奇偶性与周期性
基础诊断
考点突破
课堂总结
• 考试要求 1.函数奇偶性的含义及判断,B级 要求;2.运用函数的图象理解、研究函数的奇 偶性,A级要求;3.函数的周期性、最小正周 期的含义,周期性的判断及应用,B级要求.
基础诊断
考点突破
课堂总结
• 知识梳理 • 1.函数的奇偶性
奇偶 性
基础诊断
考点突破
课堂总结
【训练 2】 (2014·南通模拟)已知函数 f(x)是定义在 R 上的奇函数, 且是以 2 为周期的周期函数.若当 x∈[0,1)时,f(x)=2x-1,则
f(log16)的值为________.
2
解析 ∵f(x)是周期为 2 的奇函数.
∴f(log16)=f
2
log1
2
法二 易知 f(x)的定义域为 R. ∵f(-x)+f(x)=log2[-x+ -x2+1]+ log2(x+ x2+1)=log21=0,即 f(-x)=-f(x), ∴f(x)为奇函数. 对于 g(x),由|x-2|>0,得 x≠2. ∴g(x)的定义域为{x|x≠2}. ∵g(x)的定义域关于原点不对称, ∴g(x)为非奇非偶函数. 答案 (1)① (2)奇 非奇非偶
高考数第一轮复习函数的奇偶性与周期性
1.已知函数y=f(x)是奇函数,则函数y=f(x+1)的图象的对 称中心是( ) (A)(1,0) (B)(-1,0) (C)(0,1) (D)(0,-1) 【解析】选B.函数y=f(x)的图象关于点(0,0)对称,函数 y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位得到, 故函数y=f(x+1)的图象的对称中心为(-1,0).
周期性求f(1)+f(2)+…+f(2 012).
(2)利用周期性可知f(-1)=f(1),
列方程
组求解.
【规范解答】(1)选B.∵f(x+6)=f(x),∴T=6. ∵当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x, ∴f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0, f(5)=f(-1)=-1,f(6)=f(0)=0,∴f(1)+f(2)+…+f(6)=1, ∴f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12) =…=f(2 005)+f(2 006)+…+f(2 010)=1, ∴f(1)+f(2)+…+f(2 010)=1× =335. 而f(2 011)+f(2 012)=f(1)+f(2)=3, ∴f(1)+f(2)+…+f(2 012)=335+3=338.
(2)因为f(x)的周期为2,所以
即
又因为
所以
∴3a+2b=-2
①,
又因为f(-1)=f(1),所以
即b=-2a ②,
高考数学一轮复习-函数的奇偶性与周期性教案
函数的奇偶性与周期性一、考纲要求函数的奇偶性与周期性 B 二、复习目标1.理解函数奇偶性的定义;2、会判断函数的奇偶性;3、能证明函数的奇偶性;4、理解函数 周期性的定义;5、会求周期函数的周期。
三、重点难点函数奇偶性的判断及证明;函数周期性判断及周期求法。
四、要点梳理1.奇、偶函数的定义:对于函数 f (x)定义域内的任意一个 x ,都有_______________,称 f (x)为偶函数,对于函数f (x)定义域内的任意一个 x ,都有________________,称 f (x)为奇函数. 2.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于_________对称;(2)奇函数的图像关于____对称,偶函数的图像关于_________对称; (3)若奇函数的定义域包含0,则_____________;(4)在偶函数中, f ( x )f (x).(5)在公共定义域内,①两个奇函数的和是___函数,两个奇函数的积是____函数;②两个偶函数 的和、积是___函数;③一个奇函数,一个偶函数的积是____函数.(填“奇”,“偶”) 3.对于函数y =f(x),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都 有 ,那么就称函数y =f(x)为周期函数,称T 为这个函数的周期. 4.最小正周期:如果在周期函数f(x)的所有周期中存在一个最小正数,那么这个 叫做f(x)的最小正周期. 就 5.周期性三个常用结论对f(x)定义域内任一自变量的值x : (1)若f(x +a)=-f(x),则T =2a ;1 1(2)若f(x +a)= ,则T =2a ; (3)若f(x +a)=- ,则T =2a.(a>0)fx fx五、基础自测1.对于定义在R 上的函数 f (x),下列命题正确的序号是___________. (1)若 f (2) f (2),则函数 f (x)是偶函数; (2)若 f (2) f (2),则函数 f (x)不是偶函数; (3)若 f (2) f (2),则函数 f (x)不是奇函数; (4)若 f (x)是偶函数,则 f (2) f (2). 2.给出4个函数:① f (x) 1 x2 1x ;④ f (x) x1. 3x 4;② f (x) 2x 5;③ f (x) lg1 xx 1 既不是奇函数也不是偶函数.其中是奇函数; 是偶函数; 3.已知函数 f (x)4x2bx 3a b 是偶函数,其定义域是 [a 6,2a],则点 a,b 的坐标为__________.3,且f (1) 2,则f(2014)=________. 2 4.已知定义在R 上的函数 f (x)满足 f (x) f x x a5.若函数 f (x)在[1,1]上是奇函数,则 f (x) x bx 12.六、典例精讲: 例1判断下列函数的奇偶性,并说明理由: (1) f (x) (1 2x ) 21x ;(2) f (x) lg(xx21);(3) f (x)(1x) 1 x; 2xx 2| x1| 1;(5) f (x)x 11 x2;(6) f (x)22x (x ≥0),(4) f (x)x x 2x (x 0).例2:设 f (x)是定义在R 上的奇函数,且对任意实数x ,恒有 f (x 2) f x .当x∈[0,2]时,f (x) 2xx 。
高考第一轮复习函数的奇偶性单调性周期性(理)
【本讲教育信息】一. 教学内容:函数的奇偶性、单调性、周期性二. 教学重、难点:了解函数奇偶性、单调性、周期性的概念,了解周期函数最小正周期的意义,掌握判断一些简单函数的奇偶性的方法,能利用函数的单调性解决函数的有关问题。
【典型例题】[例1] 定义在R 上的函数)(x f 满足对任意R y x ∈、恒有)()()(y f x f xy f +=,且)(x f 不恒为0。
(1)求)1(f 和)1(-f 的值;(2)试判断)(x f 的奇偶性,并加以证明;(3)若0≥x 时)(x f 为增函数,求满足不等式0)2()1(≤--+x f x f 的x 的取值集合。
解析:(1)令1==y x ,得)1()1()1(f f f += ∴ 0)1(=f 令1-==y x ,得)1()1()1(-+-=f f f ∴ 0)1(=-f(2)令1-=y ,由)()()(y f x f xy f +=,得)1()()(-+=-f x f x f 又0)1(=-f ∴ )()(x f x f =-又 ∵ )(x f 不恒为0 ∴ )(x f 为偶函数 (3)由0)2()1(≤--+x f x f知)2()1(x f x f -≤+ 又由(2)知|)(|)(x f x f = ∴ )2()1(x f x f -≤+ 又 ∵ )(x f 在),0[+∞上为增函数∴ x x -≤+21故x 的取值集合为}21|{≤x x[例2] 设函数)(x f 在),(+∞-∞上满足)2()2(x f x f +=-,)7()7(x f x f +=-,且在闭区间[0,7]上,只有0)3()1(==f f 。
(1)试判断函数)(x f y =的奇偶性;(2)试求方程0)(=x f 在闭区间]2005,2005[-上的根的个数,并证明你的结论。
解析:(1)由)2()2(x f x f +=-,得函数)(x f y =的对称轴为2=x ∴ )5()1(f f =-而)1()1(0)5(-≠⇒≠f f f ,即)(x f 不是偶函数又 ∵ )(x f 在[0,7]上只有0)3()1(==f f ∴ 0)0(≠f 从而知函数)(x f y =不是奇函数 故函数)(x f y =是非奇非偶函数(2)⎩⎨⎧+=-+=-)7()7()2()2(x f x f x f x f )14()4()14()()4()(x f x f x f x f x f x f -=-⇒⎩⎨⎧-=-=⇒)10()(+=⇒x f x f从而知函数)(x f y =的周期为T=10 又0)1()3(==f f∴ 0)9()7()13()11(=-=-==f f f f故)(x f 在[0,10]和]0,10[-上均有2个根,从而可知函数)(x f y =在[0,2000]上有400个根,在[2000,2005]上有2个根,在]0,2000[-上有400个根,在]2000,2005[--上没有根。
高考数学一轮复习第二章函数3函数的奇偶性与周期性课件新人教A版22
∴f(2 019)+f(2 020)=f(3)+f(0)=-1+0=-1.
-21考点1
考点2
考点3
考点4
(2)∵f(x)是偶函数,∴f(-1)=f(1).
√+1+1
,
又 f(-1)=-ln(-1+√ + 1)=ln
f(1)=ln(1+√ + 1),
A.f(x)g(x)是偶函数
B.|f(x)|g(x)是奇函数
f(-x)g(-x)=-f(x)g(x)=-[f(x)g(x)],
C.f(x)|g(x)|是奇函数
D.|f(x)g(x)|是奇函数
因此f(x)g(x)是奇函数,故A错;
思考判断函数的奇偶性要注意什么?
|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),
对称
奇函数
-3知识梳理
双基自测
1
2
3
4
2.奇(偶)函数的性质
(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(2)奇函数在关于原点对称的区间上具有相同的单调性;偶函数在
关于原点对称的区间上具有相反的单调性.
(3)在公共定义域内有:奇函数±奇函数=奇函数,偶函数±偶函数
=偶函数,奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函
因为函数定义域不关于原点对称,所以函数为非奇非偶函数.
(3)函数的定义域为{x|x≠0},关于原点对称.
当x>0时,-x<0,此时f(x)=-x2+x,f(-x)=(-x)2-x=x2-x=-(-x2+x)=-f(x);
专题三函数的奇偶性及周期性(2021年高考数学一轮复习专题)
专题三 函数的奇偶性及周期性一、题型全归纳题型一 函数奇偶性的判断【题型要点】判断函数奇偶性的方法(1)根据定义判断,首先看函数的定义域是否关于原点对称,在定义域关于原点对称的条件下,再化简解析式,根据f (-x )与f (x )的关系作出判断. (2)利用函数图象特征判断.(3)分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.【例1】判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.的奇偶性。
【解析】法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数. 法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数【例2】已知函数f (x )=x 2x -1,g (x )=x2,则下列结论正确的是( )A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数 【答案】A.【解析】:易知h (x )=f (x )+g (x )的定义域为{x |x ≠0},关于原点对称.因为f (-x )+g (-x )=-x 2-x -1+-x2=-x ·2x 1-2x -x 2=x (1-2x )-x 1-2x -x 2=x 2x -1+x2=f (x )+g (x ),所以h (x )=f (x )+g (x )是偶函数.故选A. 题型二 函数奇偶性的应用【题型要点】与函数奇偶性有关的问题及解决方法(1)已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.(4)应用奇偶性画图象和判断单调性:利用奇偶性可画出另一对称区间上的图象并判断另一区间上的单调性. 【例1】(2019·高考全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( ) A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +1【解析】解法一:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D. 解法二:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D.【例2】已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为 . 【解析】:解法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-221⎪⎭⎫ ⎝⎛+x +14,所以当x <0时,函数f (x )的最大值为14.解法二:当x >0时,f (x )=x 2-x =221⎪⎭⎫ ⎝⎛+x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.题型三 函数的周期性【题型要点】函数周期性的判断与应用(1)判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z ,且k ≠0)也是函数的周期.【例1】(2020·广东六校第一次联考)在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0|2-x |,0≤x <1,其中a∈R ,若f (-5)=f (4.5),则a =( ) A .0.5 B .1.5 C .2.5D .3.5【解析】由f (x +1)=f (x -1),得f (x )是周期为2的函数,又f (-5)=f (4.5),所以f (-1)=f (0.5),即-1+a =1.5,所以a =2.5.故选C.【例2】已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,4]上与x 轴的交点的个数为( ) A .2 B .3 C .4D .5【解析】当0≤x <2时,令f (x )=x 3-x =x (x 2-1)=0,所以y =f (x )的图象与x 轴交点的横坐标分别为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,又f (x )的最小正周期为2,所以f (x -2)=f (x ),所以f (x )=(x -2)(x -1)(x -3),所以当2≤x <4时,y =f (x )的图象与x 轴交点的横坐标分别为x 3=2,x 4=3.又f (4)=f (2)=f (0)=0,综上可知,共有5个交点.题型四 函数性质的综合应用【题型要点】函数性质综合应用问题的常见类型及解题策略(1)单调性与奇偶性的综合:注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合:此类问题多考查求值问题,常用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合:解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.【例1】已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( ) A .-50 B .0 C .2 D .50【答案】C【解析】因为f (x +2)=f [1+(1+x )]=f [1-(1+x )]=f (-x )=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.又f (x )为奇函数,且x ∈R ,所以f (0)=0,f (1)=2,f (2)=f (1+1)=f (0)=0,f (3)=f (1+2)=f (1-2)=f (-1)=-f (1)=-2,f (4)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,而50=4×12+2,所以f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2.【例2】(2020池州联考)已知函数f (x )的定义域为R ,且满足下列三个条件:①∀x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0;②f (x +4)=-f (x );③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (2 025),则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <a <c C .a <c <b D .c <b <a 【答案】B【解析】由条件①知,当x ∈[4,8]时,f (x )为增函数;由条件②知,f (x +8)=-f (x +4)=f (x ),f (x )是周期为8的周期函数;由条件③知,y =f (x )关于直线x =4对称,所以f (11)=f (3)=f (5),f (2025)=f (1)=f (7),故f (5)<f (6)<f (7),即b <a <c .故选B.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1【答案】C.【解析】:函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项A 的函数为奇函数,不符合要求;选项B 的函数是偶函数,但其单调性不符合要求;选项D 的函数为非奇非偶函数,不符合要求;只有选项C 符合要求.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( ) A .-3 B .-54C.54 D .3 【答案】A【解析】:.由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4 D .-4 【答案】D【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.已知定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2x -2x ,则f (x )x>0的解集为( )A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-1)∪(1,+∞)【解析】因为当x >0时,函数f (x )单调递增,又f (1)=0,所以f (x )=2x -2x >0的解集为(1,+∞),所以f (x )x >0在(0,+∞)上的解集为(1,+∞).因为f (x )是奇函数,所以f (x )x 是偶函数,则f (x )x >0在R 上的解集为(-∞,-1)∪(1,+∞).5.已知定义域为R 的奇函数f (x )满足⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,且当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f =( ) A .-278B .-18C.18D.278【解析】:因为⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,所以⎪⎭⎫ ⎝⎛25f =⎪⎭⎫ ⎝⎛+123f =⎪⎭⎫ ⎝⎛1-21f =⎪⎭⎫⎝⎛21-f ,又因为函数为奇函数,所以⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21-f =321-⎪⎭⎫⎝⎛=-18.6.已知函数f (x )=2|x |+x 3+12|x |+1的最大值为M ,最小值为m ,则M +m 等于( )A .0B .2C .4D .8【解析】:f (x )=2|x |+x 3+12|x |+1=1+x 32|x |+1.设g (x )=x 32|x |+1,因为g (x )定义域为R ,关于原点对称,且g (-x )=-g (x ),所以g (x )为奇函数,所以g (x )max +g (x )min =0.因为M =f (x )max =1+g (x )max ,m =f (x )min =1+g (x )min ,所以M +m =1+g (x )max +1+g (x )min =2.7.(2019·沈阳测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( )A .m =1,且f (x )在(0,1)上是增函数B .m =1,且f (x )在(0,1)上是减函数C .m =-1,且f (x )在(0,1)上是增函数D .m =-1,且f (x )在(0,1)上是减函数 【答案】B【解析】因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以⎪⎭⎫ ⎝⎛21f =⎪⎭⎫⎝⎛21-f ,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),因为当x ∈(0,1)时,y =1-x 2是减函数,故f (x )在(0,1)上是减函数.故选B.8.(2019·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( ) A .1B.45 C .-1D .-45【解析】 因为x ∈R ,且f (-x )=-f (x ),所以函数为奇函数.因为f (x )=f (x +4),所以函数的周期为4.故f (log 220)=f (log 220-4)=⎪⎭⎫ ⎝⎛45log 2f =⎪⎭⎫ ⎝⎛45log --2f =⎪⎭⎫ ⎝⎛54log --2f =⎪⎭⎫ ⎝⎛+-5154log 22=⎪⎭⎫⎝⎛+-5154=-1.故选C.9.(2020·成都八中月考)设函数f (x )=ln(1+|x |)-11+x 2,则使f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎪⎭⎫⎝⎛131,B.⎪⎭⎫ ⎝⎛∞31-,∪(1,+∞)C.⎪⎭⎫ ⎝⎛3131,D.⎪⎭⎫ ⎝⎛∞31-,∪⎪⎭⎫ ⎝⎛∞+,31 【解析】 由题意知f (-x )=f (x ),所以函数f (x )是偶函数,当x ≥0时,易得函数f (x )=ln(1+x )-11+x 2是增函数,所以不等式f (x )>f (2x -1)等价于|2x -1|<|x |,解得13<x <1,则x 的取值范围是⎪⎭⎫⎝⎛131, 10.(2020·福建龙岩期末)设函数f (x )是定义在R 上的奇函数,满足f (x +1)=-f (x -1),若f (-1)>1,f (5)=a 2-2a -4,则实数a 的取值范围是( ) A .(-1,3) B .(-∞,-1)∪(3,+∞) C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】:由f (x +1)=-f (x -1),可得f (x +2)=-f (x ),则f (x +4)=f (x ),故函数f (x )的周期为4,则f (5)=f (1)=a 2-2a -4,又因为f (x )是定义在R 上的奇函数,f (-1)>1,所以f (1)<-1,所以a 2-2a -4<-1,解得-1<a <3,故答案为A.二、填空题1.已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (17)= ,f (20)= . 【答案】:1 -13【解析】: 因为f (x +2)=-1f (x ), 所以f (x +4)=-1f (x +2)=f (x ),所以函数y =f (x )的周期T =4. f (17)=f (4×4+1)=f (1)=1.f (20)=f (4×4+4)=f (4)=f (2+2)=-1f (2)=-12×2-1=-13.2.(2020·晋中模拟)已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (2 023)=__________. 【答案】 2【解析】因为f (x +6)=f (x )+f (3),令x =-3,f (3)=f (-3)+f (3)=-f (3)+f (3)=0,所以f (x +6)=f (x )+0=f (x ),所以T =6,f (2 023)=f (337×6+1)=f (1)=2.3.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于 . 【答案】:3【解析】:f (-1)+g (1)=2,即-f (1)+g (1)=2①, f (1)+g (-1)=4,即f (1)+g (1)=4②, 由①②得,2g (1)=6,即g (1)=3.4.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g (f (-8))= .【答案】:-1【解析】:因为f (x )是定义在R 上的奇函数, 所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.5.设函数f (x )是定义在R 上周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则⎪⎭⎫⎝⎛23f = .【答案】:32【解析】:依题意得,f (2+x )=f (x ),f (-x )=f (x ),则⎪⎭⎫⎝⎛23f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21f =12+1=32.6.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=x⎪⎭⎫⎝⎛21,则f (1),g (0),g (-1)之间的大小关系是 . 【答案】:f (1)>g (0)>g (-1)【解析】:在f (x )-g (x )=x⎪⎭⎫ ⎝⎛21中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x.联立方程组解得f (x )=2-x -2x2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).7.(2019·常德模拟)设f (x )是偶函数,且当x >0时,f (x )是单调函数,则满足f (2x )=⎪⎭⎫⎝⎛++41x x f 的所有x 之和为______。
高三数学一轮复习 函数的奇偶性和周期性教案
城东蜊市阳光实验学校仲尼中学高三数学一轮复习教案:函数的奇偶性和周期性1教材分析:函数的奇偶性、周期性是函数的一个重要的性质,为高考中的必考知识点;常用函数的概念、图像、单调性、周期性、对称性等综合考核。
学情分析:大多数学生理解函数的奇偶性、周期性的概念,但对判断函数奇偶性的判断和应用,对函数的周期的求法还没有掌握。
教学目的:结合详细函数,理解函数奇偶性和周期性的含义;会运用函数图像判断函数奇偶性和周期,利用图像研究函数的奇偶性和周期。
教学重点、难点:函数奇偶性和周期的判断,结合图像解决函数的奇偶性和周期性问题。
教学流程:一、回忆上节课内容〔问答式〕C1.奇偶函数的判断根本步骤:〔1〕先求定义域,定义域不对称那么函数为非奇非偶函数;〔2〕定义域对称那么利用定义判断函数奇偶性。
C2.奇偶函数的图像特征:奇函数图像关于原点〔0,0〕对称;偶函数关于y轴对称。
二、函数的周期C1.周期的概念对于函数f(x),假设存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)叫做周期函数,非零常数T叫f(x)的周期,假设所以的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)最小正周期。
C 判断:最小正周期一样的两个函数的和,其最小正周期是不变。
答:错,不一定不变2.周期函数的性质C(1)周期函数不一定有最小正周期,假设T≠0是f(x)的周期,那么kT(k∈Z,k≠0)也是的周期,周期函数的定义域无上、下届。
〔2〕如何判断函数的周期性:⑴定义;⑵图象;⑶利用以下补充性质:设a>0,C-①函数y=f(x),x∈R,假设f(x+a)=f(x-a),那么函数的周期为2a 。
B-②函数y=f(x),x∈R,假设f(x+a)=-f(x),那么函数的周期为2a 。
B-③函数y=f(x),x∈R,假设,那么函数的周期为2a 。
B-④函数f(x)时关于直线x=a 与x=b 对称,那么函数f(x)的周期为||2a b- 理解证明过程:证明:由得: ||2a b T -=∴ B 特例:假设函数f(x)是偶函数,其图象关于直线x=a 对称,那么其周期为T=2a 。
高考数学一轮复习函数的奇偶性对称性与周期性课件
(2)定义域关于原点对称是函数具有奇偶性的一个必要条件.
()
(3)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.
()
(4)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称. ( )
(5)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.( )
和f(-1),所得出结果一定不可能的是
()
A.4和6 B.3和1
C.2和4
D.1和2
【解析】选D.因为f(x)=asin x+bx+c,所以f(1)+f(-1)=2c,又因为c∈Z,所以
f(1)与f(-1)之和应为偶数.
A.f(x)=x-1
B.f(x)=x2+x
C.f(x)=2x-2-x
D.f(x)=2x+2-x
【解析】选D.D中,f(-x)=2-x+2x=f(x),所以f(x)为偶函数.其余A、B、C选项均不
满足f(-x)=f(x).
2.(必修1P49练习AT1改编)下列函数中为偶函数的是
()
A.y=x2sin x
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),则T=2a(a>0).
(2)若f(x+a)=
f
1
x
,则T=2a(a>0).
(3)若f(x+a)=
f
1
x
,则T=2a(a>0).
【知识点辨析】
(正确的打“√”,错误的打“×”)
(1)偶函数图象不一定过原点,奇函数的图象一定过原点. ( )
图象特点 关于_y_轴__对称
函数的奇偶性、周期性与对称性+课件-2025届高三数学一轮复习
常用结论
函数周期性的常用结论
设函数 y = f ( x ), x ∈R, a >0, a ≠ b .
(1)若 f ( x + a )=- f ( x ),则2 a 是函数 f ( x )的周期;
1
(2)若 f ( x + a )=±
,则2 a 是函数 f ( x )的周期;
()
(3)若 f ( x + a )= f ( x + b ),则| a - b |是函数 f ( x )的周期.
于直线 x = a 对称.
(2)若函数 y = f ( x + b )是奇函数,则 f ( x + b )+ f (- x + b )=0,函数 y = f ( x )的图
象关于点( b ,0)中心对称.
2. 函数的周期性
(1)周期函数
一般地,设函数 f ( x )的定义域为 D ,如果存在一个非零常数 T ,使得对每一个 x ∈
∈[4,6)时, f ( x )= x 2-12 x +32.
, )
2
2
+
2
对称.
对称.
(1)奇、偶函数的图象平移之后对应的函数不一定有奇偶性,但其图象一定有
对称性.(2)注意区分抽象函数的周期性与对称性的表示,周期性的表示中,括号内 x
的符号相同,对称性的表示中,括号内 x 的符号相反.
常用结论
函数 f ( x )图象的对称性与周期的关系
(1)若函数 f ( x )的图象关于直线 x = a 与直线 x = b 对称,则函数 f ( x )的周期为2| b -
0 .
(2)若函数在关于原点对
称的区间上单
称的区间上有最值,则
调性⑤ 相同 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考原题赏析
一,学习目标:
1、理解函数奇偶性和周期性的概念,并会判断函数的奇偶性和 周期性;
2、掌握函数的奇偶性和周期性的图象特征,并能运用奇函数和 偶函数的图象的对称性解决有关函数的问题。
要点梳理
要点梳理
基ห้องสมุดไป่ตู้回顾
基础回顾
典例精析 题型一:函数奇偶性的判断
典例精析
解:
解:
解:
典例精析
题型二:函数的单调性与奇偶性
解题反思: 对于抽象函数单调性和奇偶性的判断一般要紧扣定义,
典例精析
题型三:函数的奇偶性与周期性
典例精析
四、巩固与拓展(微视频链接)