函数图像变换(整理)

合集下载

函数的图像变换

函数的图像变换

=e-x-1.
答案 D
基础诊断
考点突破
课堂总结
考点一 作函数的图像 【例 1】 作出下列函数的图像:
1|x| (1)y=2 ;(2)y=|log2(x+1)|;
2x-1 (3)y= ; (4)y=x2-2|x|-1. x-1
基础诊断
考点突破
课堂总结

(1)先作出
1x y=2 的图像,保留
C.向左平移3个单位
B.向右平移6个单位
D.向右平移3个单位
基础诊断
考点突破
课堂总结
考点三:讨论函数图像的变换过程 练习:
1 3 x 7 讨论函数 y 的图象与的 y x x 2 图象的关系。
基础诊断
考点突破
课堂总结
函数 f ( x) 的图象无论经过平移还是沿直线翻折后 仍不能与 (A)
基础诊断 考点突破 课堂总结
1 1 (3)∵y=2+ ,故函数图像可由 y=x图像向右平移 1 个单 x -1 位,再向上平移 2 个单位即得,如图③.
2 x -2x-1,x≥0, (4)∵y= 2 且函数为偶函数,先用描点法 x +2x-1,x<0,
作出[0,+∞)上的图像,再根据对称性作出(-∞,0)上的 图像,得图像如图④.
基础诊断
考点突破
课堂总结
【例2】 (1)(2017· 安徽“江南十校”联考)函数y=log2(|x|+1)的
图像大致是(
)
基础诊断
考点突破
课堂总结
考点三:讨论函数图像的变换过程 例3:
函数 f (2 x 3) 的图象,可由 f (2 x 3) 的图
象经过下述变换得到( )
A.向左平移6个单位

函数图象变换和零点

函数图象变换和零点

函数图象变换和零点一、函数图像1、平移变换Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y =f (x )h 左移→y =f (x +h); 2)y =f (x ) h右移→y =f (x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y =f (x ) h 上移→y =f (x )+h ; 2)y =f (x ) h下移→y =f (x )-h 。

2、对称变换Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;y =f (x ) 轴y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y =f (x ) 轴x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y =f (x ) 原点→y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。

y =f (x ) xy =→直线x =f (y )Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y =f (x )ax =→直线y =f (2a -x )。

3、翻折变换Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到4、伸缩变换Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )ay ⨯→y =af (x )Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到。

初中数学专题复习(函数图像变换)

初中数学专题复习(函数图像变换)

初中数学专题复习(函数图像变换)一.一次函数的图像变换1.(2020•宿迁)如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.B.C.D.解:作QM⊥x轴于点M,Q′N⊥x轴于N,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N在△PQM和△Q′PN中,∴△PQM≌△Q′PN(AAS),∴PN=QM,Q′N=PM,设Q(m,﹣),∴PM=|m﹣1|,QM=|﹣m+2|,∴ON=|3﹣m|,∴Q′(3﹣m,1﹣m),∴OQ′2=(3﹣m)2+(1﹣m)2=m2﹣5m+10=(m﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′的最小值为,当m=2时,OQ′2有最小值为5,故选:B.2.(2020•湖北)如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a 于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=﹣x上,∴1=﹣x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=22n,∴P2020的横坐标为2=21010,故答案为:21010.3.(2020•锦州)如图,过直线l:y=上的点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴.交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3;…按照此方法继续作下去,若OB1=1,则线段A n A n﹣1的长度为3×22n﹣5.(结果用含正整数n的代数式表示)解:∵直线l:y=x,∴直线l与x轴夹角为60°,∵B1为l上一点,且OB1=1,∴OA1=cos60°•OB1=OB1=,OB1=cos60°•OA2,∴OA2=2OB1=2,∴A2A1=2﹣=∵OA2=2,∴OB2=2OA2=4,∴OA3=2OB2=8,∴A3A2=8﹣2=6,…A n A n﹣1=3×22n﹣5故答案为3×22n﹣5.4.(2020•南宁)如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=﹣2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)s关于t的函数解析式为s=,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.解:(1)如图1,连接AG,当t=2时,A(﹣2,2),设B(x,x+1),在y=x+1中,当x=0时,y=1,∴G(0,1),∵AB⊥l1,∴∠ABG=90°,∴AB2+BG2=AG2,即(x+2)2+(x+1﹣2)2+x2+(x+1﹣1)2=(﹣2)2+(2﹣1)2,解得:x1=0(舍),x2=﹣,∴B(﹣,);(2)如图2可知:当t=7时,s=4,把(7,4)代入s=中得:+7b﹣=4,解得:b=﹣1,如图3,过B作BH∥y轴,交AC于H,由(1)知:当t=2时,A(﹣2,2),B(﹣,),∵C(0,3),设AC的解析式为:y=kx+n,则,解得,∴AC的解析式为:y=x+3,∴H(﹣,),∴BH=﹣=,∴s===,把(2,)代入s=a(t+1)(t﹣5)得:a(2+1)(2﹣5)=,解得:a=﹣;(3)存在,设B(x,x+1),分两种情况:①当∠CAB=90°时,如图4,∵AB⊥l1,∴AC∥l1,∵l1:y=x+1,C(0,3),∴AC:y=x+3,∴A(﹣2,1),∵D(﹣2,﹣1),在Rt△ABD中,AB2+BD2=AD2,即(x+2)2+(x+1﹣1)2+(x+2)2+(x+1+1)2=22,解得:x1=﹣1,x2=﹣2(舍),∴B(﹣1,0),即B在x轴上,∴AB==,AC==2,∴S△ABC===2;②当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵A(﹣2,t),D(﹣2,﹣1),∴(x+2)2+(x+1﹣t)2=(x+2)2+(x+1+1)2,(x+1﹣t)2=(x+2)2,x+1﹣t=x+2或x+1﹣t=﹣x﹣2,解得:t=﹣1(舍)或t=2x+3,Rt△ACB中,AC2+BC2=AB2,即(﹣2)2+(t﹣3)2+x2+(x+1﹣3)2=(x+2)2+(x+1﹣t)2,把t=2x+3代入得:x2﹣3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(﹣2,9),B(3,4),∴AC==2,BC==,∴S△ABC===10;当x=0时,如图6,此时,A(﹣2,3),AC=2,BC=2,∴S△ABC===2.5.(2020•哈尔滨)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,∴SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).二.反比例函数的图像变换6.(2020•赤峰)如图,点B在反比例函数y=(x>0)的图象上,点C在反比例函数y=﹣(x>0)的图象上,且BC∥y轴,AC⊥BC,垂足为点C,交y轴于点A.则△ABC的面积为()A.3B.4C.5D.6解:过B点作BH⊥y轴于H点,BC交x轴于D,如图,∵BC∥y轴,AC⊥BC,∴四边形ACDO和四边形ODBH都是矩形,=|﹣2|=2,∴S矩形OACDS矩形ODBH=|6|=6,=2+6=8,∴S矩形ACBH∴△ABC的面积=S矩形ACBH=4.故选:B.7.(2020•朝阳)如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=(x<0)的图象上,则k的值为()A.﹣12B.﹣42C.42D.﹣21解:∵当x=0时,y=0+4=4,∴A(0,4),∴OA=4;∵当y=0时,,∴x=﹣3,∴B(﹣3,0),∴OB=3;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE=∠BAO.在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴BE=AO=4,CE=OB=3,∴OE=3+4=7,∴C点坐标为(﹣7,3),∵点C在反比例函数的图象上,∴k=﹣7×3=﹣21.故选:D.8.(2020•西宁)如图,一次函数y=﹣x+1的图象与两坐标轴分别交于A,B两点,与反比例函数的图象交于点C (﹣2,m).(1)求反比例函数的解析式;(2)若点P在y轴正半轴上,且与点B,C构成以BC为腰的等腰三角形,请直接写出所有符合条件的P点坐标.解:(1)∵点C(﹣2,m)在一次函数y=﹣x+1的图象上,把C点坐标代入y=﹣x+1,得m=﹣(﹣2)+1=3,∴点C的坐标是(﹣2,3),设反比例函数的解析式为,把点C的坐标(﹣2,3)代入得,,解得k=﹣6,∴反比例函数的解析式为;(2)在直线y=﹣x+1中,令x=0,则y=1,∴B(0,1),由(1)知,C(﹣2,3),∴BC==2,当BC=BP时,BP=2,∴OP=2+1,∴P(0,2+1),当BC=PC时,点C在BP的垂直平分线,∴P(0,5),即满足条件的点P的坐标为(0,5)或(0,).9.(2020•湖北)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为y=;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P的坐标.解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,PA﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).10.(2020•济南)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.解:(1)∵B(2,2),则BC=2,而BD=,∴CD=2﹣=,故点D(,2),将点D的坐标代入反比例函数表达式得:2=,解得k=3,故反比例函数表达式为y=,当x=2时,y=,故点E(2,);(2)由(1)知,D(,2),点E(2,),点B(2,2),则BD=,BE=,故==,===,∴DE∥AC;(3)①当点F在点C的下方时,当点G在点F的右方时,如下图,过点F作FH⊥y轴于点H,∵四边形BCFG为菱形,则BC=CF=FG=BG=2,在Rt△OAC中,OA=BC=2,OC=AB=2,则tan∠OCA===,故∠OCA=30°,则FH=FC=1,CH=CF•cos∠OCA=2×=,故点F(1,),则点G(3,),当x=3时,y==,故点G在反比例函数图象上;②当点F在点C的上方时,同理可得,点G(1,3),同理可得,点G在反比例函数图象上;综上,点G的坐标为(3,)或(1,3)都在反比例函数图象上.三.二次函数的图像变换11.(2020•河北)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.12.(2020•贵港)如图,对于抛物线y1=﹣x2+x+1,y2=﹣x2+2x+1,y3=﹣x2+3x+1,给出下列结论:①这三条抛物线都经过点C(0,1);②抛物线y3的对称轴可由抛物线y1的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线y=1的交点中,相邻两点之间的距离相等.其中正确结论的序号是①②④.解:①当x=0时,分别代入抛物线y1,y2,y3,即可得y1=y2=y3=1;①正确;②y1=﹣x2+x+1,y3=﹣x2+3x+1的对称轴分别为直线x=,x=,由x=向右平移1个单位得到x=,②正确;③y1=﹣x2+x+1=﹣(x﹣)2+,顶点坐标(,),y2=﹣x2+2x+1=﹣(x﹣1)2+2,顶点坐标为(1,2);y3=﹣x2+3x+1=﹣(x﹣)2+,顶点坐标为(,),∴顶点不在同一条直线上,③错误;④当y=1时,则﹣x2+x+1=1,∴x=0或x=1;﹣x2+2x+1=1,∴x=0或x=2;﹣x2+3x+1=1,∴x=0或x=3;∴相邻两点之间的距离都是1,④正确;故答案为①②④.13.(2020•巴中)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B左侧),交y轴正半轴于点C,M为BC中点,点P为抛物线上一动点,已知点A坐标(﹣1,0),且OB=2OC=4OA.(1)求抛物线的解析式;(2)当△PCM≌△POM时,求PM的长;=5S△BCP时,求点P的坐标.(3)当4S△ABC解:(1)∵A(﹣1,0),∴OA=1,又∵OB=2OC=4OA,∴OC=2,OB=4,∴B(4,0),C(0,2),∵点B,点C,点A在抛物线上,∴解得:,、∴抛物线解析式为:;(2)连接OM,∵M为BC中点,∴M(2,1),∵△PCM≌△POM,∴CM=OM,PC=PO,∴MP是OC的垂直平分线,∴PM∥x轴,∴点P的纵坐标为1,当y=1时,代入,解得:,∴或,∴PM=或;(3)∵S△ABC=×AB×OC=5,4S△ABC=5S△BCP,∴S△BCP=4,∵B(4,0),C(0,2),∴直线BC解析式为y=﹣x+2,当点P在BC上方时,如图2,过点P作PE⊥x轴,交BC于点E,设点P(p,﹣p2+p+2),则点E(p,﹣p+2),∴PE=﹣p2+2p,∴4=×4×(﹣p2+2p),∴p=2,∴点P(2,3);当点P在BC下方时,如图3,过点P作PE⊥x轴,交BC于点E,∴PE=p2﹣2p,∴4=×4×(p2﹣2p),∴p=2±2,∴点P或;综上,点P的坐标为:(2,3)或或.14.(2019•衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为(﹣1010,10102).解:∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得或,∴A4(3,9),∴A5(﹣3,9)…,∴A2019(﹣1010,10102),故答案为(﹣1010,10102).15.(2020•西宁)如图1,一次函数的图象与两坐标轴分别交于A,B两点,且B点坐标为(0,4),以点A为顶点的抛物线解析式为y=﹣(x+2)2.(1)求一次函数的解析式;(2)如图2,将抛物线的顶点沿线段AB平移,此时抛物线顶点记为C,与y轴交点记为D,当点C的横坐标为﹣1时,求抛物线的解析式及D点的坐标;(3)在(2)的条件下,线段AB上是否存在点P,使以点B,D,P为顶点的三角形与△AOB相似,若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.解:(1)∵抛物线解析式为y=﹣(x+2)2,∴点A的坐标为(﹣2,0),设一次函数解析式为y=kx+b(k≠0),把A(﹣2,0),B(0,4)代入y=kx+b,得,解得,∴一次函数解析式为y=2x+4;(2)∵点C在直线y=2x+4上,且点C的横坐标为﹣1,∴y=2×(﹣1)+4=2,∴点C坐标为(﹣1,2),设平移后的抛物线解析式为y=a(x﹣h)2+k(a≠0),∵a=﹣1,顶点坐标为C(﹣1,2),∴抛物线的解析式是y=﹣(x+1)2+2,∵抛物线与y轴的交点为D,∴令x=0,得y=1,∴点D坐标为(0,1);(3)存在,①过点D作P1D∥OA交AB于点P1,∴△BDP1∽△BOA,∴P1点的纵坐标为1,代入一次函数y=2x+4,得,∴P1的坐标为(,1);②过点D作P2D⊥AB于点P2,∴∠BP2D=∠AOB=90°,又∵∠DBP2=∠ABO(公共角),∴△BP2D∽△BOA,∴,∵直线y=2x+4与x轴的交点A(﹣2,0),B(0,4),又∵D(0,1),∴OA=2,OB=4,BD=3,∴,∴,∴,过P2作P2M⊥y轴于点M,设P2(a,2a+4),则P2M=|a|=﹣a,BM=4﹣(2a+4)=﹣2a,在Rt△BP2M中,∴,解得(舍去),∴,∴,∴P2的坐标为(,),综上所述:点P的坐标为:(,1)或(,).。

一次函数图象的变换

一次函数图象的变换

一次函数图象的变换(一)——平移求一次函数图像平移后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住点的坐标变化解决问题。

知识点:“已知一个点的坐标和直线的斜率 k,我们就可以写出这条直线的解析式”。

我们知道:y =kx+b经过点(0,b),而(0,b)向上平移m个单位得到点(0,b+m),向下平移m个单位得到点(0,b-m),向左平移m个单位得到点(0-m,b),向右平移m个单位得到点(0+m,b ),直线y =kx+b平移后斜率不变仍然是k,设出平移后的解析式为y =kx+ h,把平移后得到的点的坐标带入这个解析式求出h,就可以求出平移后直线的解析式。

下面我们通过例题的讲解来反馈知识的应用:例1:把直线y=2x-1向右平移1个单位,求平移后直线的解析式。

分析:y=2x-1经过点(0,-1),向右平移1个单位得到(1,-1)。

平移后斜率不变,即k=2,所以可以设出平移后的解析式为y =2x+ h,再将点(1,-1)代入求出解析式中的h,就可以求出平移后直线的解析式。

解:设平移后的直线解析式为y=2x+h点(0,-1)在y=2x-1上,向右平移1个单位得到(1,-1),将点(1,-1)代入y=2x+h中得:-1=2×1+hh=-3所以平移后直线的解析式为y=2x-3例2:把直线y=2x-1向上平移3个单位,再向右平移1个单位,求平移后直线的解析式。

分析:点(0,-1)在直线y=2x-1上,当直线向上平移3个单位,点变为(0,-1+3),即为(0,2);再向右平移1个单位后,点(0,2)变为点(0+1,2),即点变为(1,2)。

设出平移后的解析式为y =kx+h,根据斜率k =2不变,以及点(1,2)就可以求出h,从而就可以求出平移后直线的解析式。

解:设平移后的直线解析式为y=2x+h.易知点(0,-1)在直线y=2x-1上,则此点按要求平移后的点为:平移后得到的点(1,2)在直线y=2x+h 上则:2=2×1+hh=0所以平移后的直线解析式为y=2x总结:求直线平移后的解析式时,只要找出一个点坐标,求出按要求平移后此点的坐标变为多少,再根据斜率不变和变化后的点来求解析式。

三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。

②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。

y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。

③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。

一篇文章掌握高中函数图像,不看别后悔!

一篇文章掌握高中函数图像,不看别后悔!

函数图像是必考点,对于研究函数的单调性、奇偶性以及最值(值域)、零点有举足轻重的作用,但是很多同学看到眼花缭乱的函数解析式,就已经晕头转向了。

今天给大家整理了高中函数相关资料,希望能帮助高中生数学得高分!下面是基本初等函数的图像以及函数变换的规律,希望大家能学明白!一、基本初等函数的图像1.一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减。

2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。

3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。

4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图:不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。

5.对数函数当底数不同时,对数函数的图像是这样变换的:6.幂函数y=x^a性质:先看第一象限,即x>0时,当a>1时,函数越增越快;当0<a<1时,函数越增越慢;当a<0时,函数单调递减;然后当x<0时,根据函数的定义域与奇偶性判断函数图像即可。

7.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。

二、函数图像的变换注意:对于函数图像的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要根据上面的规则,判断好顺序,否则顺序错了,可能就没办法经过变换得到了!例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx 通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个2,既然有3种变换,那么顺序如何呢?牢记住一点:针对x 轴上的变换,那就一定要看x这个符号有啥变化。

高一数学函数的图像变换 人教版

高一数学函数的图像变换 人教版

三、对称变换
1、y=f(x)的图象
关于y轴对称 关于x轴对称
关于原点对称 关于直线y=x对称
y=f(-x)的图象
2、y=f(x)的图象
y=-f(x)的图象
3、y=f(x)的图象
y=-f(-x)的图象
4、y=f(x)的图象
y=f-1(x)的图象
练习:
y=2x+2-2 得函数_________的图象。
下移2个单位
y=2x
上移2个单位
3、函数y=a|x|-1(a>0且a≠1)的图象必过点( C ) 1 A. (1,0) B. (0,1) C. (±1,1) D. (0, ) a 分析:y=ax y=ax-1 y=a|x|-1
4、函数y=a|x|-1(a>0且a≠1)的图象恒在y=1的上 (-∞,-1) ∪(1,+∞) 方,则x的取值范围是________ 分析:y=ax y=ax-1 y=a|x|-1
1、函数y=2x的图象分别向左、向下平移2个单位
y=2x
左移2个单位
y=2x+2
下移2个单位
y=2x+2-2
x-2+2 x y=2 位得函数y=2 的图象,则f(x)=___________
2、将函数y=f(x)的图象分别向左、向下平移2个单
y=f(x)
左移2个单位
y=2x-2+2 右移2个单位
y=2x+2
一、平移变换
1、左右平移:
y=f(x)的图象 a>0时,向左平移 a 个单位
a<0时,向右平移 a 个单位
x+1
y=f(x+a)的图象
例1:作出函数y=2
与y=2

函数图像的变换(周期,平移,对称)

函数图像的变换(周期,平移,对称)

函数的变换(平移,对称,翻折,周期)【自主梳理】1.() (0)y f x a a =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x a a =->的图象可由()y f x =的图象向 平移单位而得到. 2.() (0)y f x b b =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x b b =->的图象可由()y f x =的图象向 平移单位而得到. 3.() (0)y Af x A =>的图象可由()y f x =图象上所有点的纵坐标变为 ,不变而得到.4.() (0)y f ax a =>的图象可由()y f x =图象上所有点的横坐标变为 ,不变而得到. 【自我检测】1.若()f x 的图象过(0,1)点,则(1)f x +的图象过点 . 2.函数2xy =的图象向右平移2个单位所得函数解析式为 . 3.将函数lg()y x =-的图象 可得函数lg(1)y x =-+的图象.4.函数xy x a =-+的图象的对称中心为(1,1)--,则a = . 5.将函数1cos 2y x =图象的横坐标缩短到原来的21倍,纵坐标扩大为原来的2倍,所得函数解析式为 . 6.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点向左平移 个单位长度,再向 平移个单位长度. 二、课堂活动: 【例1】填空题:(1)设函数()y f x =图象进行平移变换得到曲线C ,这时()y f x =图象上一点(2,1)A -变为曲线C 上点(3,3)A '-,则曲线C 的函数解析式为.(2)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是.(3)要得到函数sin(2)3y x π=-的图象,只需将函数cos2y x =的图象. (4)若函数()2sin y x θ=+的图象按向量(,2)6π平移后,它的一条对称轴是4x π=,则θ的一个可能的值是.【例2】作出下列函数的图象.(1)12x y -= (2)211x y x +=-【例3】(1)函数()24log 12y x x =-+的图象经过怎样的变换可得到函数2log y x =的图象?(2)函数21cos cos 12y x x x =+⋅+的图象可由sin y x =的图象经过怎样的平移和伸缩变换得到?【自主梳理】1.(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于对称;(3)函数()y f x =--与()y f x =的图像关于 对称. 2.奇函数的图像关于对称,偶函数图像关于对称.3.若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则()y f x =的图像关于直线 对称. 4.对0a >且1a ≠,函数xy a =和函数log a y x =的图象关于直线对称.5.要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以为轴翻折到x 轴上方,其余部分不变.6.要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于的对称性,作出(),0x ∈-∞时的图像.3.函数y e =-的图象与函数 的图象关于坐标原点对称.4.将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 .5.设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6.若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、课堂活动:(1(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为.①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是.【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12xy ⎛⎫=- ⎪⎝⎭;(3)2log y x =;(4)21y x =-.【例3】(1)将函数12log y x =的图象沿x 轴向右平移1个单位,得图象C ,图象C '与C 关于原点对称,图象C ''与C '关于直线y x =对称,求C ''对应的函数解析式; (2)已知函数()y f x =的定义域为R ,并且满足(2)(2)f x f x +=-.①证明函数()y f x =的图象关于直线2x =对称;②若()f x 又是偶函数,且[]0,2x ∈时,()21f x x =-,求[]4,0x ∈-时()f x 的表达式.一.周期函数的定义:设函数y=f(x)的定义域为D ,若存在常数T ≠0,使得对一切x ∈D ,且x+T ∈D 时都有f(x+T)=f(x),则称y=f(x)为D 上的周期函数,非零常数T 叫这个函数的周期。

高考复习函数图象及其变换

高考复习函数图象及其变换

高考复习函数图象及其变换.几种函数的图像基本初等函数及图象(大致图像)函数图像一次函数y=kxb二次函数y=axbxc指数函数y=ax对数函数y=logaxy =f(x+h)y=f(mx+h)f(x)+kf(ωx)Af(x)②上下平移:y=eqo(――→,sup(k>时上移k个单位),sdo(k<时下移|k|个单位))f(x)y=()对称变换①y=f(x)与y=-f(x)的图象关于对称②y=f(x)与y=f(-x)的图象关于对称③y=f(x)与y=-f(-x)的图象关于对称x轴y轴原点④y=f(x)与y=f-(x)的图象关于直线对称⑤y=f(x)与y=-f-(-x)的图象关于直线对称⑥y=f(x)与y=f(a-x)的图象关于直线对称.y=xy =-xx=a()翻折变换①作出y=f(x)的图象将图象位于x轴下方的部分以x轴为对称轴翻折到上方其余部分不变得到的图象②作出y=f(x)在y轴上及y轴右边的图象部分并作y轴右边的图象关于y轴对称的图象即得的图象.y=|f(x)|y=f(|x|)()伸缩变换①y=Af(x)(A)的图象可将y=f(x)的图象上所有点的纵坐标变为原来的倍横坐标而得到②y=f(ax)(a)的图象可将y=f(x)的图象上所有点的横坐标变为原来的倍纵坐标而得到A不变不变【答案】B【解析】.f(x)=|x-|的图象为如下图所示中的().为了得到函数y=x--的图象只需把函数y=x的图象上所有的点()A.向右平移个单位长度再向下平移个单位长度B.向左平移个单位长度再向下平移个单位长度C.向右平移个单位长度再向上平移个单位长度D.向左平移个单位长度再向上平移个单位长度【解析】由y=x得到y=x--需用x-换x用y+换y即eqblc{rc(avsalco(x′=x+,y′=y-))∴按平移向量(-)平移即向右平移个单位向下平移个单位.【答案】A.函数f(x)=ax-b的图象如右图所示其中a、b 为常数则下列结论正确的是()A.abB.abC.abD.ab【解析】因图象是递减的故a又图象是将y =ax的图象向左平移了故b∴选D【答案】D设奇函数f(x)的定义域为,.若当x∈,时f(x)的图像如图所示则不等式f(x)的解集是【解析】由奇函数的图象关于原点对称画出x∈,的图象可知不等式f(x)的解集是(,)∪(,.【答案】(,)∪(,作出下列各个函数的图像:()y=-x()y=logeqf(,)(x+)()y=|logeqf(,)(-x)|()作函数y=x的图象关于x轴对称的图象得到y=-x的图象再将图象向上平移个单位可得y=-x的图象.如图()因为y=logeqf(,)(x+)=-log(x+)=-log(x+)-所以可以先将函数y=logx的图象向左平移个单位可得y=log(x+)的图象再作图象关于x轴对称的图象得y=-log(x+)的图象最后将图象向下平移个单位得y=-log(x+)-的图象即为y=logeqf(,)(x+)的图象.如图()作y=logeqf(,)x的图象关于y轴对称的图象得y=logeqf(,)(-x)的图象再把x轴下方的部分翻折到x轴上方可得到y=|logeqf(,)(-x)|的图象.如图作函数图象的一般步骤为:()确定函数的定义域.()化简函数解析式.()讨论函数的性质(如函数的单调性、奇偶性、周期性、最值、极限等)以及图象上的特殊点(如最值点、与坐标轴的交点、间断点等)、线(如对称轴、渐近线等).()选择描点法或图象变换法作出相应的函数图象..采用图象变换法时变换后的函数图象要标出特殊的线(如渐近线)和特殊的点以显示图象的主要特征处理这类问题的关键是找出基本函数将函数的解析式分解为只有单一变换的函数链然后依次进行单一变换最终得到所要的函数图象.作出下列函数的图像解作出的图象将的图象向右平移一个单位再向上平移个单位得的图象()作出的图象保留图象中x≥的部分加上的图象中x的部分关于y轴的对称部分即得的图象其图象依次如下:()若函数解析式中含绝对值可先通过讨论去绝对值再分段作图()利用图象变换作图探究提高作出下列函数的大致图像:()y=eqf(x,|x|)()y=eqf(x+,x-)()y =|logx-|()y=|x-|【解析】()y=eqblc{rc(avsalco(x(x>),-x(x<)))利用二次函数的图象作出其图象如图①()先作出y=logx的图象再将其图象向下平移一个单位保留x轴上及x轴上方的部分将x轴下方的图象翻折到x轴上方即得y=|logx|的图象如图③()先作出y=x的图象再将其图象在y轴左边的部分去掉并作出y轴右边的图象关于y轴对称的图象即得y=|x|的图象再将y=|x|的图象向右平移一个单位即得y=|x|的图象如图④eqx(由图象求解析式)如图所示函数的图象由两条射线及抛物线的一部分组成求函数解析式.【思路点拨】分段求函数解析式再合成分段函数形式本题分别设为一次函数和二次函数形式应抓住特殊点(,)(,)(,)(,)和(,).设左侧射线对应的解析式为y=kx+b(x≤)∵点(,)(,)在此射线上.∴eqblc{rc(avsalco(k+b=,b=))⇒eqblc{rc(avsalco(k=-,b=))∴左侧射线对应的解析式为y =-x+(x≤).同理当x≥时右侧射线对应的解析式为y=x-(x≥).设抛物线对应的解析式为y=a(x-)+(≤x≤a<).将点(,)代入得a+=∴a=-∴抛物线对应的解析式为y=-x+x-(≤x≤)综上所述所求函数解析式为y=eqblc{rc(avsalco(-x+(x<),-x+x-(≤x≤),x -(x>)))由函数图象求其解析式要注意观察各段函数所属的基本函数模型常用待定系数法抓住特殊点从而确定系数..现有四个函数:()y=x·sinx()y=x·cosx()y=x·|cosx|()y=x·x的图象(部分)如下但顺序被打乱则图象()()()()对应的函数序号安排正确的一组是( )A.()()()()B.()()()()C.()()()()D.()()()()【解析】题图①对应的是偶函数图象对应()题图②对应的函数是非奇非偶函数对应()题图③对应的函数当x>时存在函数值为负数对应()故选C【答案】C 例设ab,函数y=(xa)(xb)的图象可能是()解析当xb时y,xb时y≤故选CC()函数y=的图象大致为()A如图所示液体从一圆锥形漏斗漏入一圆柱形桶中开始时漏斗盛满液体经分钟漏完已知圆柱中液面上升的速度是一个常量H是圆锥形漏斗中液面下落的距离则H与下落时间t(分)的函数关系表示的图象只可能是()Bf(x)=|xx|a与x轴恰有三个交点则a=解析y=|xx|,y=a 则两函数图象恰有三个不同的交点如图所示当a=时满足条件已知函数f(x)=|x-x+|()求函数f(x)的单调区间并指出其增减性()求集合M ={m|使方程f(x)=mx有四个不相等的实根}.【思路点拨】()画出f(x)的图象根据图象写出单调区间.()画出两个函数的图象令两个图象有四个交点得m的范围得集合M【解析】f(x)=eqblc{rc(avsalco((x-)-x∈(-∞∪+∞),-(x-)+x∈()))作出图象如图所示.()递增区间为,∞)递减区间为(∞,.()由图象可知y=f(x)与y=mx图象有四个不同的交点直线y=mx应介于x轴与切线l之间.函数的图象形象地显示了函数的性质为研究数量关系问题提供了“形”的直观性它是探求解题途径、获得问题结果、检验解答是否正确的重要工具也是运用数形结合思想解题的前提.从图象的左右分布分析函数的定义域从图象的上下分布分析函数的值域从图象的最高点、最低点分析函数的最值、极值从图象的对称性分析函数的奇偶性从图象的走向趋势分析函数的单调性、周期性等..已知x是方程xlgx=的根x是方程xx=的根则xx等于()A.B.C.D.【答案】D【解析】(分)已知函数f(x)=eqf(ax+,bx +c)(a>b>c∈R)是奇函数当x>时f(x)有最小值其中b∈N*且f()<eqf(,)()试求函数f(x)的解析式()问函数f(x)图象上是否存在关于点(,)对称的两点?若存在求出点的坐标若不存在说明理由.【思路点拨】()根据下列条件:①f(x)为奇函数②当x>时f(x)有最小值③b∈N*且f()<eqf(,)可求abc的值从而可以确定函数f(x)的解析式.()可先假设存在然后根据对称性来解决.【规范解答】()∵f(x)是奇函数∴f(-)=-f()∴eqf(a+,-b+c)=-eqf(a+,b+c)∴c=-c∴c=此时f(x)=eqf(ax+,bx)显然是奇函数分∵a>b>x>∴f(x)=eqf(a,b)x+eqf(,bx)≥eqr(f(a,b))当且仅当x=eqr(f(,a))时等号成立.于是eqr(f(a,b))=∴a =b分由f()<eqf(,)得eqf(a+,b)<eqf(,)即eqf(b+,b)<eqf(,)∴b-b+<解得eqf(,)<b<又b∈N*∴b=∴a=∴f(x)=x+eqf(,x)分()设存在一点(xy)在y=f(x)的图象上并且关于点(,)的对称点(-x-y)也在y=f(x)的图象上.则eqf(xoal(,)+,x)=yeqf((-x)+,-x)=-y分消去y 得xeqoal(,)-x-=∴x=±eqr()∴y=f(x)的图象上存在两点(+eqr()eqr())(-eqr()-eqr())关于点(,)对称分函数的奇偶性、周期性与函数图象的对称性常会放置在一起综合考查.函数f(x)上的某点A(xy)关于点(ab)的对称点为A′(a-x,b-y)利用此关系可求点的坐标或证明函数关于某点的对称问题..要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数等各种基本初等函数的图象..掌握函数作图的两种基本方法:()描点法()图象变换法包括平移变换、对称变换、伸缩变换.理解对数的概念及其运算性质了解对数换底公式能将一般对数转化成自然对数或常用对数了解对数的概念理解对数函数的性质会画对数函数的图象了解指数函数与对数函数互为反函数..对数函数的图象与性质若aa≠xyn∈N则下列各式:①(logax)n=nlogax②(logax)n=logaxn③logax=-logaeqf(,x)④eqr(n,logax)=eqf(,n)logax⑤eqf(logax,n)=logaeqr(n,x)⑥logaeqf(x-y,x+y)=-logaeqf(x+y,x-y)其中正确的个数有()A.个B.个C.个D.个【解析】只有③⑤⑥正确故选B已知loga=mloga=n则am +n=【解析】因为loga=mloga=n所以am=an=所以am+n=(am)·an =×=计算:(lgeqf(,)-lg)÷-eqf(,)=-【解析】原式=-(lg +lg)×eqf(,)=-lg×=-×=-若函数y=f(x)是函数y=ax(a且a≠)的反函数且f()=则f(x)=logx【解析】因为y=ax的反函数为y =f(x)=logax又f()=loga=所以a=所以f(x)=logx已知函数f(x)=eqf(,r(logf(,)x+))则函数f(x)的定义域是()A.(-eqf(,))B.(-eqf(,)C.(-eqf(,)+∞)D.(+∞)【解析】由logeqf(,)(x+)=logeqf(,)得x+所以-x所以-eqf(,)x所以f(x)的定义域为(-eqf(,))故选A一有关对数及对数函数的运算问题【例】()设函数f(x)=eqblc{rc(avsalco(f(,)xx≥,f x+x))则f(log)=()设a=b=则eqf(,a)+eqf(,b)=()计算:lg(lg+lg)+(lgeqr())+lgeqf(,)+lg+log【解析】()因为log所以f(log)=f(+log)=f(+log)=f(+log)=(eqf(,))+log=(eqf(,))·(eqf(,))log=eqf(,)×eqf(,)=eqf(,)()由a=b=得a=logb=log 再根据换底公式得a=log=eqf(,log)b=log=eqf(,log)所以eqf(,a)+eqf(,b)=log+log=log(×)=()原式=lg(lg+)+(eqr()lg)+lg(eqf(,)×eqf(,))+log=lg·lg+lg+lg-+=lg(lg+lg)+lg+=(lg+lg)+=【点评】对数函数的真数与底数应满足的条件是求解有关对数问题时必须予以重视的另外研究对数函数时尽量化为同底.素材()计算:lg+eqf(,)lg+lg·lg+(lg)=()已知log=a,b=则lg=eqf(a,b+)(用ab表示).【解析】()原式=lg+lg+lg(lg+lg)+(lg)=(lg+lg)+(lg)+lg·lg+(lg)=lg+(lg+lg)=+=【解析】()因为log=a所以a=eqf(lg,lg)lg=eqf(,)alg又b=所以b=log=eqf(lg,lg)=eqf(-lg,lg)=eqf(,lg)-lg=eqf(,b+)所以lg=eqf(a,b+)二对数函数的图象与性质问题【例】已知f(x-)=logaeqf(x,-x)(a且a≠).()求f(x)的解析式并判断f(x)的奇偶性()判断函数的单调性()解关于x的方程f(x)=logaeqf(,x)【分析】先用换元法求解解析式用定义判断奇偶性证明单调性解不等式时注意函数的单调性.【解析】()令x-=t则x=t+所以f(t)=logaeqf(+t,-t)又eqf(x,-x)所以x所以t+即-t故f(x)=logaeqf(+x,-x)(-x).而f(-x)=logaeqf(-x,+x)=loga(eqf(+x,-x))-=-logaeqf(+x,-x)=-f(x)故f(x)是奇函数.()设-xx则-x-x所以eqf(,-x)eqf(,-x)eqf(+x,-x)=-+eqf(,-x)eqf(+x,-x)=-+eqf(,-x)(ⅰ)当a时logaeqf(+x,-x)logaeqf(+x,-x)即f(x)f(x)故f(x)在(-,)上是增函数(ⅱ)当a时logaeqf(+x,-x)logaeqf(+x,-x)即f(x)f(x)故f(x)在(-,)上是减函数.()由()可知logaeqf(+x,-x)=logaeqf(,x)所以eqblc{rc(avsalco(f(+x,-x)=f(,x),-x,x))⇒eqblc{rc(avsalco(x+x-=,x))解得x=eqr()-【点评】解决与对数有关问题首先要看对数函数定义域复合函数y=logaf(x)的单调区间也是y=f(x)的单调区间.研究由对数函数与其他函数的复合函数要以这两点为解题的突破口.素材()已知logeqf(,)alogeqf(,)blogeqf(,)c则a,b,c三个数从小到大的排列是cba ()若函数f(x)=loga(-ax)在(,上是减函数则a的取值范围是(,)【解析】()因为logeqf(,)alogeqf(,)blogeqf(,)c又y=logeqf(,)x是减函数所以abc而y=x为增函数所以abc()因为a且a≠所以t=-ax在(,上为减函数且t所以-a即a又f(x)=loga(-ax)在(,上是减函数所以y=logat 是增函数所以a故a即a的取值范围是(,).三有关对数函数的综合问题【例】(·长沙模拟)设f(x)=logeqf(,)eqf(-ax,x-)为奇函数a为常数.()求a的值()若对于,上的每一个x的值不等式f(x)(eqf(,))x+m 恒成立求实数m的取值范围.【解析】()因为f(x)是奇函数所以f(-x)=-f(x)⇒logeqf(,)eqf(+ax,-x-)=-logeqf(,)eqf(-ax,x-)⇔eqf(+ax,-x-)=eqf(x-,-ax)⇔-ax=-x⇒a=±经检验a=-(a=舍去).()对于,上的每一个x的值不等式f(x)(eqf(,))x+m恒成立⇔f(x)-(eqf(,))xm恒成立.令g(x)=f(x)-(eqf(,))x=logeqf(,)(+eqf(,x-))-(eqf(,))xg(x)在,上是单调递增函数所以mg()=-eqf(,)即m的取值范围是(-∞-eqf(,)).素材已知函数y=g(x)的图象与函数y=ax(a且a ≠)的图象关于直线y=x对称又将y=g(x)的图象向右平移个单位长度所得图象的解析式为y=f(x)且y=f(x)在+∞)上总有f(x)()求f(x)的表达式()求实数a的取值范围.【解析】()由已知y=g(x)与y=ax 互为反函数所以g(x)=logax(a且a≠)所以f(x)=loga(x-).()因为f(x)=loga(x-)在+∞)上总有f(x)即loga(x-)所以当a时ax-在+∞)上恒成立所以a又若a则loga(x-)在+∞)上不可能恒成立.综上可得a 的取值范围是(,).备选例题已知x≤且logx≥eqf(,)求函数f(x)=logeqf(x,)·logeqr()eqf(r(x),)的最大值和最小值.【解析】因为x≤=所以x≤又logx≥eqf(,)所以x≥eqr()故x∈eqr().因为f(x)=logeqf(x,)·logeqr()eqf(r(x),)=(logx-)(logx-)=(logx)-logx+令logx =t因为x∈eqr()所以t∈eqf(,)所以y=t-t+=(t-eqf(,))-eqf(,)当t =eqf(,)时即logx=eqf(,)x=eqr()时f(x)min=-eqf(,)当t=即logx=当x=时f(x)max=。

函数的对称性与函数的图象变换总结

函数的对称性与函数的图象变换总结

解析:作出y=log2(-x),y=x+1的图像知 满足条件的x∈(-1,0).
答案:A
5.指数函数 y=bax 的图像如图所示,则二次函数 y=ax2 +bx 的顶点的横坐标的取值范围是__________.
解析:由图可知函数 y=bax 是减函数,所以 0<ba<1.而二 次函数 y=ax2+bx 的顶点的横坐标为-2ba=-12·ba.所以-12<- 2ba<0,即二次函数 y=ax2+bx 的顶点的横坐标的取值范围为 (-12,0).

f(-1+x)=f(-1-x)
Y
-1-x
-3 -2 -1
-1+x
x
1 2345678
x=-1
轴对称性
y=f(x)图像关于直线x=a对称
f(x)= f(2a-x)
f(a-x)=f(a+x)
xa
特例:a=0
y=f(x)图像关于直线x=0对称
f(x)= f(-x)
思考? 假设y=f(x)满足f(a-x)=f(b+x),
平移 对称 伸缩
问题1:如何由f(x)=x2的图象得到以下各函
数的图象?
y y=f(x)+1
〔1〕f(x-1)=(x-1)2 〔2〕f(x+1)=(x+1)2
〔3〕f(x)+1=x2+1 〔4〕f(x) -1=x2-1
y=f(x+1)
1 -1 O 1 y=f(x)-1 -1
y=f(x-1)
x
函数图象的平移变换:
对称
思考:“函数y=f(x)与函数y=f(2a-x)的图像关于直线x=a对称〞 与 “函数y=f(x)满足f(x)= f(2a-x),那么函数y=f(x)关于直线x=a对 称〞两者间有何区别?

函数的对称性与函数的图象变换总结

函数的对称性与函数的图象变换总结
思考:“函数y=f(x)与函数y=f(2a-x)的图像关于直线x=a对称”与 “函数y=f(x)满足f(x)= f(2a-x),则函数y=f(x)关于直线x=a对称” 两者间有何区别?
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
b o
a
x
思考?
(1)若y=f(x)满足f(a-x)=-f(b+x), 则函数图像关于
点( a+b ,0 ) 2 对称
(2)若y=f(x)满足f(a-x)=2c-f(b+x), 则函数图像关于点 (
a+b ,C ) 对称 2
轴对称
函数图像关于直线x=0对称
中心对称性
函数图像关于(0,0)中心对称
函数的对称性
有些函数 其图像有着优美的对称性, 同时又有着优美的对称关系式
知识回顾(偶函数)
从”形”的角度看, Y=f(x)图像关于直线x=0对称
Y
从“数”的角度看, f(-x)=f(x)
f (1) f (1) f (2) f (2) f ( x) f ( x)

-x
-x
o
x a
x
类比探究
中心对称性
从”形”的角度看, y=f(x)图像关于(a,0)中心对称
y

从”数”的角度看, f(x)=-f(2a-x)
f(a-x)=-f(a+x)
b
a-x o
a
a+xx源自类比探究中心对称性
y=f(x)图像关于(a,b)中心对称

y

三角函数图像变换总结(范本)

三角函数图像变换总结(范本)

三角函数图像变换总结‎三角函数图像变换总‎结‎篇一:‎三角函数图像变换小‎结(修订版) ★三角‎函数图像变换小结★‎相位变换:①‎y?sinx?y?s‎i n(x??)‎0? 将y?sinx‎图像沿x轴向左平移?‎个单位②y?‎s inx?y?sin‎(x??)0?‎将y?sinx图像‎沿x轴向右平移?个单‎位周期变换:‎①y?sinx?y‎?sinx(0??1‎)将y?sinx图‎像上所有点的纵坐标不‎变,横坐标伸长为原来‎的 1 倍②‎y?sinx?y?s‎i nx(?1)将y?‎s inx图像上所有点‎的纵坐标不变,横坐标‎缩短为原来的 1 倍‎振幅变换:‎①y?sinx?y?‎A sinx的A倍‎②y?sinx?‎y?Asinx A倍‎?0?纵坐标缩短为‎原来A?1?将y?s‎i nx图像上所有点的‎横坐标不变, ?A?‎1?将y?sinx图‎像上所有点的横坐标不‎变,纵坐标伸长为原来‎的【特别提醒】由‎y=sinx的图象变‎换出y =Asin(?‎x+?)的图象一般有‎两个途径,只有区别开‎这两个途径,才能灵活‎进行图象变换。

途径‎一:先平移变‎换再周期变换(伸缩变‎换) 先将y=sin‎x的图象向左(?>0‎)或向右(??0)平‎移|?|个单位,再将‎图象上各点的横坐标变‎为原来的途径二:‎先周期变换(伸‎缩变换)再平移变换‎先将y=sinx的图‎象上各点的横坐标变为‎原来的移 |?| 1‎? 倍(?>0),‎便得y=sin(ωx‎+?)的图象 1 ?‎倍(?>0),再沿‎x轴向左(?>0)或‎向0?右平 ?‎个单位,便得y=s‎i n(?x+?)的图‎象 ?? |个单位‎【特别提醒】若由y?‎s in?x 得到y?s‎i n??x的图‎象,则向左或向右平移‎应平移| 1 为了得‎到函数y?3sin?‎x? ?? ?? 5‎? ?的图像,只要把‎y?3sin?x? ‎? ? ?? ?上所‎有的点() 5? ‎(A)向右平行移动(‎C)向右平行移动 ?‎52?5 个单位长‎度(B)向左平行移‎动个单位长度(D)‎向左平行移动 ? 5‎2?5 个单位长度‎个单位长度(201‎X·朝阳期末)要得到‎函数y?sin(2x‎?(A)向左平移(C‎)向右平移 (09山‎东文)将函数y?si‎n2x的图象向左平移‎( ). ? 4 ?‎4 )的图象,只要‎将函数y?sin2x‎的图象 ( ) 单位‎(B)向右平移单位‎(D)向左平移 ?‎4 单位单位 ?‎8 ? 8 ? 4‎个单位, 再向上平‎移1个单位,所得图象‎的函数解析式是 A.‎y?2cs2x B‎. y?2sin2x‎C.y?1?sin‎(2x? 【方法总结‎】 ? 4 ) D.‎y?cs2x‎①将y?f?x?图‎像沿x轴向左平移a个‎单位 y?f?x??‎y?f(x?a)‎②将y?f(x)‎图像沿x轴向右平移a‎个单位 y?f?x?‎?y?f(x?a) ‎为了得到函数y?3s‎i n?2x? ?? ‎?? 5? ?的图像‎,只要把y?3sin‎?x? ? ? ??‎?上所有的点()‎5? 1212 (‎A)横坐标伸长到原来‎的2倍,纵坐标不变‎(B)横坐标缩短到原‎来的(C)纵坐标伸长‎到原来的2倍,横坐标‎不变(D)纵坐标缩‎短到原来的(201‎X四川文)将函数y?‎s inx 的图像上所有‎的点向右平行移动 ?‎10 倍,纵坐标不‎变倍,横坐标不变‎个单位长度,再把所得‎各点的横坐标伸长到‎原来的2倍(纵坐标不‎变),所得图像的函数‎解析式是()(A‎)y?sin(2x?‎(C)y?sin( ‎2?10 ) (‎B)y?sin(2x‎?) (D)y?si‎n( 12 ? 5 ‎)) 12 x? ‎? 10 x? ? ‎20 (201X·广‎州期末)若把函数y?‎f?x?的图象沿x轴‎向左平移 ? 4 个‎单位,沿y轴向下平移‎1个单位,然后再把‎图象上每个点的横坐标‎伸长到原来的2倍(纵‎坐标保持不变),得到‎函数y?sinx的图‎象,则y?f?x?的‎解析式为( ) A.‎y?sin?2x? ‎??? ??‎?B.?1y?si‎n2x1 ‎4?2?? C.y?‎s in?2x? 【方‎法总结】 ?? ??‎?D.?1y?si‎n2x1 ‎4?2?? 将y?f‎?x?图像上所有点的‎纵坐标不变,横坐标变‎为原来的y?f(x)‎?y?f?x 1 倍‎? (?0) 为了‎得到函数y?4sin‎?x? ?? ?? ‎5? ?的图像,只要‎把y?3sin?x?‎? ? ?? ?上‎所有的点() 5?‎34 (A)横坐标‎伸长到原来的(C)纵‎坐标伸长到原来的【‎方法总结】 4343‎倍,纵坐标不变(‎B)横坐标缩短到原来‎的倍,纵坐标不变 3‎4倍,横坐标不变‎(D)纵坐标缩短到原‎来的倍,横坐标不变‎将y?f?x?图像上‎所有点的横坐标不变,‎横坐标变为原来的A倍‎y?f(x)?y?‎A f?x ? (A?‎0) 为了得到函数y‎?sin?2x? ?‎??? ?的图像,‎可以将函数y?cs2‎x的图像() 6?‎A 向右平移 ? ‎6B 向右平移 ?‎3 C 向左平移‎?6 D向左平移‎?3 试述如何由y‎=sin(2x+ 3‎1π3 )的图象得‎到y=sinx的图象‎3 函数y?Asi‎n(?x??)表达式‎的确定:A由‎最值确定;?由周期确‎定;?由图象上的特殊‎点确定,(201X‎重庆理)(6)‎已知函数y?sin(‎?x??)(??0,‎??A. ?=1 ?‎= ? 6 ? 2 ‎)的部分图象如题‎(6)图所示,则(‎) ? 6 B. ‎?=1 ?= —C.‎?=2 ?= ? ‎6? 6 D. ?‎=2 ?= —(2‎01X天津文)(8)‎右图是函数y?Asi‎n(?x??)?A?‎0,??0,?? ?‎? ?? 2? ?‎在区间?? ? ??‎5?? 上的图像为‎?66?, 了得到这‎个函数的图象,只要将‎y?sinx(x?R‎)的图象上所有的点(‎) (A)向左平移‎? 3 个单位长度‎,再把所得各点的横坐‎标缩短到原来的 12‎倍,纵坐标不变(‎B) 向左平移 ? ‎3个单位长度,再把‎所得各点的横坐标伸长‎到原来的2 倍,纵坐‎标不变 (C) 向左‎平移 ? 6 个单位‎长度,再把所得各点的‎横坐标缩短到原来的‎12 倍,纵坐标不变‎(D) 向左平移‎?6 个单位长度,‎再把所得各点的横坐标‎伸长到原来的2 倍,‎纵坐标不变【规律总‎结】 y?Asin(‎?x??)的图像(‎1)相邻的对称轴之间‎的距离为半个周期;‎(2)相邻对称中心间‎的距离是半个周期;‎(3)相邻的对称轴和‎对称中心之间的距离为‎14 个周期。

函数图像及其变换

函数图像及其变换

1. f(x)=|x-1|的图象为如下图所示中的 ( )
【解析】 【答案】 B
2. (湖北卷)函数 y e |ln x| | x 1 |的图象大致是
D
( D

(D )
3.为了得到函数 y=2 -1 的图象,只需 把函数 y=2x 的图象上所有的点( ) A.向右平移 3 个单位长度,再向下平移 1 个单位长度 B.向左平移 3 个单位长度,再向下平移 1 个单位长度 C .向右平移 3 个单位长度,再向上平移 1 个单位长度 D.向左平移 3 个单位长度,再向上平移 1 个单位长度
2.函数图象的画法 函数图象的画法有两种常见的方法:一是描点法; 二是图象变换法 描点法:描点法作函数图象是根据函数解析式, 列出函数中x,y的一些对应值表,在坐标系内描出 点,最后用平滑的曲线将这些点连接起来 .作图时, 要与研究函数的性质结合起来
图象变换法:常用变换方法有4种,即平移变换、 翻折变换、伸缩变换和对称变换
y f (2a x)
a 对称的解析式为
④函数 y f ( x) 的图象关于点 (a, 0) 对称的解析式为
y f (2a x)
1 ⑤函数 y f ( x) 和 y f ( x) 的图象关于直线 y=x 对称 .
【例1】 作出下列函数的大致图象
(1) y ( x 1) 1 (2) y log 2 ( x ) 1 (3) y 2
2.函数图象的画法 函数图象的画法有两种常见的方法:一是描点法; 二是图象变换法 描点法:描点法作函数图象是根据函数解析式, 列出函数中x,y的一些对应值表,在坐标系内描出 点,最后用平滑的曲线将这些点连接起来 .作图时, 要与研究函数的性质结合起来

中考复习函数专题30 函数图象的平移与变换(老师版)

中考复习函数专题30 函数图象的平移与变换(老师版)

专题30 函数图象的平移与变换知识对接考点一、函数图象的变换一 、平移变换函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种:①沿水平方向左右平行移动②沿竖直方向上下平行移动1.利用描点法作函数的图象的基本步骤:①确定函数的定义域②简化函数的解析式③讨论函数的性质(奇偶性、单调性、最值等)④画出函数的图象2.图象的平移变换①)0)((>-=a a x f y 的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)0)((>+=a a x f y 的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到②)0()(>±=h h x f y 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到注意:(1)可以将平移变换化简成口诀:左加右减,上加下减(2)谁向谁变换是)(x f y =→)(a x f y -=还是)(a x f y -=→)(x f y =二、对称变换图象的对称性是函数在对称区间上值域具有不同特点的直观反应,函数图象的对称性反应在两个方面,一是两个函数图象间的对称情况,二是一个函数图象本身的对称情况。

两个函数图象间的对称情况有两种形式:一是两图关于某条直线对称,二是两图象关于某点呈中心对称。

①)(x f y =与)(x y -=)的图象关于y 轴对称②)(x f y =与)(x y -=的图象关于x 轴对称③)(x f y =与)(x y -=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将)(x f y =的)图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。

⑤()x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的图象变换
函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。

由函数y = f (x)可得到如下函数的图象
1. 平移:
(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。

(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。

2. 对称:
✧ 关于直线对称
(Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。

(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。

(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。

(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。

(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。

(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。

(Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)
右侧的图象沿y 轴翻折至左侧。

(留正去负,正左翻(关于y 轴对称));
(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)
在x 轴下侧的图象沿x 轴翻折至上侧。

(留正去负,负上翻;)
一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m
2a b x -=对称。

✧ 关于点对称
(1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。

(2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。

3. 伸缩
(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的
m 1倍得到。

(如果0<m<1,实际上是将f (x)的图象伸展)
(2) 函数y = mf (x) (m>0)的图象可将y = f (x)图象上各点的横坐标不变,纵坐标缩小到原来的m
1倍得到。

(如果0<m<1,实际上是将f (x)的图象伸展)
二.函数图象的对称性(有关函数图象本身的对称性)
(1) 如函数y = f (x)对定义域中的任意x 的值,都满足f (x) = f (2a -x) (或者f(a -x)=f(a+x)等),则函数y = f (x)的图象关于直线x = a 对称。

(2) 如函数y = f (x)对定义域中的任意x 的值,都满足f (x) = 2b -f (2a -x)(或者f(a -x) = 2b -f(a+x)等),则函数y = f (x)的图象关于点(a,b)对称。

一般地:如函数y = f (x)对定义域中的任意x 的值,都满足 f (a+mx) = f (b -mx), 则函数y = f (x)的图象关于直线
2
b a x +=对称。

1.把函数3x y =的反函数的图象向右平移2个单位,再作以原点为中心的对称图形,则新图形的函数表达式是------------------------------------------------------------------( )
33332x y )D ( 2x y )C ( 2x y )B ( 2x y )A (--=+=+-=-=
2.奇函数)x (f y ),x (f y )R x ( )x (f y 11--==∈=则必在有反函数的图象上的点是( )
))a (f ,a )(D ( ))a (f ,a )(C ( )a ),a (f )(B ( )a ),a (f )(A (11-------
3.设函数f (x)与函数g (x)的图象关于直线x =3对称,则g (x)的表达式为---( )
)
x 6(f )x (g )D ( )x 3(f )x (g )C ()x 3(f )x (g )B ( )x 2
3(f )x (g )A (-=--=-=-= 4.函数f (a -x)与f (x -b)的图象关于直线l 对称,则直线l 的方程为-------------( )
b a x )D ( b a x )C ( 2
b a x )B ( 2b a x )A (+=-=+=-= 6.设函数)(x f y =图象进行平移变换得到曲线C ,这时)(x f y =图象上一点)1,2(-A 变为曲线C 上点)3,3('-A ,则曲线C 的函数解析式为( )
A. 2)1(+-=x f y
B. 2)1(++=x f y
C. 2)1(--=x f y
D. 2)1(-+=x f y
7.对于定义在R 上的函数)(x f 有下列命题,其中正确的序号为
①若函数)(x f 是奇函数,则)1(-x f 的图象关于点)0,1(A 对称;
②若对R x ∈,有)1()1(-=+x f x f ,)(x f y =的图象关于直线1=x 对称;
③若函数)1(-x f 的图象关于直线1=x 对称,则函数)(x f 是偶函数;
④函数)1(+=x f y 与函数)1(x f y -=的图象关于直线1=x 对称;
8.若函数y = f (x ) (x ∈R )满足f (x + 2) = f (x ),且x ∈(–1, 1]时,f (x ) = |x |,则函数y = f (x )的图象与函数y = log 3| x |的图象的交点的个数是 .
题组三:有关图象问题的综合应用
1.关于x 的方程x a x x =-+-342有三个不相等的实数根,则实数a 的值是多少?
2、已知f (x+199)=4x 2+4x +3(x ∈R ),那么函数f (x )的最小值为____.
3、 设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )=
4、已知函数f (x )=m (x +
x 1)的图象与函数h (x )=41(x +x 1)+2的图象关于点A (0,1)对称. (1)求m 的值;。

相关文档
最新文档